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Retrieving Information From Memory: Spreading-Activation Theories
Versus Compound-Cue Theories

Roger Ratcliff and Gail McKoon

McNamara (1992a) attacked compound-cue theories on a number of grounds. Using free associa-
tion as a measure of distance between concepts in memory, he argued that compound-cue theories
cannot explain mediated priming effects. The authors show that free-association production proba-
bilities do not accurately predict priming effects, either directly or in the context of current spread-
ing-activation models, and so remove the basis for McNamara’s criticism. McNamara also claimed
that compound-cue theories cannot account for the sequential effects of items that precede a target
on responses to the target, but the authors show that sequential effects are consistent with compound-
cue models if the target item is weighted more heavily than preceding items in the calculation of
familiarity that determines response time and accuracy for the target. It is concluded that, although
compound-cue and spreading-activation theories are both consistent with available data, the com-
pound-cue theory, having less freedom, has passed more stringent tests.

Ratcliff and McKoon (1988) and Dosher and Rosedale
{1989) proposed that information is accessed in memory by a
process that combines the multiple cues present in the retrieval
environment into a compound cue. In a critique of compound-
cue models, McNamara (1992a) addressed a large number of
issues, contrasting compound-cue models with their main com-
petitors, spreading-activation models, and concluded that com-
pound-cue models, could do little more than “explain (experi-
mental) results by questioning the methods or appealing to ad
hoc processes” (p. 658). In this reply to McNamara’s article, we
respond to his main criticisms, and we reiterate our 1988 claim
that compound-cue models provide an alternative view that can
be used to generate empirical investigations of retrieval that
would not be suggested by spreading-activation models.

Spreading-activation and compound-cue theories have the
important function of explaining how the processes of memory
retrieval focus on subsets of information in long-term memory.
In the two theories, focusing is accomplished by quite different
mechanisms. For the tasks discussed in this article, lexical deci-
sion and recognition, spreading-activation theories propose that
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all the action in retrieval processing takes place in temporary
changes to long-term memory: When an item is presented to
the system, activation spreads from the representation of that
item in long-term memory to other nearby items in long-term
memory. In compound-cue theories, all the action takes place
in short-term memory. Items presented to the retrieval system
are assumed to join together into compounds in short-term
memory. A compound is matched against information in long-
term memory by a global and passive matching process. In
spreading-activation models, the result of retrieval processing is
increased activation in long-term memory of items related to
the input item. In compound-cue models, the result of retrieval
processing is a value indicating the familiarity of the cue com-
pound to all the items in long-term memory. The two different
sets of assumptions about retrieval offer two different ways to
think about processing, about what experiments are interesting
to perform, and about how to interpret data. In this way, each
kind of theory is valuable to the other.

“Mediated” Priming?

In spreading-activation models, items in memory vary in the
number of links between them. Items connected by one or even
two mediators should prime each other in tasks such as lexical
decision because presentation of the prime word sends activa-
tion spreading to the target word, so that the target is already
activated in advance of its actual presentation. In contrast, dis-
tance between items in terms of number of links is not mean-
ingful for compound-cue theories. In the search of associative
memory (SAM) model, for example (Gillund & Shiffrin, 1984),
priming occurs when the strength value of the prime matched
against some word(s) in memory is high and the strength value
of the target matched against the same word(s) is also high.
Thus, compound-cue models predict priming only for items
that are directly related by high strength values (or, in SAM,
related by at most one other item with high strength values to
both prime and target), but spreading-activation models predict
priming for items separated by multiple links. Because of these
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contradictory predictions, mediated priming has become a crit-
ical focus of the debate about the relative merits of spreading-
activation theories and compound-cue theories.

The key issue in this debate is how the distance between two
concepts in memory should be measured. McNamara (1992a)
argued that the best available measure of distance is free-asso-
ciation production probability (p. 652) and used this measure
to account for priming effects that he claimed “pose difficulties
to non-spreading-activation (compound cue) theories” (p. 653).
Specifically, he claimed on the basis of free-association data that
there exist pairs of words that prime each other but are not di-
rectly related, in contradiction to compound-cue models. How-
ever, the claim is wrong: Free-association production probabil-
ity is not an accurate measure of distance for predicting priming
effects. First, there exist pairs of words that prime each other
even though connections between them are not produced in
free association. For example, Fischler (1977), McKoon and
Ratcliff (1994, unpublished data using a short stimulus onset
asynchrony [SOA], following Shelton & Martin, 1992),
McKoon and Ratcliff (1992), and Seidenberg, Waters, Sanders,
and Langer (1984) have all shown priming for pairs of words
that are not associated according to free-association production
measures. Second, even when free association does produce
connections between words, the production probabilities do not
correctly predict priming effects, as we demonstrate in the next
section. Thus, free association is not a veridical measure of dis-
tance in memory, and so priming effects should be explained
using other measures such as co-occurrence statistics or relat-
edness judgments that are consistent with compound-cue theo-
ries (McKoon & Ratcliff, 1992).!

Free-Association Production Probabilities Do Not
Accurately Predict Priming Effects

To present these issues, we (like McNamara, 1992a) center
our discussion around two sets of pairs of words, one set from
Balota and Lorch (1986) and McNamara and Altarriba (1988),
the MA set (named for McNamara and Altarriba), and the other
set from McKoon and Ratcliff (1992), the MR set (for McKoon
and Ratcliff). McKoon and Ratcliff (1992) found that the two
sets of pairs gave priming effects of about the same size (14 and
13 ms). Primes and targets of the MA set were intended to be
words connected by mediators: flower-thorn is an example.
Primes and targets of the MR set were originally intended to be
words that were not connected by any mediator produced in
free association: flower-root is an example. However, McNa-
mara (1992a) claimed that both sets of primes and targets did
have mediators, and that the equivalent priming effects between
the prime and target words of these pairs were predicted by
equivalent probabilities that the primes and targets were linked
through free associations. He used this to support his
contention that free association is the best available measure of
distance between concepts in memory.

To obtain chains of mediating concepts by which primes and
targets could be linked, McNamara (1992a, Table 1, 1992b)
used what has been termed the continued-association proce-
dure (Postman & Keppel, 1970), asking subjects to generate
multiple free associates (e.g., as many as they could in 1 min) to
each prime word, target word, and potential mediating word.

However, for measuring associative distances among concepts
in memory, the continued-association procedure is problem-
atic. In the earlier literature about free associations (Postman &
Keppel, 1970, and precursors), it was generally accepted that
this procedure allowed each next response generated from a sin-
gle stimulus to be determined not only by the initial stimulus
but also by the prior response or any of the other previously
produced responses (see recent discussion by Nelson, Schreiber,
& McEvoy, 1992). Moreover, the probabilities produced for a
given stimulus by the continued procedure sum to more than |
and so cannot be considered associative strengths for the pur-
pose of modeling a network in which the total proportion of
activation spreading from one node to each of its directly con-
nected nodes must not sum to more than 1.0 (cf. ACT*, Ander-
son, 1983). The standard free-association method for obtaining
association strengths (avoiding the problems with the continued
procedure, Postman & Keppel, 1970) is to ask subjects to give
only a single response for each stimulus. We collected data with
this procedure, asking subjects to generate free associates to all
of the primes, potential mediators (from McNamara, 1992a),
and targets for both the MA and the MR pairs. For the MA
pairs, the prime and target are supposed to be linked by one
mediating concept, a two-step chain. For some of the MR pairs,
McNamara also proposed a two-step chain, and for others a
three-step chain. For both kinds of chains, Figure 1 shows the
data we obtained; the mean first production probabilities for
the directions are indicated by the arrows.

The important result is that the average probabilities for the
two- and three-step MR chains are considerably lower than the
average probabilities for the MA chains, contrary to McNa-
mara’s claims that the two kinds of pairs are equivalent. For
example, for the two-step chains, the probability that a media-
tor is produced in response to its prime is 0.192 for the MA
pairs, but only 0.053 for the MR pairs. For a very simple spread-
ing-activation model, it might be assumed that when a prime is
presented, some proportion of activation spreads from prime
to mediator (p) and some proportion spreads from mediator to
target (g), so that the activation passed from prime to target is
pq. Using the production probabilities for each link to deter-
mine p and ¢ and then multiplying along the links gives an acti-
vation value on a target of 0.0219 for the MA targets (0.192 X
0.114), but only 0.0025 for the MR two-step targets and only
0.0007 for the MR three-step targets (values from Figure 1).
Over all the targets, the weighted mean value of activation for
the MR targets (0.00175) is 13 times less than for the MA
targets. Clearly, these values in this simple model cannot predict
equivalent priming effects for the MA and MR pairs.

! McNamara (1992a) suggested that an experiment by Ratcliff and
McKoon (1978) provides evidence against co-occurrence as a predictor
of priming. Ratcliff and McKoon measured the amount of priming due
to temporal contiguity, that is, the nearness of words to each other in
a sentence. They found that the amount of priming due to temporal
contiguity was less than that due to propositional distance. McNamara
{1992a) identified co-occurrence as being necessarily closely related to
temporal contiguity and less related to propositional distance. However,
co-occurrence as presently defined includes propositional, temporal,
and even between-sentence effects, and so Ratcliff and McKoon’s results
currently have no implications for the use of co-occurrence measures.
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Figure 1. Free-association production probabilities (means across
subjects and items) from the single-response procedure for the MA
(McNamara & Altarriba, 1988) pairs, the MR (McKoon & Ratcliff,
1992, with McNamara’s, 1992a, mediators) two-step pairs, and the MR
(McKoon & Ratcliff, 1992, with McNamara’s, 1992a, mediators) three-
step pairs.

The difference between the MA and the MR pairs is even
larger when an averaging artifact is taken into consideration.
The averages just given were calculated by averaging across
items (e.g., averaging all prime-to-mediator links and averaging
all mediator-to-target links) and then multiplying the averages to
get activation for the target. A more appropriate way to average
would be to multiply the probabilities for the chain for each
item and then average the resulting values of target activation.
This way of averaging is more appropriate, because for the MR
pairs it is almost always the case that when the probability for
one of the links (prime-to-mediator or mediator-to-target) is
high, then that for the other is very low. This second way of
averaging increases the difference between the MA and MR
pairs. For the MA pairs, multiplying probabilities before aver-
aging gives a value of 0.0162 (cf. 0.0219 above, which is 1.3
times smaller) and for the MR pairs (weighted average) a value
0f0.00034 (cf. 0.00175, which is 5 times smaller), giving a ratio
of 47:1, The same averaging problem applies to the data McNa-
mara (1992b) collected with the continued-association proce-
dure. Averaging across items first and then multiplying gives a
value of activation for the MA targets of 0.114, whereas
multiplying links for each item first and then averaging gives a
value of 0.104. The difference between the two ways of averag-
ing is larger for the MR pairs: 0.063 versus 0.037 for the two-
step pairs and 0.016 versus 0.011 for the three-step pairs. Com-
bining the two-step and three-step pairs (and weighting by the
number of each), the ratios of MA to MR activation are 1.1:
1 (the value reported by McNamara, 1992b) versus about 4:1
(0.104:0.026). Thus, using the method of averaging that is most
appropriate to the spreading-activation model, priming is pre-
dicteg to be four times larger for the MR pairs than for the MA
pairs.

Modeling Priming Effects With an Explicit Spreading-
Activation Model

To develop the argument further, we examined whether an
explicit spreading-activation model, ACT* (Anderson, 1983),
could jointly accommodate free-association production proba-
bilities and priming effects. In ACT*, activation reverberates
among connected concepts, and so the strengths of the links
from a prime to its target and the strengths from the target back
to the prime both determine the total amount of activation that
accrues at the target. ACT* predictions for relative amounts of
priming were calculated for a network with a prime, a mediator,
and a target along with some other nodes connected to them.
Figure 2 shows one mediator for a two-step chain between
prime and target; the corresponding network for a three-step
chain would have an additional mediator with three other nodes
connected to it, for a total of 18 nodes. The sum of the strengths
leaving each node is set to 1.0, making the network consistent
with the assumptions of ACT* (Anderson, 1983, p. 22).

Connection strengths were derived from the production
probabilities in Figure 1 for the MA pairs and the MR (two-
and three-step) pairs. Table 1 shows the predicted amounts of
activation on the target node after activation has been entered
at one or more source nodes and the system has stabilized (see
the Appendix for the equations and assumptions used to imple-
ment ACT*). We assumed as a baseline against which to mea-
sure the predicted amount of priming the case where only the
target node was a source of activation, corresponding to the case
where the target was presented to the system with an unrelated
prime. Given this baseline, we could then predict mediated
priming from prime to target, for which we assumed that the
prime and target were sources of activation, and direct priming
from the mediator to the target, for which we assumed that the
mediator and target were sources of activation. Direct priming
should always lead to more activation on the target than medi-
ated priming, and this is what the predictions in the table show.
For example, for the MA items, the prediction for activation on
the target as a result of direct priming is 2.777, up 0.434 from
baseline. The prediction for activation on the target as a result
of mediated priming is 2.481, up only 0.138 from baseline.
Comparing the two amounts of priming, the ratio of direct to
mediated is 3.1 (shown in the fifth column of Table 1), consis-
tent with empirical data within typical standard errors (assum-
ing a linear relationship between activation and reaction time,
e.g., as in Anderson, 1983). For example, McNamara and Al-
tarriba (1988) found 24 ms of direct priming and 10 ms of me-
diated priming.

The important results in Table 1 are the ratios of the pre-

2In calculating average association strengths, McNamara (1992b)
used both forward and backward association probabilities, simply aver-
aging the two. However, for a model such as ACT¥, this would be incor-
rect: Activation reverberating between prime, mediator, and target
would become increasingly smaller as the number of forward and back-
ward traverses across the links multiplied the activation to smaller and
smaller values. In fact, the effect of a backward link would have to be
muitiplied by the square of the corresponding forward link. So to calcu-
late predictions for average activation in ACT¥, these reverberations and
their effect are taken into account in the formulation of the model.



180 THEORETICAL NOTES

4
s
Sa
P
6
7 10
From Node

PM T 45686 7 9 10 11 1213 14
P05, 011110000000]
M s, 05,00001110000
T105,000000001111
4 {5, 0000000000000
515, 0 000000000000
o 5% 0000000000000
715, 0000000000000
Node 5 10 5, 000000000000
9 10 5, 000000000000
1005 000000000000
110 0500000000000
12/0 0500000000000
1310 0500000000000
14 /0 0 5,00000000000

Figure 2. A network for spreading-activation computations for ACT*
and a matrix of the strengths of connections between nodes. For ACT*,
the weights leaving a node are assumed to sum to 1, so strengths in each
column of the matrix sum to 1. P = prime; M = mediator; T = target; s
= strength. Spm, Smp, Smt, and Sy, are derived from production probabil-
ities {see text). s,, Sy, and s, are the strengths from the prime mediator
and target, respectively, to other nodes in the network.

dicted priming effects for the MA pairs and the MR pairs. First,
the ratio of the direct-priming effect for the MA pairs (empiri-
cally, 24 ms) to the mediated-priming effect for the MR pairs
(empirically, 14 ms) is predicted to be at least 18.9. Second, the
MA mediated-priming effect is predicted to be at least 5.6 times

larger than the MR mediated-priming effect. Empirically, these
effects are about the same size (about 14 ms).

The network shown in Figure 2 would not be a completely
acceptable representation of a semantic memory network be-
cause Nodes 4 through 14 send all of their strength back to the
prime, mediator, or target (whichever of these nodes they are
connected to). More realistically, each of Nodes 4 through 14
would be expected to be connected to other nodes, and this
would mean that the strength on the link from one of these
nodes back to the prime, mediator, or target would have to be
less than 1.0, because some of the strength leaving these nodes
would have to go to their other connected nodes. However, re-
peating the calculations of target activations with two other
nodes connected to each of Nodes 4 through 14 made ACT*’s
predictions even worse, with the predicted ratios of priming
effects being much larger than those found empiricatly.

What can be concluded from this discussion? First, reiterat-
ing McKoon and Ratcliff’s (1992) previous conclusion, free-
association production probabilities do not correctly predict
priming effects. In this article, we demonstrate this for an ex-
plicit model, ACT*. Thus, in the context of current theories and
data, free-association data cannot be used to decide whether
two items in memory are directly connected, and so, consistent
with compound-cue models and alternative measures of
strength of connection (e.g., relatedness and co-occurrence), it
is reasonable to suppose that all pairs of words that give priming
are directly connected with some degree of strength. In conse-
quence, contrary to McNamara’s (1992a, p. 653) claims, prim-
ing effects and free-association production probabilities do not
pose problems for compound-cue models. However, priming
effects and free associations do pose problems for spreading-
activation models if the models assume that free-association
probabilities should predict priming effects.

McNamara (1992a) acknowledged both that there are inher-
ent problems in measuring distances between items in memory
and that measures like free association may not be definitive (p.
653). It is important to understand why they are not definitive:
It is not the case that free association is “probably” an accurate
measure, if we could only get enough subjects to generate
enough responses. Instead, as is exemplified by the exercise
above with ACT¥, free association clearly fails as a predictor of
priming. As a result, both spreading-activation and compound-
cue models need to provide a theoretical account of processing

Table |
Predictions From ACT* for MA and MR Pairs
Ratio of MA Ratio of MA
No. of Baseline Mediated Direct direct to mediated to
Materials nodes activation activation activation mediated mediated

MA 14 2.343 2.481 2.777 3.1 1
MR two-step 14 2.550 2.573 2.766 18.9 5.6
MR three-step 18 2.288 2.302 2.589 310 9.1

Note. The ratio of direct to mediated priming and mediated to mediated priming is the ratio of the
differences between the condition and baseline. Ratios based on the probabilities from free association
(ratios of probabilities or ratios of products of probabilities) are MA mediated to direct, 5.2; MR two-step
mediated to MA direct, 44.8; and MR three-step mediated to MA direct, 158.3. MA = McNamara and
Altarriba (1988) materials; MR = McKoon and Ratcliff (1992) materials.
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in the free-association task, of how free association and priming
effects can be related to each other, and of how they can both be
related to other variables such as semantic relatedness and co-
occurrence frequencies that might be more direct predictors of
priming effects (see McKoon & Ratcliff, 1992, for a discussion
of these variables).

Sequential Effects

McNamara (1992a, 1992b) argued that sequential (lag)
effects among multiple lexical decision tests cannot be ex-
plained by compound-cue theories. McNamara began by dem-
onstrating that, for a particular set of experimental procedures,
the compound used to retrieve information from memory
about a target word must contain the two items preceding the
target as well as the target. McNamara demonstrated this by
showing facilitation for a target when the related word that pre-
ceded it was separated by an intervening word (e.g., facilitation
for nail in the sequence hammer, vase, nail; see similar results
in Ratchiff & McKoon, 1978; Ratcliff, Hockley, & McKoon,
1985).> Then McNamara considered sequences like hammer,
nail, vase, in which the first, “preprime,” word and the second,
“prime,” word are related to each other but not to the target.
Because the compound used to access memory for the target
must contain all three items, response time for the target should
be facilitated by the relation between the preprime and prime.
When such facilitation was not found in his experiments,
McNamara concluded that the compound-cue prediction
failed. McNamara also considered triples for which the pre-
prime was a nonword and claimed that their inclusion in a com-
pound would diminish the familiarity of the compound suff-
ciently that the effect of a prime-target relation would be re-
duced. In other words, facilitation on the target nail should be
less in the sequence bame, hammer, nail than in the sequence
vase, hammer, nail. Again, when this inhibition was not found
in his experiments, McNamara claimed a failure of compound-
cue theory.

What is wrong with McNamara’s conclusions is that they are
based on assumptions about the application of compound-cue
theory that are not reasonable, assumptions about the relative
weightings of the preprime, prime, and target in the calculation
of the total familiarity value for the target. When more reason-
able weightings are assumed, compound-cue theory can fit the
data quite well. Table 2 shows quantitative predictions for sev-

Table 2
Familiarity of Various Preprime, Prime, and Target Sequences

Preprime, prime, target

Weights UUU RRU RUR URR XUU XRR

0.1,02,0.7 3.58 3.61 3.73 3.90 3.25 3.54
0.14,0.29,0.57 341 3.47 3.56 3.7 2.96 3.28

Note. UUU means that none of the words are related, RRU means
that the preprime and prime are related (e.g., hammer, nail, veil, in a
sequence), RUR means the preprime and target are related, URR
means the prime and target are related, X refers to a nonword; in XUU,
the prime and target are not related, and in XRR, they are related.

Table 3
The Retrieval Structure for the Search of Associative Memory
Model Used in Modeling Priming Effects

Target

Cue i 2 3 4 S 6 7 8 9 10
1 i 1 02 02 02 02 02 02 02 02
2 1 1 1 02 02 02 02 02 02 02
3 02 1 i 1 02 02 02 02 02 02
4 02 02 1 1 1 02 02 02 02 02
5 02 02 02 1 1 i 02 02 02 02
6 02 02 02 02 1 1 1 02 02 02
7 02 02 02 02 02 1! 1 1 0.2 02
8 02 02 02 02 02 02 1 1 1 0.2

9 02 02 02 02 02 02 02 1 1 1

10 02 02 02 02 02 02 02 02 I 1
1t 61 01 01 01 01 01 01 01 01 0l
12 01 o0t 01 01 01 01 01 01 01 0l

Note. Cues 11 and 12 are assumed to be nonwords with strengths 0.1,
the residual strengths from word cues to other words are assumed to be
0.2, and the strengths of words connected to each other are assumed to
be 1. Familiarity is computed from F(cue i, cue j, cue k) = Z;
18,81, where Sy is the strength of cue i to target / with weight
wl.

eral kinds of sequences generated from a compound-cue model
based on SAM (Gillund & Shiffrin, 1984; Ratcliff & McKoon,
1988). The predictions were derived for the simplified memory
structure shown in Table 3 (see Ratcliff & McKoon, 1988, Table
1) in which each cue word is related with strength 1.0 to itself
in memory, it is related with strength 1.0 to each of two related
other words in memory (which are in turn related back to the
cue word with strength 1.0), it is related to all other items in
memory {(and they are related to it) with strength 0.2, and it is
related to a nonword with strength 0.1. To determine the famil-
iarity value for the target (see Table 3), the strength values for
the preprime, prime, and target cue words are weighted differ-
ently, with most weight on strength values for the target because
it is the word that actually requires a response, and the weighted
strength values are summed over all items in memory.

McNamara used a weighting scheme of 0.5 on the target, 0.3
on the prime, and 0.2 on the preprime. This scheme placesalot
of weight on the preprime and prime relative to the target. It
means that if the prime and preprime were nonwords and the
target a word, equal weight would be given in the decision pro-
cess to the nonwords (preprime and prime) and the target word;
an error rate of roughly 50% on the target word would be ex-
pected. We believe that this is not a reasonable choice for a
weighting scheme, and others are presented in Table 2. The re-
sults show that McNamara’s claims depended on the excessive
weighting of the prime and preprime.

Table 2 shows familiarity values for two different weighting
schemes for several kinds of sequences (see McKoon & Ratcliff,

3 Joordens and Besner (1992) have criticized compound-cue theory
because, they claimed, it cannot predict priming effects when an item
intervenes between a related prime and target. This is clearly false; Rat-
cliff and McKoon (1988) showed exactly how compound-cue models
predict such effects (as did McNamara, 1992a, 1992b).
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Table 4
Predicted Priming Effects

Priming effect: Condition~baseline familiarity

Values URR-UUU RUR-UUU RRU-UUU XUU-UUU XRR-URR XRR-XUU
Weg'ghts 0.1,0.2,0.7 0.32 0.15 0.03 -0.33 —0.36 0.29
Weights 0.14, 0.29,0.57 0.36 0.15 0.06 —~0.45 ~0.49 0.32
Reaction time difference (ms) —-26 —-14 ns 3t 24 -33

Note. Reac?ion .times are from McNamara (1992b). Note that the reaction time and familiarity value differences have opposite signs, because
smaller reaction times correspond to higher familiarity values for positive responses. U = unrelated; R = related; X = nonword.

1992, for other schemes) and the resulting predictions for prim-
ing effects (in the rightmost columns). The empirical con-
straints that the predictions must meet are straightforward
(from McNamara, 1992b): First, consider the cases for which
the preprime is a word. The familiarity value on the target
should be lowest when neither preprime nor prime is related to
it (baseline = UUU, where U = unrelated) and highest when
the prime is related to it (URR, where R = related). McNamara
(1992b) obtained a difference between these two conditions of
30 ms. The familiarity value on the target should also be higher
than baseline when the preprime is related to it (RUR); McNa-
mara obtained a difference for these two conditions of 14 ms in
one experiment and 21 ms in another experiment. Importantly,
the familiarity value on the target should not be distinguishably
higher than baseline when the preprime and prime are related
to each other but not the target (RRU); for these two conditions,
McNamara found no significant difference in response times,

With McNamara’s weighting scheme (0.2, 0.3, 0.5), the URR
priming effect in terms of familiarity value would be 0.30, the
RUR priming effect would be 0.19, and the RRU effect would
be 0.10. The RRU effect is one third the size of the URR effect,
and so should be observable empirically. However, if the weight
on the target is increased to 0.7 and the weights on the preprime
and prime are decreased accordingly, then the compound-cue
model predicts the relative amounts of priming quite accu-
rately, as shown in Table 4. The RRU effect is predicted to be
about one tenth the size of the URR effect, and it would be
unlikely that this could be detected empirically. The URR effect
is 30 ms, and one tenth of that would be only about 3 ms. The
other weighting scheme shown in Table 4 also predicts an RRU
effect too small to be observed.

When the preprime is a nonword, the compound-cue model
also does well. A nonword preprime produces lower values of
familiarity, comparing favorably with the slower reaction times
observed in McNamara’s data for both the XUU condition
(where X is a nonword, here preceding an unrelated prime and
target) relative to the UUU condition, and the XRR condition
(a nonword preceding a related prime and target) relative to the
URR condition. In addition, the model predicts that the RR
priming effect should be about the same size for nonword pre-
primes as for word preprimes, in accord with McNamara’s data
(the 26 and 33 ms priming effects were not significantly differ-
ent from each other).

The conclusion to be drawn from the results displayed in Ta-
ble 4 is clear: SAM correctly predicts the relative sizes of the
URR, RUR, and RRU priming effects and simultaneously ac-

counts for the effects of a nonword preprime. Thus, contrary to
McNamara’s claim, the SAM compound-cue model gives an
excellent fit to a complicated pattern of data (and may also ap-
ply to choice reaction time sequential effects, see McKoon &
Ratcliff, 1992), whereas spreading-activation models require
the addition of an explicit reaction time model to account for
sequential effects.*’

Naming

Researchers interested in priming effects have often argued
that theories designed to explain such effects should link prim-
ing in lexical decision with priming in the task of naming a
word, because both tasks involve accessing the lexicon and be-
cause similar experimental variables have been examined in the
two tasks (cf. McNamara, 1992a; Neely, 1991). In contrast, we
have argued that priming in lexical decision has a natural
affinity with priming in recognition memory (McKoon & Rat-
cliff, 1979). Our strong inclination is to attempt to generalize
research domains in terms of underlying theoretical mecha-
nisms, and in theoretical terms, both lexical decision and rec-
ognition require an item to be encoded and compared with
memory to produce a binary decision. Naming a word, on the
other hand, is a task for which one out of tens of thousands
of possible responses must be produced. McNamara (1992a)
criticizes compound-cue theories because they fail to explain
priming effects in naming, but models that deal with naming

4 A third sequential effect that McNamara (1992a) marshals in his
critique of compound-cue theories involves sequences of only two
items, not three. He points out that compound-cue theories should pre-
dict slower response times on a positive target when it is preceded by a
negative test item, because the negative item will cause the familiarity
of its compound with the target to be low. Sequential effects have been
demonstrated in choice reaction time (Remington, 1969; Falmagne,
1965) as mentioned above. McNamara cites two sets of data for which
the predicted effect does not hold (LeSueur, 1990; Neely & Durgunogiu,
1985). However, there are other sets of data that do show the predicted
effect (cf. Ratcliff, Sheu, & Gronlund, 1992, Experiment 1; McKoon &
Ratcliff, 1994) and also sequential effects in choice reaction time (Fal-
magne, 1965; Remington, 1969).

5 McNamara (1992a) also considered sequential effects that involve
neutral prime items (a neutral prime is a word like ready, presented
many times over the course of an experiment). Such effects depend on
the mixtures of prime-target SOAs in the experiment; see McKoon and
Ratcliff (1994).
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and lexical decision could be similarly criticized because they
do not deal with recognition memory.

Although we are biased against relating naming and lexical
decision through empirical considerations, it may be possible
to relate them theoretically by implementing a compound-cue
mechanism in models of naming. Memory models in which
compound-cue mechanisms have been implemented are paral-
lel processing models. This characteristic suggests Seidenberg
and McClelland’s (1989) model for lexical decision and naming
as a candidate to implement a compounding mechanism. In
Seidenberg and McClelland’s (1989) model, orthographic and
phonological units each form two distinct levels of representa-
tion, linked by a hidden layer of units. To model compounding,
gradual (stochastic) replacement of one item by the next item
(e.g., with an exponential probability of a feature being re-
placed) would allow the representation at input to be a com-
pound (a combination of features from the current and prior
items), and this compound could percolate through the whole
network. To produce semantic priming effects, it would be nec-
essary to add an explicit (as yet unimplemented) semantic layer
of information. Then the semantic layer could represent seman-
tic feature overlap, so that a compound of related items would
produce a better match to memory and faster responses. To as-
sess whether such a marriage of models could account for prim-
ing in naming, testing and data fitting would be required, as
would development of a representation system for the semantic
layer.

Conclusions

McNamara (1992a) claimed that compound-cue theories
could not account for mediated priming effects and sequential
effects. We demonstrated that compound-cue models could ac-
count for these effects by exploring them in the joint context
of empirical data and specific models. We also found that the
juxtaposition of spreading-activation and compound-cue
models suggested new ways to view some empirical phenomena.
Our findings can be summarized by the following points.

McNamara (1992a) claimed that some sequential effects are
inconsistent with compound-cue models. However, when the fa-
miliarity of a sequence was calculated with reasonable weights
on the strengths of the different items in the sequence, com-
pound-cue models fit the data quite well.

McNamara (1992a, 1992b) failed in his effort to demonstrate
multiple-step priming, because predictions derived from his
method of measuring distances between concepts in memory
(free-association production probability) are not consistent
with observed data.

Neither current spreading-activation models (such as ACT*)
nor compound-cue theories can jointly predict free-association
production probabilities and priming effects. Variables other
than free association, including semantic relatedness and co-
occurrence measures, may predict priming effects, but these
measures need more investigation, both empirical and theoret-
ical, to relate them to priming.

All words that prime each other may be directly related to
each other in memory, and therefore priming effects among
them are consistent with compound-cue theories. Because we
currently have no empirical method for measuring distance in

semantic memory, words that seem far apart may instead be
weakly directly related. A corollary of this point is that any in-
dividual word may have literally hundreds of associates, most
of which are weakly but directly related. A memory system
made up of large numbers of weak but direct associates is con-
sistent with compound-cue models of retrieval and with the in-
tuition that any word can appear in many (perhaps hundreds)
of familiar combinations with other words (see McKoon & Rat-
cliff, 1992). - ‘

Free-association data suggest that a word in memory has
many other words associated with it. When this is taken into
account, the utility of spreading activation as a general retrieval
mechanism must be viewed with suspicion. Suppose each word
had 20 other words that it activated to a nontrivial degree (see
Postman & Keppel, 1970). Then, with three-step priming in a
spreading-activation model, 20 X 20 X 20 = 8,000 words would
be activated; this is a good proportion of the adult lexicon. Al-
ternatively, if a single word activated 40 other words, then
64,000 words would be activated by three-step priming, about
the number of words in the adult lexicon. Note that dampening
mechanisms would not help here, because activation is spread-
ing only three links away, well within the range of that purport-
edly measured in priming procedures. Such rampant spread of
activation through memory would severely reduce the utility of
the spreading-activation process as a general retrieval mecha-
nism.

Spreading activation has been almost unchallenged as an ex-
planation of priming phenomena. It has remained unchal-
lenged despite the development of parallel processing and fea-
ture models that are inconsistent (to various degrees) with it. In
particular, models with distributed representations {e.g., Sei-
denberg & McClelland’s, 1989, model) have no way of activa-
tion spreading from concept to concept, because concepts are
instantiated over the same set of units. The compound-cue
model provides a strong candidate for implementing priming
within these distributed frameworks. The debate presented in
this article contributes to a long overdue examination of spread-
ing activation, and provides additional evidence in support of
compound-cue theories as viable alternatives.
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Appendix

ACT* Implementation

The equations for asymptotic activation (i.e., when the system has
settled to a final state) are O = pn; — a; and n; = ¢;/p + Zjrua;, where a;is
the activation value of the ith node, p is a maintenance factor denoting
the amount of activation transmitted to neighboring nodes and which
is set to 0.8 here (and usually set to 0.8 by Anderson, 1983), n; is the
total activation to node /, r; are the link strengths to node 4, and ¢; is
the input activation of node i. These equations appear simpler when
converted to matrix form, A = C + pRA, and solving for A: A = (I —
PRY"IC, where A is a vector (or list) of the asymptotic activation values,
C is the vector of input activations, R is a matrix of connection
strengths, and 7 is the identity matrix (a matrix with diagonal elements
1 and off diagonal elements 0). Using a system such as Mathematica,
predictions for asymptotic activation values can easily be obtained us-
ing just six lines of computer code. Our computations assumed ¢ set to
1.0.

1t should be noted that ACT* relates link strength to node strength
by requiring that link strength r; = 5;/Z.s;, where 5 are all the nodes
connected to node i (including ;). The problem is that for most net-
works that are relatively interconnected, it is impossible to obtain node

strengths for all the nodes in the network that will satisfy this equation
for all link strengths. This can be seen easily with a three-node network
and six links all set to different nonzero values, with r; summing to |
for the two links leaving node i. In this case, no solution can be found,
and in general, unless there are fewer nonzero interconnection or link
strengths than nodes, nontrivial solutions are impossible. A specific ex-
ample is shown in McNamara’s mediators (1992b, Appendix C, item
12). The ratio of the node strength of moon to cold must be 2.71 for the
mediator darkness, and it must also be 0.58 for the mediator Neptune.
As this example shows, node strengths cannot be assigned on the basis
of link strengths, and so the input activation of a node ¢; cannot depend
on a value of node strength derived from link strengths, as assumed in
ACT*, We have no independent measure of node strength for the items
modeled here, so all node strengths were set to 1.
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