Psychological Review
1999, Vol. 106, No. 2, 261-300

Copyright 1999 by the American Psychological Association, Inc.
0033-295X/99/$3.00

Connectionist and Diffusion Models of Reaction Time

Roger Ratcliff

Northwestern University

Trisha Van Zandt
Johns Hopkins University

Gail McKoon

Northwestern University

Two connectionist frameworks, GRAIN (J. L. McClelland, 1993) and brain-state-in-a-box . A
Anderson, 1991), and R. Ratcliff’s (1978) diffusion model were evaluated using data from a signal
detection task. Dependent variables included response probabilities, reaction times for correct and error
responses, and shapes of reaction-time distributions. The diffusion model accounted for all aspects of the
data, including error reaction times that had previously been a problem for all response-time models. The
connectionist models accounted for many aspects of the data adequately, but each failed to a greater or
lesser degree in important ways except for one model that was similar to the diffusion model. The
findings advance the development of the diffusion model and show that the long tradition of reaction-
time research and theory is a fertile domain for development and testing of connectionist assumptions

about how decisions are generated over time.

Research aimed at investigating how information is processed
over time has had a long and influential history in psychology. In
1938 in his general textbook, Woodworth discussed simple and
choice reaction time, the behaviors and shapes of reaction-time
distributions, individual differences in reaction time, and the ef-
fects on reaction time of experimental variables such as stimulus
intensity. Several of these topics are raised again in this article. In
the 1960s, when the cognitive revolution gave rise to modemn
cognitive psychology, reaction time entered the spotlight as a
major dependent variable. Since then, considerable effort has been
devoted to the development of theories to explain how information
is processed over time to yield mean response times, distributions
of response times, and accuracy levels. Current theoretical issues
include, for example, serial versus parallel processes and contin-
uous versus discrete processes, and efforts continue toward com-
prehensive theories of the time course of processing. A summary
of the state of reaction-time theory is presented in Luce (1986).
Perhaps the main difficulty in recent modeling has been that two
dependent variables, reaction time and the probability of correct
versus error responses, have to be modeled in the same, integrated
framework.
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Connectionist models are a relatively new class of models and a
surge in development and testing of them has taken place in the
last 10 years. These models offer the promise of explanations of
how cognitive tasks are learned. For most of the models, learning
is the result of many individual trials with stimuli, each trial with
feedback about whether the model’s response was correct. The
processes by which the response to a stimulus is chosen are usually
assumed to be parallel, interactive, nonlinear, and continuous.
These processing characteristics are theoretical choices that have
been well examined in reaction-time modeling. Therefore, it is
potentially fruitful for connectionist models to meet reaction-time
models in a joint effort at theory development and competitive
model testing and evaluation.

Carrying reaction-time research forward to meet the relatively
new domain of connectionist modeling was one purpose of the
investigations described in this article. Specifically, we asked
whether connectionist models could accommodate the wide-
ranging kinds of data that have been critical in the reaction-time
domain and at the same time account for learning. A second
purpose was to test and further develop a more standard model,
Ratcliff’s  (1978) diffusion model. Standard information-
processing models and connectionist models have different in-
sights to offer, and the fullest advantage of these insights can be
gained when both kinds of models are pushed as far as they
possibly can be. This goal can best be accomplished in an arena of
investigation that allows simultaneous testing of both kinds of
models. For the research described in this article, the arena we
chose was a simple signal detection paradigm.

Connectionist models assume that the decision required on each
trial of an experimental task comes about by processes that inte-
grate and accumulate information over time. For early connection-
ist models, an Achilles’ heel was their failure to match this
assumption to specific mechanisms that could predict a full range
of empirical measures of the time course of processing, including
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the probabilities of one response versus another, response times,
the interactions among error versus correct response times, and the
shapes of response-time distributions. The models were successful
at combining structural assumptions about how information is
represented with algorithms to learn a task, producing outputs that
qualitatively matched either the mean accuracy of responses or
mean reaction time, but they were not originally designed to
provide a simultaneous account of a more complete range of data.

In this article, we focus on two more recent connectionist
frameworks that have been designed specifically to deal with the
full range of measures. One, Anderson’s (1991) brain-state-in-a-
box model (BSB), is an autoassociative matrix model. The other,
McClelland’s (1993) GRAIN framework, provides a list of prin-
ciples with which to begin exploration of processing time. Using
the principles, we constructed two multilayer models for exami-
nation. Both the BSB model and the GRAIN models are based on
an iterative algorithm that takes a variable number of steps to reach
a decision such that a stimulus input does not always produce the
same output or take the same amount of time. These features
potentially allow the models both to learn a cognitive task and to
predict the multiple aspects of performance that are reflected in the
shapes of distributions of response times and speed and accuracy
interactions. This is an important advance. The attempt to deal
with the complete range of reaction-time data in the context of a
framework originally developed to examine learning adds a new
degree of complexity to connectionist models. Most often, con-
nectionist models in psychology have attempted to explain the
behavior of only one dependent variable, usually a variable closely
related to learning such as probability of a correct response.

There are a number of traditional, nonconnectionist, information-
processing models that have been shown to provide a good account
of the time course of processing (see, €.g., Luce, 1986; Townsend
& Ashby, 1983). These models do not provide accounts of learn-
ing; their strength is that they deal with the multiple dependent
variables that can be used to measure decision processes. The
diffusion model (which can be seen as an extension of earlier
random walk models; Laming, 1968; Link & Heath, 1975; Stone,
1960) was developed by Ratcliff (1978, 1980, 1981, 1988) for
two-choice tasks. It was chosen for comparison to connectionist
models for three reasons. First, it is a member of the general class
of random walk models that provide better accounts of many
experimental results than counter models with absolute criteria or
various serial or parallel models (see Luce, 1986). Second, the
diffusion model has been successfully applied to a wide range of
experimental paradigms, accurately accounting for mean reaction
times, error rates, the shapes of reaction-time distributions, and the
effects of several deadline and response signal manipulations.
Other exemplars of the class of random walk models (Laming,
1968; Link & Heath, 1975; Stone, 1960) can also fit many aspects
of data well but do not have the explicit mathematical expressions
for describing characteristics of the data that the diffusion model
does. For example, for the diffusion model, there are explicit
formulas for the distributions of reaction times and for the distri-
butions of unterminated processes at any point in time (Meyer,
Irwin, Osman, & Kounios, 1988; Ratcliff, 1988). Third, the diffu-
sion model was designed to explain fast, single step, as opposed to
multistep, decision processes, and in this respect it is similar to the
connectionist models to be evaluated.

The assumption underlying the diffusion model is that informa-
tion is accumulated continuously over time. There are two bound-
aries on the accumulation process, one for each of the two possible
response choices. Information is accumulated from a starting point
toward either of the boundaries and when sufficient information is
accumulated that one of the boundaries is crossed, a decision is
made. Noise in the process causes variations in the rate at which
information is accumulated over time, so that the same stimulus
presented on different occasions does not always lead to the same
decision or require the same amount of time for a decision. These
aspects of the model allow it to account for the shapes of distri-
butions of response times and speed—accuracy interactions.

We chose a simple signal detection task to provide a compre-
hensive data base to compare, contrast, and test the diffusion
model and the models from the connectionist frameworks. We had
three simultaneous goals: first, to test connectionist assumptions
about the time course of the decision processes on individual trials
and to test these assumptions in the same empirical context as
assumptions about learning were tested; second, to extend the
diffusion model to a new experimental task, evaluating its ability
to deal with correct and error reaction times as well as reaction-
time distributions and response probabilities; and third, to compare
the connectionist models and the diffusion model, in an empirical
situation in which strong predictions could be made about data. We
begin by describing the experimental task we chose and then
present data from it. Then the diffusion model, the two connec-
tionist models derived from the GRAIN framework, and the BSB
model are presented and applied to the data.

The Signal Detection Paradigm

An important choice for evaluation and comparison of connec-
tionist and standard models of reaction time is the experimental
paradigm that will provide the testing ground. To choose the
experimental task for our research, six main criteria were adopted.
First, the task had to involve relatively simple stimuli so that
assumptions about how the stimuli were represented would not
interfere with examinations of reaction time and accuracy. Second,
the task had to allow examination of the full range of measures
against which reaction-time models are routinely tested: reaction
times for both correct and incorrect responses, covariations of
accuracy and reaction time, and the shapes of the distributions of
reaction times and their hazard functions. Third, response proba-
bility or accuracy had to span the range from near chance to near
ceiling so that the full range of correct and error reaction times
could be examined as a function of response probability. Fourth,
the task had to be representative of a wide range of experimental
tasks, and it had to produce data with typical variations in and
interactions among all the standard speed and accuracy measures.
Fifth, the task had to have a learning component by which statis-
tical properties of the stimuli might be expected to engage the
learning mechanisms of the connectionist models, and sixth, the
learning component had to allow examination of the sequential
effects across learning trials that would be predicted by connec-
tionist models.

The task we chose met all of the criteria just listed. It is a signal
detection paradigm adapted from Espinoza-Varas and Watson
(1994; see also precursors, e.g., Lee & Janke, 1964; Smith &
Vickers, 1988; Vickers, 1979; Vickers, Caudrey, & Willson, 1971,
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and probability learning paradigms, Atkinson, Bower, & Crothers,
1966; Estes, 1957, 1964). (It also turns out that the paradigm is the
1-D analog of the general recognition randomization technique
used by Ashby & Gott, 1988.) In our application, on each trial, an
array of asterisks was presented on a computer screen and an
observer was asked to decide whether the number of asterisks
presented in the display was “high” or “low.” The number of
asterisks that was presented was chosen from one of two distribu-
tions of numbers, a high distribution and a low distribution, each
distribution with fixed mean and standard deviation, and all num-
bers between 0 and 99. Feedback was given after each trial to tell
the observer whether his or her response had correctly indicated
the distribution from which the stimulus had been chosen. Other
than this feedback, the observer had no information about the
distributions. The distributions overlapped substantially, so that
even after many trials of feedback, the observer could not be
highly accurate. A display of 50 asterisks, for example, might have
come from the high distribution on one trial and the low distribu-
tion on another.

The signal detection paradigm has many advantages over other
possible choices. One is that the variable underlying performance
(number of asterisks) can be varied in small steps from a high
probability of one response to a high probability of the other
response. For example, a display of only 5 asterisks strongly
supports the “low” choice, a display of 90 asterisks strongly
supports the “high” choice, and a display of 50 asterisks is in the
middle, strongly supporting neither choice. In lexical decision, for
example, comparable variation is not possible; a stimulus is either
a word or it is not. The paradigm offers a great deal of experi-
mental control, while allowing measurement of all the speed and
accuracy interactions needed for stringent tests of models.

Another important advantage of the signal detection task is the
generality of the results that are obtained with it. First, it provides
data typical of a large class of signal detection procedures. For
example, Espinoza-Varas and Watson (1994) used two-digit num-
bers and tones of differing frequency; Lee and Janke (1964) used
two-digit numbers, gray scale stimuli, and line lengths; and Vick-
ers (1979) used binary dot patterns, line lengths, lamps flashing at
varying rates, and randomly oriented line segments. Ratcliff and
Rouder (1998) used patches of black and white pixels varying in
brightness, patches of red and green pixels varying from red to
green, and two patches of black and white pixels that required
same—different judgments of brightness.

The signal detection task is also representative of many cogni-
tive paradigms such as lexical decision, matching tasks, recogni-
tion memory, and semantic verification if it is assumed that the
basis for decisions in these tasks is a unidimensional continuum.
For example, for lexical decision, a model might claim that a
“word” decision depends on the amount of activation or familiarity
in lexical memory evoked by the presentation of a stimulus and
that the response is based on this value (high for a ‘‘word”
response, low for a “nonword” response). Similarly, in a same—
different matching task, a model might claim that decisions are
based on the number of perceived differences between two stim-
ulus elements (a large number for a “different” response and a
small number for a “same” response; cf. Krueger, 1978). The data
from the asterisk signal detection task provides the same speed—
accuracy interactions and the same shapes of response-time distri-
butions as are found with other cognitive paradigms. If either the

diffusion model or the connectionist models fail to account for
some pattern of reaction time or accuracy data from the signal
detection task, then they would probably also fail to account for
similar patterns from other cognitive tasks.

The signal detection task also allows investigation of what has
been a particularly difficult problem for standard reaction-time
models. Currently, no reaction-time model has been able to ac-
count for the different relations that are observed empirically
between correct and error response times. Generally, when accu-
racy is stressed as being more important than speed and the task is
difficult (e.g., difficult perceptual discriminations, Swensson,
1972, or difficult recognition memory tasks, Ratcliff & Murdock,
1976), reaction times for errors are slower than reaction times for
correct responses. In contrast, when speed is stressed over accu-
racy and the task is easy (e.g., choice reaction time, Laming, 1968;
Swensson, 1972), esror reaction times are faster than correct reac-
tion times (see Luce, 1986, p. 233, for discussion of the available
data). In the signal detection task, a task intermediate in difficulty,
individual subjects can adopt different criteria. In Experiment 1
below, one subject showed errors faster than correct responses, one
showed errors slower than correct responses, and the other two
subjects showed a mixture of the two patterns (see also Smith &
Vickers, 1988). Thus, the signal detection paradigm offers data
suitable for examining what no model has yet successfully ex-
plained—the varying relationships between correct and error re-
action times.

Overview and Preview

There were four steps in our research. First, in order to get stable
results for modeling of the response time and accuracy measures in
the signal detection paradigm, we collected a large amount of data
from individual subjects (Experiment 1). Second, the diffusion
model was fit to the data. The model provided a good account of
the data (including accurate quantitative fits) and so served as a
demonstration of the tractability of the paradigm for modeling and
provided a level of explanation of the data against which to
compare the connectionist models. Third, the two models in the
GRAIN framework and the BSB model were tested against the
data.

In providing a good account of the data, the diffusion model
found an invariance across subjects’ performance that had not been
anticipated. Specifically, it appeared that all subjects based their
decisions on the probability that a stimulus number of asterisks
was chosen from the high versus the low distribution. This finding,
that decisions were based on stimulus probability, became appar-
ent only through application of the diffusion model; it was not
directly apparent in the data. For this reason, we added a fourth
step to the research: In Experiment 2, we varied the probabilities
that the stimuli were chosen from the high versus the low distri-
butions, switching from one set of probabilities to another in the
course of a single experimental session. If subjects were indeed
basing their decisions on stimulus probability, as the diffusion
model indicated for Experiment 1, then their decision processes
should appropriately follow the switches in probabilities.

Over the two experiments and all the different measures, there
is a large set of tests of the connectionist models and the diffusion
model. Before we begin detailed description of the experiments,
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data, and model applications, we give in the next paragraphs a
brief preview of how the models fared.

The Diffusion Model

An unanticipated experimental finding was that subjects pro-
vided more radically different patterns of data than expected, both
at the broad levels of mean reaction time and accuracy and also in
more complex interactions between the reaction time and accuracy
measures. The diffusion model provided an explanation of how
these different patterns of behavior came about, generating pre-
dictions that accurately matched all aspects of each subject’s
individual data. Moreover, the diffusion model explanation
showed how the single underlying variable, the probability that a
stimulus had been chosen from the high versus the low distribu-
tions, could govern all of the subjects’ performance, and the model
showed how the large differences in performance could arise even
when all of the subjects were basing their responses on this same
underlying variable.

In accounting for all of the response-time and accuracy data, the
diffusion model was able to explain how different patterns of
correct versus error reaction times came about for different sub-
jects, the problem that had not been solved by previous reaction-
time models. It is important to find that a model can do this, but
more important is the way the diffusion model does it—Dby as-
suming that the value of a parameter in the model is variable across
trials, not fixed (e.g., Laming, 1968; Ratcliff, 1978, 1981). In other
words, the assumption is that some aspects of the decision pro-
cess—for example, the starting point or the average rate at which
the accumulation of information approaches a decision bound-
ary—are not constant across trials. The finding that a model can
gain significant power to handle data with variable rather than
fixed parameter values offers an avenue for modeling not previ-
ously well exploited in cognitive theory (see Van Zandt & Ratcliff,
1995).

The BSB Model

The BSB model was reasonably successful in dealing with mean
reaction time and accuracy, and, for Experiment 2, it provided a
moderately good account of adaptation from one probability con-
dition to another, but it could not correctly predict error reaction
times nor fully account for the sequential effects of performance
on one trial to the next.

Two GRAIN-Based Models

For one model, it was assumed that learning began at the
beginning of the experimental trials and continued throughout the
experiment. The model was presented stimulus-feedback se-
quences equivalent to those presented in the experiments, and it
had to learn to perform the task from the feedback. For the other
model, it was assumed that all learning had taken place before the
experimental trials began; preexperiment training consisted of
training the model for each possible stimulus to reproduce at
output the probability that the stimulus was drawn from the high
distribution. The first model could not correctly account for error
reaction times, the sequential effects of one trial on the next, or the
effects of switches in the stimulus probabilities (Experiment 2).

The second model was generally successful with all response-time
and accuracy measures and with sequential effects. The success of
this model, like that of the diffusion model, depended on allowing
variability in parameter values across trials. However, the model
could not accommodate subjects’ abilities to follow switches in
stimulus probabilities.

In sum, the diffusion model succeeded extremely well, provid-
ing a coherent account of correct and error reaction times, reaction-
time distributions, accuracy, sequential effects, and adaptation to
switches in the probabilities of drawing stimuli from the high
versus low distributions. It also provided an explanation of what
drives the decision process. Although none of the connectionist
models could give a satisfactory account of all the response-time
and accuracy measures or of sequential effects and the effects of
probability switching, our investigations lay out how they failed
and provide a foundation for further theory development and
evaluation.

Experiment 1

In Experiment 1, four subjects were tested in multiple sessions
of the signal detection task in order to collect stable data for
analyses of reaction-time distributions, error reaction times, and
individual differences among the subjects.

Method

Subjects. The subjects were 4 Northwestern University undergraduates
(3 men and 1 woman) who were paid $8 for their participation in each of 10
sessions. All had normal or corrected-to-normal vision.

Stimuli and apparatus. The asterisks were displayed in a 10 X 10 grid
in the upper left corner of a VGA monitor, subtending a visual angle
of 4.30° horizontally and 7.20° vertically. They appeared as light charac-
ters against a dark background, and were presented with high brightness
and contrast and were clearly visible. The VGA monitors were driven by
IBM AT-style microcomputers that controlled stimulus presentation time
and recorded responses and response times.

The number of asterisks for presentation on a given trial was selected by
randomly sampling from one of two discrete, approximately normal dis-
tributions with means 38 and 56 and standard deviation 14.4 (following
Espinoza-Varas & Watson, 1994). The discriminability (d') between these
distributions was therefore approximately 1.25. The two distributions
crossed at the number 47; this number will be referred to as the “crossover”
point for the two distributions. The display positions of the asterisks for a
given trial were selected randomly from the possible 100 positions in the
10 X 10 character grid.

Procedure. Subjects were instructed that the number of asterisks on
each trial was selected at random from one of two groups of numbers, a
“low” group and a “high” group, and that the low group had fewer asterisks
on average than the high group. The subjects’ task was to decide whether
the number of asterisks presented came from the low group, in which case
they were to press the Z key on the computer keyboard, or the high group,
in which case they were to press the ? key. If a response was incorrect, the
subject was informed immediately after the response. The subjects under-
stood that they could not be completely accurate, that numbers from the
middle of the range (e.g., 50) could have come from either distribution and
that their task was to give their best judgment.

To provide some motivation to the subjects, a payoff scheme was used
that awarded 4 points for every correct response and penalized 1 point for
every incorrect response. Thus, for a block of 50 trials, a subject could earn
as many as 200 points. Subjects were also encouraged to make their
responses quickly, although they were told that their goal should be to
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maximize the total number of points earned over the course of the exper-
iment. The points were not used to add to the payment rate for the
experiment,

A trial began with the presentation of the asterisks. They remained on the
screen until the subject responded, at which point the screen was erased. If
the response was correct, a 700-ms waiting period ensued and then the
asterisks for the next trial were presented. If the response was in error, the
message “ERROR ~1 POINT” appeared on the screen for 500 ms, followed
by the next trial 700 ms later. Each block of 50 trials was completed in less
than 5 min. Between each two blocks, the subject was encouraged to take
a brief rest if he or she so desired.

Design.  Each subject performed in 11 sessions (except Subject 1, who
performed in 10 sessions) over approximately 3 weeks. Each session was
composed of 24 blocks of 50 trials. Within a block, one half of the stimuli
were sampled from the low distribution and one half were sampled from
the high distribution. There were a total of 1,200 observations per session
per subject. The first session was not used in any analysis (except for
Subject 1), resulting in a total of 12,000 observations per subject. The first
block of trials in each session was discarded from the analyses.

Results

In the data analyses, all of the trials with response times less
than 200 ms or greater than 3000 ms were discarded (these
constituted about .25% of the data).

The four subjects showed large individual differences in perfor-
mance. One subject produced quite long reaction times (in the
400-800-ms range), another produced very short reaction times
(in the 300-380-ms range), and the other two were intermediate.
From a modeling perspective, this range of behaviors is a positive
aspect of the data because it requires the models to have flexibility.
If the models were too constrained, they might fit average data
adequately but not the individual data of the more extreme
subjects. '

The presentation of the data is divided into three parts. First, it
is shown that the probabilities of subjects’ high and low responses
followed, but were not the same as, the probabilities high and low
stimuli. Also, three of the subjects showed sequential effects with
the response on one trial being affected by the response on the
previous trial. Second, responses generally slowed as the number
of asterisks in the display was nearer the crossover point between
the two distributions. However, across subjects, the relationship
between correct and error reaction times varied. Third, the distri-
butions of reaction times showed the typical skewed shape and
their hazard functions rose and then either reached asymptote or
fell slightly (as is typical of other tasks; see Luce, 1986).

Response probability and sequential effects. Figure 1 shows
the probability of a low response for each subject as a function of
the number of asterisks and the previous response. The probabil-
ities fall smoothly from O to 96, and they cross the 50th percentile
point close to the number 47, at which the low and high distribu-
tions crossed. Thus, the subjects performed without systematic
biases.

The subjects differed in sequential effects. For Subjects 1 and 4,
a response was a little more likely to be high if the prior response
was high. In contrast, Subject 2 showed the reverse effect; when
the prior response was high, there was a greater probability that the
current response was low. None of the subjects showed any se-
quential effect that depended on the feedback given to the previous
response, and Subject 3 showed no sequential effects at all. These
individual differences (cf. Bertelson, 1961) present a challenge to
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Figure I. Probability of a low response for the four subjects in Experi-
ment 1.

models because the mechanism that produces sequential effects
must be flexible enough to behave in opposite ways for different
subjects.

The fact that sequential effects were dependent on the prior
response and not on prior feedback is consistent with most earlier
findings with psychophysical tasks (Thomas, 1973, 1975; Treis-
man & Williams, 1984) and choice reaction time (Falmagne,
Cohen, & Dwivedi, 1975; see Luce, 1986, chap. 7), although some
studies, particularly in absolute identification (Ward & Lockhead,
1970), did find that feedback affected response probability. In the
earliest investigations of signal detection paradigms, it appeared
originally that any explanation of learning would have to take prior
feedback into account (e.g., Kac, 1962), but Thomas (1973, 1975)
showed that learning could be modeled by assuming criterion
shifts toward the presented stimulus value so that learning did not
depend directly on prior feedback. Thomas’s account could also
deal with paradigms in which feedback was not presented to the
subject. Our experimental results are consistent with these early
signal detection results and with the choice reaction-time results.
Subjects knew that feedback was inconsistent and that for most
stimuli the correct response was sometimes high and sometimes
low. This, along with the large number of sessions tested per
subject, probably explains why the feedback to the last response

-did not affect performance.

Response probability and mean reaction time. Because se-
quential effects in reaction time were smatll (on the order of 10-50
ms) relative to variability, reaction times were averaged over
previous feedback and previous response. Figure 2 shows mean
reaction time as a function of the displayed number of asterisks for
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Figure 2. Mean reaction time (RT) for the four subjects in Experiment 1.

high and low responses. Generally, responses slowed as they
neared the crossover point.

For purposes of exposition, we defined error responses accord-
ing to the crossover point (47); low responses to numbers greater
than 47 are labeled errors, and so are high responses to numbers
less than 47. We used error as the label for these responses because
it is a convenient way of describing them. A response of this type
is not exactly an error, but neither is it the best response because
it is less likely to be correct than the alternative. (Note that this
definition does not correspond to the feedback that was given
subjects; ERROR -1 POINT feedback was determined by the
distribution from which a number was drawn, not by its position
relative to the crossover point.) We use the error terminology for
compactness of description throughout this article.

The subjects showed different patterns of error versus correct
response times. For Subjects 1 and 2, errors for extreme stimulus
numbers (e.g., numbers above 80 or below 20) were faster than
correct responses for those numbers, whereas less extreme errors
were slower than correct responses. But for Subject 4, errors were
always faster than correct responses, and for Subject 3 errors were
always slower than correct responses. This difference among sub-
jects is the challenge to modeling outlined in the introduction; no
model has yet been able to account for such variation while
explaining the commonalities among subjects. In addition, no
model has been able to account for a switch from slow errors to
fast errors as response probability changes (Subjects 1 and 2).

A compact way to combine the reaction-time data and the
response-probability data is to plot them jointly in a latency—
probability function (Audley & Pike, 1965; Vickers et al., 1971).
The reaction-time functions for high and low responses are rea-
sonably symmetric about the crossover point (47), so they can be

collapsed. So, for example, reaction times for low responses to 27
asterisks can be averaged with reaction times for the symmetrically
equivalent high responses to 7 asterisks, and the probability of a
low response to 27 asterisks can be averaged with the probability
of a high response to 67 asterisks. Then the average reaction time
can be plotted against the average response probability, as shown
in Figure 3. Thus, the latency—probability function can be seen as
a parametric plot where the parameter that varies along the plot is
stimulus difficulty.

The different patterns of error versus correct response times
show up in the degree to which the latency—probability functions
are symmetric. Errors generally correspond to those responses with
probability less than .5. A correct response with probability p
corresponds to an error response with probability 1 — p. For
example, if the probability of a correct response is .8, the corre-
sponding error probability is .2. If correct responses and their
corresponding errors had the same response times, the latency—
probability function would be a symmetric, inverted U-shaped
function with a maximum at about .5. The function for Subject 3
is asymmetric, with errors always slower than their corresponding
correct responses (see Figure 2). For Subjects 1 and 2, the func-
tions are asymmetric, with errors slower than correct responses
except that the most extreme errors are faster than correct re-
sponses. For Subject 4, the function is almost symmetrical, but
errors are a little faster than correct responses.

Besides providing a summary of data, the shape of the latency-
response probability function allows discrimination among various
traditional sequential sampling models of reaction time (Audley &
Pike, 1965; Vickers, 1979; Vickers et al., 1971). For example, a
simple random walk model predicts a symmetrical inverted
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Figure 3. Latency-response probability functions for the data from Fig-
ures 1 and 2 for the four subjects in Experiment 1. The error bars
represent 2 standard deviations.
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U-shaped function, whereas recruitment models (LaBerge, 1962)
with an absolute criterion predict an increasing function from fast
correct responses to slow errors (Vickers et al., 1971). As Figure 3
shows, the data for none of the subjects conform to these predicted
functions for the elementary versions of these models (Audiey &
Pike, 1965), although the pattern for Subject 3 can be handled by
some models (Smith & Vickers, 1988; Vickers, 1979) and the
pattern for Subject 4 by others (Laming, 1968; Link & Heath,
1975). These patterns of data are typical of those reported by
Vickers (1979) and Vickers et al. (1971) in other paradigms.

Reaction-time distributions. Figure 4 shows representative
reaction-time distributions for stimuli to which the low response
was given over 90% of the time (e.g., 30—40 asterisks). As in
almost all reaction-time research, the distributions are skewed to
the right. Subject 2 showed a much wider central region with
possible bimodality and a shorter tail than the distributions for the
other subjects. Subject 2 also showed very large reductions in
reaction time as a function of session, so data from this subject’s
first three and last three sessions were analyzed separately. Figure
5 shows this partition, with unimodal distributions that were much
narrower and more skewed.

Figure 6 shows the reaction-time hazard functions derived from
the reaction-time distribution histograms in Figure 4. The hazard
function gives the likelihood for any point in time that the process
will terminate in the next instant of time, given that it has not
terminated before that time. Mathematically it is represented by
h(Hy = AO/[1 — F(1)], where f(¢r) is the density function at time ?
and F(f) is the cumulative distribution function at r. When ¢
becomes large, F(f) approaches 1 so [1 — F(#)] approaches zero,
and the estimate of A(f) becomes unstable (e.g., Bloxom, 1984,
1985; Luce, 1986) and severe oscillations in the estimate are
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Figure 4. Typical reaction-time distributions for moderately high accu-
racy levels (for responses to stimuli in the 30—40 asterisk range) for the 4
subjects in Experiment 1.
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Figure 5. Reaction-time distributions and hazard functions for Subject 2
for the first three sessions (upper graphs) and the last three sessions (lower
graphs) in Experiment 1.

common. The hazard function has been used as a method of testing
detailed hypotheses about the distribution family from which a set
of data arises (see Luce, 1986). Although hazard functions cannot
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Figure 6. Hazard functions for the reaction-time distributions shown in
Figure 4.
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always be diagnostic of what distribution underlies an observed
hazard function when there is variability across trials (see Burbeck
& Luce, 1982; Van Zandt & Ratcliff, 1995), they are still useful in
assessing model predictions. Here, hazard functions were calcu-
lated from the histograms (with equal width bins) in Figure 4. The
hazard functions are reasonably stable up to 800 ms for Subjects 1,
2, and 3 and up to 450 ms for Subject 4 in Figure 6. In Figure 5,
the hazard functions are stable up to 800 ms in the top panel and
up to 600 ms in the bottom panel.

The hazard functions shown in Figure 6 are peaked, rising
rapidly to a maximum and then falling gradually to the extreme tail
where they become unstable. For Subject 2, Figure 5 shows the
hazard functions for the first three and last three sessions of data,
and these show similar trends to the other subjects.

Summary. The data from Experiment 1 present several targets
for modeling: first, the shapes of the latency—probability functions
and the different patterns of error versus correct response times
shown by these shapes (Figure 3); second, the shapes of the
reaction-time distributions for correct and error responses; third,
the shapes of the hazard functions; and fourth, the sequential
effects of the previous response on the current response (with no
effect of feedback to the previous response). These aspects of the
data are typically found in other cognitive paradigms. Therefore,
success or failure of the models is significant not just for the signal
detection paradigm but for application of the models to other
cognitive paradigms.

There are intriguing variations among subjects shown in the
differences in their mean response times and accuracy rates and
in the differences in the speed of errors versus correct re-
sponses. Even though the task requires only that subjects learn
to respond appropriately to stimuli drawn from simple proba-
bility distributions, the data challenge most current models
because the qualitative behavior predicted by the models does
not match the flexibility shown in the patterns of data across
subjects. For example, some models predict fast errors, some
predict slow errors, but none predict crossovers, and few mod-
els correctly predict the shape of reaction-time distributions. In
the sections below, we show how the diffusion model takes up
the challenge presented by the data, and then move to consid-
eration of the connectionist models.

The Diffusion Model

The diffusion model was originally developed to explain the
processes by which information is retrieved from memory over
time (Ratcliff, 1978, 1980). It successfully fits data from binary
choice recognition memory tasks (e.g., the Sternberg, continuous
memory, prememorized list, and study—test paradigms). With no
important modifications, it has also been applied to perceptual
matching of letter strings (Ratcliff, 1981), to the varied and con-
sistent mapping procedures with the Sternberg paradigm (Strayer
& Kramer, 1994a, 1994b), and to new paradigms such as the
speed—accuracy decomposition procedure (Meyer et al., 1988;
Ratcliff, 1988). In all cases, it accounted for speed-accuracy
relations, mean response times, and the shapes of reaction-time
distributions. Models of this class have also recently received
strong support from data from single cell recordings in monkeys
(Hanes & Schall, 1996).

The one major failing of the diffusion model has been its
inability to explain the relationship between correct and error
response times. In Experiment 1, Subject 4 showed faster error
responses than correct responses, Subject 3 showed slower error
than correct responses, and Subjects 1 and 2 showed slower
errors with intermediate stimuli and faster errors for extreme
stimuli. Ratcliff (1978, 1981, 1988) stated that the diffusion
model could produce only slower errors than correct responses
and the predicted values were usually much slower than the
data. We show here that the model can, in fact, accurately
predict the varying patterns of error versus correct response
times. The model failed to fit error reaction times in past
applications because lack of computer power prevented an
adequate search of the parameter space.

According to the diffusion model, information from a stimulus
is continuously available and accumulated over time toward one of
two decision boundaries. If the mean rate of accumulation is
positive, the process generally moves toward the positive bound-
ary, and if the mean rate is negative, it generally moves toward the
negative boundary. There are two sources of variance in the
diffusion model. First, the rate of accumulation, the drift rate, is
noisy in that a particular path varies around the mean as it moves
toward a boundary. Second, the mean rate of accumulation of
information is different across the items in an experimental con-
dition and across different instances of the same item. Ratcliff
(1978) built this across-trial variance into the model to account for
differences (variability) in memory strength (in application to
recognition memory) for individual stimuli for a single experimen-
tal condition. However, the amount of across-trial variance was set
at a constant in earlier fits to experimental data. As noted above, it
was only when the parameter space could be automatically
searched that we found that different values of this source of
variance allowed the model to fit the different patterns of error
reaction times. For more details on the qualitative behavior of the
model, see the Appendix.

The diffusion model (and random walk and counter models
generally) can be understood as an extension of signal detection
theory to the time domain (e.g., Pike, 1973). Instead of sampling
only once to determine a single value of strength for a stimulus, the
diffusion model accumulates information continuously on the ba-
sis of repeated samples. The average across these repeated samples
is the mean of the drift rate, and the standard deviation across trials
in the average gives variability in the drift rate.

Fitting the Diffusion Model to the Data
From Experiment 1

The parameters of the diffusion model are illustrated in Figure
7: The starting point and boundary parameters are z and g, the
distances of the positive boundary and the starting point from the
negative boundary (0), respectively. The amount of evidence
needed to produce a positive response is ¢ — z and a negative
response, —z. Because there were no apparent high or low biases
in the subjects’ response patterns and no reason to expect any from
the experimental design, we set z = a/2 and eliminated z as a free
parameter for the fits to the data from Experiment 1. The parameter
v is the mean value of drift rate for the stimuli from an experi-
mental condition. Each different possible number of asterisks in a
stimulus display (1, 2, 3,..., 96) is a different experimental
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condition, so there are 96 different values of the parameter v. The
two variability parameters are s, the standard deviation of drift
within an individual process, and 7, the standard deviation in mean
drift rate across different trials of the same stimulus. The fourth
parameter of the model is an encoding and response-time param-
eter T, that represents the nondecision components of reaction
time.

The parameter s (representing variability of drift within a trial)
was set to the value 0.1 for all the fits of the diffusion model to the
data; it was not a free parameter. This is because s is a scaling
parameter; if s is altered, the other parameters of the model can be
multiplied or divided by the ratio of the old and new values of s to
produce exactly the same finishing time distributions and response
probabilities as before s was altered. The value 0.1 was chosen
because it is close to the value used in earlier applications of the
model, and so comparisons can be made between parameter values
here and in those applications (Ratcliff, 1978, 1981, 1988).

We did not fit the model to all 96 experimental conditions.
Instead, we fit the model to three representative conditions, ad-
justing the parameters a, 7, T.,, and three values of drift rate v (one
for each condition) to produce the best fit of model to data from the
three conditions. Then, with g, 7, and T, held constant, v was
varied to produce predictions for all the other 93 conditions (the
data were actually collapsed into 10 groups). The three conditions
used in fitting were chosen to represent widely spaced parts of the
latency-response probability function (Figure 3). For example, for
Subject 1, the values of response probability chosen
were 0.965, 0.463, and 0.143. Each of these three values actually
corresponds to two sets of reaction-time data, the number for
which the probability of a high response equaled the chosen value
and the number for which the probability of a low response
equaled the chosen value. The fitting program adjusted the three
values of v plus the three other parameters (a, 1), and T,,) to
minimize a sum of squares using a standard function minimization
routine. The data for the different subjects were fit individually, so
the three values of v plus the other three parameters all were free
to vary across subjects. The parameter estimates are shown in
Table 1.

a Respond High
v

z

0 Respond Low

Parameters of the Diffusion Model:

a = Boundary position

z = starting point = a/2

v = mean drift rate, one for each condition

s = standard deviation in drift within a trial

Ter = €ncoding and response time

m = standard deviation in mean drift rate
from trial to trial (drift is N{v,n))

s,=standard deviation in starting point
(starting point is N(z.s,))

Figure 7. 'The diffusion model and parameters of the model.

Table 1
Parameters of the Diffusion Model Used in Fitting for the Four
Subjects in Experiment 1 and 2 Subjects in Experiment 2

Subject (S) a z T, n
Experiment 1: S1 115 a/2 256 112
Experiment 1: S2 (first 3 sessions) 151 a2 323 .088
Experiment 1: S2 (last 3 sessions) 141 a/2 335 174
Experiment 1: S3 .150 a/2 313 142
Experiment 1: S4 065 a2 266 .055
Experiment 2: S1 117 .040 .206 .082
Experiment 2: S2 103 .039 .306 081

Note. a, z, T,,, and 7 are parameters.

The sums-of-squares function for minimization was constructed
as follows.! First, the empirical reaction-time distributions were fit
with an ex-Gaussian distribution, that is, a convolution of normal
and exponential distributions. The ex-Gaussian has been shown to
provide a good summary of empirical reaction-time distributions
(Ratcliff, 1978, 1979; Ratcliff & Murdock, 1976), and its param-
eters have been used to describe the shape of the distribution.
Theoretical distributions were then generated by the diffusion
model, and these theoretical distributions were also fit with an
ex-Gaussian distribution. The two parameters (u and 7) of the
ex-Gaussians served as a meeting point between the empirical data
and the theoretical predictions from the model (u roughly repre-
sents the position of the leading edge of the distribution, and
represents the extent of the tail of the distribution). The sum-of-
squares function was the sum of squared differences between the
theoretically derived and empirically derived values of the ex-
Gaussian summary parameters plus the sum of squared differences
in the theoretical and empirical values of response probability (all
weighted by standard errors). The fitting routine minimized the
sums of squares as a function of the diffusion model parameters
(see the Appendix for a full presentation). (The ex-Gaussian has a
third parameter, o, which roughly specifies the rise in the leading
edge of the distribution, but it is not needed because the diffusion
model produces a rise in the reaction-time distribution that is close
to the rise observed in the experimental data.) All fits of the model
shown in the figures are direct fits of the model to the data. In more
recent work, we have moved to fitting the reaction-time distribu-
tions directly using quantiles of the distributions. The obtained fits
are not different in the two procedures.

As pointed out, the three values of v for each subject were
merely representative of all of the 96 experimental conditions and
served the purpose of summarizing the range of data and allowing
the other three parameter values, a, 1, and T, to be fixed for the
subject. To sweep out all the conditions, v must be varied from
some very low value to some very high value. It turned out that all
of the conditions were accommodated by v ranging from —.4 to
+.4, where a drift rate of —.4 corresponded to less than 20

! Note that setting up a successful run of the fitting process usually
requires one or more runs much of the way through the process before a
result can be obtained because the program is quite sensitive to the starting
values of the parameters. The initial parameter values have to be close to
the final values or else estimates start to diverge, numerical overflow or
underflow occurs, and the program terminates.



270 RATCLIFF, VAN ZANDT, AND McKOON

asterisks and a probability of greater than .98 that 20 asterisks was
drawn from the low distribution, and a drift rate of 0 corresponded
to 47 asterisks and a probability of .5 that 47 asterisks was drawn
from the low distribution. With v varying across this range and the
other three parameters at their fixed values, the diffusion model
had to predict, for all 96 conditions, all the standard speed—
accuracy measures: the probability of a high response, the speed of
high and low responses, the shapes of distributions of response
times, and the hazard functions of the distributions. In the next
sections, we show the model’s success with these predictions.

Latency—Response Probability Functions and Error
Reaction Times :

The first test of the diffusion model was to examine whether it
accurately fit the latency—response probability functions displayed
in Figure 3. These functions are shown again in Figure 8 along
with the fits of the diffusion model. The model fits the data well
with only the single parameter v varying (from —.4 to +.4). The
model explains the large differences in average reaction time
between Subjects 3 and 4 as the result of differences in the a
parameter, that is, differences in boundary positions (see Table 1).
The error bars shown in Figure 8 represent plus or minus 2
standard deviations in reaction time. The fits are good, with only
about 3 or 4 of the 40 data points lying more than 2 standard
deviations outside the theoretical functions. Although different
values of drift rate are needed to fit each individual condition in the
experiment, the shape and location of the latency probability
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Figure 8. Diffusion model fits to the latency-response probability func-
tions for Experiment 1. The error bars represent 2 standard deviations.

function shown in Figure 8 is a function of only the three param-
eters g, m, and T,,.

The different shapes of the latency-response probability func-
tions for the different subjects reflect different patterns of error
versus cormrect response times. The model shows flexibility in
accounting for these different shapes with different values of the
three parameters a, 7, and T,,. For example, the model was able to
fit the near symmetry of the function for Subject 4 as well as the
extreme asymmetry of the function for Subjects 2 and 3. The main
determinant of symmetry—asymmetry was the size of 7, the stan-
dard deviation in mean drift values from trial to trial (see Table 1
for values).

To see how the standard deviation in mean drift across trials
determines the shapes of latency—probability functions, first con-
sider a diffusion process with the starting point halfway between
the boundaries and with no variability in drift across trials; then
error reaction times are the same as correct reaction times. When
variability in drift rate across trials is introduced, then responses
are a weighted average of reaction times for the different drift rates
(weighted by the probability of each response). Table 2 illustrates
this weighting. Columns 2 to 4 show correct and error reaction
times and response probability. To illustrate variability in drift, we
average each row with adjacent rows (so the average reaction time
or accuracy for drift variability v is the average of rows with
constant drift v — .05, v, and v + .05 with fixed v). The results of
this averaging are shown in columns 5 to 7. For example, averag-
ing the three constant drift values v = —.10, —.15, and —.20, the
average error response time 663 ms was computed from the error
response times for the three v values (694 ms, 599 ms, and 535
ms), each weighted by their probability (.076, .023, and .007,
respectively): (535 X .007 + 599 X .023 + 694 X .076)/(.007 +
.023 + .076) = 663 ms. The corresponding average correct re-
sponse time (weighted by probabilities .993, 977, and .924, re-
spectively) was 607 ms. Graphing the probabilities of the re-
sponses (the probability correct in column 7 and 1 minus the
probability correct for errors) against the averaged correct and
error response times (columns 5 and 6) produces an asymmetri-
cally shaped latency probability function such as those from Sub-
jects 1, 2, and 3.

The diffusion model fails to accurately capture the shape of the
latency—-response probability function only for Subject 4, for
whom the model shows error responses never faster than correct
responses, in contrast to the data in which error responses were
systematically faster than correct responses. There is an explana-
tion of fast errors that is often given for random walk models, and
that is that the fast errors result from variability in the starting point
of the walk (e.g., Laming, 1968, see also Ratcliff, 1981). When the
starting point is near a boundary, then the probability of reaching
that boundary in error (with a fast reaction time) is greater than
when the starting point is further away from that boundary (slow
errors with lower probability). Averaging faster errors (weighted
with higher probability) with slower errors (weighted with lower
probability) produces faster errors on average than the case where
the starting point, z, is constant.

To test whether this explanation was tenable for Subject 4, we
compared the model’s prediction using a single starting point (z =
a/2 = 0.026; see Table 1) to predictions using a normal distribu-
tion of starting points with standard deviation 0.2z (.0052). The
result is shown in Figure 9. With a standard deviation of 20% in
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Table 2

271

Correct and Error Reaction Times for the Diffusion Model for Fixed Drift Rate and a
Distribution of Drift Rates (Using Parameter Values From Subject 3 Fits)

Reaction time (RT) and probability (Pr)

are for fixed drift rate (n = 0)

RT is weighted average of RT in column 2
for v — .05, v, v + .05. Corrects are
weighted by Pr correct and errors
by 1 —~ Pr correct

RT correct RT error RT correct RT error
v (ms) (ms) Pr correct (ms) (ms) Pr correct
.05 812 812 223 — —

0 875 875 .500 833 833 .500
-.05 812 812 71 777 840 734
—-.10 694 694 924 694 769 .893
—.15 599 599 977 607 663 .965
-.20 535 535 .993 542 578 989
-.25 492 492 .998 496 519 .997
—.30 462 462 .999 — —

Note. A latency probability function would be constructed by plotting reaction times in columns 5 and 6 against

Pr correct in column 7 for correct responses and (1 ~ [Pr correct]) for error responses. v = drift rate.

the value of z, error reaction times are speeded up exactly enough
to match the data. For the other subjects, z is larger so that
variability in the range = .0052 makes errors to extreme stimuli
faster (and so produces fast errors for extreme values of accuracy
for Subjects 1 and 2, which is in better accord with the data) but
has little effect on response times for intermediate errors (which
are slow errors).

In earlier research, Ratcliff (1978, 1981, 1988) had stated that
the diffusion model could not correctly predict error reaction
times. For recognition memory paradigms, error reaction times are
generally slower than correct reaction times, but not as slow as the
diffusion model seemed to predict. However, Figure 8 shows that,
for the signal detection paradigm, reaction times are reasonably
well fit over the whole range of response probability values in-
cluding values below .5, that is, including values for which the
responses were errors (except for the small deviations for fast error
reaction times noted above for Subject 4). The reason that the
diffusion model now predicts error reaction times correctly is that
the minimization program was able to adjust the drift variability
parameter (7). For practical reasons (fitting by hand because of a
lack of computational power), Ratcliff (1978) had fixed this pa-
rameter, adjusting only the other parameters of the model. Refit-
ting some of the old recognition memory data with the new
minimization program showed that good fits for error reaction
times can be obtained for the recognition memory paradigms used
in Ratcliff (1978), as well as for the data reported here.

It is important to note that it is variability in drift and variability
in the starting point of the diffusion process that allow the model
to predict the complicated pattern of error and correct reaction
times. Van Zandt and Ratcliff (1995) showed that seemingly
decisive tests between models could become indecisive once vari-~
ability in the parameters of the models across trials was introduced.
Our results go one step further by showing that patterns of data that
could not be explained by the diffusion model using a fixed mean
drift rate (i.e., 7 = 0) and a fixed starting point can be explained
with variability in those parameters across trials.
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Figure 9. Latency—probability function predictions for the diffusion
model without starting point variability (top) and with starting point
variability (bottom) with standard deviation = .2z for Subject 4 in Exper-
iment 1.
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Reaction-Time Distributions and Hazard Functions

The second test of the diffusion model was to examine whether it
could accurately predict the shapes of reaction-time distributions.
Figures 10 and 11 demonstrate that it can. The figures show the
empiricat distributions and model predictions for two conditions per
subject, one condition for which response probability was high (e.g.,
near 0.95) and another condition for which probability was lower, in
the 0.5-0.7 range (the model makes the same predictions for high as
low responses at any probability level because the response bound-
aries are symmetrical in these fits). The hazard functions (Figures 12
and 13) showed functions either rising to asymptote or rising to
asymptote then falling slightly. The functions are shown for only two
conditions because the distribution shapes and hazard function shapes
did not deviate from the illustrated patterns across conditions.

The accuracy of the diffusion model’s predictions is especially
noteworthy because fitting the diffusion model used only the two
parameters of the ex-Gaussian to summarize distribution shape.
Also, there were no additional free parameters used in fitting the
distributions beyond a, %, T.,, and the values of mean drift rate v.

Chi-square goodness-of-fit values for the eight distributions are
shown in Figures 10 and 11. They were computed using observed
and expected numbers of counts in the histograms in Figures 10
and 11. For three of the distributions, the theoretical and empirical
distributions are significantly different from each other, but for
five they are not. This is comparable with the goodness of fit of
other models to reaction-time distributions (e.g., Ratcliff & Mur-
dock, 1976). There are several possible reasons for the less than
perfect fits, including variations in the behaviors of subjects across
sessions (e.g., a slow day or a fast day), long-term practice effects,
and variability in the nondecision component of processing (T,,).
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Figure 10. Diffusion model fits to the reaction-time distributions for
Subjects 1 and 2 (S1 and S2) in Experiment 1. The Xs are the model
predictions. acc = accuracy.
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Subjects 3 and 4 (S3 and S4) in Experiment 1. The Xs are the model
predictions. acc = accuracy.

These factors would all produce a less abrupt than predicted rise in
the leading edge of the distribution, which is where most of the
misses occur. But overall, these fits are very good because there is
no other systematic misprediction.
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Figure 12. Diffusion model fits to the reaction-time hazard functions for
Subjects 1 and 2 (S1 and S2) in Experiment 1. The Xs are the model
predictions. acc = accuracy.
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Figure 13. Diffusion model fits to the reaction-time hazard functions for
Subjects 3 and 4 (S3 and S4) in Experiment 1. The Xs are the model
predictions. acc = accuracy.

Stimulus Probability and Drift Rate

For recognition memory, drift rate in the diffusion model cor-
responds to the strength or familiarity of an item in memory
(Ratcliff, 1978). An item that is more familiar might be one that is
more meaningful to the subject or one that is studied longer. But
what dimension does drift rate correspond to in the signal detection
paradigm?

What subjects ought to do is make their choice based on the
information that they have from the experiment. The one piece of
information that they have (after some number of trials, each with
feedback) is the probability with which a number of asterisks was
drawn from the high distribution versus the low distribution. One
possibility then is that the subjects base their choices on this
probability. From a long tradition of probability learning literature
(see Atkinson et al., 1966; Estes, 1957, 1964; and, especially,
Estes, 1995, for a detailed review), we know that subjects can do
this, at least in many situations. But there is nothing in the data
from Experiment 1 that directly suggests that the subjects in the
experiment were probability matching. For instance, the response
probabilities shown in Figure 1 do not directly correspond to the
probability that some number of asterisks was high or low: The
response probability functions are too abrupt when compared with
the stimulus probability function. Instead, in the diffusion model,
it might be that the mean drift rate is derived from stimulus
probability. In other words, the mean drift rate for a given number
of asterisks might reflect the probability that the number was
drawn from one or the other of the two possible distributions, the
high distribution or the low distribution.

We discovered this possibility, not by intuition, but when we
plotted the drift rates for the four subjects as a function of exper-
imental condition (i.e., number of asterisks) and compared the drift
rates with the probabilities with which each possible number of

asterisks was drawn from the high versus low distribution in a
typical experimental sequence. The subjects’ functions are shown
in Figure 14. The probability values for a typical experimental
sequence were generated from the same algorithm that was used to
generate stimuli in the experiment, with the length of the sequence
the same as the total number of trials a subject would receive in all
of their sessions combined. For each possible number of asterisks,
N, the probability that N asterisks was drawn from the high
distribution was plotted in Figure 14. In order to plot the proba-
bilities on the same scale as the subjects’ drift rates, the probabil-
ities were transformed to lie between —.4 and +.4 by subtract-
ing 0.5 and multiplying the result by 0.8, so that a probability of .5
(middle of the range) corresponded to a drift rate of 0 (middle of
the range). There are two dramatic results: First, the four individ-
ual subjects have very similar drift rates across conditions despite
their large differences in other performance measures. Second,
the subjects’ drift rates correspond very closely to stimulus
probability.

These were unexpected results for two reasons. First, the four
subjects performed differently from each other in radical ways, in
terms of overall reaction times, speed—accuracy tradeoffs, and in
the parameters of the diffusion model other than drift rate. Exam-
ination of their individual reaction-time data gives no clue to any
significant underlying similarities or invariances across subjects.
Second, from the plot of drift rates in Figure 14 and the plot of
response probabilities in Figure 1, drift rates do not clearly map
into response probability: The drift rate functions are gradual over
the whole range of numbers of asterisks, whereas the response
probability functions have a steeper climb in the middie of the
range and asymptote much more quickly. Yet, according to the
diffusion model, the subjects were all basing their decisions on the
same underlying variable. What Figure 14 shows is that stimulus
probability, mapped through the diffusion process, produces the
observed response-probability and reaction-time data. Similar
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Figure 14. Diffusion model drift rates for the four subjects. The asterisks
represent the probability that the number of asterisks came from the high
stimulus distribution, transformed to the range —.4 to +.4 from the
probability range 0 to 1 (subtracting .5 and multiplying by .8). The
probability function (asterisks) has variability derived from running sim-
ulations of about as many trials as for one subject for all sessions.
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drift-rate-stimulus-probability correspondences have been found
by Ratcliff and Rouder (1998) across a range of experimental
procedures including brightness discriminations, red-green color
discriminations, and same-different brightness judgments.

Given the relationship between drift rate and stimulus probabil-
ity, the number of parameters for the diffusion model can be
reduced. The drift rates themselves, the 96 values of v, are no
longer needed as parameters of the model. They can be replaced by
the transformed probability values. So the three v parameters that
were used for each subject in the original fit of the diffusion model
can be replaced by the two parameters needed to transform prob-

ability to drift rate. This means that the complex pattern of results

including response probabilities, the shape of the reaction-time
distributions, and the hazard functions for correct and error re-
sponses can be modeled accurately by the diffusion model with
only six free parameters per subject: two parameters that scale
probability to drift and @, 1, variability in starting point s, and T,.

Although these results at first appeared to us to implicate stim-
ulus probability as the function driving performance, we cannot
rule out another function: distance from a criterion. Subjects could
be setting a criterion on the dimension of numerosity and respond-
ing high if the number of asterisks in the stimulus was greater than
the criterion and responding low if the number of asterisks in the
stimulus was less than the criterion. Variability in encoding of the
stimuli (and possibly also variability in the criterion setting) would
lead to a gradual’transition in mean drift rate from high to low. In
the domain of categorization research, exemplar-based models and
distance from criterion models have been compared (e.g., Maddox
& Ashby, 1993; Nosofsky & Palmeri, 1997), and it has been
concluded that there is a great deal of mimicking between the two
classes of models. Early exemplar-based models essentially pre-
dicted probability matching as the function guiding responses, but
individual subjects produced more deterministic responding
(sharper functions, e.g., Figure 1) than were predicted. More recent
exemplar-based models have used a random walk as the decision
process and shown how gradual stimulus-probability functions
could be mapped into sharper response-probability functions by
summation in the random walk (a well-known property of many
sequential sampling models). This situation in the categorization
literature, mimicking between the two classes of models, applies in
our research as well: The function driving the diffusion process
could be either stimulus probability or distance from a criterion.
Resolution of this situation will require experiments that produce
differential predictions for the two kinds of models.

One of the reviewers asked why it was not expected a priori that
stimulus probability would be the function driving drift rate in the
diffusion model; after all, the random walk process is a probabi-
listic one. There are several reasons why this relationship would
not necessarily be expected. First, only in the random walk (the
discrete analog of the diffusion process; Feller, 1968; Ratcliff,
1978) can the probability of a step toward one response boundary
or the other be directly derived from stimulus probability. Taking
the limit in the random walk to produce the diffusion process, the
step probability has to approach .5, not stimulus probability. Sec-
ond, even in the discrete random walk, the probability of taking a
step toward one boundary versus the other cannot be stimulus
probability in many experimental paradigms. For example, in a
two-choice reaction time task, feedback would always correspond
to the stimulus presented. Unlike our asterisks task, feedback is

always accurate, so that stimulus probability is 1 for each stimulus.
If this stimulus probability was the probability of a step toward the
correct boundary, then that probability would be 1, and each step
in the process would be deterministic, so all responses would
terminate in the same number of steps and all responses would be
correct. Third, in other random walk models, the rate of approach
to the boundaries is not derived from stimulus probability. For
example, Link and Heath (1975), in their random walk model,
assumed that the distance moved toward one or the other boundary
in one step was a function of distance between the transduced
stimulus and a noisy criterion. Fourth, we performed a pilot
experiment with two-digit numbers as stimuli instead of arrays of
asterisks. We used the same feedback and stimulus selection
scheme as in Experiment 1. Results showed that subjects set a
fixed criterion around the number 55; stimuli higher than 59 and
lower than 50 all produced approximately the same mean reaction
times and response probabilities, near ceiling. In fits of the diffu-
sion model to this data, drift rates would not be a function of
stimulus probability.

In sum, although a reasonable hypothesis to entertain is that drift
rate is a transformation of stimulus probability, this does not
follow directly from the theory of the diffusion model, other
random walk models make other assumptions, and other data sets
contradict the hypothesis (but see Ratcliff & Rouder, 1998).

Sequential Effects

The one aspect of the data left to discuss are the sequential
effects from one response to the next. It turns out that the diffusion
model can account for these effects in the same way that it
accounts for how subjects accommodate to changes in the proba-
bilities with which stimuli are given high versus low feedback.
Experiment 2 examines in detail the consequences of such switch-
ing, and so we postpone discussion of sequential effects until after
presentation of the results of that experiment.

Summary

The success of the diffusion model in this application is that it
gives a good account of the data parametrically and, at the same
time, offers insight into how the stimuli in the signal detection
paradigm controlled responses, what aspects of performance were
common across subjects, and what aspects were different. There
was no way to see directly from the data that the subjects took
stimulus probability into account in their performance, and no way
to see exactly what the relationship was between stimulus proba-
bility and response probability or response time. The model shows
how stimulus probability (or distance from a criterion) can be
transformed into drift rate that in turn, acting through the mechan-
ics of the diffusion model, can produce the whole range of char-
acteristics of the data. At the same time, the model shows how the
different individual subjects can show quite different response-
time—accuracy profiles yet still all be governed by the same vari-
able, stimulus probability.

‘The fact that the diffusion model fits the data well raises the
issue of falsifiability. If only mean reaction time and response
probability were taken into account, it might be difficult to falsify
the model. But once the shapes of reaction-time distributions are
taken into account, falsification would be very easy: The model
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has to predict that reaction-time distributions are skewed to the
right, not skewed left or bimodal, and it places tight limits on how
much minimum reaction times can differ between error and correct
responses for a particular experimental condition. The model also
makes a strong prediction for experimental situations in which the
boundary positions are fixed, as they must be, for example, in an
experiment in which the manipulation of variables within a trial
makes it impossible for subjects to anticipate which condition is
being tested and thus impossible for them to shift boundaries
between conditions (see Ratcliff, 1978, Experiment 1). In this
situation, the model predicts that as drift rate varies across exper-
imental conditions, increases in reaction time come from spread in
the tail of the reaction-time distribution with relatively little
change in the fastest responses (in ex-Gaussian terms, this would
correspond roughly to 7 increasing 3 or 4 times more than ).

Another way to look at the falsifiability issue is to consider how
a failure of the diffusion model to fit data might be interpreted. The
model predicts a large spread in the tail of the distribution when
shifts in the leading edge are small. If shifts in the leading edge are
too large relative to spread in the tail, this might signal that another
stage of processing had been inserted in one condition of an
experiment relative to another. Such an inserted stage should also
show up as a shift in the onset of growth of accuracy in response
signal data (e.g., see McElree & Dosher, 1993, for discussion, and
Hacker, 1980; Hockley, 1984; Muter, 1979, for examples of shifts
in the leading edge of reaction-time distributions). Thus, although
the diffusion mode! on initial inspection might seem to be hard to
falsify, it does have tight constraints, especially for predictions
about the shapes of reaction-time distributions.

The success of the application of the diffusion model to the
signal detection paradigm is also a significant step forward for
traditional modeling. For the first time, the description-offered by
a model of how information is accumulated over time leads to an
accurate and unified account of both error and correct response
time, including the shapes of the reaction-time distributions and
their hazard functions. In the past, even the most successful models
could not simultaneously and accurately account for all of these
aspects of the data.

Alternative Standard Reaction-Time Models

The diffusion model is one of the class of sequential sampling
models that includes random walk models, counter models, and
runs models (see Luce, 1986). Of these models, the random walk
models (discrete versions of the diffusion model) are of the same
family as the diffusion model and show much the same behavior as
the diffusion model. The standard random walk mode} predicts that
the mean number of steps to cross a boundary is the same for
correct and error responses (if the starting point is equidistant from
both boundaries). In order to account for choice reaction-time data,
Laming (1968) added starting point variability to the random walk
to produce error reaction times faster than correct reaction times.
Link (1975) and Link and Heath (1975) allowed the step size in the
process to be sampled from a nonnormal distribution, which,
depending on the distribution, allows error responses to be either
faster or slower than correct responses. Neither of these models
could produce the crossover between correct and error reaction
times obtained for some subjects in Experiments 1 and 2. How-
ever, these models might be adapted using variability in parame-

ters across trials to produce the same success as the diffusion
model.

The recruitment model of LaBerge (1962) assumes that infor-
mation (e.g., features) from a stimulus is accumulated to a fixed
criterion (in two-choice tasks, to one of two criteria). This model
differs from the random walk model in the use of absolute rather
than relative criteria. The fixed-criterion recruitment model makes
several predictions that are at odds with experimental data: It
predicts that reaction-time distributions become less skewed as the
criterion number of counts is increased. Also, it predicts that there
is a maximum reaction time (number of counts) for any process,
and this maximum is one less than the criterial number of counts
for each counter plus one. The experimental data suggest that there
is no fixed upper limit on reaction time. The recruitment model
also usually predicts negatively skewed error reaction-time distri-
butions, contrary to experimental data.

Accumulator models (Smith & Vickers, 1988; Vickers, 1970,
1979) are variants of the counter models that assume evidence to
be continuous (rather than discrete counts) and time steps to be
discrete. Smith and Vickers extended the early accumulator model
by assuming that time steps have an exponential distribution. This
modification produces correct and error reaction-time distributions
that are positively skewed. However, if the criteria are increased,
the reaction-time distributions become more normal, contrary to
experimental data. Smith and Vickers assumed that the response
criteria are variable (like the starting point of the random walk in
Laming’s model and the diffusion model) and if variability in-
creased with criterion position (or the distribution of criterion
positions was skewed), then the predicted reaction-time distribu-
tions would become more skewed and the model might be capable
of fitting the experimental data reported here. But it is unclear
whether the parameter invariance (drift rates, parameters other
than boundaries in speed-accuracy manipulations; Ratcliff &
Rouder, 1998) found for the diffusion model could be obtained by
the accumulator model.

Another popular alternative to sequential sampling models is the
class of strength-latency models, or distance-from-a-criterion
models. These models assume that reaction time is a function of
distance of the stimulus value from a decision criterion. The most
popular instantiation of this class is a model in which reaction time
is an exponential function of distance from the criterion (Ashby &
Maddox, 1994; Murdock, 1985; see also Vickers, 1979, p. 144).
Although this model can make predictions for accuracy and correct
reaction times that are consistent with data, the model makes the
prediction that error reaction-time distributions are negatively
skewed (see Figure 15). Also, the model predicts that errors can
only be slower than correct responses because the peak of the
strength distribution that produces most of the correct responses is
further away from the criterion than the tail of the distribution that
produces errors.

Connectionist Models

One of the appealing features of connectionist models is that
they provide explicit mechanisms for learning. Given many in-
stances of stimuli, each with feedback, the models can learn
mappings from stimuli to responses; these mappings lead to pre-
dictions about the probabilities with which different responses will
be given to different stimuli. Because, in many connectionist
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Figure 15. An example of the strength-latency model mapping from
strength through an exponential laténcy function to the reaction-time (RT)
distribution.

models, the process by which the response to a stimulus is chosen
involves iterative recycling of activation, it seems natural that the
models should also generate predictions about response-time mea-
sures. However, the predictions for response time generated by
earlier models were often wrong, and the predictions of more
recent models have been largely untested. We begin discussion of
the treatment of response-time measures in the connectionist do-
main with a review of earlier models and their problems, and then
proceed to test two models based on McClelland’s GRAIN frame-
work (McClelland, 1993; Movellan & McClelland, 1991, 1993)
and also Anderson’s (1991) BSB model, using the response time
and response probability data from Experiment 1.

The Cascade Model (McClelland, 1979)

The cascade model was one of the first models to examine the
possibility of information flowing continuously through discrete
stages of processing. The key assumption was that one stage of
processing could begin before the previous stage had terminated.
The model’s ability to account for mean response-time data with
this cascade notion posed a challenge to additive factors logic
(Sternberg, 1969), which had been used to separate the effects of
different variables on different stages of processing. However, the
cascade model was eventually shown to have shortcomings; most
seriously, it predicted that on some proportion of trials, processing
would never terminate (Ashby, 1982). Even with added assump-
tions by which processing could be terminated, the model could
not adequately predict reaction-time means and variances (Ashby,
1982). However, the model did set the stage for other dynamic
models based on activation flow through a series of stages.

The Interactive Activation Model
(McClelland & Rumelhart, 1981)

The interactive activation model was designed to explain per-
formance in simple letter and word identification tasks. It was an
immediate successor of the cascade model, but it was not designed
to predict response times for decisions, only the probabilities of
making different decisions. In this model, information about words

is represented in a network of three levels of nodes: letter feature
(line segment) nodes, letter nodes, and word nodes. The features of
a stimulus word are input at the feature level and then activation
flows among the nodes of the different levels until the amount of
activation asymptotes or, in paradigms in which the stimulus is
masked, it reaches a maximum. The asymptotic or maximum
amount of activation at the word or letter level is used to decide
which word should be given as a response. The main problem with
the model in the current context is that it is deterministic; that is,
for a specific stimulus word, the model always produces the same
activation value. The model can produce errors, but only by
placing variability in the decision rule: The probability of a par-
ticular response is based on the relative amounts of activation
across all possible responses (Luce’s choice rule; Luce, 1959).

Changing the model so that it would not be deterministic, so that
the output activation value for a word would not always be the
same on every trial, would require many assumptions about where
and how to introduce variance, what the stopping rule for process-
ing should be, and how to map activation values against decision
criteria. Proposals have been made (Cohen, Dunbar, & McClel-
land, 1990; Jacobs & Grainger, 1992) that add assumptions to
existing models to attempt to overcome some of the problems, but
these proposals are limited to their specific domains.

The Seidenberg and McClelland (1989) Model

Like the interactive activation model, the Seidenberg and Mc-
Clelland model was designed to explain decisions about words but,
unlike that model, it represents information across nodes in a
distributed fashion. One level of nodes represents orthographic
information, another phonological information, and a third is a
hidden layer of nodes between the other two. Orthographic infor-
mation about a word stimulus is input to the orthographic layer and
then activation flows among the nodes of the layers in a single
iteration and the output is computed. For a naming response, the
output at the phonological layer is compared with the correct
representation for each word, and the best matching word is
chosen. For lexical (word/nonword) decisions, the output pattern
of activation at the orthographic layer is matched against the
representation that was input to the system from the stimulus. A
good match indicates a word decision, a bad match a nonword
decision. The assumption about how decisions relate to response
times is that response time depends on the quality of the match—a
poorer match leads to longer decision times. However, this as-
sumption is only a promissory note for the model because it is not
obvious how it could support predictions about the full range of
time-dependent variables.

The Matched Filter Model (Anderson, 1973)

One of the earliest neural network models designed to deal with
psychological data was the matched filter model. It was developed
to explain performance in the fixed-set Sternberg paradigm (Stern-
berg, 1966, 1969). In the relevant version of this paradigm, a small
set of items is designated to receive a positive response and
another set of items is designated to receive a negative response.
The model assumes that items are represented as vectors of fea-
tures, and learning is the formation of a positive filter by summing
the vectors of the positive items and the formation of a negative
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filter by summing the vectors of the negative items. The vector for
a test item is compared with these two filters by taking the dot
products of the vector with each of the filters. The output of this
comparison process is accumulated over time until it reaches either
a positive or a negative criterion. Although the model can accu-
rately predict mean response time as a function of the size of the
positive set and it can predict some sequential effects, it was not
designed to account for accuracy or for the shapes of reaction-time
distributions. Anderson’s (1991) BSB model can be seen as an
update of the matched filter model that does attempt to account for
a fuller range of measures.

Summary

These early connectionist models were designed to address
questions about structure and process in various cognitive tasks.
For the models that deal with reaction time as a dependent vari-
able, the primary concern was the behavior of mean response time
across experimental conditions, and the models were not con-
cerned with or able to account for detailed characteristics of the
distributions of response times or relationships between reaction
time and accuracy. These models were impressive in how much
they accomplished, but newer models have been designed to take
the next step to the full range of phenomena associated with
reaction time and accuracy.

Models Based on the GRAIN Framework

The GRAIN framework (McClelland, 1993) was designed to
guide the construction of models in which decisions are based on
interactive processes that evolve over time, with variability built
into processing. The goal is to account for response time and
response probability for the decisions required by a task. As in
earlier connectionist models, processing in GRAIN models is
assumed to take place in a continuous manner as information or
activation flows gradually and interactively through a connection-
ist network. The key feature that makes GRAIN models different
from earlier models is the introduction of variability into process-
ing. Each time activation is input to a node, the amount that is
input includes a random number. This addition of random noise
guarantees that both the time to reach a decision and the choice of
response will vary across stimuli and across repeated instances of
a single stimulus.

The GRAIN framework was presented in two articles. McClel-
land (1993) provided a set of general principles that define the
GRAIN approach, and Movellan and McClelland (1993; see also
1991) applied a GRAIN-based architecture to the problem of
learning to produce variable outputs that corresponded to random
variables from probability distributions. Because GRAIN provides
a general modeling framework instead of a single specific model,
we were faced with multiple options in developing GRAIN-based
models to test against the data from Experiment 1. In the sections
that follow, we explain our choices.

In GRAIN-based models, activation flows through a network in
a series of cycles. For a three-layer model, activation flows among
input, output, and hidden layers. On the first cycle for a stimulus,
activation from the stimulus is input to each node in the input layer
and transmitted to the nodes of the hidden layer. The net amount
of activation input to a node is the sum of the activation values of

nodes connected to it weighted by their connection strengths, with
noise added and the sum transformed nonlinearly to produce
activation values between —1 and +1. From the hidden layer,
activation is transmitted to the output layer. The activation from
the stimulus is maintained in the input layer over subsequent
cycles, in each of which activation from both the input layer and
the output layer is transmitted to the hidden layer, and activation
from the hidden layer is transmitted back to the output layer. Each
cycle constitutes one iteration or time step. Cycles continue until a
criterion level of activation is reached at the output layer. Response

“time is determined by the number of cycles to reach criterion.

Learning During the Experiment Versus Learning Prior
to the Experiment

To perform the signal detection task, a connectionist network
has to be trained to make a numerosity judgment; that is, it has to
be trained to discriminate between a large number of asterisks and
a small number of asterisks. We tried two training methods for
GRAIN-based models; training could take place over the course of
the trials in a simulated experiment or it could take place prior to
the beginning of the experiment. We tested both alternatives.
Movellan and McClelland (1991, 1993) examined the ability of a
network to leam to produce output values that approximate various
probability distributions (such as normal distributions, or binary
distributions such as exclusive—or). The number of learning trials
they used was typically a few hundred (with a three-layer model),
about the number of trials in one session of our experiment, so for
the first GRAIN model we tested, we followed Movellan and
McClelland (1991, 1993) and had it learn during the trials of a
simulated experiment. We used a similar architecture, a similar
error-correcting learning rule, and about the same rate of learning
as did Movellan and McClelland (1993).

The alternative training method, pretraining, is suggested by
McClelland, McNaughton, and O’Reilly (1995, p. 435; see also
Ratcliff, 1990, p. 306), who argued that learning the structure of a
domain (such as numerosity) must occur over an extended time
period during which the system is exposed to all possible stimuli
multiple times and in random order. By this argument, perfor-
mance in the signal detection task would be a function of long-
term knowledge of numerosity. So, in our second GRAIN model,
the network was trained to produce, for each possible number of
asterisks, the probability with which that number was drawn from
the high distribution. This training occurred prior to the tests of the
model in simulated trials of the experiment.

Number of Layers

Another choice was between a two-layer model and a three-
layer model; both have been used in the GRAIN framework
(Movellan & McClelland, 1993; Usher & McCleliand, 1995). A
two-layer model would be sufficient for data from the signal
detection task, but for our main investigations, we chose to imple-
ment three-layer models. A three-layer model is the model most
often used for tasks such as word identification, lexical decision,
and word naming (McClelland & Rumelhart, 1981; Plaut, McClel-
land, Seidenberg, & Patterson, 1996; Seidenberg & McClelland,
1989), and we wanted our conclusions to generalize to those tasks.
We also wanted it to be possible for the model to apply to other
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tasks that use the asterisk stimuli, for example, a same—different
matching task in which two displays are presented and the subject
is required to decide whether both have a high or low number of
asterisks (respond “same”) or one display has a high number and
the other a low number (respond “different™). Ratcliff and Rouder
(1998) have examined a task of this kind using stimuli varying in
brightness. A two-layer model would not be able to perform this
task because it is logically equivalent to the exclusive—or task that
two-layer models cannot perform (see Movellan & McClelland,
1993, and discussion in Plaut et al., 1996).

Learning Rule

To perform the signal detection task, the network must be
trained to respond high to a high stimulus and low to a low
stimulus. Although the GRAIN framework does not specify learn-
ing rules, we followed Movellan and McClelland (1993) in using
a version of contrastive Hebbian learning algorithm (which is
similar to the mean field learning algorithm; Peterson & Hartman,
1989; see also the application by McCloskey & Lindemann, 1992).
This is an iterative error correcting rule that behaves in a manner
similar to the noniterative backpropagation rule.

Net Input Averaging Versus Activation Averaging

The net input to a node is sometimes calculated as the running
average (i.e., a weighted sum) of the prior averaged net input with
the current net input (e.g., McClelland, 1993) and sometimes as the
running average of the amount of activation at a node (McClelland
& Rumethart, 1981). Both methods are used to smooth out large
fluctuations in amount of activation. We focus on the former but
report results for both.

A GRAIN-Based Model With Learning
During the Experiment

All of the choices about architecture and learning just described
determined the several GRAIN models to be evaluated using the
signal detection data. The model that appeared to us at the begin-
ning of this project to be most plausible and most likely to fit the
data while still allowing generalization to other cognitive tasks was
a three-layer model, with learning taking place during the exper-
iment rather than prior to it. We assumed that subjects come to the
experiment having learned to represent numerosity, but they must
learn the experimenter-defined high and low response probabilities
that are appropriate to the task. We discuss this model first.

Given the architecture and the form of training to be used, there
were still various ways the stimulus information—the numbers of
asterisks—could be represented. The scheme we chose was to
represent a stimulus composed of N asterisks as a vector of length
100 (to allow numbers up to 100) with element N set to 1, and
elements around N set to 1, and all other elements set to 0. The
elements around N were set to 1 to allow generalization across
similar numbers, and the number of such elements, called window
size, was a parameter of the model.

The three layers of the model were an input layer of 100 nodes
to represent a stimulus input vector, an output layer of one node to
indicate a response (as in Movellan & McClelland, 1991, 1993),
and a hidden layer of 40 nodes, with each hidden layer node

connected to the output node and to each input node. The initial
weights on the connections between nodes were set to random
numbers from a uniform distribution between +1 and —1 (the size
of this range is a parameter of the model). The activation value in
the single output node determined a response: high if the node’s
activation value was near +1 or low if it was near —1. Note that
these response criteria have a function similar to the boundaries for
high and low responses in the diffusion model. Figure 16 illustrates
this GRAIN model, and a full description of the model and
equations is presented in the Appendix.

Our simulations used about the same number of trials as subjects
received in a whole experiment (i.e., 12,000). As a check on the
accuracy of the simulations, the first two authors of this article
implemented the model independently. Stimuli were input to the
model over trials sequentially, each stimulus with feedback, just as
for the subjects of Experiment 1. Parameter adjustment to achieve
the best possible fits of the model to the data was accomplished by
hand because there was insufficient computer power to embed the
model in a minimization routine (see the discussion at the end of
this section).

With the contrastive Hebbian (mean field) algorithm, there are
two phases, a free phase during which activation from the stimulus
is held constant at the input nodes and a clamped phase during
which activation is held constant at the input nodes and the desired
output is held constant at the output node (for details, see the
Appendix). To simulate the decision process for a stimulus, a
vector corresponding to the stimulus was input to the network at
the input level, and activation was allowed to flow from the input
and output layers to the hidden layer and from the hidden layer to
the output layer. In the initial version of the model, the input to
each node at each time step was the running average of net input.
Free phase cycles continued until the value in the output node
reached either the positive (near +1, high) or negative (near —1,
low) criterion. The number of cycles was used to represent re-
sponse time. Then feedback was presented to the system by en-
tering 1 or —1 in the output node, and activation was allowed to
flow with the output node clamped at the feedback value (and the
input nodes still at their original stimulus values). The contrastive
Hebbian algorithm was used to modify the weights connecting

Output Node

Input Units (99)

Input Representation
000000000000111111111000000000......
For the number 17 with a window of size 9.

Figure 16. An illustration of the architecture of the first GRAIN-based
model and the input representation.
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each pair of nodes, with the amount of modification depending on
the difference between the product of the activation values in the
nodes connected by the weight after the free phase and after the
clamped phase, multiplied by a learning rate parameter (see the
Appendix).

There were cight free parameters for the model (plus some
parameters to scale number of iterations to time). One was the
window size, the number of positions around the stimulus value
that were set to 1. Another was the absolute value of the criterion
for a response from the output node, a positive value for a high
response and a negative value for a low response. There were also
the learning rate parameter € for the contrastive Hebbian algorithm
and the parameter m, the absolute value of the limits of a uniform
distribution from which random numbers for the initial weights
were chosen. There were also two parameters that determined the
flow of activation, A and o. To obtain the running average of net
input at a node, a proportion (A) of the node’s prior average input
was added to 1 — A of the node’s current input. o was the standard
deviation in the value of noise (mean = 0) added to the net input.
Finally, there were two parameters that controlled the iterative
process (see the Appendix).

Many simulations were run to check different sets of parameter

values, and the fits of the model to data that are presented in the’

sections below come from the most successful set of parameters,
which are shown in Table 3. The fits of the model are presented for
two sets of response criteria values (* .90 and *+ .85), to show
whether criteria manipulations might account for the behaviors of
different subjects.

Learning

The model was fit only to asymptotic data; the first 1,000 trials
were discarded. It took several hundred trials before the simulated
data became relatively stable (e.g., high responses were slower for
the first 400 trials than the asymptotic value, although low re-
sponses asymptoted after 200 trials in one simulation). Because
extreme values (e.g., 10 and 90 asterisks) did not occur very often,
it took more than 300 trials before enough were presented for the
simulation to accurately classify them.

Table 3
Parameters of the GRAIN Model

Parameter values

Averaging Averaging  Fixed weight
Parameter name net input activation model
Learning rate, 0 2 4 0
Window size in the input
representation *8 *8 *8
Initial weight range (+m) 1.0 1.0 5
Running average of the
net input, A .10 20 35
Response criteria +90(*.85) *90(*£.95 =*.75(*.80)
Standard deviation in the
noise in the net input, o 25 10.00 1.20
Value of 7in the
annealing schedule 10. 2. 2.

Note. The first column of parameter values is used in the body of the
article, the second column of parameter values is used in the Appendix.

Response Probability and Sequential Effects

Figure 17 shows the model’s predicted probabilities of low
responses across all of the experimental conditions (all of the
possible numbers of asterisks), for four sequential conditions. The
top panel shows the functions with the criteria for responding set
at a value of activation in the output node of = .90, and the bottom
panel shows the same functions with the criteria *+ .85. The
general shape of the functions is the same as for the data (Figure
1). However, the predicted sequential effects are larger than in the
data, and more important, they are dependent only on prior feed-
back, whereas the data show sequential effects dependent only on
the prior response. There is no way to change this behavior; the
model has to predict sequential effects based on prior feedback
because it is the feedback that controls weight changes (learning)
in the network across trials.

Response Probability and Mean Reaction Time

Figure 18 shows the model’s predictions for response time as a
function of experimental condition. The predictions follow the data
(Figure 2) for correct responses, in that response time slows as the
number of asterisks nears the point at which the high and low
distributions cross. However, in the data, error responses speed up
as errors become more extreme, whereas the model predicts that
error responses slow down as errors become extreme. This mispre-
diction is indicated by the fact that, in Figure 18, the response-time
functions for all types of responses are monotonically increasing
from high-response probability to low-response probability.
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Figure 17. Accuracy functions predicted from the GRAIN-based model
with learning during the experiment for the data from Experiment 1 (see
Figure 1).
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Figure 18. Reaction-time (RT) functions predicted from the GRAIN-
based model with learning during the experiment for the data from Exper-
iment 1 (see Figure 2).

The conversion to latency-response-probability functions is
shown in Figure 19. Generally, the model predicts monotonically
increasing functions from correct to error responses, whereas the
data show inverted U-shaped functions. No parameter manipula-
tions affected this pattern of results.

Reaction-Time Distributions

Figure 20 shows predicted reaction-time distributions for sev-
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Figure 19. Latency-response probability functions predicted from the
GRAIN-based model with learning during the experiment for the data from
Experiment 1 (see Figure 3).
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Figure 20. Reaction-time (RT) distributions predicted from the GRAIN-
based model with learning during the experiment for the data from Exper-
iment 1 (see Figure 4).

eral levels of response probability. The predicted distributions are
skewed to the right, which matches the data. The extent of the
skew, as measured by the distance between the distribution tail and
the mode, shows a reasonable approximation to the experimental
data.

Figure 21 shows the predicted hazard functions for the distri-
butions shown in Figure 20. Generally, they show a rapid rise to a
peak followed by a slight fall, like the data (Figure 6), but then
followed by a rise in the tail, unlike the data. For the two distri-
butions with response probability around .95, the rise in the tail is
in the extreme tail of the distribution where there is numerical
instability in the estimate of the hazard function. For the distribu-
tions in Figure 21 with response probability around 0.5, the rise in
the tail occurs right after the mean reaction time for that condition.
In this case, the rise in the hazard function occurs in a region that
is not in the extreme tail of the distribution and so cannot be
attributed to instability (see Glaser, 1980, for a discussion of such
bathtub-shaped hazard functions). Thus, although the reaction-
time distributions look plausible, the hazard functions in the low-
probability conditions differ significantly from the data in the
portion of the distribution beyond the mean.

Summary

Although this model captures some features of the data, it fails
in several important respects. It incorrectly predicts sequential
effects based on prior feedback instead of on prior responses; this
incorrect prediction comes from the use of the learning rule
throughout the sequence of simulated experimental trials. The
model also mistakenly predicts that error responses are always
slower than correct responses, and so it fails to capture the data’s
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Figure 21. Reaction-time (RT) hazard functions predicted from the

GRAIN-based model with learning during the experiment for the data from
Experiment | (see Figure 6).

inverted U-shaped latency-probability functions. It also fails to
predict the correct shape of the hazard functions.

Parameter values. Given that this model could not correctly
account for sequential effects or latency~probability functions, it is
of concern whether other parameter values might have led to more
success. The fits of the model that were presented above are the
best that we could find. Altering the parameter values led to the
following problems (all comparisons are described relative to the
results presented above):

(1) Learning rate, €, in weight modification in the contrastive
Hebbian algorithm. When the learning rate is reduced, there are
fewer extreme errors and there are still large sequential effects in
the data. When the learning rate is increased (e.g., 0.2 to 0.4), then
the extreme stimuli (0—10 and 80-100) have fast reaction times
with no variability (i.e., there is no distribution of reaction times,
just a single value for all responses). To examine what happens
when learning is turned off after initial training, we used a learning
rate of € = 0.4 for the first 4,000 trials, then reduced it gradually
to € = .001 over 600 trials, and then kept it at that value from then
on. For trials after the learning rate had been reduced, the size of
the sequential effects was reduced (to about .05 in response prob-
ability), but extreme stimuli had no variability in response time
(the number of steps to criterion was 11 and there were no errors
for stimuli 1-30 and 80-96, whereas response time is in the range
of 100-400 steps for stimuli that produced errors). Errors were
also slow relative to correct responses (e.g., 100 to 350 steps
slower for the more extreme errors).

(2) Window size in the stimulus representation. When this is
made small (e.g., = 4 instead of * 8), all processes terminate in
the minimum number of steps and there is no variability in reaction
time. Also, response probability is at chance over much of the
range from 20 to 80 asterisks. When the window size is increased
(e.g., to = 12), results are much the same as for window size * 8.

(3) Initial weights. When the initial weights are increased from
arange of —.5 to +.5 to a range of —5 to +35, the behavior of the
model does not change significantly.

(4) Running average parameter (A). Changing the size of this
parameter from .05 to .75 alters the minimum reaction time but
does not significantly affect the qualitative behavior of the model
with respect to reaction times or response probabilities and does
not change sequential effects.

(5) Response criterion. When the response criterion is decreased
from .9 to .7, then most processes finish in 1, 2, or 3 iterations.
When the response criterion is raised above .95, reaction time is
slowed a little, but the qualitative behavior of the model is not
altered.

(6) Annealing schedule. In the iterative decision process, the
transformation from net input to activation is adjusted to make a
fixed net input have a larger effect on activation after each iteration
(this is called simulated annealing). In the formula mapping net
input to activation (see the Appendix), net input is divided by a
constant. In the contrastive Hebbian algorithm, the value of this
constant (7) is reduced on each successive iteration to make the
same size net input have a larger effect on activation. In practice,
this is done by multiplying 7 by .99 on each iteration (Peterson &
Hartman, 1989).

Eliminating annealing makes a large difference to reaction
times. Responses in extreme conditions (high and low numbers of
asterisks) are made in four iterations, whereas in nonextreme
conditions most processes do not terminate in 2,600 iterations.
When the parameter 7 is reduced to 1 from 10 (see Table 3),
responses are made in about 2 or 3 iterations in the extreme
conditions, and in the less extreme conditions, many processes do
not terminate in 2,600 iterations. This produces distributions with
tails that are far too long relative to the mean.

Other possibilities. Later, we investigate a GRAIN-based
model for which learning takes place prior to the experimental
trials. Here, we discuss various alternatives for the model with
learning during the experiment. Some of these might appear to be
minor alterations, but they can have a large impact on the predic-
tions of the model.

If a running average is computed on activation rather than net
input, then the maximum value that activation can be changed as
a result of a very large value of noise is A, the proportion of new
input to be added to the running average activation value. When
the running average is over net input, a large value of noise can
change activation by any amount from the prior value to = 1. This
means that changes in activation will be more gradual when the
running average is over activation than when it is over net input.

Many predictions of the model with a running average over
activation were similar to predictions with running average over
net input. The accuracy functions were similar, and sequential
effects still followed prior feedback rather than the prior response.
Latency—probability functions still increased from correct to error
responses, but in a few conditions, the most extreme errors were
fast (reflecting fewer than five responses out of thousands in the
simulation). These latency—probability functions were not at all
similar to the inverted U-shaped functions exhibited by the data
from Experiment 1. Also, the reaction-time distributions had ex-
tremely long tails and a small proportion of processes did not
terminate in the 2,600 iteration limit in the computer program (or,
in some tests, by 5,000 iterations). The means of the distributions
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were in the tails of the distributions, well beyond the mode, which
is unlike the experimental data in which the mean occurred only a
little later in the tail than the mode. The corresponding hazard
functions were highly peaked and fell to asymptotes that were less
than one fourth their peak, in contrast to the data in which the
asymptotes were only a little below the peak. The parameters for
this version of the model are shown in the second column of
Table 3.

We also considered two other ways of representing the number
of displayed asterisks. For one scheme, N (the number of displayed
asterisks) of the elements of the 100-element input vector were
randomly chosen to be assigned the value +1 and the other
elements were assigned the value —1. The second scheme used a
thermometer representation in which the number of asterisks dis-
played was represented as +1 in the first N elements starting
from 0. For example, for the number 30, the elements 1-30 were
assigned +1 and the nodes from 31-99 were —1.

The problem with both of these schemes was that response
probability failed to reach ceiling or floor as the number of
asterisks became extreme (e.g., below 30 or above 70) and the
S-shaped response-probability functions had a much lower slope
than in the data. For the random assignment representation, the
source of the problem is likely the fact that randomly assigning
inputs to the input nodes (turning them on or off depending on the
random assignment) produces no consistent mapping from the
number of asterisks in the stimulus to an input representation that
can be used in learning. For the thermometer representation, the
low units are given inconsistent training; they are trained to a low
response for low stimuli but they are trained to a high response for
high stimuli. For both schemes, we manipulated learning rate, the
proportion of old net input averaged with the new net input, the
amount of variability added to activation, and the annealing—
scaling parameter (1) in the nonlinear transformation from net
input to activation, but none of these manipulations altered the
results.

Another possibility was that the model’s predictions could be
improved by taking into account the variability with which sub-
jects encoded the stimuli. To test this, we used the window
representation, and we assumed that for a stimulus number N, the
number actually encoded was normally distributed around N with
mean 0 and standard deviation 8. This had almost no effect on the
model’s predictions. In effect, adding this variability is computa-
tionally equivalent to increasing the standard deviation in the high
and low distributions by a factor of 20% or so.

There may be other ways to produce sequential effects more
consistent with the data. For example, it might be assumed that
response alternatives are primed by the prior response. It is un-
likely that this mechanism would work because the model predicts
large sequential effects based on the prior feedback (larger than the
effects observed in the data) and these would be added to the
effects produced by response priming.

We also examined a two-layer version of the model. We were
mainly interested in the behavior of three-layer models because
three layers are required to perform interesting behavioral tasks
(e.g., McClelland & Rumelhart, 1981; Seidenberg & McClelland,
1989). However, for completeness we note results for a two-layer
model. In the two-layer model, each input node was connected to
the output node directly. The simulations produced results very
similar to the results for the three-layer model, both with net input

averaging and with activation averaging. For example, for the net
input averaging version, latency-probability functions were still
monotonic, unlike the inverted U-shaped data. The sequential
effects in response probability showed large effects of prior feed-
back just as in the three-layer model. The reaction-time distribu-
tions had long tails, and for the distributions with response prob-
ability around .5, the hazard functions rose immediately after the
mean reaction time, unlike the data in which the functions were
roughly constant after the mean reaction time.

In sum, we could find neither alternative parameter values nor
alternative assumptions about structure or processing that would
improve predictions for the GRAIN-based model with learning
during the experiment. In several cases, it seemed that one manip-
ulation might fix one deficiency and another might fix the problem
that the first introduced, so that both together would improve
predictions. Whenever this appeared possible, we evaluated the
manipulations jointly, but there were none that produced results
better than those presented above. The model always predicts
sequential effects dependent on prior feedback.

The main reason that the model could not provide an account of
the data is that the information used by the model to learn the task
(feedback on whether the stimulus was selected from the high or
low distribution) is representative of only part of the data to be
explained. The learning algorithm has no access to any information
about what response times should be, and so the network cannot be
adjusted during training according to differences between its pre-
dicted response times and the response-time data.

A GRAIN-Based Model With Learning Prior
to the Experiment

One major problem with the GRAIN model just discussed was
that the learning rule led to sequential effects that were dependent
on prior feedback. In an attempt to avoid that problem, we exam-
ined a GRAIN-based mode] for which the weights on the connec-
tions among the input, hidden, and output nodes were fixed by
training prior to simulation of the experiment.

The first question for this model was how to train it to distin-
guish between high and low numerosity. For the diffusion model,
the underlying variable that controlled performance was the prob-
ability p that a stimulus came from the high versus the low
distribution. We decided to train the GRAIN-based model using
this probability. The model was trained so that an input number of
asterisks would give as output a linear transformation of the
probability that number of asterisks came from the high distribu-
tion. The algorithm was that used for the first model but without
variability in activation or net input. This model had the same
architecture as the model with learning during the experiment, an
input layer of 100 nodes, a hidden layer of 40 nodes, and an output
layer of one node (as shown in Figure 16).

In the preexperiment training phase, stimuli were presented to
the network in random order. Given some stimulus number of
asterisks to the input nodes, the network was trained to produce an
output activation that was the stimulus probability 0 < p < 1,
transformed to the range —.8 to +.8 (i.e., 1.6 p —.8). The feedback
provided at the output node was the probability with which the
stimulus came from the high distribution, also scaled to lie be-
tween —.8 to +.8. This scaling was necessary because training the
network to produce activation values of —1 and +1 to extreme



MODELING REACTION TIME 283

stimuli produced ceiling and floor effects in reaction time; for
example, for stimuli with 1-20 or 80-96 asterisks, all processes
terminated in exactly the same number of steps. The learning rate
for the contrastive Hebbian algorithm was 0.1, the running average
parameter was 0.80, the annealing—scaling parameter was zero, the
initial weights varied from —0.5 to +0.5, there were 2,590 itera-
tions unless the output activation was within .001 of the target
activation, and no noise was added into the system. With these
parameters, sufficient training trials were run (30,000, but this was
not manipulated) so that the weights produced (transformed) prob-
ability values at the output node within about .05 of the target
values.

After training, the behavior of the model was evaluated on
experimental trials presented to the network just as they had been
for human subjects. Variability (noise) was added to net input
before transformation to activation. The parameters of the model
(except the connection weights that were fixed by prior training)
were adjusted by hand until the model produced results that
qualitatively matched the data.

Response times for errors were about the same as or faster than
response times for correct responses, like the experimental data for
Subject 4 but unlike those for Subjects 1, 2, and 3. This means that
the model failed to produce the asymmetric inverted U-shaped
functions typical of the data.

To attempt to produce the experimental pattern of data obtained
for Subjects 1, 2, and 3 (slow error reaction times relative to
correct responses), we added a new source of variability into the
model, the equivalent of drift variability, derived from our expe-
rience with the diffusion model. Specifically, we assumed that the
same stimulus was not always encoded the same way across trials,
so that given some number of asterisks as a stimulus, the model
was presented not with that number, but with that number plus a
number drawn from a random normal distribution with mean 0 and
standard deviation r = 8. For example, the stimulus of 40 asterisks
might be input to the model as 32 asterisks, 48 asterisks, or any
number in between. This variance mimics the variation across
instances of a stimulus that is part of the diffusion model (the
parameter 7).

Overall, with the addition of variable encoding, the model does
a good job of accounting for reaction times for correct and error
responses, the probabilities of those responses, and with minor
exceptions, the shapes of reaction-time distributions and hazard
functions. However, like the earlier model, the model does not
account for sequential effects. The parameters of the model we
used to obtain the qualitative fits are shown in the third column of
Table 3.

Response Probability, Reaction Time, and
Reaction-Time Distributions

Response probability as a function of number of asterisks mim-
ics the human data (Figure 22). Mean reaction times slowed as the
number of asterisks neared the crossover point (Figure 23) as in the
human data, extreme errors were faster than correct responses, and
errors for conditions closer to the crossover point were slower
than correct responses. The latency—probability functions from
the model are quite similar to those for Subjects 1, 2, and 3
(Figure 24).
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Figure 22. Accuracy functions predicted from the GRAIN-based model
with learning prior to the experiment for the data from Experiment 1 (see
Figure 1).

Reaction-time distributions (Figure 25) are skewed to the right
Jjust like the human subject data (Figure 3). However, the fastest
responses have the same number of iterations across conditions
and do not slow as mean reaction time increases, as they do in the
experimental data (e.g., a 20-ms effect for Subject 3). The hazard
functions (Figure 26) appear to increase and level off for the
high-probability conditions (before variability in the tail of the
distribution makes the estimates unstable). However, the hazard
functions with response probability around .50 (bottom panels in
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Figure 23. Reaction-time (RT) functions predicted from the GRAIN-
based model with learning prior to the experiment for the data from
Experiment 1 (see Figure 2).
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Figure 24. Latency-response probability functions predicted from the
GRAIN-based model with learning prior to the experiment for the data
from Experiment 1 (see Figure 3).

Figure 26) rise rapidly immediately after the mean reaction time,
which does not match the experimental data.

Sequential Effects

The model does not produce any sequential effects, and there is
no single assumption that could be added to produce the different
patterns of sequential effects for the subjects in Experiment 1. The
problem is that different subjects produced different patterns of
sequential effects; one showed no effect of prior response, one
produced the opposite response with greater probability, and two
produced the same response with greater probability. Any assump-
tion about changing criteria or residual activation from one trial to
another would have to be different for each subject.

Discussion

Except for sequential effects and some details of reaction-time
distributions, this model provided a reasonably good qualitative
explanation of the data from Experiment 1. However, this would
not have been possible if we had not had the knowledge we gained
from the diffusion model fits, namely that variability in encoding
of the stimuli across trials was needed to produce slow errors and
that stimulus probability was an appropriate training function.
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Figure 25. Reaction-time (RT) distributions predicted from the GRAIN-
based model with learning prior to the experiment for the data from
Experiment 1 (see Figure 4).

Without across-trial variability, the model could not have correctly
accounted for the relations between correct and error response
times. Without prior knowledge of what function to use for train-
ing, we would have had to resort to guesswork (and some guess-
work was needed because a linear transformation of stimulus
probability was required). Of course, even though stimulus prob-
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Figure 26. Reaction-time (RT) hazard functions predicted from the
GRAIN-based model with learning prior to the experiment for the data
from Experiment 1 (see Figure 6).
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ability was not intuitively obvious to us as a candidate training
function, pointers might have been gained from earlier literature
such as the probability matching literature (e.g., Estes, 1995). But
intuitions about training functions cannot extend to all possible
situations. If payoffs or instructions were used to produce a bias
toward one response (see Ratcliff & Hacker, 1981), then stimulus
probability might not be the correct training function. Also, finding
a training function would become difficult if the structure of the
problem was not linear (e.g., two criteria or nonlinear boundaries
in a 2-D categorization space; Maddox & Ashby, 1993), and
finding a training function would become very difficult if subjects
did not discover the true statistical structure of the problem and so
responded according to some function of their own invention.

If intuition cannot reliably provide a training function for a
connectionist model, then the question is whether it is possible to
develop a method or computer program to search for and find an
adequate training function. The functional form of a training
function would have to be assumed (e.g., for the asterisk task a
logistic function might be assumed), and the program would have
to search for parameter values for that function that would allow
the model to fit the data. However, this issue is complicated and
requires some discussion.

First, some idea of whether the model could produce good
qualitative fits of both response time and accuracy data would be
required, independent of the training function. A model that could
not, for example, produce errors faster than correct responses
might distort fits to correct response times in an effort to produce
faster errors. In this case, poor fits of the model to the data would
have nothing to say about the training function.

If it seemed that the model could qualitatively fit the data, then
the model would be trained to asymptote (without variability in
activation values) to reproduce the training function (as in our
second GRAIN model). Then it would produce predictions for the
dependent variables (with variability in activation values so as to
produce distributions of reaction time and errors), and then the
parameters of the training function and the other parameters of the
mode] would be adjusted on the basis of the discrepancy between
the predictions and the data; then the cycle of training, testing, and
adjustment would be repeated. This multiple recycling of training,
testing, and parameter adjustment would be difficult enough, but
the difficulty would be made even greater by the large number of
parameters that would be required: (a) for the learning phase, all of
the parameters of the training function plus the learning rate, the
initial weights, the learning criterion, and the parameter of the
logistic net input to activation transformation and (b) for the test
phase, the logistic net input to activation, whether there is a bias
unit or not, the running average parameter, the annealing param-
eter, the amount of noise, the response criteria, variability in
mapping from the stimulus to the input value, the mapping from
number of iterations to reaction time, and the nondecisional com-
ponent of reaction time.

To be specific, for Experiment 1, there are 96 stimulus values.
One approach would be to assign a different parameter to represent
the target value for training for each stimulus value. This would
result in an unmanageable fitting program (fitting more than 100
parameters could take years). Reducing the number of stimulus
target values to 10, each spanning a 10-digit range from 1-96 (or
assuming a simple three-parameter training function), might be a
way of producing a faster program. Even with some reduction in

the number of parameters, there would be practical issues of speed.
For the diffusion model, on a fast workstation, a single set of
predictions can be generated in about 1 min. An optimal set of the
six or seven parameter values that produce good fits to the data can
be obtained in a few hours (with several hundred iterations). In
contrast, for the connectionist models examined here, it takes an
hour or two to train the network and then produce one set of
predictions. A program to perform a series of training and predic-
tion trials and then adjust parameters on the basis of reaction time
and accuracy would take weeks or even months to produce one set
of optimized fits for one set of data (even if the number of
parameters were reduced to 10 stimulus values plus the other
parameters of the model).

Another complicating factor for many connectionist models is
that they have distributed representations. This means that they
have to be trained on all stimuli at once, because for some learning
algorithms, learning stimuli individually would result in cata-
strophic interference (McCloskey & Cohen, 1989; Ratcliff, 1990).
With algorithms that do not suffer from catastrophic interference
(e.g., the BSB model) but have forgetting built in, early training
would be forgotten after later training. The diffusion model does
not have this kind of problem because it provides a way of
determining the drift rate for each stimulus independent of the
others, and relationships across stimuli are assessed after the model
has been fitted to obtain the separate drift rates.

Setting aside the problems of developing algorithms to automat-
ically find the parameters of an assumed training function for a
connectionist model, there is still the problem of the plausibility of
the basic notion of pretrained networks (i.e., how would humans
represent this information and use it). Implicit in the search for an
appropriate pretraining function is the idea that people perform
tasks such as the asterisk signal detection task with preexisting
networks, assemblages of networks, or parts of networks (e.g.,
Usher & McClelland, 1995). Some plausibility is given to this idea
when subjects already know a lot about whatever is relevant to an
experimental task before they come into an experiment and when
they learn a task very rapidly. But the problem is how, for any
given task, a network with the appropriate properties is chosen or
assembled from all of what would have to be a multitude of
preexisting networks. For example, long-term knowledge about
numerosity can be used for many different tasks, and tasks with the
same statistical structure can be performed with many different
kinds and dimensions of stimuli. To assemble a network for one
particular task, many different issues would have to be considered:
what dimension is involved (e.g., numerosity, tone frequency,
word familiarity), what scale is involved in the task (e.g., for
numerosity, 1-10 or 1-1,000), what is the function relating stimuli
to response choices, how are “signal” and “noise” represented, and
so on. At the present time, connectionist modeling with pretrained
networks has not begun to address these issues.

In conclusion, although the pretrained connectionist model does
a reasonable job of accounting for the experimental data, it leaves
important larger questions unresolved. Neither the model nor the
approach embodied in the GRAIN modeling framework gives any
account of how to assemble networks for specific tasks or how a
learning function for pretraining networks might be chosen.
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Anderson’s BSB Model

Anderson (1991) has applied the BSB (Anderson, Silverstein,
Ritz, & Jones, 1977) to explain reaction times in same—different
letter string matching paradigms. The BSB model assumes that a
stimulus item is represented by a vector of elements (called the
state vector), and that memory (prior experience) is represented by
a matrix of elements. Memory for a single item is the matrix
composed of the products of each pair of elements in its vector (the
product of the vector and its transpose). Memory for all items is a
single matrix that is the sum of the matrices for each of the items.
When a test item is input to the system, its vector is multiplied by
the memory matrix and a vector is produced as output. If the test
item was previously learned by the system, then the output vector
matches the input vector, with some variability that depends on the
other items learned.

For the signal detection paradigm, the vectors for the stimuli
were divided into two parts, with 99 elements representing the
stimulus and 10 elements representing the response to be learned.
“High” stimuli were represented by setting the response elements
to +1, and “low” stimuli were represented by setting the response
elements to —1. When a test item was input to the system, the 10
response elements of its state vector were set to zero and the vector
was multiplied by the memory matrix to produce output in the
response elements. This new state vector was multiplied by the
matrix again to produce a better representation in the response part
of the vector, and this process was iterated until the representation
of the response reached some criterion. The number of iterations
was taken to be the reaction time for the response.

Following Anderson (1991), the iterative vector—matrix multi-
plication process was augmented by two other factors to produce
stability over iterations. First, each new state vector for the next
iteration was the product of the vector—matrix multiplication plus
some proportion of the original input vector (so the input part of
the vector would not change too much across iterations) and some
proportion of the previous state vector. The updating rule used was

x(t + 1) = yx(r) + aAx(?) + SA0),

where f0) is the initial input, -y is a constant a little less than 1, and
« and § are constants. Thus, the vector at any time in the decision
process, ¢ + 1, was a weighted sum of the vector at time ¢, the
original input, and the product of the vector at time ¢ with the
memory matrix A. Second, for any element in the output vector
(stimulus or response), when its absolute value exceeded some
limit, it was replaced by the limit value. This corresponds to the
bounding box in the brain-state-in-a-box. The decision process
terminated when the elements in the response portion of the vector
reached a response criterion or the number of iterations exceeded
some maximum.

In simulating the signal detection task, once a response had been
produced, feedback was provided. The correct response was en-
tered in the response portion of the vector (+1°s for high and —1’s
for low) with the stimulus in the stimulus portion of the vector.
Then the memory matrix was updated using

A = 0.9954 + nff",

where 0.995 is a constant representing memory decay and m is a
constant. The matrix represents the sum of the products of each

element of the vector with each other element of the vector. So
without decay, element (1, 101) would contain the number of times
a 1 in element 1 was paired with a 1 in element 101 minus the
number of times a 1 in element 1 was paired with a — 1 in element
101 (cf. probability matching, Anderson et al., 1977).

The interactive process in BSB is deterministic: For the same
stimulus and the same memory matrix, the same output will always
be produced. Anderson (1991) argued that this is a positive feature
of the model and that variability in performance comes from
variability in the sequence of stimulus—feedback pairs presented to
the model across trials.

To implement the model for the signal detection task, we used
input vectors with the elements 1-99 for the stimulus and elements
100109 for the response. The response element criteria for ter-
mination of the iterative process were the values +.5 and —.5. The
stimulus representation was like that used for our GRAIN-based
models (Figure 16). First, some number of elements (the window
size) around the stimulus number was set to 1 and elements more
distant were set to 0. The value of the window-size parameter
was * 15. For stimuli less than 15 or greater than 85, fewer
elements were nonzero (e.g., for stimuli less than 15, elements up
to and including the stimulus number and elements 15 higher than
the stimulus value were nonzero). Then the vector was normalized
to have size 31, so that the sum over all nonzero elements
equaled 31.

The model was tested with sequences of stimuli just as for the
subjects in Experiment 1. Initially the memory matrix is set to
zero, and after a few trials, the model begins to make responses (on
the first few trials, it does not produce a response). After about
200-300 trials, performance begins to asymptote because of decay
in the memory matrix (decay parameter = .995).

The parameters for the fits presented below were y = 1, a = .2,
8 = 1, n = 2, the decay constant for matrix updates was .995, the
limit value on the vector value was .5, response criteria were set at
.5, and the nondecisional reaction time (7,,) and mapping from
cycles to reaction time were set to 0 and 1, respectively. We
adjusted the parameters by hand to produce behavior as close
as possible to the qualitative trends observed in the data (espe-
cially, the response probability functions and the reaction-time
distributions).

Response Probability and Sequential Effects

Figure 27 shows the model’s predictions for probabilities of low
responses across experimental conditions. The functions are very
similar to the data, and unlike the first GRAIN-based model, BSB
predicts that a response is affected by the prior response and not
the prior feedback. Because the BSB model weights new inputs
(and hence feedback on the prior trial) less than prior memory in
the updating rule, sequential effects are based on what response the
system produced last time rather than on what feedback it was
given. However, it is unlikely that the model could be modified to
predict the different patterns of sequential effects that were ob-
served for different subjects. For the one subject showing a bias
away from the prior response, the model would have to weight the
opposite of the prior response, which would damage learning.
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Figure 27. Probability of responding low predicted from the brain-state-
in-a-box model for the data from Experiment 1 (see Figure 1).

Response Probability and Mean Reaction Time

The latency-response probability function, shown in Figure 28,
diverges from the data because of the model’s inability to produce
an inverted U-shaped function (the function is monotonically
increasing as response probability decreases). Unlike the data, the
predicted reaction-time functions (Figure 29) show only slow
errors, never errors that are faster than correct responses. Also
unlike the data, error responses to extreme stimuli (very high
numbers of asterisks or very low ones) are never produced by the
model. This is a result of the model’s deterministic processing
(with variability coming only from the random sequence of stim-
uli) and the fact that extreme stimuli are almost always consis-
tently assigned to one response.
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Figure 28. Reaction-time functions predicted from the brain-state-in-a-

box model for the data from Experiment 1 (see Figure 2).
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Figure 29. Latency-response probability functions predicted from the
brain-state-in-a-box model for the data from Experiment 1 (see Figure 3).

Reaction-Time Distributions

The shapes of the reaction-time distributions produced by the
model, shown in Figure 30, are similar to the experimental data,
with skewing to the right. Also like the data, the hazard functions
(Figure 31) are peaked and fall slowly from the peak or asymptote
at the peak.
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Figure 30. Reaction-time (RT) distributions predicted from the brain-
state-in-a-box (BSB) model for the data from Experiment 1 (see Figure 4).
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Figure 31. Reaction-time hazard functions predicted from the brain-state-
in-a-box (BSB) model for the data from Experiment 1 (see Figure 6).

Learning

Initial learning took about 100 trials before performance reached
asymptote in reaction time. Response probability is still quite
variable up to 200 trials, but after that performance seems to
asymptote.

Adding Variability

One way the BSB model fails is in fitting the inverted U-shaped
latency—probability functions, because error reaction times are
always slower than correct reaction times. We decided to try
adding variability into processing in order to produce a small
proportion of fast errors to better mimic the data. To add variabil-
ity, features in the input representation were allowed to randomly
reverse from 0 to 1 or 1 to O at the beginning of a cycle of
processing. So, for example, if the stimulus was 90 asterisks,
reversals could give a 1 in element 1 or a 0 in element 90. The
problem with this modification was that feature reversals in ex-
treme elements began to dominate what was learned in the infre-
quent encounters with these stimuli, and so there was a huge
increase in the probability of an error for these stimuli (e.g., up to
50% errors).

Another way we tried to get the model to produce fast but
infrequent errors to extreme stimuli was to reverse the response
assignment with some small probability. So a stimulus generated
from the low distribution was sometimes (10% of the time) asso-

ciated with high feedback. This did produce a few errors in the
extreme tails, but only very slow ones.

We found no reasonable way to get the BSB model to produce
a few extreme errors with fast reaction times. Because the model
sums products of elements, introducing errors randomly reduces
accuracy for extreme stimuli, leading to too many errors on these
stimuli.

Summary

The BSB model qualitatively mispredicted error reaction times,
and there were problems with sequential effects for some subjects.
We were unable to discover any way to modify the model to deal
with these failures. This model is very simple and straightforward,
and it may be that additional assumptions might allow it to deal
better with the experimental data. But we have been unable to find
any to this point. The difference between this model and the
GRAIN-based models is that the BSB model is more constrained
than the GRAIN-based models. For the BSB model to fit reaction-
time data, theoretical development of the model is needed.

Experiment 2

A marked feature of the diffusion model’s account of the data
from Experiment 1 was the match between drift rates in the model
and the probabilities that the stimuli were drawn from the high
versus the low distributions. Moreover, because with this match
the diffusion model fit the data so well, we used stimulus proba-
bilities to train the second GRAIN-based model, and it also gave
a good account of the data. Thus, the link between stimulus
probability and performance was crucial. Experiment 2 was de-
signed to further test this link by varying stimulus probabilities.

In Experiment 1, stimuli were chosen equally often from the two
distributions, high and low, and this was also true for some
conditions of Experiment 2; we refer to this as the 50:50, equal
bias, condition. The two distributions are shown in the middle top
panel of Figure 32, which shows for every possible number of
asterisks the probability with which it was drawn from the high
and low distributions. The crossover point, 50 asterisks, is the
number of asterisks for which the probability it was drawn from
the high distribution is .5, equal to the probability that it was drawn
from the low distribution.

In most conditions of Experiment 2, stimuli were chosen from
the two distributions unequally; either stimuli were chosen from
the low distribution with probability .8 and from the high distri-
bution with probability .2 (the low-bias condition, 80:20), or the
reverse, from the low distribution with probability .2 and from the
high distribution with probability .8 (the high-bias condition, 20:
80). The left and right top panels of Figure 32 show the probabil-
ities for these two bias conditions and the vertical lines (at the
crossover points) show the stimulus that was equally likely to have
been drawn from the high and low distributions.

Across the course of each experimental session, all three con-
ditions were used—equal, high, and low bias. The questions were
whether subjects’ performance would track the varying stimulus
probabilities, whether they would do so in a way that could be
explained by the diffusion and GRAIN-based models, and whether
the explanations would be consistent with the explanations of the
data from Experiment 1.
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Figure 32.  An illustration of two ways the diffusion model can account
for changes in stimulus probability. The top row shows three different bias
conditions, high, equal, and low, respectively, with a vertical line denoting
the equal probability position. The middle row shows the diffusion model
with drift rate criterion varying to follow stimulus probability as a function
of bias condition. The bottom row shows the diffusion model with bound-
ary positions being altered to account for changes in stimulus probability.

For the diffusion model, a shift in the probabilities of stimuli
being chosen from the high versus low distributions could be
modeled in three ways: with drift rates changing to accommodate
the new probabilities, with boundaries changing, or with both. The
model’s account of the data of Experiment 1 implicates changing
drift rates. What changing drift rates would mean in Experiment 2
is illustrated in the middle row of panels in Figure 32. With the
equal bias (middle panel), 50:50, condition, the mean drift rate
for 50 asterisks is zero because 50 asterisks was equally likely to
be chosen from the high as the low distribution. The mean drift rate
for 60 asterisks is positive and the mean drift rate for 40 asterisks
is negative. Switching to, for example, the low-bias condition
(right panel), stimuli are much more likely to have come from the
low distribution so the mean drift rates shift toward low responses:
The stimulus with mean drift rate of zero is now 60 asterisks, and
both 50 asterisks and 40 asterisks have negative drift rates. Com-
pared with the 50:50 condition, responses to 40 asterisks are, on
average, faster and more likely to be low; responses to 50 asterisks
are, on average, somewhat faster and more likely to be low; and
responses to 60 asterisks are, on average, less likely to be high and
slower.

The stimulus value that corresponds to a drift rate of zero can be
thought of as a criterion setting between drift rates for high
responses and drift rates for low responses. If the number of
asterisks in a stimulus is above this criterion value, the mean drift

rate will be positive, producing, on average, a high response; if the
number of asterisks is below the criterion value, the mean drift rate
will be negative, producing, on average, a low response.

The bottom row of panels in Figure 32 shows the second way
switches in probability could be modeled for Experiment 2, bound-
ary movement. For the 50:50 condition (middle panel), the bound-
aries are equidistant from the starting point. For the low-bias
condition, for example, the low boundary moves closer to the
starting point (and the high boundary could either move away, as
illustrated, or remain where it is). As a consequence, low responses
for all stimuli become more likely and, on average, faster.

These adjustable criteria have been used to explain the effects of
varying instructions and payoffs and other manipulations of re-
sponse probability. For example, in the 1980s, the diffusion model
was the center of a debate about whether the finding that “same”
responses were generally faster than “different” responses in
same—different matching tasks could be explained by criterion
settings or instead required the postulation of an extra stage of
processing (Proctor; 1986; Proctor & Rao, 1983; Ratcliff, 1985,
1987; Ratcliff & Hacker, 1981, 1982). Ratchiff (1985) showed that
the diffusion model could explain the data without recourse to a
separate stage of processing by using adjustments in the zero point
of drift and in the response boundary positions.

For Experiment 2, the two possibilities, shift in drift rates and
shift in boundary positions, make somewhat different predictions
about the shapes of reaction-time distributions. For example, mov-
ing a boundary closer to the starting point means that the leading
edge of the reaction-time distribution is reduced. The crucial
prediction from Experiment 1 is that shifts in probabilities lead to
shifts in drift rates, although there is no reason that boundary shifts
might not also occur. As it turned out, the diffusion model fit the
complete pattern of data best with both drift rates and boundary
positions shifting.

Method

Subjects. The subjects were 2 Northwestern University undergraduates
(1 man and 1 woman), who were paid for their participation. Both had
normal or corrected-to-normal vision.

Stimuli.  The number of asterisks to be presented on a trial was drawn
from either a low distribution, with mean 45, or a high distribution, with
mean 55. The standard deviation of both distributions was 8, giving a d’
value of 1.25. The two distributions crossed at the number 50. These
distributions were changed slightly from those used in Experiment 1 to
give more observations per condition in the central region (e.g., 40-60
asterisks).

Procedure. The procedure was the same as that of Experiment I,
except that a monetary payoff scheme was used to motivate the subjects’
performance. Subjects were encouraged to make their responses quickly,
although they were told that their goal should be to maximize the total
number of points earned over the course of the experiment. Four points
were awarded for every correct response, and one point was subtracted for
every incorrect response. Subjects were paid at a base rate of $6 per session
and told that their pay would be supplemented according to the total
number of points that they earned: $.70 for every 1,000 points. Thus, for a
block of 40 trials, a subject could earn as many as 160 points or an
additional 11 cents toward their pay.

Design. Each subject performed in 10 sessions over approximately 2
weeks. Each session was composed of 30 blocks of 40 trials each. In all
sessions, rest breaks were inserted every 2 blocks, as in Experiment 1.

In the first two (practice) sessions, the stimuli were drawn from the low
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and high distributions with equal probability (50:50, as in Experiment 1).
In the remaining eight sessions, the blocks were organized as follows: First,
there were four blocks for which the probability of choice from the two
distributions was 50:50, as in the practice sessions. Then there were four
sets of blocks to implement switches from one bias condition to the other.
Each set began with one 50:50 block, and then there were one, two, three,
or four blocks all either high bias (20:80) or low bias (80:20); then the
opposite bias was used for three blocks. Across the four sets, each possible
number of blocks preceding a switch (one, two, three, or four) was used
once. In two of the sets, the switch was from high to low bias, and in the
other two, it was the reverse. The order of the sets and the assignment of
the direction of the switch to each set was random, except for the constraint
that, overall, there had to be an equal number of high-to-low and low-to-
high switches for each of the possible numbers of blocks preceding
switches.

Results

In the data analyses, all trials with response times less than 170
ms or greater than 3000 ms were discarded (less than .1% of the
data). High- and low-bias blocks of trials were collapsed across
each other because the experimental results were symmetrical.
This was done by subtracting the number of asterisks presented on
a high-bias trial from 100 and reversing the subject’s response.
This allowed high responses from the high-bias condition and low
responses from the low-bias condition to be combined. This meant
that data could be presented in terms of “preferred” responses
(high responses in the high-bias condition and low responses in the
low-bias condition) and nonpreferred responses (low responses in
the high-bias condition and high responses in the low-bias condi-
tion). For example, for the stimulus 60 in the high-bias condition,
the preferred response was “high,” and for the stimulus 40 in the
low-bias condition, the preferred response was “low.” Data for the
stimulus 60 in the high-bias condition with the response ‘‘high”
were combined with data for the stimulus 40 in the low-bias
condition with the response ‘‘low’’ to produce an average response
probability and response time. Similarly, data from the stimulus 60
in the high-bias condition with the response ‘‘low’’ were com-
bined with data for the stimulus 40 in the low-bias condition with
the response ‘‘high’’ to produce an average response probability
and response time.

Asymptotic Performance and the Diffusion Model

The data from Experiment 2 present two important tests of the
diffusion model: Can it account for the asymptotic response
latency—probability functions and reaction-time distributions as
well for Experiment 2 as it did for Experiment 1, and can it provide
the same probability matching explanation for drift rate for indi-
vidual subjects as in Experiment 1?

The data from the second and third blocks of trials after a switch
from one probability condition to another were used in the anal-
yses for asymptotic performance. The diffusion model was fit to
the data in the same way as for Experiment 1, choosing three
stimulus conditions to fix the model parameters and then generat-
ing predictions from those parameters for the full range of condi-
tions. There were about one half the number of observations per
subject as in Experiment 1, and so there is more variability in the
data. The latency—probability functions, both data and model pre-
dictions, are shown in Figure 33. The top figures show the latency—
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Figure 33. Latency-probability for the two subjects in Experiment 2 for
high- and low-probability responses and predictions from the diffusion
model. The error bars represent 2 standard deviations.

probability functions for the nonpreferred response, and the bottom
figures show the latency—probability functions for the preferred
response. In the top panels, responses to the far right correspond to
errors, as they were defined in Experiment 1. For both subjects,
there is a sizable difference in reaction time between preferred and
nonpreferred responses (100200 ms), but the reaction-time func-
tions are relatively flat as a function of response probability. The
model accounts for these trends reasonably well, capturing the
error versus correct reaction times, even though the differences are
small. The model also does a good job with the reaction-time
distributions (Figure 34), except for preferred responses for Sub-
ject 2. The parameters of the model are shown in Table 1.

Given that the model fits the data reasonably well, we can ask
what the model has to say about how subjects adjusted their
asymptotic behavior to deal with unequal stimulus probabilities.
One way they adjusted, as shown by the parameters in Table 1,
was to move the starting point closer to the boundary for the
preferred response than to the boundary for the nonpreferred
response (cf. Ratcliff, 1985).

The second way they adjusted was to shift drift rates to conform
to the new probabilities with which stimuli were chosen from the
high versus low distributions. Just as in Experiment 1, subjects’
drift rates matched the probabilities that stimuli were chosen from
the high versus the low distributions. The functions in Figure 35
show this matching. The drift rates were plotted as a function of
number of asterisks, with data from the low-bias condition com-
bined with the data from the high-bias condition by flipping the
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Figure 34. Sample reaction-time distributions for the two subjects in
Experiment 2. Predictions from the diffusion model are shown by the
asterisks.

number of asterisks scale around the midpoint 50 (so 45 and 55
would be combined, as above). Both subjects’ drift rates lie vir-
tually on top of the probability function for the high-bias condition
(with probability transformed as in Experiment 1). The theoretical
probability functions for the high-bias condition (also representing
the flipped low-bias condition) and the 50:50 condition were
derived from the density functions that controlled the assignment
of feedback to responses; these functions are shown in the bottom
panel of Figure 35 (cf. Figure 32). For example, in the 50:50 case,
the crossover point of the two distributions was 50, whereas for the
high-bias condition, the crossover point was about 60. This shift is
reflected in the probability curves in the top panel where the
midpoints of probability (the zero point on the left-hand axis)
correspond to 50 and 60 asterisks, respectively.

Sequential Effects in the Diffusion Model

In Experiment 1, subjects showed different patterns of sequen-
tial effects: Two showed a greater probability of responding in the
direction of the prior response, one showed the opposite effect,
and one showed no sequential effects. We postponed discussion of
these sequential effects to this point because it turned out that they
can be explained with the same parameter changes that account for
the effects of changes in the probabilities with which stimuli were
drawn from the high versus low distributions.

The sequential effects shown in Figure 1 cannot be produced
with changes in the starting point z alone. Changes in the starting
point of *15%, 10%, 2%, and 10% of z, for Subjects 1 through 4,
respectively, would give the correct differences in response prob-
abilities (.25, .12, .03, and .17, respectively). But these 10% or

15% changes give 100-200-ms changes in response time, far too
large in comparison to the data. For example, for reaction time, for
the middle two points on the response probability function in
Figure 1, the differences in reaction times were 44 ms, —51 ms, 20
ms, and 10 ms faster for repetition of the same response, as
opposed to switching from the opposite response, for Subjects 1
through 4, respectively.

Shifts in both starting point (equivalent to a shift in one bound-
ary away from the starting point and one boundary toward the
starting point) and drift rate are needed. A relatively small change
in drift rate (.05 for Subject 1, e.g.) produces changes in response
probability of the magnitude shown in Figure 1 (see also Ratcliff,
1985, 1987), but alone it produces little change in reaction time.
When a small shift in drift rate is combined with a small change in
starting point, the model accurately fits sequential effects in both
accuracy and response time. Thus, sequential effects are explained
by the same mechanisms that account for subjects’ responses to a
change in the probabilities with which stimuli are drawn from the
high versus low distribution.
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Figure 35. Top: Drift rate estimated from the data for the two subjects in
Experiment 2. Data and fits are for the average of high responses to high
stimuli when the stimulus is selected from the high distribution and the
high distribution is more probable, and low responses to low stimuli when
the stimulus is selected from the low distribution and the low distribution
is more probable. Also shown are the probability of a high response for the
50:50 bias and the 80:20 bias conditions. These are transformed from the
range O to 1 to the range —.4 to +.4 by subtracting .5 from probability and
multiplying by .8. The drift rates follow probability that a stimulus is
selected from the most probable distribution. Bottom: Density functions for
the stimuli in Experiment 2 where the two tall curves represent the 50:50
condition and where the small curve represents the low-bias condition in
which stimuli are selected from the high distribution 20% of the time. The
two probability curves in the top panel are derived from the bottom curves.
Pr = probability.
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In general, the diffusion model uses shifts in drift rate to
accommodate sequential effects in response probability that are
accompanied by small or no changes in reaction time as shifts in
drift rate. The model uses shifts in boundary positions to produce
large sequential effects in reaction time and smaller effects in
response probability. In the data presented here, shifts in both
boundary position and drift rate are needed to greater or lesser
degrees for the four different subjects in Experiment 1.

Sequential Effects in the GRAIN-Based Model

In the GRAIN-based model, with all learning prior to the ex-
periment, there is no learning mechanism during the experiment to
model sequential effects or changes in stimulus probability, so they
must be modeled with assumptions similar to those used in the
diffusion model. As with the diffusion model, a combination of
altering the response criteria and altering the way a stimulus is
interpreted is sufficient. We illustrate this for the sequential ef-
fects. We examined three possibilities: First, instead of resetting
activation in the output nodes to zero after each trial, some portion
of activation in the output nodes could be carried through to the
next trial, and, in the case of Subject 2 in Experiment 1, the sign
of the activation would be reversed (because the sequential effects
are reversed relative to the other subjects). We implemented this
idea, setting the amount of activation to be carried forward to about
two thirds of the final value on a trial, producing appropriate
changes in response probability but changes that were much too
large in response time. For example, assuming a scaling factor of 5
ms of response time per activation cycle, we found a 150-ms
reaction-time effect for a .06 change in probability. In contrast, the
effect for Subject 1 was 44 ms in response time and .25 in response
probability.

A second possibility is that the response criteria vary as a
function of the prior response in the same way that boundary
positions varied in the diffusion model. With a 4% change in
response criteria, the reaction-time difference was about right, 40
ms, but the accuracy difference was too small (.05).

The third possibility is to assume that when a response is
produced, there is a bias to interpret the next stimulus the same
way as the previous stimulus (for Subjects 1, 3, and 4, or the
opposite way for Subject 2 in Experiment 1). This can be done
with an input level node that takes as its input the output from the
prior trial. The effect would be the same as shifting the drift rate
function in the diffusion model (see Experiment 2). A combination
of these last two assumptions (response criteria and drift rate bias)
produces the correct relative sizes of the changes in reaction time
and accuracy to fit the data, and the two assumptions mimic the
assumptions used in fitting the diffusion model. This combination
also accounts for the asymptotic effects when stimulus probability
is manipulated as in Experiment 2.

Adaptation

The discussion of the results of Experiment 2 so far has been
limited to asymptotic performance. In this section, we look at
adaptation from one bias condition to another. Figure 36 shows
that subjects were able to adapt very rapidly; specifically, it shows
the probability with which subjects gave the preferred response
after a switch between high- and low-bias conditions. The three
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Figure 36. Response probability as a function of the number of trials
from a switch from one bias condition to the other (e.g., 80:20 to 20:30).
For the high-bias conditions, preferred stimuli (Curve 1) are 61-99 aster-
isks, intermediate stimuli (Curve 2) are 40—60 asterisks, and nonpreferred
stimuli (Curve 3) are 1-40 asterisks. For the low-bias condition, preferred
stimuli (Curve 1) are 1-40 asterisks, intermediate stimuli (Curve 2) are
40-60 asterisks, and nonpreferred stimuli (Curve 3) are 61-99 asterisks.
The asymptotic values of the three curves before the switch were for
Curve 1, about .8; curve 2, about .2; and Curve 3, about 0 (1.0 minus the
asymptotic probabilities in this figure).

curves divide the stimuli into groups of 1 to 39 asterisks, 40 to 60
asterisks, and 61 to 99 asterisks. For the middle range (40 to 60),
subjects should, most of the time, give the response toward which
trials were biased (high in the high-bias condition, and low in the
low-bias condition). This is what they did; the asymptotic proba-
bility of the preferred response was .8. Figure 36 shows that they
reached this asymptotic probability within about 14 trials after a
switch. Before the switch, the probability of what was to become
the preferred response was .2 (1-.8), and even after only S trials
after the switch, the probability of the preferred response had
moved two thirds of the way toward asymptote (i.e., to about .6).

The stimuli that should always be given the preferred response
(1-39 in the low-bias condition and 61-99 in the high-bias con-
dition) moved from an asymptotic probability of .2 prior to the
switch to reach probability 1 after the switch in four or five trials
(see Figure 36). The nonpreferred stimuli moved from their as-
ymptote before the switch of O to their asymptote after the switch,
.2, in about five trials. Thus, adaptation was rapid, with only five
trials required to move most of the way to asymptote.

In sum, the two subjects in this experiment were able to switch
from one bias condition to another within only a few trials. To
check that this fast learning was not unique to these subjects, we
scheduled 32 subjects in a single short experimental session to
look at how fast they learned initial probability assignments, using
exactly the same experimental design, procedures, and 50:50 prob-
ability condition as in Experiment 1. There were five blocks of 32
trials each. Averaging over the 32 subjects, the response probabil-
ity function for the first 20 trials had almost the same shape as that
for the last block of trials (and the function was similar to that for
subjects in Experiment 1). The latency~probability functions had
roughly similar shapes over the five blocks of trials. The only
differences were that responses speeded up a little from the first
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block to the last block, and the first block did not show any fast
errors to extreme stimuli. In short, subjects learned to probability
match in the first 20 trials.

Neither the diffusion model nor the GRAIN-based model with
learning prior to the experiment has any mechanism for learning
during the experiment, and so, of course, neither can give an
account of the speed with which subjects switch from one bias
condition to another. To examine whether the BSB model or the
GRAIN-based model with learning during the experiment could
adapt to switches as rapidly as subjects did, we first trained the
models to stable performance using the same parameters as for
Experiment 1. (This means that the models have the same prob-
lems in accounting for latency—probability functions as they did in
Experiment 1, but the issue here is their ability to account for
adaptation.)

Once the models were trained to mimic a low-bias condition, we
chose a stimulus that would have received mainly high feedback in
the 50:50 condition (i.e., 65) and presented it to the model with low
feedback for several trials. We trained the model with this stimulus
with low feedback until the model produced mainly low responses
to stimuli below 80 and mainly high responses to stimuli above 80
(i.e., a crossover point of about 80). Then to mimic switching to
the high-bias condition, we presented the stimulus 40 for several
trials, each trial with high feedback, allowing the model a chance
to learn to respond mainly high to stimuli above 40. After each trial
of stimulus 40, we checked all 96 stimuli 10 times each to see what
average response the model gave to each.

For the BSB model, after one learning trial with the stimulus 40,
the crossover point had moved from 80 to 72; after the next five
trials, it moved to 64, 56, 36, 24, and 16, respectively (note that the
sequence does not asymptote because the sequence of trials was
not randomly chosen). Thus, in four trials, the BSB model had
moved about two thirds of the way toward a crossover point of 20
(symmetrical with 80), approximating the course of adaptation for
the subjects (as shown in Figure 36). The BSB model predicts
performance well because it essentially computes a running aver-
age of input plus feedback, and the weighting it places on current
input relative to prior input determines how quickly it adapts to
changes in probability. The parameters of the model that account
for asymptotic behavior also account for the rapid changes in
performance that come about when the probability of high versus
low feedback for stimuli is changed.

The GRAIN-based model, with the parameter values used to
produce the fits in Experiment 1, produced more rapid adaptation.
On the second trial, the crossover point had moved two thirds of
the way toward 20, adapting much faster than the human subjects.
These changes are too large to mimic the adaptation found in the
data (cf. catastrophic interference; McCloskey & Cohen, 1989;
Ratcliff, 1990).

The GRAIN-based model might possibly do better by adding
some kind of bias to processing, for example with an input node set
to represent bias (e.g., Cohen et al., 1990). The node would be
weighted according to bias conditions and so weight one response
over another. But this scheme would require external intervention
to tell the system when bias had changed.

Although the information we provide here about rate of adap-
tation is limited to one experiment with two subjects, it does point
the way to a set of issues that connectionist models must address,

suggesting that further theoretical development should seek com-
mon mechanisms for adaptation and sequential effects.

Summary

The diffusion model accounted for the data of Experiment 2 by
modeling changes in the probabilities with which stimuli are
chosen from the high versus low distributions as changes in drift
rates and boundary positions. The changes in drift rate follow
stimulus probability as predicted from the results of the fits of the
model to the data from Experiment 1. Altering both drift rates and
boundary positions is consistent with earlier applications of the
model to data from letter-matching experiments (Ratcliff, 1985).
The model accounts for sequential effects with adjustments to the
same parameters, drift rates, and boundary settings as for changes
in stimulus probability. The GRAIN-based model with learning
prior to the experiment also required changes in those of its
parameters that mirror drift rate and boundary positions in order to
account for stimulus probability changes and sequential effects.
The parallel between stimulus probability effects and sequential
effects is reasonable because the adaptation to the changes in
stimulus probability was rapid, occurring within about 5 to 10
trials, consistent with immediate, one trial to the next, sequential
effects.

General Discussion

The aims of the research presented in this article were to
evaluate how well the connectionist models and the diffusion
model could account for reaction-time phenomena. The success of
the enterprise is demonstrated by a number of significant new
findings, enumerated in the paragraphs below. Some of the new
findings are pertinent to the individual models. The connectionist
models, for example, were put in contact for the first time with all
the measures that have been traditionally used in reaction-time
research. For the diffusion model, new insights were gained by the
model’s application to a new paradigm. Others of the new findings
are more general. For one, we had not anticipated using insights
gained from the diffusion model to choose a training function for
connectionist models. For another, we had not appreciated how
severe were the constraints imposed on the connectionist models
by joint consideration of reaction time and accuracy. Perhaps the
most significant outcome is the platform provided for future re-
search. To explain reaction-time phenomena up to the standard set
by the diffusion model, new models must explain and explicitly fit
correct and error reaction times, the shapes of reaction-time dis-
tributions, and accuracy. The adaptation results from Experiment 2
are preliminary but point to the need to place all the models in a
more general framework that can explain learning and adaptation
phenomena and the mechanisms by which decision criteria are set.
Overall, a comprehensive and difficult research program is laid out
for both connectionist and more traditional reaction-time models.

The Diffusion Model

The success of the diffusion model in explaining the empirical
data was a pleasant surprise. With only five or six parameters for
each subject, the model accurately fit correct and error reaction
times, their probabilities, the shapes of their distributions, and their
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hazard functions. Previously, no model had been able to explain
the relative speeds of correct and error responses, so the diffusion
model’s ability to do this is a significant advance.

The diffusion model offered insights into the behavior of the
individual subjects. Most important, the model showed how their
behavior could be related to stimulus probability. Although intu-
ition might suggest that subjects should match their responses to
the probabilities of the stimuli coming from the high versus low
distributions, there was nothing in the data themselves that directly
showed subjects did so. Only by the model’s extraction of drift
rates from the response-time and response-probability data was it
discovered that the underlying variable was stimulus probability.
We also found that subjects’ shifts from trial to trial within a
probability condition and shifts from one probability condition to
another could be explained by the same changes in behavior in the
model: changes in boundary positions and changes in the zero
point of drift rate (drift criterion). Thus, fitting the diffusion model
led to explanations of the bases of subjects’ decision making.

The model also provided an understanding of how the individual
subjects could rely on the same underlying information as the basis
for their decisions, yet produce quite different speed—accuracy
profiles (see also Ratcliff & Rouder, 1998, Experiment 1). In our
Experiment 1, responses from two of the subjects were slow
overall, responses for another subject were fast overall, and re-
sponses for the fourth subject were intermediate in speed. Accord-
ing to the model, these differences came about from differences in
how far response boundaries were set from the starting point. The
subjects also differed in the speed of correct versus error re-
sponses: One subject showed slightly faster errors than correct
responses, one subject showed error responses slower than correct
responses, and two subjects showed errors to extreme stimuli faster
than correct responses and errors to less extreme stimuli slower
than correct responses. According to the model, these different
patterns are due to different amounts of variability in how the
stimuli were encoded from one trial to the next and different
amounts of variability in the starting point of the decision process
from trial to trial. The subject with slightly faster error than correct
response times had little variability in encoding across trials; the
other subjects had more. Three of the subjects kept the distances of
the boundaries from the starting point about constant across ses-
sions, whereas one subject reduced them.

The success of the diffusion model provides an impetus for
adding variability to parameter values in other models. For exam-
ple, any model that predicts an inverted U-shaped latency—
probability function (i.e., errors for extreme stimuli faster than
errors for nonextreme stimuli) could also predict an asymmetric
function if variability was added to the appropriate parameters (see
Audley & Pike, 1965). Then, just as in the diffusion model, error
reaction times would become a mixture of slower processes with
higher probability and faster processes with lower probability, and
the average of the mixture would be slower than for a single
process with the same drift rate as the mean of the mixture.

In sum, the diffusion model provided a complete account of all
of the measures of the time course of processing involved in
decisions about whether the number of asterisks in a stimulus was
high or low. We are optimistic that the model can provide an
equally good account for other rapid, cognitive, binary choice
decisions (e.g., Ratcliff & Rouder, 1998, showed generalization to
perceptual discriminations, and Ratcliff & Rouder, in press,

showed generalization to letter identification with masking) and so
provide a theoretical basis across a range of specific experimental
paradigms.

Signal Detection Theory and the Diffusion Model

The most popular description of response probability in two-
choice tasks is signal detection theory. It is important to understand
how the signal detection description differs from that offered by
the diffusion model; here we present two examples of differences.

The diffusion model offers an explanation of behavioral effects
on two dependent variables, accuracy and response time, whereas
signal detection theory deals only with accuracy. In this sense, the
diffusion model can be thought of as an extension of signal
detection theory to the domain of reaction time (e.g., Ratcliff,
1978). However, there is an important but often unappreciated
problem with signal detection theory, namely that it does not
produce invariant measures of d’s across experimental conditions
for which d’ should be constant. The diffusion model, on the other
hand, can produce constant d's. For example, when subjects shift
their speed-accuracy criteria in one condition of an experiment
versus another, signal detection theory will produce different d’
values for the two conditions. This is true even when nothing about
the stimulus has changed between conditions and nothing about
the task has changed except for whatever manipulation (e.g.,
instructions) causes subjects to be faster in one condition and more
accurate in the other. But in the diffusion model, differences in
behavior between the conditions can be modeled by differences in
boundary positions, leaving d’ invariant (see Ratcliff & Rouder,
1998, Experiment 2).

The situation becomes more complicated when the probability
of making one response relative to another varies across conditions
(as it did across the high- and low-bias conditions of Experiment
2). Signal detection theory explains the differences in behavior
across the conditions as a change in criterion; 4’ might or might
not be constant across conditions depending on how subjects adapt
to the different biases. In the diffusion model, the changes in
relative probability of the responses might be produced by changes
in the drift criterion, by changes in the starting point of the
diffusion process, or by one boundary moving nearer the starting
point. In each of these cases, the diffusion model would produce
the same value of d’ across the conditions. The differences in the
three ways of producing changes in response probability would
show up in the shapes of the reaction-time distributions. Generally,
the diffusion model and other sequential sampling models are good
candidates to serve as generalizations of signal detection theory to
the reaction-time plus accuracy domain.

Mathematical and Biological Plausibility
of the Diffusion Model

It is well-known in the stochastic process literature that, in any
domain, the diffusion process has defects as a model of processing
because the velocity in the process becomes infinite when time
steps become very small (Cox & Miller, 1965, p. 207). The
Ornstein—Uhlenbeck process (Cox & Miller, 1965; Smith, 1995)
has sometimes been used as an alternative because it does not have
this problem. However, another way to avoid the problem is to
think of the diffusion process as a continuous approximation of
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discrete neural events that take place in the range of milliseconds.
A discrete process with steps of about 1 ms does not have the
problem of infinite velocity, and it is well approximated (to within
a percentage or two) by the continuous process. Thus, with the
understanding that the diffusion process is an approximation to
neural events that are on a time scale of milliseconds, it is com-
putationally and biologically plausible. In fact, the diffusion pro-
cess has a long history of service as a model of the stochastic
behavior of single neurons (much of the monograph by Tuckwell,
1989, is devoted to discussion of diffusion processes). Moreover,
recent work by Hanes and Schall (1996) has shown that the firing
rates of cells in the frontal eye fields of monkeys (cells responsible
for moving the eyes) appear to accumulate information up to a
fixed response criterion just as is described by sequential sampling
models. This link between the models and neural behavior offers
a possible avenue for future convergence of behavioral models and
neural functioning.

Connectionist Models

Only one of the three connectionist models that we examined
could explain all the response-time and accuracy phenomena. The
BSB model could not produce the right error response times (nor
could it Jearn the task as quickly as could subjects). The first of
these problems might be fixed by adding variability to the model
(although we could not find a way to do this), but speeding up
learning to address the second problem might mean changing the
model altogether to somehow incorporate prior knowledge. The
GRAIN-based model with learning during the experiment had
many problems: It could not accurately produce sequential effects,
the relations between correct and error response times, or adapta-
tion from one stimulus probability condition to another. We could
find no variations in parameter values or architectural assumptions
to remedy these problems. The GRAIN-based model with learning
prior to the experiment could fit response-time and response-
probability data (though some hazard function fits missed signif-
icantly), but it could not adapt from one stimulus probability
condition to another without additional assumptions. In this re-
spect, it is similar to the diffusion model. In fact, the GRAIN-based
model with learning prior to the experiment and the diffusion
model can be regarded as approximations of each other; this came
about because we used the diffusion model as a guide for training
the GRAIN-based model.

Our explorations of the connectionist models found none of
them completely successful. Nevertheless, we believe there are
several important findings. One is that the connectionist models we
considered are aiming at a very high hurdle. They are intended to
describe how decisions are reached over time and in doing so
account for all the empirical measures of decision processes, plus
learning and adaptation. Our findings suggest that it will be very
difficult for a model to move from an account only of mean
response time or only of mean probability of one response versus
another to a2 much fuller account.

A second important finding arising out of our attempts to have
connectionist models explain response-time phenomena was a
better understanding of a problem we had not originally appreci-
ated, namely the interaction between the two kinds of measures,
learning and response time. Many connectionist models learn from
feedback; on each trial, the model makes a response and then

updates the weights in the network on the basis of feedback about
whether the response was correct. Thus, the decision processes are
constrained at learning only by feedback. Holding the model
responsible not only for response probabilities, but also for re-
sponse times, a second dependent variable, and all the attendant
response-time measures (e.g., the shapes of response-time distri-
butions and error-response times) imposes constraints to which the
learning algorithm has no access. This means that feedback alone
(which may be sufficient to allow the model to fit response
probabilities) will not be sufficient to produce fits to reaction-time
measures. Adding to the complexity of this problem is that con-
nectionist models often assume a distributed representation, which
means that the model has to be trained to respond to the whole
stimulus set at once. Putting this all together, for a connectionist
model with learning built into processing during an experiment,
deriving fits of the model to data involves, first, training the model
on a random sequence of the stimuli and, as trials proceed, pro-
ducing response-time and accuracy predictions from the responses
the model makes to the stimuli; then second, comparing the pre-
dictions and empirical data to adjust the parameters of the model;
and then repeating this cycle until the predictions and data match.
For a model with training prior to the experiment’s sequence of
trials, the weights on connections among nodes would be set by
training the model to produce some functional mapping between
stimuli and output. Once the training phase was complete, testing
would be carried out across simulated trials to produce predictions
for response measures, these would be compared with the empir-
ical data, the parameters of the model would be adjusted, and the
training-testing cycle would be repeated until the best fit was
obtained. With current workstations, the whole process of finding
the best possible fit of a connectionist model to data would take
weeks for data such as those from the asterisk task. It is for this
reason that we fit the connectionist models to data by hand, not
with automatic search algorithms.

Another issue we had not initially appreciated was the difficuity
and complexity of the problems imposed by requiring the models
to learn and to adapt to changes in stimulus conditions. Subjects
learned the asterisk task much too quickly for the models; hence,
the models cannot start with a completely blank slate, learning
only from feedback on the first few trials. But how could preex-
isting knowledge be built in? One possibility is to combine or
select from preexisting networks, but how to choose and calibrate
such networks is an issue that has not been tackled in connectionist
research. Another possibility might be to incorporate some knowl-
edge into the structure of a model and then let the model learn
whatever extra knowledge was required for a particular combina-
tion of stimuli and task. Again, this approach has not yet received
serious examination in this domain.

Of course, we have explored only a tiny portion of the space of
connectionist models. GRAIN provides a set of principles for
model construction from which we constructed only two models
(and some of their variants). Many other learning rules, represen-
tations, or assumptions about the cycling of activation could be
tried; the number of possible models is very large. Beyond GRAIN
are many other kinds of neural-connectionist models, most of
them not yet addressing reaction-time phenomena. In this article,
we have barely scratched the surface of application of neural-
connectionist models to reaction-time phenomena.
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Comparing the Diffusion Model and
Connectionist Models

We view the diffusion model as a general-purpose decision
mechanism; it can be used in a variety of situations and tasks, and
the decisions it models can be based on any one of a variety of
kinds of information. For example, random walk and diffusion
models have been used in simple and choice reaction time (Lam-
ing, 1968; Link, 1975; Link & Heath, 1975; Smith, 1995; Stone,
1960), letter matching (Ratcliff, 1981, 1985), discrimination and
same~different tasks (Ratcliff & Rouder, 1998), recognition mem-
ory (Ratcliff, 1978, 1980, 1988), categorization (Nosofsky &
Palmeri, 1997), word identification in implicit memory (Ratcliff &
McKoon, 1997), and decision making (Busemeyer & Townsend,
1993).

The diffusion process provides a general mechanism that,
through application to experimental data, produces a value of drift
rate for each experimental condition. The drift rates then provide
a measure of the latent variable driving the decision process (so
long as the diffusion model accurately fits all the response-time—
accuracy aspects of the data). In this way, competing theories
about the latent variable can be tested. For example, suppose
according to some theory, in some experiment, subjects were
basing their decisions on a single dimension of the stimuli, dis-
tance from a criterion. The diffusion model would extract drift
rates from the accuracy and reaction-time data, and drift rates
would provide the functional form of the mapping between dis-
tance from the criterion and drift rate. But if the theory was wrong
and subjects were basing their decisions on, for example, stimulus
probability, the drift rates extracted would correspond to stimulus
probability, not distance from criterion. This would falsify the
theory (except, of course, in situations in which stimulus proba-
bility and distance from the criterion exactly mimic each other).

The diffusion model allows the precise shape of the drift rate
function to be extracted from the empirical data. Even if the
decision process is not stationary (i.e., it is not constant over the
time course of processing; e.g., Ratcliff, 1980; Smith, 1995), it is
still possible to examine the drift rate at different points along the
time course using deadline or response signal methods and to use
drift rate in developing models of dynamic changes in the infor-
mation driving the decision process.

The important practical point for contrast with connectionist
models is that what the diffusion model allows is working back-
wards from the response time and accuracy data for each individ-
ual condition to a characterization of the values of the stimulus
dimension that is driving the decision process. This is what the
connectionist models we examined did not do.

In the connectionist models, there is no isolable part of the
model that corresponds to an individual experimental condition.
The reason is that all of the stimuli from all of the conditions must
be learned at once, which means that all the information about
them is represented collectively (in the weights in the network),
not individually. Also, a motivating principle of many connection-
ist models is interactivity of the various levels of processing (e.g.,
features, letters, and words). The different levels are usually not
designed to be broken apart into processing stages so that the
decision stage cannot be separated from the computation of acti-
vation that arises from input of the stimulus. The consequence of
these two points is that there is no way to work backwards from the

individual response-time and accuracy data to derive something
equivalent to drift rate to represent the latent variable driving the
decision process. Instead, the model has to be fit to data in a
forward direction: First, a dimension on which to represent the
stimuli must be chosen as well as some way to represent each
stimulus on the dimension; second, the model must be trained to
the task; and third, stimuli must be processed through the model to
give predictions to evaluate against empirical data. In the asterisk
task, for example, suppose we did not know whether subjects
based their decisions on distance from the criterion or stimulus
probability. Then the representation of the stimuli at input would
have to be flexible enough to accommodate both possibilities. If
the form were too restrictive, then the model might not fit. Then it
is hard to see how the failure would point to the correct functional
form of the training function.

Conclusions

The diffusion model for two-choice decisions accounts for a
wide range of experimental data including response probabilities,
correct and error response times, and the shapes of response-time
distributions. The model sets a standard against which competing
theoretical schemes can be tested. The diffusion model is designed
as a general-purpose decision mechanism that can be applied
across a wide variety of tasks that require a single rapid binary
decision. It is a mechanism that can be pointed at different sources
of evidence as a function of task requirements. How it does this
and how decision criteria are set are topics for further research.

We hope our evaluation of connectionist models will serve as a
challenge to spur development of models to fit the full range of
experimental data. However, we anticipate that such development
will be difficult because our efforts have shown the complexity
involved in efforts to move from a simple account by which mean
reaction time is mapped onto some single output quantity of a
model to a full account of response time and accuracy data,
simultaneously explaining learning.

Evaluating connectionist models is not an easy task because the
models are simulations of parallel processes involving nonlinear
transformations. The problem is compounded by the large amount
of computer time (hours or even days) required for simulations to
produce optimal fits. Despite these difficulties, we found it possi-
ble to lay out a plausible range of assumptions about representation
and process and, in so doing, reveal problems with the constella-
tions of assumptions in the models we tried. An obvious criticism
is “you should have tried some other possible models such as .. ..”
We hope that others are encouraged to explore these possibilities,
using our data and conclusions as a starting point, with the aim of
constructing successful connectionist models.
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Appendix

The Diffusion Model

The diffusion model is a continuous variant of the random walk model
for choice reaction time (Laming, 1968; Link & Heath, 1975; Stone, 1960).
It assumes that information is accumulated continuously over time and
when the accumulated information reaches either one of the two response
criteria, a response is generated. There are explicit mathematical solutions
for a number of important features, for example, response probabilities,
reaction-time distributions, and the distribution of processes that are not
terminated at any point in time (see Ratcliff, 1988). This is a methodolog-
ical advantage over other models that require simulation to produce pre-
dictions for these aspects of performance.

The equation for the diffusion process is a differential equation (the
Fokker—Planck equation):

] ] 5 9t
=& ft2) + 7 325 2
where z is the starting point of the diffusion process, ¢ is time, £ is the drift
rate, and s is the standard deviation in drift within a trial. With appropriate
boundary conditions (see Ratcliff, 1978), the probability of a decision at
boundary O (where 0 and a are the two boundary positions; see Figure 7)
is given by

P(f) = (e‘(Zéﬂ/sl) — e*(2§z/s2))/(e—(2§a/s2) — 1),

and the cumulative distribution of finishing times at the 0 boundary is
given by
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To solve this equation, it is necessary to sum the infinite series numerically,
but typically it converges by 40 or 50 terms.

To include variability in the drift £ or variability in the starting point z,
it is necessary to integrate the expressions for G and P over drift or starting
point. This can be done numerically, and the expression used for this with
a normal distribution for variability in drift £ is

1

G(t, v) =f G(t, &) \/2"7

e*[(V*§)2/2n2]d§.

Predictions from the diffusion model can also be produced by simula-
tion. The simple random walk is used and limiting behavior is obtained by
making the number of steps very large and the probability of a step to one
boundary nearly equal to the probability of a step to the other boundary to
conform to specific limits on these quantities (see Feller, 1968). In this
article, the explicit solutions were used in modeling.

Fitting Reaction-Time Distributions and the Diffusion Model

For the diffusion model to fit reaction-time distributions, a summary of
the empirical distributions is useful. The summary that has worked well in
the past (Ratcliff, 1978, 1981, 1988) uses the ex-Gaussian distribution (the
convolution of normal and exponential distributions) to give a summary of
an empirical distribution (Heathcote, Popiel, & Mewhort, 1991; Hockley,
1984; Hohle, 1965; Ratcliff, 1978, 1979, 1981, 1988; Ratcliff & Murdock,
1976). The parameters of the ex-Gaussian distribution are the mean () and
standard deviation (o) of the normal distribution that describes the leading
edge of the reaction-time distribution and the mean of the exponential (7)
that describes the fall of the tail of the distribution. In practice, only the
mean of the normal and the mean of the exponential (. and 7) are used

because they have been sufficient to fit the diffusion model accurately to
data. The expression for the ex-Gaussian distribution is

[(t=p)o—oar1]

e (1= )T+ 02f(272)
e(—y2>/2dy.

gl = —T\z/-w—x
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The process of obtaining a set of parameter values for the fit of the
diffusion model to the data involved several steps. First, an initial set of
values for the model parameters was picked (values for a, #, T.,, and ).
Second, using the explicit equations of the diffusion model, the parameter
values were used to generate predictions for the probabilities of “high” and
“low” responses and predictions for the shapes of reaction-time distribu-
tions. Third, the ex-Gaussian parameters that best described the predicted
reaction-time distributions were determined. Fourth, the predicted values
of u, 7, and response probability were each subtracted from the corre-
sponding values for the data, and these differences were squared and the
sum of these over three different conditions was used as the function to be
minimized by the SIMPLEX minimization routine (Nelder & Mead, 1965).
SIMPLEX adjusted the model parameters a, m, T.,, and a value of v for
each condition to produce a minimum sum of squares for the function

(“’cex - l-"clh)z + (Tcex - Tcrh)z + (p'eex - I-Le!h)z + (Teex - Tlhe)z

+ (pex - pth)2’

where ex is experimental, th is theoretical, cex is correct experimental, cth
is correct theoretical, eex is error experimental, eth is error theoretical, and
p is the probability of a response. In more recent work, we fit the
cumulative distributions directly (eliminating the ex-Gaussian intermediate
step) and the results are nearly identical.

Qualitative Behavior of the Model

Here we describe how the diffusion model accounts for a number of
standard phenomena in the reaction-time domain. First, the model accounts
for the speed-accuracy tradeoffs obtained when subjects vary speed at the
expense of accuracy by varying response boundary positions. When the
boundaries are close to the starting point, processes reach the boundaries
quickly, but they can hit the wrong boundary by mistake, leading to errors.
‘When the boundaries are moved further apart, the time to hit a boundary is
increased, and processes that would have hit the wrong boundary by
mistake when the boundaries were close to the starting point now have
room to correct themselves, leading to fewer errors.

Second, the distributions of response times are skewed to the right. This
occurs through the geometrical form of the process. Equal increments in
drift rate (in the vertical direction) map into increasing increments on the
decision boundary as time increases. Thus, differences in the fastest pro-
cesses are small, whereas differences among the slowest processes are
large. This also leads to predictions of statistical interactions in reaction
time from equal size differences in drift rate.

Third, the accuracy of processes that have not yet reached a response
criterion was studied by Meyer et al. (1988). They found that the accuracy
of nonterminated processes rose rapidly to a low asymptote and then
remained constant over a relatively long time interval. This seemed incon-
sistent with continuous models that appeared to predict a gradual rise in
accuracy of nonterminated processes as a function of time. In fact, the
diffusion model and several other sequential sample models (counter and
runs models) predicted the same effects as found in the experimental data
(counterintuitively), and the data provided strong confirmation for that
class of models.
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Fourth, speed-accuracy functions from the response signal procedure
can be modeled in two different ways. Ratcliff (1978) assumed that the
response boundaries were placed far from the starting point and that when
the signal to respond was presented, the position of the process was
determined and the response was given that corresponded to the position
relative to the starting point. This assumption resulted in a simple formula
for response signal functions,

d = disy )
J1 + s

This function is a reasonable competitor for the commonly used expo-
nential approach to a limit that is used to summarize response signal
functions, and a large number of observations are needed to distinguish
between the two. Ratcliff (1980) provided expressions for situations in
which the rate of accumulation of information changes during the time
course of processing (e.g., Dosher, 1984; Gronlund & Ratcliff, 1989;
Ratcliff & McKoon, 1982, 1989).

The second way to model response signal functions assumes that re-
sponse signal functions are a mixture of processes that have terminated at
a response boundary (and, in some cases, are being held up until the signal
to respond is given) and processes that have not terminated as measured
using the Meyer et al. (1988) method (see Ratcliff, 1988). A mixture of
these two sources of responses shows an increasing response signal func-
tion that mimics the typical response signal functions.

Equations for the GRAIN Model and the Mean Field
Learning Algorithm

The GRAIN model was designed to introduce variability into process-
ing, to use this variability to account for reaction-time data, and to provide
a stochastic mechanism for generating error responses. Figure 16 shows the
three-layer network used in simulations in this article, and each node at one
level is connected to all the nodes at levels above and below. At test, an
input pattern is presented to the input layer and activation flows through the
network to provide activation at the output layer. Each node in the network
has an activation value that ranges from +1 to —1. For a node at level i,
the net input from the level below it (level j) is given by

net(t) = 2 wya (1) + N(O, o) + bias,

J

where N(0, o) is a random number from a normal distribution with
standard deviation o, w; ; are weights connecting nodes i and j, and a; are
the activation values at level j. Bias can be thought of as an extra
connection or weight from a node that always has activation 1. A running
average of the net input is computed (anet), and then the average net input
is converted to activation using a nonlinear transformation (the ranh):

anet{t) = Anet(t) + (1 — A)anet(t — 1)
alt) = tanh [anet(t) + bias},
where the tanh function is
tanh (x) = (&* — e )/{e* + 7).

For the model presented in this article, there is one output node, acti-
vation is examined in this node after every update, and the process is
terminated and a response produced when the activation becomes larger
than +0.9 or smaller than —0.9.

Mean Field Learning Algorithm

The mean field learning algorithm is a discrete version of the Boltzman
learning algorithm (Peterson & Hartman, 1989). It involves two phases of
processing, one in which the outputs are fixed at their desired values and
another in which they are allowed to vary freely. In both phases, activation
is allowed to flow in both directions (in a multilayer network) and activa-
tion is allowed to settle down gradually until the system reaches an
asymptotic state (using an annealing schedule). Once activation has settled
down, the weights are altered and the next phase of processing begins. The
basic idea is that the clamped phase (when the outputs of the network are
fixed at the desired target values) produces activation values in the hidden
layer, and in the free state, activations differ by some amount from those
values. The weights are modified to bring the free state activations closer
to the clamped state activations. When this process is complete, the outputs
in the free state will be the same as the outputs in the clamped state (both
in the hidden layer and in the output layer), which means the learning
algorithm will have trained the network to produce the desired outputs.

Consider the network in Figure 16. Input activations are denoted w;,
hidden layer activations are a;, output layer activations are b,, weights
between input and hidden layers are s;, and weights between the hidden
layer and output layer are r;. In the free phase, activation at the hidden
layer is given by

1 1
af= tanh(; 2 syw; + 7 2 rjkb{ s
i k
and activation at the output layer is given by
1
b} = tanh o E raall,
J

where the superscript f refers to the free phase of processing. In the
clamped phase (where the outputs are set to the target values)

1 1
a = zanh(; Z sw; + - E rjkbi) ,
i «

where the superscript ¢ refers to the clamped phase. To implement the
noise and running average assumptions from GRAIN in the mean field
algorithm, the three equations above have noise added and a running
average of activation computed.

The process is iterative for the free phase (the activations for a are
computed, then b, then a, etc.), with 7 (a scaling parameter) being reduced
to about one third of its initial value by 100 iterations (simulated anneal-
ing). Once the activation values for the free and clamped phases for all the
nodes are determined, the weights are modified by the equations

Ary = m(aks — alb))
and
As; = n(wa ~ wal) = qwlaf — af).
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