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Models of the representation of numerosity information used in discrimination tasks are integrated
with a diffusion decision model. The representation models assume distributions of numerosity either with
means and SD that increase linearly with numerosity or with means that increase logarithmically with
constant SD. The models produce coefficients that are applied to differences between two numerosities
to produce drift rates and these drive the decision process. The linear and log models make differential
predictions about how response time (RT) distributions and accuracy change with numerosity and which
model is successful depends on the task. When the task is to decide which of two side-by-side arrays of
dots has more dots, the log model fits decreasing accuracy and increasing RT as numerosity increases.
When the task is to decide, for dots of two colors mixed in a single array, which color has more dots,
the linear model fits decreasing accuracy and decreasing RT as numerosity increases. For both tasks,
variables such as the areas covered by the dots affect performance, but if the task is changed to one in
which the subject has to decide whether the number of dots in a single array is more or less than a
standard, the variables have little effect on performance. Model parameters correlate across tasks
suggesting commonalities in the abilities to perform them. Overall, results show that the representation
used depends on the task and no single representation can account for the data from all the paradigms.

Keywords: diffusion model, approximate number system, response time and accuracy, integrated models,
individual differences

What is the mental representation of numerosity? This is a
classic question in psychophysics and also a topical one because it
has been claimed that scores on simple, nonsymbolic numerosity
tasks are predictive of math development in childhood and math
achievement later in life (Halberda, Mazzocco, & Feigenson,
2008; Park & Brannon, 2013). For instance, for a large Internet
sample, Halberda et al. (2012) found that performance on a non-
symbolic task was related to numeracy ability across the life span
(to age 85). Currently, numerosity knowledge is said to be repre-
sented in an Approximate Number System (ANS) in which nu-
merosities are represented by distributions around their central
values (Dehaene, 2003), a system that might be present in animals
as well as humans (Gallistel & Gelman, 1992). There is also a
body of work in which research using animals and human neuro-
physiological measurements has been used to identify neural struc-
tures that are involved in numerosity judgments (e.g., Hyde &
Spelke, 2009; Nieder & Miller, 2003; Piazza, Izard, Pinel, Le
Bihan, & Dehaene, 2004). We review these in the discussion.

It has also been asserted that the ability to perform nonsymbolic
tasks forms a scaffold on which symbolic mathematical skills are
built (Gallistel & Gelman, 1992, 2000). This was expressed ex-
plicitly by Park and Brannon (2013): “Humans and nonhuman
animals share an approximate number system (ANS) that permits
estimation and rough calculation of quantities without symbols.”
Recent studies show a correlation between the acuity of the ANS
and performance in symbolic math throughout development and
into adulthood, which suggests that the ANS may serve as a
cognitive foundation for the uniquely human capacity for symbolic
math. In accord with this, Park and Brannon (2013, 2014; also
Hyde, Khanum, & Spelke, 2014) found that repeated training on
nonsymbolic arithmetic improved symbolic arithmetic, but re-
peated training on other tasks (a visuospatial short-term memory
[STM] task and a numerical ordering task) did not. However, it has
also been argued that symbolic and nonsymbolic magnitude
knowledge have separate effects on mathematics achievement
(Fazio et al., 2014) and that the relation between nonsymbolic
performance and achievement is currently not clear (De Smedt,
Verschaffel, & Ghesquière, 2013).

There are currently two, competing, ANS models that have roots
in Weber and Fechner’s work in the 1800’s. In one, numerosity in
the ANS is represented on a linear scale and variability around
numerosities increases as numerosity increases. In the other, nu-
merosity in the ANS is represented on a decreasing logarithmic
scale with equal variability around all numerosities (see Figure 1).
In both, the distributions of variability are Gaussian (Dehaene &
Changeux, 1993; Gallistel & Gelman, 1992; see Zorzi, Stoianov,
& Umilta, 2005, for a review). Both models explain two standard
findings (cf., Weber’s law)—why it is easier to discriminate 10
from 20 objects than 18 from 20 (accuracy decreases as the
difference in two numerosities decreases, the distance effect) and

This article was published Online First November 16, 2017.
Roger Ratcliff and Gail McKoon, Department of Psychology, The Ohio

State University.
Preparation of this article was supported by NIA Grant R01-AG041176.

We thank Rand Gallistel and an anonymous reviewer who improved this
article substantially.

Aspects of this work were presented at the Annual Summer Interdisci-
plinary Conference in Mammoth Lakes, July 2015 and at the Psychonomic
Society meeting in Chicago, November 2015.

Correspondence concerning this article should be addressed to Roger
Ratcliff, Department of Psychology, The Ohio State University, Columbus,
OH 43210. E-mail: ratcliff.22@osu.edu

T
hi

s
do

cu
m

en
t

is
co

py
ri

gh
te

d
by

th
e

A
m

er
ic

an
Ps

yc
ho

lo
gi

ca
l

A
ss

oc
ia

tio
n

or
on

e
of

its
al

lie
d

pu
bl

is
he

rs
.

T
hi

s
ar

tic
le

is
in

te
nd

ed
so

le
ly

fo
r

th
e

pe
rs

on
al

us
e

of
th

e
in

di
vi

du
al

us
er

an
d

is
no

t
to

be
di

ss
em

in
at

ed
br

oa
dl

y.

Psychological Review © 2017 American Psychological Association
2018, Vol. 125, No. 2, 183–217 0033-295X/18/$12.00 http://dx.doi.org/10.1037/rev0000085

183

mailto:ratcliff.22@osu.edu
http://dx.doi.org/10.1037/rev0000085


why it is easier to discriminate 20 objects from 30 than 60 objects
from 70 (accuracy decreases as numerosities increase; the size
effect). It has been claimed that the two models are not discrim-
inable (Dehaene, 2003) but that argument is based solely on the
accuracy with which numerosity tasks are performed. Here we
show that they are, in fact, discriminable when response times
(RTs) are considered.

In this article, we present a model for numerosity discrimina-
tion, a fundamental numeracy skill. Typical tasks include deciding
whether the number of blue dots in a display is greater or less than
some specified number, deciding whether there are more blue dots
in a display than yellow dots, and deciding whether there are more
dots in one versus another array that are spatially separated. We
model RTs and their full distributions for both correct responses
and errors jointly with accuracy. We test the representations of
numerosity that the ANS models predict by mapping them to
accuracy and RT data via the diffusion decision-making model
(Ratcliff, 1978; Ratcliff & McKoon, 2008). When the ANS models
are integrated with the diffusion model, they make strong differ-
ential predictions because they must account for RTs as well as
accuracy.

One reason an approach that explains the decision-making pro-
cess is needed is that the field of numerical cognition has been
unable to settle on empirical measures to be used in individual-
difference analyses. Considerable controversy has arisen about the
presence or absence of correlations among dependent variables
and between them and individual differences such as IQ and math
ability. In the diffusion model and other sequential-sampling mod-
els (Ratcliff & McKoon, 2008; Ratcliff & Smith, 2004), accuracy
and RTs arise from the same underlying components of processing
but in the numeracy literature, some hypotheses have been based
on RTs, some on accuracy, and some on the slope of a function
that relates accuracy or RTs to the difficulty of a test item. Many
studies in numeracy have used RTs alone and many have used
accuracy alone, and this has led to inconsistent findings about how
individual differences affect performance. For example, some-
times correlations are found between symbolic tasks (“is 5 greater
than 2”) and nonsymbolic tasks (“is the number of dots in one
array greater than in another array”), and sometimes not (e.g., De
Smedt et al., 2009; Holloway & Ansari, 2009; Price, Palmer,
Battista, & Ansari, 2012; Maloney et al., 2010; Sasanguie et al.,
2011). Sometimes correlations are found between nonsymbolic
number tasks and math ability, and sometimes not (e.g., Gilmore et
al., 2010; Halberda et al., 2008, 2012; Holloway & Ansari, 2009;
Inglis et al., 2011; Libertus et al., 2011; Lyons & Beilock, 2011;
Mundy & Gilmore, 2009; Price et al., 2012).

In a comprehensive study, Gilmore et al. (2011) found little
correlation between all combinations of accuracy and RT across a
range of symbolic and nonsymbolic tasks. A recent meta-analysis
by Chen and Li (2014) further illustrated the extent of the problem.
For 36 recent studies, they found 21 used overall accuracy, 9 used
mean RT, 17 used the Weber fraction (an accuracy-based mea-
sure), and 8 used a numerical distance effect based on RT. Other
analyses of individual differences confirm this diversity by review-
ing studies that use a range of different dependent variables (De
Smedt et al., 2013; Fazio et al., 2014). In the face of such
inconsistencies, and their finding that RTs and Weber fractions
were largely uncorrelated in an experiment they conducted, Hal-
berda et al. (2012, p. 11116) suggested that the two dependent
variables might index independent abilities. Price et al. (2012, p.
54) concurred, saying that “the relationship between RT slope and
the Weber fraction is not very strong, which might be explained by
the fact that one is a measure of RT while the other is a measure
of accuracy.”

In many numeracy studies, including most of those just cited
and the studies we present in this article, the response required of
a subject is a decision between two alternatives. Whatever the
quality of a subject’s numerosity information, a response must be
chosen and the choice will take some amount of time. Accuracy
and speed can trade off, and the trade-off is under a subject’s
control. A subject might decide to respond as quickly as possible,
sacrificing accuracy, or as accurately as possible, sacrificing speed.
In consequence, the quality of the numeracy information on which
an individual bases his or her decision can be obscured by the
speed/accuracy setting he or she chooses. This means that neither
accuracy by itself nor RTs by themselves can provide a direct
measure of an individual’s numeracy knowledge.

In the diffusion model (and other sequential sampling models,
Ratcliff & Smith, 2004), joint consideration of accuracy and RTs
allows an individual’s speed/accuracy setting to be separated from
the quality of the information upon which decisions are based. The
central mechanism in the model (Ratcliff, 1978; Ratcliff & Mc-
Koon, 2008) is the noisy accumulation of information from a
stimulus representation over time. A response is made when the
amount of accumulated information reaches one or the other of
two criteria, or boundaries, one for each of the two possible
choices (e.g., deciding whether the number of dots in a display is
larger or smaller than 25). The rate of accumulation, called drift
rate, is determined by the quality of the information encoded from
a stimulus. The distance between the two boundaries is determined
by the speed/accuracy setting—faster, less accurate responses if
the distance is small, slower, more accurate responses if the
distance is large. The independence of drift rate and the distances
to the boundaries means that information quality is separated from
speed/accuracy settings and so can be independently observed.

In the diffusion model, accuracy and RTs must be explained by
the same mechanism. This is required to account for the locations
of RT distributions (longer RTs for more difficult decisions than
easier ones) and the characteristic, right-skewed, shape of the
distributions. It is also required to account for the inverted
U-shaped function that typically results when RTs are plotted
against accuracy (a latency-probability function, Ratcliff, Smith, &
McKoon, 2015, which is discussed in detail later.)

For all the experiments in this article we compared the two ANS
models, each integrated with the diffusion model. Recently there

Figure 1. Models of numerosity representation.
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has been concern about the lack of replicability of studies in
psychology. Less prominently, there has been concern that models
or empirical results apply only to the specific design of a single
experiment. We addressed these concerns with 11 experiments and
five tasks. Each major empirical and modeling result was repli-
cated at least once. In three experiments, subjects were tested on
more than one task to examine correlations among an individual’s
numeracy abilities across tasks.

Three tasks used displays of dots. Two are common in numeracy
research, one in which blue and yellow dots are intermingled in a
single array and subjects decide whether there are more blue dots
or more yellow dots, and one in which there are two side-by-side
arrays of dots all of the same color and subjects decide which of
them has more dots. For the third task, subjects decided whether
the number of dots of one of two colors, intermingled in a single
array, is larger or smaller than a criterion number (e.g., 25). A
fourth task used X’s and O’s in a single array and subjects decided
which had the greater number. The fifth task used asterisks in a
single array and subjects decided whether the number of asterisks
was larger or smaller than a criterion number.

There were five independent variables, all replicated in at least
two experiments, and numerosity (number of dots, X’s and O’s, or
asterisks) was manipulated in all 11 experiments. In most of the
experiments with dots, either the summed areas of the two sets of
dots (e.g., the blue and yellow ones) were the same or they were
proportional to their number (i.e., a larger total area for a larger
numerosity). In some experiments, the dots were all relatively
large, averaging about 13 pixels in diameter, or small, averaging
about 4.5 pixels in diameter. When subjects decided whether the
number of dots of one color was larger or smaller than a criterion
number, the number of dots of the other color was manipulated.

Preview

To preview the results, we summarize the most salient of them
here. The first was highly counterintuitive. As mentioned above, it
is almost always found that as decisions become more difficult and
accuracy goes down, responses become slower. This is the pattern
that was obtained with two of the tasks we used, deciding which of
two side by side arrays has the greater number of dots and deciding
whether the number of dots in a single array is larger or smaller
than a standard. However, when the task was to decide which of
two colors of dots in a single array had the greater number, we
found a highly unusual and counterintuitive pattern: for a constant
numerosity difference, as difficulty increased with increasing nu-
merosity, accuracy decreased, but responses became faster.

The second result was that, when the linear and log ANS models
were integrated with the diffusion model, they could be discrim-
inated (because accuracy and RT data must be explained jointly),
something that has not been possible in the past, as we pointed out
above.

The third result was that which model could account for the data
was different for different tasks. The linear ANS-diffusion model
did well for the first pattern of data (the counterintuitive one) but
the log ANS-model failed in clear qualitative ways. The log
ANS-diffusion model did well for the second pattern of data (the
usual one) but the linear model failed in clear qualitative ways.

Fourth, whichever ANS-diffusion model was successful for a
given task, it fit the data well. It captured the data for accuracy,

mean RTs for correct responses and errors, the shapes and loca-
tions of the RT distributions, and the ways these all changed across
experimental conditions that varied in difficulty.

Fifth, we found large correlations among the tasks in drift rates,
which suggest that individuals bring similar numeracy skills to all
the tasks we used.

The sixth result was a solution for an issue that has bedeviled
research on numerosity discrimination—it has been difficult to
divorce confounding variables from judgments of numerosity
(DeWind, Adams, Platt, & Brannon, 2015; DeWind & Brannon,
2012; Feigenson et al., 2002; Gebuis & Gevers, 2011; Gebuis &
Reynvoet, 2012a, 2012b, 2013; Mix et al., 2002). For example, if
all the dots in an array of dots of two colors have the same size,
then the total area of the dots of the larger-numerosity color will be
larger than the total area of the dots of the smaller-numerosity
color. However, if the totals are equated, then the totals of the
circumferences of the dots will be larger for the larger-numerosity
color. With any manipulations designed to control one variable,
some other variable will be confounded with numerosity. With the
ANS-diffusion models, the contributions of individual variables
can be measured.

The seventh result was that, when we examined the effects of
confounding variables on our tasks, we found variables that af-
fected performance on some numerosity tasks but not others.

The Two-Choice Diffusion Model

The model is designed to explain the cognitive processes that
underlie simple two-choice decisions that take place in under a second
or two. The model has been applied in a wide range of domains
including clinical applications and applications in neuroeconomics
and neuroscience in humans, monkeys, rodents, and even insect
swarms (Forstmann, Ratcliff, & Wagenmakers, 2016; Ratcliff, Smith,
Brown, & McKoon, 2016). Figure 2A illustrates the model. Informa-
tion is accumulated from a starting point, z, toward one or the other of
two boundaries, a or 0. The zig-zag lines indicate noise in the
accumulation process. For the example in the figure, the mean rate of
accumulation, drift rate (v), is positive. Drift rate is determined by the
quality of the information extracted from the stimulus in perceptual
tasks and the quality of the match between a test item and memory in,
for example, lexical decision and memory tasks. Processes outside the
decision process such as stimulus encoding and response execution
are combined into one component of the model, nondecision time,
with mean Ter. Total RT (Figure 2B) is the sum of the time to reach
a boundary and nondecision time. The noise in the accumulation of
information (Gaussian distributed) results in decision processes with
the same mean drift rate terminating at different times, producing RT
distributions, and sometimes at the wrong boundary, producing errors.

The values of the components of processing are assumed to vary
from trial to trial, under the assumption that subjects cannot accurately
set the same parameter values from one trial to another (e.g., Laming,
1968; Ratcliff, 1978). Across-trial variability in drift rate is normally
distributed with SD �, across-trial variability in starting point (equiv-
alent to across-trial variability in the boundaries) is uniformly distrib-
uted with range sz, and across-trial variability in the nondecision
component is uniformly distributed with range st. In signal detection
theory, which deals only with accuracy, all sources of across-trial
variability are collapsed into one parameter, the variability in infor-
mation across trials. In contrast, with the diffusion model, the separate
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sources of across-trial variability are identified (Ratcliff & Childers,
2015; Ratcliff & Tuerlinckx, 2002).

For experiments in which subjects compare a stimulus to a stan-
dard, there is one more component of processing, the drift-rate crite-
rion (Ratcliff, 1985). For example, when asked to decide whether the
number of dots in an array is more or less than 25, then drift rates
should be such that their mean is toward the “large” boundary when
there are more than 25 dots and toward the “small” value when there
are fewer than 25. That is, the drift-rate criterion should be set at 25.
However, subjects do not always behave in this way. They may set
their criterion at 24 or 26 or some other number. It is to accommodate
shifts like this that the drift-rate criterion is a free parameter when a
discrimination task involves comparison to a standard.

Boundary settings, nondecision time, starting point, drift rates for
each condition in an experiment that varies in difficulty, the drift-rate
criterion, and the across-trial variabilities in drift rate, nondecision

time, and starting point are all identifiable. When data are simulated
from the model (with numbers of observations approximately equal to
those that would be obtained in real experiments) and the model is fit
to the simulated data, the parameters used to generate the data are well
recovered (Ratcliff & Tuerlinckx, 2002). The success of parameter
identifiability comes in part from the tight constraint that the model
account for the full distributions of RTs for correct and error re-
sponses (Ratcliff, 2002).

Integrating the Diffusion Model and the ANS Models

When the diffusion model is combined with a model for how
information is represented in cognitive structures, the representa-
tion model must produce a value, drift rate (and in some models,
SD in drift rate across trials), that when taken through the decision
process accounts for all the data. In other words, the diffusion

v=v1ΔN=v1(N1-N2)

η=ηο+σ1 (N1)2+(N2)2

ANS Diffusion Models
Linear Model

Log Model
v=v1{log(N1)-log(N2)}

To provide both models with the same flexibility:

σ1=0 produces the constant η model

0

z

a correct correct

error

Correct RT distribution

Error RT distribution

Drift
Rate v

response

responseresponse

B
ou

nd
ar

y
se

pa
ra

tio
n

Time

Total RT=u+d+w

u   mean=Ter
w

decision d

encoding, response
output

Nondecision
component
  RT=u+w

transformation.

A

B

C

Figure 2. (A) Illustrates the diffusion decision model. (B) Shows the additional components of the decision
model that produce the total response time (RT). (C) Shows equations for drift rates and across trial SD in drift
rate for the two Approximate Number System (ANS) diffusion models.
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model provides a meeting point between data and models of
representation.

The ANS linear and log models (see Figure 1) have their roots
in research tracing back to Weber’s and Fechner’s research in the
1800’s (e.g., Woodworth, 1938). Weber’s law states that as stim-
ulus intensity increases, the size of the just-noticeable difference
between stimuli increases so that the ratio of the difference in
intensity to intensity (�S/S) remains constant. Fechner derived a
logarithmic representation from this: the intensity of a stimulus is
proportional to the logarithm of the physical intensity and the
psychological difference between two stimulus intensities is the
difference in the logarithms of their intensities. Thus, as intensity
grows, the psychological difference between equally spaced stim-
uli decreases (e.g., log(10) � log(5) � 0.69 while log(20) �
log(15) � 0.29). In this model, the SD around mean numerosity
values has to be constant as intensity grows to explain Weber’s
law. Weber’s law can also be explained by the linear model: the
psychological difference between two intensities is linear with the
intensity values and the SD in the psychological representation
also increases linearly leading to decreasing discriminability as
intensity grows. These alternatives have had extensive discussion
in numerosity research (e.g., Dehaene & Changeux, 1993; Gallistel
& Gelman, 1992) with the conclusion mentioned above, that they
cannot be discriminated (Dehaene, 2003).

In the integrated models, drift rate and the SD in drift rate are
both provided by the ANS representation model, and boundary
settings, nondecision times, and the ranges in starting point and
nondecision time come from the diffusion model. Figure 2C shows
how drift rate for the two models is computed. For the linear
model, drift rate (v) is the difference between the two numerosities
multiplied by a coefficient (v1) and for the log model, drift rate is
the difference in the logs of two numerosities multiplied by a
coefficient (v1). It is the coefficient of drift rate that separates
individuals; a larger coefficient gives better performance.

Figure 2C also shows how across-trial variability (the SD, � in
the models) in drift rate is computed. For the linear model, (�) is
a constant (�0) plus a coefficient (�1) multiplied by the square root
of the sum of squares of the two numerosities (the square root of
the sum of squares is how SDs are combined—variances are
added). For the log model, we might assume that � remains
constant as numerosity increases, just as for traditional models
based on accuracy measures. However, there is no guarantee that
a diffusion model will behave in the same way and so we gave our
log model the same flexibility in accounting for data as the linear
model: � could either stay constant as numerosity increases or
increase with numerosity with the same expression for � as for the
linear model. This also has the advantage of giving the linear and
log models the same number of parameters that makes model
selection less ambiguous because different measures such as Akai-
ke’s Information Criterion (AIC) and Bayesian Information Crite-
rion (BIC) give the same results. Thus, the only difference between
the linear and log models was that the drift rate assumption was
different: linear versus log.

The integrated models are severely constrained. Without a rep-
resentation (i.e., ANS) model, drift rates are usually estimated
separately for each condition of an experiment when the diffusion
model is applied to data. Instead, for the integrated models, drift
rates are set by the representation model and cannot be adjusted to,
for example, produce a better fit for one data point without

affecting predictions for all the other data. There is only one
coefficient for drift rates for all values of numerosity for each
condition (e.g., a condition with large dots or one with small dots)
and only two coefficients for � for all conditions of the experi-
ment. If the model failed to fit even one value of accuracy or one
RT distribution from the numerosity conditions, modifying the
parameters to accommodate that one miss would make the fit
worse for all the other conditions.

When the linear and log models are integrated with the diffusion
model, there are no more than eight free parameters plus one
drift-rate coefficient for each independent variable (excluding nu-
merosity). From the diffusion model, there are always the distance
between the boundaries, nondecision time, and the ranges in the
starting point and nondecision time. When the task is to compare
stimuli against a standard there is also the drift-rate criterion. For
some tasks, the starting point is a free parameter. For others, it can
be set to half the distance between the boundaries and so is not a
free parameter; this occurs when the RT distributions at one of the
two boundaries are symmetric with those at the other. From the
ANS models, there are the drift-rate coefficients for each indepen-
dent variable except numerosity, the constant component of SD
across-trials, and the coefficient for SD (if the SD coefficient is
close to zero, the model is one with constant SD in drift rates).

For the experiments in which the task was to compare the
number of dots of a color or the number of asterisks to a standard
value, there was only one value of numerosity, so we set N1 in the
computation of drift rate and its SD (Figure 2C) to that numerosity
value and N2 to the standard (e.g., 25).

Fitting the Integrated Diffusion Models to Data

The values of all the parameters are estimated together by fitting
the model to the data from all the conditions in an experiment
simultaneously using a standard method of fitting. The data for
each subject is fit individually and the model parameters presented
in the tables are the means across subjects. RT distributions are
represented by five quantiles, the .1, .3, .5, .7, and .9 quantiles. The
quantiles and the response proportions for each condition are
entered into a minimization routine and the diffusion model is used
to generate the predicted cumulative probability of a response
occurring by that quantile RT. Subtracting the cumulative proba-
bilities for each successive quantile from the next higher quantile
gives the proportion of responses between adjacent quantiles. For
a G2 computation, these are the expected proportions, to be com-
pared with the observed proportions of responses between the
quantiles (i.e., the proportions between 0, .1, .3, .5, .7, .9, and 1.0,
which are .1, .2, .2, .2, .2, and .1). The proportions for the observed
(po) and expected (pe) frequencies and summing over
2Npolog(po/pe) for all conditions gives a single G2 (log multino-
mial likelihood) value to be minimized (where N is the number of
observations for the condition).

The number of df in the data is computed as follows: there are
six proportions (bins) between the quantiles and outside the .1 and
.9 quantiles. These proportions are multiplied by the proportion of
responses for that condition and across correct and error responses;
these 12 proportions must add to 1 so there are 11 df in the data for
each condition of the experiment. For example, if there were 10
numerosity conditions crossed with a variable that has two levels,
then there would be 220 df in the data. When the models are fit to
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data, the number of df is the number in the data minus the number
of the model’s free parameters.

Usually in fits of the diffusion model to data, there are no
models of stimulus representation like those the ANS models
provide and so there is a separate drift rate for each condition of an
experiment. For Experiment 1, for example, this would lead to a
model with 26 parameters whereas for the ANS-diffusion models,
the number of parameters is greatly reduced, to only eight.

The model was fit to the data using the G2 statistic in the same
way as fitting the �2 method described by Ratcliff and Tuerlinckx
(2002; see also Ratcliff & Childers, 2015; Ratcliff & Smith, 2004).
G2 statistics are asymptotically �2 and so critical �2 values can be
used to assess goodness of fit. In many applications we have found
that if the value of the �2 (or G2) is below two times the critical
value, the fit is good (Ratcliff, Thapar, Gomez, & McKoon, 2004;
Ratcliff, Thapar, & McKoon, 2010) even in the less constrained
case in which the diffusion model is applied without a represen-
tation model and so each condition has its own drift rate.

In the results sections for the experiments, the mean values of
the model parameters and the G2 statistic across subjects are
reported. For the plots in the figures for the experiments, the
quantile RTs and response proportions in the data are averaged
across subjects. The predictions from the models are generated
from the best-fitting parameters for each subject and then these
predictions are averaged across subjects in exactly the same way as
the data are averaged.

Because the fits are presented as averages over subjects, it may
be that there are some poor fits for a few individuals. The Appen-
dix shows plots of the experimental and predicted response pro-
portions and the 0.1, 0.5, and 0.9 quantile RTs plotted against each
other for Experiments 1 and 2. These show a visual representation
of the quality of the fits for each condition for each subject and so
allow an assessment of how good or bad fits are for each condition
and subject.

The difference in G2 values between the log and linear models
provides a numerical goodness of fit measure from which the
models can be compared. As noted above, because the number of
parameters for the two models was the same, G2s provide the same
results for comparisons of models as do the AIC and BIC values
(because these measures are G2 plus a penalty term based on the
number of parameters—which is the same for the pairs of models).
However, in our view, small numerical differences are not enough
to be sure that one model should be preferred over another. We
prefer to see qualitative differences in predictions between the
models as well as numerical differences that are not small. Fur-
thermore, for each experiment we report the number of subjects
that favor each model from the G2 value. By a binomial test, if 22
(or more) out of 32 subjects or 12 (or more) out of 16 subjects
support one model over the other model, then the result is signif-
icant. This provides another measure of support at an individual
subject level for one model over the other model.

Displaying the Match Between Data and Model

The match can be displayed in latency-probability functions and
quantile-probability functions (Ratcliff, Van Zandt, & McKoon,
1999; Ratcliff, 2001). To illustrate latency-probability functions
(termed a parametric plot), data from a numerosity discrimination
task (Ratcliff, Thapar, & McKoon, 2010) are plotted in Figure

3A–C. The stimuli were arrays of asterisks mixed with empty
spaces and subjects decided whether the number of asterisks was
larger or small than 50. Figure 3A shows mean RTs (in millisec-
onds) for “small” responses as a function of the number of aster-
isks for eight conditions that vary in difficulty (responses were
grouped: 30–34, 35–39, 40–44, . . . , 65–69, for means 32, 37,
42, . . . , 67). “Small” is the correct response for numbers smaller
than 50 (on the left side of the function) and the incorrect response
for numbers larger than 50 (on the right side of the function). RTs
are shorter for the easier conditions for both correct and incorrect
responses (the outer data points) and longer for the more difficult
conditions (the nearer-center data points). Figure 3B shows the
probabilities of “small” responses, fewer of them as the number of
asterisks increases. The bottom panel shows the inverted U-shaped
latency-probability function derived from plotting the RTs against
the response probabilities. As the probability of a correct response
decreases from right to left, RTs first increase and then decrease
(and for “large” responses, the functions are similar). Predictions
from the model can be plotted in the same way (e.g., Ratcliff &
McKoon, 2008, Figure 6). Often in experiments with symmetric
responses for the two choices, conditions are combined, for exam-
ple, in Figure 3A, mean RT for “large” responses might be the left
to right mirror image of those for “small” responses. Then correct
“small” responses to the 32 asterisk condition would be combined
with correct “large” responses to the 67 asterisk condition to
produce one of four levels of difficulty from the eight conditions.
Errors would be combined in the same way so that the four levels

Figure 3. Construction of latency-probability functions and quantile-
probability functions. See the online article for the color version of this
figure.
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of difficulty would produce eight data points as in Figure 3F (the
error RTs on the left correspond to the symmetric correct re-
sponses on the right).

For most of the experiments described in this article, we display
the data and model predictions in quantile-probability plots. Figure
3D shows how they are constructed. The top panel shows a
histogram of the data (thin narrow bars and red line) overlaid with
rectangles derived from the 0.1, 0.3, 0.5, 0.7, and 0.9 RT quantiles.
The rectangles represent equal areas of 0.2 probability mass be-
tween each pair of middle quantiles and 0.1 probability mass
outside of the 0.1 and 0.9 quantiles. The quantile rectangles cap-
ture the main features of the RT distribution (as can be seen in the
figure) and, therefore, provide a reasonable summary of the overall
distribution shape. Figure 3E shows a quantile-probability plot.
Quantile RTs for the 0.1, 0.3, 0.5, 0.7, and 0.9 quantiles (stacked
vertically) are plotted against the proportions of responses that
were made for each condition for four experimental conditions
different in difficulty. Correct responses for two conditions are on
the right, errors for two conditions are on the left. For the more
difficult condition, the proportion of correct responses is 0.7 and
for the easier condition, the proportion of correct responses is 0.95.
Errors for the other two conditions are plotted on the left with error
probabilities 0.1 and 0.35. Figure 3F shows an example of the fit
between model and data for an experiment with four conditions,
with the numbers representing the data for the five quantiles and
the x’s and lines representing the model predictions (from Ratcliff
& Smith, 2010, Experiment 2). The latency-probability function
for the median RT instead of the more traditional mean RT is the
middle line in Figure 3F.

Quantile-probability plots make it easy to see changes in RT
distribution locations and spread as a function of response proba-
bilities and how model and data compare. In Figure 3F, as re-
sponse probability changes from about 0.6 (the most difficult
condition) to near 1.0 (the easiest condition), the 0.1 quantile
(leading edge) changes little, but the 0.9 quantile changes by as
much as 400 ms. Thus, the change in mean RT is mainly in the tail;
the whole distribution does not shift. Also, error responses are
slower than correct responses mainly because of their spread, not
the location of the leading edge. In these ways, quantile-
probability plots allow all the important aspects of both the accu-
racy and RT data to be read from a single plot.

Experiments: Stimuli, Subjects, and Procedures

Figure 4 illustrates the displays that were used in the experi-
ments. We list all of them here to provide a summary and then
describe them again in the discussion of each experiment. In
Figure 4A, blue and yellow dots are intermingled in a single array
and the question was for which color is the number of dots larger.
In Figure 4B, there are two arrays side by side with dots all of the
same color and the question was which array has more dots.

In many of the experiments, there was an area manipulation,
equal versus proportional. For blue and yellow dots mixed in a
single array, the summed areas of the dots of the two colors were
either equal or proportional (larger summed area for the larger
numerosity color). At the same time, the summed areas of dots of
different numerosities were either equal or proportional. For ex-
ample, consider two conditions: 10 blue dots intermingled with 15
yellow dots and 35 blue dots intermingled with 40 yellow dots. For

equal area, the sum of the areas of the 10 blue dots would be the
same as the sum of the areas of the 15 yellow dots, the 35 blue
dots, and the 40 yellow dots. For proportional area, the sums would
be larger for larger numerosities than smaller ones. For dots of the
same color in two arrays, the area manipulation is the same: the
sums of the areas of the dots in the two arrays were equal or
proportional and the sums were equal from one numerosity to
another, or they were all proportional to their number. Figures 4A
and 4B illustrate the area manipulation.

In Figure 4C, blue and yellow dots are intermingled in a single
array and the question was whether the number of dots of one of
the colors was greater or less than 25. In Figure 4D, asterisks are
intermingled with white spaces and the question was whether the
number of asterisks was greater or less than 50. In Figure 4E, X’s
and O’s are intermingled and the question was whether there were
more X’s or more O’s. In Figure 4F, there was one array of dots
presented and for some of the displays, the dots were positioned
randomly (the left example) or positioned on a grid (the right
example); in both cases, the question was whether the number of
dots was greater or less than 25. Finally, Figure 4G shows small
dots which were tested along with regular-size dots in different
stimulus arrays. These experiments used single arrays of intermin-
gled blue and yellow dots; in Experiment 4, the question was for

Figure 4. Examples of stimuli for the experiments. See the online article
for the color version of this figure.
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which color is the number of dots greater, and in Experiment 5, it
was whether the number of dots of one of the colors is greater or
less than 25.

For the single-array stimuli with dots (Figure 4A, C, G, and F),
the dots were displayed on a 17-inch diagonal CRT monitor with
a width of 32 cm and a height of 24 cm and with a 4 � 3 screen
set to 1,280 � 960 pixels (with 256 colors). The background was
gray to control luminance (Halberda et al., 2008). The dots were
presented in a 640 � 640 gray array in the middle of the screen
that was 17.3 � 17.3 degrees of visual angle when viewed from a
distance of 53 cm. For all but Experiments 4 and 5, the dots had
radii of 6, 8, 10, 12, 14, or 16 pixels subtending angles of 0.324,
0.432, 0.540, 0.648, 0.756, and 0.864 degrees in diameter, respec-
tively. For Experiments 4 and 5, the smaller dots’ radii were 2, 3,
4, 5, 6, or 7 pixels.

For each trial of a single-array experiment, either dot sizes were
selected randomly but constrained so that the summed areas of the
two colors of dots in an array (and the areas across all the
numerosities, as described above) were equal, or they were se-
lected randomly without any other constraint and so the areas were
proportional to the number of dots. We constrained the positions of
the dots so that the maximum horizontal/vertical distance dot
centers could be separated by was 360 pixels (10.58 degrees) and
the minimum spacing between dot edges was 5 pixels (0.135
degrees).

For the stimuli with two side-by-side arrays of dots, the same
CRTs were used with the same settings as for the single-array
experiments. The gray background within which the two arrays of
dots were presented was 640 pixels high � 1,160 pixels wide that
was 17.3 � 31.3 degrees of visual angle. The minimum spacing
between dot edges was 5 pixels and between the two arrays, there
was an 80 pixel separation between dot centers. There was a thin
vertical line between the two arrays (Figure 4B) within which
stimulus arrays were presented. There was also a small fixation
cross between the two arrays and subjects were instructed to look
at that on the beginning of each trial. The radii of the dots were the
same as the larger ones listed above.

Stimuli in most of the experiments with dots were presented for
250 or 300 ms and then the screen returned to the background
color. This was done to reduce the possibility that subjects used
slow strategic search processes to perform the task. Subjects were
instructed to respond as quickly and accurately as possible. Re-
sponses were collected by key presses on a PC keyboard, usually
the / and z keys, one for each choice. For all the tasks, there were
several practice trials (e.g., 4) and for these, the correct response
was given on each trial so that subjects would be certain to
understand the instructions (e.g., it would say “an example of more
blue dots” when the decision was about which color had the more
dots). Subjects initiated each block by pressing the space bar on the
keyboard.

For most of the experiments, the subjects were students in an
introductory psychology class who participated for class credit. As
is typical in our pool, some of them were not cooperative and
began, from the beginning or in the middle of the experiment, to
respond with fast guesses. For this reason, about 20% of the
subjects were eliminated in each experiment. We identified the
noncooperative subjects by placing an upper cutoff at 300 ms and
lower cutoff at 0 and examining the proportion of responses in this
range and their accuracy. If there were more than 5% and accuracy

was at or near chance for these responses, we eliminated the
subject (based only on these aspects of the data, without examining
other results). We also eliminated one or two subjects from a few
of the experiments who were not fast guessing but responded with
chance accuracy. For data analyses for all the experiments, we
placed a lower RT cutoff at 300 ms and an upper cutoff at 2000 ms.
This eliminated less than 5% of the responses in each experiment.

For experiments with one task, there were typically 20 blocks of
96 or 100 trials giving about 2,000 observations per subject and for
experiments with two or more tasks, two tasks were tested per
session with about 1,000 trials per session. We aimed for 16
subjects in the experiments with one task and 32 for the experi-
ments with two or more tasks. Because of the fast-guessing sub-
jects, we usually tested a few extra subjects and this led to larger
numbers in some of the experiments. Experiments 1–5 had 16
subjects, Experiment 6 had 35, Experiments 7, 8, and 9 had 32,
Experiment 10 had 15 (because classes ended before we could get
the 16th), and Experiment 11 had 18.

Experiment 1

The stimuli in Experiment 1 were blue and yellow dots inter-
mingled in a single array (Figure 4A) and subjects decided whether
there were more blue or more yellow dots. We label this task the
B/Y task. It is in this experiment that we first found the counter-
intuitive result that as accuracy decreases, responses speed up.

To manipulate numerosity, the numbers of the blue and yellow
dots differed in their numerosities and the differences between
their numerosities. There were 10 combinations of the numbers of
blue and yellow dots; 15/10, 20/15, 25/20, 30/25, and 40/35 for
differences of 5; 20/10, 30/20, and 40/30 for differences of 10; and
30/10 and 40/20 for differences of 20. The sums of the dot areas
were equal or proportional.

Accuracy and RT Results

The data for “blue” and “yellow” responses were symmetric so
correct responses for blue and yellow dots were combined and
errors for blue and yellow dots were combined. Table 1 shows
accuracy and mean correct RTs as a function of the area manip-
ulation with the data averaged over the 10 proportional-area and 10
equal-area conditions. The left panel of Figure 5 shows mean RTs
plotted against accuracy with the x’s for equal-area conditions and
the o’s for proportional-area conditions. Lines were drawn be-
tween conditions with the same numerosity difference (5, 10, and
20) for the two area conditions separately.

As expected, accuracy decreased as the difficulty of the discrim-
ination increased. Specifically, accuracy decreased both as the

Table 1
Experiments 1 and 2: Accuracy and Correct Mean RTs

Experiment Measure Proportional area Equal area

1 Accuracy .817 .675
1 RT 601 638
2 Accuracy .900 .824
2 RT 495 513

Note. RT � response time.
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numerosity of the dots increased and as the difference between the
numerosities of the dots of the two colors decreased, the standard
result with these manipulations. Also as expected, equal-area dis-
criminations were more difficult than proportional-area discrimi-
nations, with accuracy higher and RTs shorter with proportional
areas.

The RT data show the unexpected finding and demonstrate why
RTs must be considered in data analyses. For numerosity differ-
ences of 5 and 10, as accuracy decreased, RTs also decreased (for
differences of 20, RTs changed little). For example, for the top
function in the figure, as the probability of a correct response
decreases from around 0.68 to around 0.55, RTs speed up from
around 660 ms to around 600 ms. It is this joint consideration of
accuracy and RTs that gives the counterintuitive result.

Analysis of variance (ANOVA) with two factors, the two area
conditions and the 10 combinations of numbers of blue and yellow
dots, showed significant effects on accuracy (F(1, 15) � 203.6,
p 	 .05; F(9, 135) � 116.7, p 	 .05) and on mean RTs (F(1, 15) �
68.1, p 	 .05; F(9, 135) � 27.6, p 	 .05, respectively). The
interaction was not significant for accuracy, F(9, 135) � 1.6, p 

.05 but it was for RTs, F(9, 135) � 5.5, p 	 .05. We were not
concerned with power in the statistical tests because it is qualita-
tive patterns along with model fits to the sizes of the effects that
are most relevant, not the size relative to the variability in the data.
While a 2% effect on accuracy, for example, might be significant
and have a high effect size, it might have no practical effect on
performance in the context of the modeling.

Experiment 2

In Experiment 1, accuracy decreased as difficulty increased and
RTs decreased. In Experiment 2, accuracy decreased as difficulty
increased and RTs increased (as opposed to decreasing as occurred
in Experiment 1). The stimuli were side-by-side arrays (Figure 4B)
and the dots were always yellow for both arrays. Subjects decided
which of the two arrays had more dots, the left or the right. We call
this the L/R task. Summed areas were either equal or proportional.
There were the same 10 combinations of numbers of dots as for
Experiment 1.

Accuracy and RT Results

The data for “left” and “right” responses were symmetric so
correct responses for left and right dots were grouped and errors
for left and right dots were grouped as for Experiment 1. Table 1
shows the accuracy and mean correct RT results as a function of
the area manipulation with the data averaged over the 10
proportional-area and 10 equal-area conditions. The right panel of
Figure 5 shows plots constructed like those of Experiment 1.
Accuracy decreased as the difference in numerosity between the
two arrays decreased and as the numerosity of the two arrays
increased, and it was lower for the equal-area conditions than the
proportional-area ones. The result for RTs was the typical one; that
RTs increased as accuracy decreased. Unlike Experiment 1, the
data from all the equal-area conditions and all the proportional-
area conditions fell on a single parametric plot.

ANOVA showed significant differences in accuracy among the
10 combinations of numerosity and the two area conditions, F(9,
135) � 151.7, p 	 .05, and F(1, 15) � 68.2, p 	 .05, respectively,
and their interaction was significant, F(9, 135) � 8.0, p 	 .05.
There were also significant differences in RTs among the numer-
osity conditions and the area conditions, F(9, 135) � 25.7, p 	 .05
and F(1, 15) � 38.7, p 	 .05, and their interaction was not
significant, F(9, 135) � 1.3. These results show that both the area
and numerosity manipulations affected performance on this task.
In following analyses for later experiments, we average over the
numerosity conditions (because the numerosity effect is always
large) to simplify the ANOVAs and t tests.

Fitting the Integrated Models to the Results of
Experiments 1 and 2

Quantile-probability plots (Figures 6 and 7) show accuracy and
the full distributions of RTs for correct and error responses and
how these change across conditions. As illustrated in Figure 3, the
0.1, 0.3, 0.5 (median), 0.7, and 0.9 quantiles of the RT distribution
for each condition are plotted vertically on the y-axis and the
proportions of responses are plotted on the x-axis. Because the
probability of a correct response is larger than .5, quantiles for
correct responses are on the right of .5 and quantiles for errors on
the left (the two probabilities sum to 1.0). The difficulty of the
stimuli in each condition determines the probabilities of correct
and error responses, that is, the location of the stacks of quantiles
on the x-axis.

For the models, nondecision time determines the placement of
the functions vertically. The shapes of the functions are determined
by just three values (Ratcliff & McKoon, 2008): the distance
between the boundaries, the range across trials in the starting point
(that is equivalent to across-trial variability in the settings of the
boundaries), and the SD across trials in drift rates (�). The drift
rates for the different levels of difficulty (i.e., the different condi-
tions) sweep out functions across response probabilities.

Figures 6 and 7 show the quantile probability functions for
Experiments 1 and 2, respectively, and the fits of the models to
them. The x’s are the data and the o’s and lines joining them are
the predictions of the models. The proportional-area conditions are
farther to the left and right because they have higher accuracy than
the equal-area conditions, which are nearer the center. The hori-
zontal lines that connect correct and error responses across 0.5 are
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Figure 5. Plots of mean response time (RT) against accuracy for Exper-
iments 1 and 2. The x’s are for equal-area conditions and the o’s are for
proportional-area conditions. � represents the difference in numerosity
between the two stimuli. See the online article for the color version of this
figure.
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not meaningful; they are there only to show which correct re-
sponses correspond to which error responses.

The quantile-probability functions for Experiment 1 (see Figure
6) show the unexpected result for the five quantiles. They decrease
sharply from their left and right ends (error responses and correct
responses, respectively) toward the center, showing the decrease in
RTs as accuracy decreases. This is true for the equal-area condi-
tions and the proportional-area conditions. In contrast, the func-
tions for Experiment 2 (see Figure 7) show the typical inverted U
shaped functions bending up from their left and right ends with
RTs increasing as accuracy decreases.

To fit the models to the data, there were three parameters from
the diffusion model: the distance between the boundaries, across-
trial range in the starting point and across-trial range in nondeci-
sion time. There were four parameters from the ANS models: a
drift-rate coefficient (v1) for the equal-area conditions, a drift-rate
coefficient for the proportional-area conditions (v2), the SD coef-
ficient (�1), and the constant component of the across-trial SD in

drift rate (�0). The number of df was 212: the number of conditions
multiplied by the 11 df for the proportions of responses between
and outside the .1, .3, .5, .7, and .9 bins for correct and error
responses minus 1 because the proportions add to 1 and minus the
number of parameters.

The results for the linear model for Experiment 1 show a
remarkable qualitative and quantitative match between theory and
data. The model produces the decreases in RT quantiles as accu-
racy decreases, the larger and sharper decreases for the equal-area
conditions than the proportional-area conditions, and the larger
decreases for the higher than the lower quantiles. It also produces
the flattening of the functions as the difference in numerosities
between the blue and yellow dots increases (from 5 to 10 to 20).
(Accuracy for the easiest condition, 15/10 dots, was a little higher
than the model’s predictions but this could be accommodated by
allowing drift rate to increase a little more quickly than linearly as
numerosities decrease.)

The critical difference in the predictions between the linear and
log models is the counterintuitive result that for the linear model,
for a constant numerosity difference, as the total number of dots
increases, RT decreases. In our data, this effect is largest for
differences in numerosity of 5. To provide another measure of
which qualitative pattern of results was obtained for individual
subjects, we fit median RTs as a function of the number of dots for
differences of 5 with linear regression. We examined this qualita-

Figure 7. Quantile-probability functions for Experiment 2. See the online
article for the color version of this figure.

Figure 6. Quantile-probability functions for Experiment 1 for the linear
and log models. These plot response time (RT) quantiles against re-
sponse proportions (correct responses to the right of 0.5 and errors to
the left). The green/central lines are the median RTs. The numbers of
dots in the conditions in the plots are shown in the top right corner and
the more extreme functions are for proportional-area conditions and the
less extreme for equal-area conditions. See the online article for the
color version of this figure.
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tive effect in the data from the experiments with the B/Y task and
the L/R task and we report how many subjects had a slope less than
zero. For the counterintuitive result (decreasing RT with decreas-
ing accuracy), the slope is less than zero, and for the standard
result and log model, the slope is greater than zero.

Tables 2 and 3 show the parameter values of the linear model
that best fit the data. The mean G2 value for the linear model was
261 and the critical value of the �2 for 212 df is 246.0. The mean
G2 over subjects is just above the critical value, which indicates a
good fit of the model to data. For individuals, G2 values were
lower for the linear model for 13 out of 16 subjects and the slope
of the median RT versus overall numerosity function for differ-
ences of 5 was less than 0 for 28 out of 32 comparisons (equal and
proportional area for 16 subjects). Both of these support the linear
model for individual subject data.

The proportional-area and equal-area drift-rate coefficients were
significantly different, 0.037 and 0.016, a difference of over a
factor of 2, t(15) � 8.1, p 	 .05. We discuss these coefficients
below.

The fit of the linear model to the data is impressive for several
reasons. First, there is only one drift-rate coefficient for the 10
equal-area conditions and only one for the 10 proportional-area
conditions—drift rate is determined by the coefficient and the two
numerosities being compared. Second, the values of the four
parameters from the diffusion model and the constant component
of the across-trial SD in drift rate are fixed across all 20 conditions.
There is no model freedom with which to alter a single parameter
to accommodate, for example, a miss in one data point.

The fit is also impressive in relation to the number of parameters
that would usually be used to fit the diffusion model to data, as
mentioned above. For Experiments 1 and 2, there would be 20
drift-rate parameters and possibly 20 parameters for across-trial
SD in drift rates (because the SD in drift rates increases with

numerosity to fit the data). Integrating the linear model with the
diffusion model reduces this to 2 drift-rate coefficients and 2 SD
coefficients, the constant SD coefficient (�0) and the coefficient
that specifies how the SD changes with numerosity (�1).

The log model completely and qualitatively misses the de-
creases in RTs with decreasing accuracy. It does, however, pro-
duce predictions that go through the middles of the quantile-
probability functions and so the G2 value is not markedly different
from that for the linear model.

For Experiment 2, the results were the opposite: The log model
fit the data well, the linear model did not, and the functions in
Figure 7 show the result that would be expected intuitively: as
accuracy decreased, RTs increased. The results are also different
from Experiment 1 in that the quantile data from the equal-area
and proportional-area conditions fall on the same function (if they
were plotted together) as they do for the means in Figure 5. The fit
of the log model to the data was good: It produced predicted values
that match the quantile-probability functions with the mean G2

value a little above the critical value, 246.0. The number of
parameters, the number of conditions, and the number of df were
the same as for Experiment 1. There was one drift-rate coefficient
for the 10 equal-area conditions, one for the 10 proportional-area
conditions, the four diffusion-model parameters, the constant com-
ponent of the SD in drift-rate across trials, and two parameters for
the SD coefficients. The linear model missed the data qualitatively
but its predictions go through the middles of the quantile-
probability functions and so its G2 value is not a great deal larger
than that of the log model. For individuals, G2 values were lower
for the log model for 10 out of 16 subjects and the slope of the RT
versus overall numerosity function for differences of 5 was greater
than 0 for 21 out of 32 comparisons (equal and proportional area
for 32 subjects). Both of these support the log model for individual
subject data, but not as strongly as the linear model is supported for

Table 2
Diffusion Model Parameters

Experiment and task Model a Ter �0 10�1 sz st z

1, B/Y Linear .114 .446 .010 .066 .083 .266 a/2
1, B/Y Log .103 .425 .038 .021 .043 .254 a/2
2, L/R Linear .098 .398 .032 .071 .073 .237 a/2
2, L/R Log .092 .390 .152 .005 .057 .224 a/2
3, Y25 Linear .102 .386 .026 .027 .076 .203 .054
3, Y25 Log .093 .389 .022 .002 .064 .215 .052
4, B/Y Linear .113 .421 .027 .078 .087 .235 a/2
4, B/Y Log .103 .406 .024 .045 .055 .227 a/2
5, Y25 Linear .098 .419 .028 .038 .068 .201 .045
5, Y25 Log .091 .412 .030 .012 .049 .199 .040
6, Y25 Linear .109 .433 .027 .038 .066 .222 .059
6, Y25 Log .102 .427 .037 .017 .051 .220 .058
6, B/Y Linear .111 .485 .030 .053 .064 .297 a/2
6, B/Y Log .108 .481 .053 .020 .058 .291 a/2
7, B/Y Linear .107 .403 .019 .063 .061 .220 a/2
7, B/Y Log .109 .413 .069 .050 .077 .227 a/2
7, X/O Linear .099 .425 .037 .035 .072 .235 a/2
7, X/O Log .099 .427 .033 .036 .073 .236 a/2
8, asterisks Linear .121 .409 .068 .019 .090 .185 a/2
8, asterisks Log .113 .396 .039 .012 .065 .171 a/2
8, X/O Linear .129 .431 .015 .052 .059 .203 a/2
8, X/O Log .129 .429 .009 .052 .069 .199 a/2
10, Y25 Linear .105 .364 .036 .024 .080 .177 .054
10, Y25 Log .096 .357 .033 .005 .047 .191 .051
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Experiment 1. The results for Experiment 2 are consistent with
those obtained for a side-by-side task by Park and Starns (2015).
They found that, for constant differences in numerosity, as overall
numerosity increased (12/9 vs. 21/18 and 14/12 vs. 20/18), mean
RT increased (12 and 5 ms effects, respectively, supporting the log
model).

In fits of the standard model to other experimental paradigms,
across-trial variability in drift rate has been a free parameter that is
equated across conditions and its value typically varies between
.08 and .3. We report SD coefficient values (�1) and the constant
values (�0). The values of across-trial SD in drift rate can be
computed from these using the equation in Figure 2C. For com-
parison with other fits of the model to data in other articles, we
present values of � for Experiments 1 and 2 below. (Note that the
SD coefficients are labeled 10�1 because the values in the table are
multiplied by 10.) For Experiment 1, the smallest and largest
values of � are 0.13 and 0.36 (for the 15/10 and 40/35 numerosity
conditions) and for Experiment 2, the smallest and largest values
of � are 0.16 and 0.18. Thus, there are large differences in � for
Experiment 1 across conditions while for Experiment 2, the values
of � are almost constant across conditions.

Estimating the Contributions of
Confounding Variables

As mentioned above, research on numeracy has been concerned
with whether experimental results can be explained by numerosity
alone, without some confounding variable such as area, the length
of a line drawn around the dots, or their density (e.g., DeWind et

al., 2015; DeWind & Brannon, 2012; Feigenson et al., 2002;
Gebuis, Cohen Kadosh, & Gevers, 2016; Gebuis & Gevers, 2011;
Gebuis & Reynvoet, 2012a, 2012b, 2013; Leibovich, Katzin,
Harel, & Henik, 2016; Mix et al., 2002). Efforts to control for such
variables face the problem that controlling for one leaves another
confounded with numerosity.

Our results show that the ANS-diffusion models can provide a
way of measuring the effects of these variables. As Experiments 1
and 2 versus Experiment 3 (presented next) demonstrate, some
confounded variables affect performance for some tasks but not
others. In Experiments 1 and 2, the summed areas of the dots were
either equal or proportional to the number. To the extent that area
contributed to decisions, the drift-rate coefficient should be larger
for proportional-area conditions and, if it is, then the difference in
the equal- and proportional-area coefficients provides an estimate
of the relative contributions of area and numerosity. In Experiment
1, the difference in the drift-rate coefficients from the linear model
was 0.21 (means 0.37 minus 0.16), that is, the effect of area was
over double that for the equal-area condition. In Experiment 2, the
difference in the coefficients from the log model was 0.29 (1.07
minus 0.78) and so the effect of area was about 35% over the value
for the equal-area condition.

Our results argue against the notion that effects that have been
attributed to representations of numerosity can be explained in-
stead completely by nonnumerical cues (Gebuis, Gevers, &
Cohen-Kadosh, 2014; Tibber et al., 2013). For example, Gebuis
and Reynvoet (2013) argued that numerosity information is not
extracted automatically from visual stimuli in either an active task

Table 3
Diffusion Model Drift-Rate Coefficients and Individual Fit Measures

Experiment and task Model v1 v2 v3 v4 vc

Number
preferred

Number
slopes 	 0 G2 df

1, B/Y Linear .037 .016 13/16 28/32 261 212
1, B/Y Log .501 .225 3/16 287 212
2, L/R Linear .066 .048 6/16 11/32 303 212
2, L/R Log 1.067 .784 10/16 280 212
3, Y25 Linear .033 .033 .029 .030 �.004 13/16 301 252
3, Y25 Log .634 .629 .581 .571 �.029 3/16 312 252
4, B/Y Linear .030 .016 .040 .020 11/16 56/64 475 430
4, B/Y Log .436 .229 .566 .268 5/16 494 430
5, Y25 Linear .032 .030 .037 .035 �.032 12/16 328 252
5, Y25 Log .559 .531 .643 .592 �.050 4/16 348 252
6, Y25 Linear .033 �.045 15/35 95 57
6, Y25 Log .607 �.071 20/35 98 57
6, B/Y Linear .015 21/35 32/35 136 103
6, B/Y Log .275 14/35 138 103
7, B/Y Linear .040 .025 24/32 90.6 58
7, B/Y Log .534 .321 8/32 95.0 58
7, X/O Linear .031 16/32 43.2 26
7, X/O Log .386 16/32 42.6 26
8, asterisks Linear .015 24/32 41.2 37
8, asterisks Log .557 8/32 41.7 37
8, X/O Linear .029 24/32 45.4 37
8, X/O Log .355 8/32 47.6 37
10, Y25 Linear .035 .033 .036 .036 �.041 10/15 338 252
10, Y25 Log .627 .608 .638 .628 �.069 5/15 342 252

Note. For Experiments 1, 2, and 7, v1 proportional area, v2 equal area. For Experiments 3 and 5, v1 small dots few distractors, v2 small dots many
distractors, v3 large dots few distractors, v4 large dots many distractors. For Experiment 4, v1 small dots proportional area, v2 small dots equal area, v3 large
dots proportional area, v4 large dots equal area. For Experiment 10, v1 random arrangement proportional area, v2 random arrangement equal area, v3 grid
arrangement proportional area, and v4 grid arrangement equal area.
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(subjects had to monitor numerosity and occasionally make a
judgment) or a passive task (subjects viewed sequences of arrays
of dots and neurophysiological measures were collected).

DeWind et al. (2015) have recently proposed a different method
for measuring the effects of confounding variables. They used a
linear combination of the logs of the ratios of the differences in
independent variables between two sets of stimuli (e.g., their areas,
numerosities, etc.) to produce a decision variable (cf., signal
strength in signal detection theory). The inverse z transformation
of this combination was used to predict accuracy and the coeffi-
cients of the linear combination were used as estimates of the
contributions of the independent variables. However, this method
is only about accuracy, not RTs. Ratcliff (2014) found that
z-transforms of accuracy can sometimes match drift rates, but
whether that applies with DeWind et al.’s method and for numer-
osity discrimination tasks will require further research.

Why Does the Linear Model Produce Shorter RTs as
Accuracy Decreases?

To illustrate, we use the simple case for which the boundaries of
the diffusion process are equidistant from the starting point (al-

though the logic is the same if they are not equidistant). Inciden-
tally, with equidistant boundaries (Figure 8A), the correct and
error RT distributions for a single drift rate (i.e., no trial-to-trial
variability in starting point or drift rate) are identical except that
there is lower probability mass in the error distribution.

Figure 8B shows trial-to-trial variability in drift rate with two
normal distributions both centered on a drift rate of 0.1 (i.e., with
the same numerosity difference). The red solid function represents
a larger total numerosity, which has a larger SD, and the blue
dashed function represents a smaller total numerosity, which has a
smaller SD. For illustration, two values of drift rate were selected
from each function, at about plus and minus one SD, �0.05 and
0.25 for the larger numerosity and 0.05 and 0.15 for the smaller.

Figure 8C and D show the RT distributions for correct and error
responses from 8A, with the two values of v for the smaller
numerosity (7C) and the two values for the larger numerosity (7D).
For the smaller numerosity, the 0.15 and 0.05 drift rates produce
accuracy values of 0.86 and 0.65, respectively, which average to
0.76, and they produce RTs of 685 and 748 ms for correct re-
sponses that, when weighted by their probabilities (0.86 and 0.65),
average to 717 ms. For the larger numerosity, the 0.25 and �0.05

Figure 8. An illustration of how the predictions of the linear model arise. (A) Illustrates a single diffusion
process with a single drift rate (with no across trial variability in drift rate). Response time (RT) distributions for
correct and error responses are equal if the starting point is equidistant from the boundaries. (B) Shows
distributions of drift rate (across trials) for high total numerosity (wide red solid distribution) and low total
numerosity (narrow blue dashed distribution). To represent these distributions for illustration, two drift rates are
chosen (v1 and v2 and accuracy is the average of the two accuracy values and mean RT is a weighted sum of the
two RTs. (C) Shows the averages for the low-SD condition and (D) shows the averages for the high-SD condition
with the averages for correct responses shown in green. For completeness, error responses are also shown; note
that for boundaries equidistant from the starting point, for a single drift rate, correct and error RTs are the same.
See the online article for the color version of this figure.
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drift rates produce accuracy values of 0.95 and 0.35, which aver-
age to 0.65. They produce RTs of 616 and 748 ms for correct
responses that, when weighted by their probabilities (0.95 and
0.35), average to 652 ms. Thus, accuracy is lower for the larger
numerosity, 0.65, than the smaller, 0.76, and—the counterintuitive
result—RTs are shorter, 652 and 717 ms. The computations for
RTs for errors are shown at the bottom boundary in the figures.

To explain this more generally: when the distribution of drift
rates has a large SD, then drift rates in the left tail are negative.
They are slower than responses in the right tail but they have lower
probabilities of correct responses (because their drift rate is toward
the error boundary). This means that fast correct responses in the
right tail are weighted more heavily (there are more of them) than
slower responses in the left tail, which leads to overall faster
responses. As numerosity increases, the SD increases that leads to
the lower probability and faster responses.

There is an alternative hypothesis that has been suggested to
explain counterintuitive results similar to those obtained in
Experiment 1 but in different perceptual tasks. The assumption
is that within-trial variability increases with stimulus strength,
or in our case, numerosity (e.g., Donkin, Brown, & Heathcote,
2009; Smith & Ratcliff, 2009; Teodorescu, Moran, & Usher,
2016; Teodorescu & Usher, 2013; but see Voskuilen, Ratcliff,
& Teodorescu, 2017, who showed across-trial variability in
drift rate could explain such results in several perceptual tasks).
In the diffusion model, usually the variability in the accumu-
lation of information from the starting point to the boundaries is
constant across levels of difficulty. If within-trial variability
increases with numerosity, processes hit the boundaries faster
because of increased variability, which leads to the decrease in
RTs with decreasing accuracy. However, there is a major prob-
lem with this within-trial variability account: it cannot explain
why the decrease in RT with decreasing accuracy only occurs
for intermingled blue/yellow dot displays and not side-by-side
displays (and in the experiments described below, not for single
arrays matched against a standard). An increase in within-trial
variability with numerosity would be expected to be a general
property of numerosity decisions, not a property of a particular
stimulus configuration and task.

Experiment 3

In Experiment 1, accuracy decreased as difficulty increased and
RTs decreased. In this experiment, like Experiment 2, accuracy
decreased as difficulty increased and RTs increased. In Experi-
ments 1 and 2, the proportional-area conditions were easier than
the equal-area ones; in this experiment, performance was about the
same.

The stimuli were single arrays of intermingled blue and yellow
dots (Figure 4A). Subjects decided whether the number of yellow
dots (or the number of blue dots) was larger or smaller than 25; we
call this the Y25 task. There were three variables: the number of
dots for the target color (the dots to be compared to 25) was 10, 15,
20, 30, 35, or 40, there were either 15 or 35 dots of the other color,
and areas were either equal or proportional, for a total of 24
conditions, collapsing over whether the target color was blue or
yellow. The target color alternated from one block to the next.

Results

Table 4 shows accuracy and mean RTs. Correct responses for
10, 15, and 20 dots were combined with correct responses for 30,
35, and 40 dots and then averaged. The data show the standard
result that RTs increase as accuracy decreases. The data were not
collapsed over “large” responses to larger-than-25 stimuli and
“small” responses to smaller-than-25 stimuli because the two sets
of data were not symmetric.

ANOVA were conducted with two factors, area and the number
of nontarget dots. The data were averaged over the numerosity
conditions for these analyses. The difference in accuracy between
the equal- and proportional-area conditions were only 0.2% and
the difference in correct mean RTs was only 1 ms and neither was
significant, F(1, 15) � 1.0 for accuracy and F(1, 15) � 0.4 for
RTs. The differences in accuracy and correct mean RTs between
the two numbers of nontarget dots were small, 1.8% in accuracy
and 8 ms in RTs, but they were significant, F(1, 15) � 12.7, p 	
.05 for accuracy and F(1, 15) � 12.7, p 	 .05 for RTs. The
interactions were not significant, F(1, 15) � 0.1 and F(1, 15) � 1.2
for accuracy and RTs, respectively.

To fit the models, drift rates were calculated with the drift-rate
coefficient multiplying the difference between the number of tar-
get dots and 25 for the linear model and the difference between the
logs of the number of target dots and 25 for the log model. The SD
coefficient was also calculated using the number of target dots and
25.

Figure 9 shows the quantile-probability plots for the data and the
models’ predictions, with the x’s for the data and the o’s and lines
that connect them for the predictions. The top two panels are for
“large” responses and the bottom two are for “small” responses.
For each plot, there are 12 sets of quantile data points for correct
responses and 12 for errors, where the 12 are made up of the
combinations of the area variable, the number of nontarget dots,
and three numerosities, 10, 15, and 20 target dots for smaller
stimuli or 30, 35, and 40 dots for larger stimuli. The best-fitting
values of the parameters and mean G2 measures are shown in
Tables 2 and 3.

There were six numerosity values, two area conditions, and two
numbers of nontarget dots, giving 264 (24 times 11) df in the data.
There were 12 parameters, so the number of df for fitting the
models was 252. The 12 parameters were the usual four for the
diffusion model, the starting point of the diffusion process, a
drift-rate criterion, a drift-rate coefficient for each of the four
combinations of area and number of nontargets, and 2 SD coeffi-
cients (one constant and one specifying how the SD changes with
numerosity). A drift-rate criterion (this was subtracted from all the

Table 4
Experiment 3: Accuracy and Correct Mean RTs Collapsed Over
Stimulus Difficulty

Measure

15 nontarget dots 35 nontarget dots

Proportional
area

Equal
area

Proportional
area

Equal
area

Accuracy .856 .858 .837 .841
Mean RT 537 528 537 534

Note. RT � response time.
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drift rates produced from the expressions for drift rates in Figure
2C) was needed because some of the subjects did not set the zero
point of drift rate exactly at 25.

The mean G2 value was a little lower for the linear model than
for the log model and 13 out 16 G2 values for individual subjects
were smaller for the linear as opposed to the log model, thus,
supporting the linear model. However, the linear and log models fit
the data qualitatively about equally well. There were larger differ-
ences in accuracy for small stimuli than large stimuli and both
models predict this. Both models miss slightly the leading edges of
the RT distributions for “small” responses to small stimuli.

We conducted ANOVA on the drift-rate coefficients. The effect
of the area variable was not significant for either model, F(1,
15) � 1.5 and F(1, 15) � 1.2 for the linear and log models,
respectively; the effect of the number of nontargets was signifi-
cant, F(1, 15) � 27.1, p 	 .05, and F(1, 15) � 12.5, p 	 .05,
respectively; and the interactions were not significant (F(1, 15) �
1.3 and F(1, 15) � 0.1). The area variable had less than a 2% effect
and the difference between 15 and 35 nontarget dots was only
about 10%, notably small relative to the 100 and 30% effects of the
area variable on the drift-rate coefficient in Experiments 1 and 2,
respectively.

Comparison of Parameter Values for Experiments 1,
2, and 3

There were no large or systematic differences across the exper-
iments in the best-fitting values for the parameters of the diffusion
model. The distance between the boundaries was about the same
for the three experiments and nondecision time was a modest 50
ms longer for Experiment 1 than for Experiments 2 and 3. The
across-trial ranges in nondecision time and starting point were
similar across the experiments (note that they are estimated less

well than the other parameters with larger SD’s in their estimates;
Ratcliff & Childers, 2015; Ratcliff & Tuerlinckx, 2002).

Drift-rate coefficients can be compared within the linear or
within the log model across conditions of an experiment, but not
between them because the log and linear models place numerosity
on different scales. However, drift rates track difficulty in both
models and the relative sizes of the differences among conditions
can be used to understand how manipulations affected the quality
of encoded representations of stimuli. The main results were that
the area manipulation affected the drift-rate coefficients most in
the B/Y task, next in the L/R task, and almost not at all in the Y25
task. Proportional-area stimuli increased drift-rate coefficients by
100% for the B/Y task, 30% for the L/R task, and less than 10%
for the Y25 task.

SD coefficients can be also be compared. For Experiments 1 and
3, the SD coefficients for the linear model were 2.5 times larger for
the B/Y task than the Y25 task, t(28.5) � 4.4, p 	 .05. This
suggests that there is a lot more variability in extracting numeros-
ity information from two intermixed stimuli than extracting nu-
merosity information from one stimulus.

When the linear model was successful, the SDs in drift rate �
(derived from the SD coefficients) should have increased with
numerosity and they did, although only modestly: the minimum
and maximum values of � were 0.10 and 0.15 (compared with 0.13
and 0.36 for Experiment 1). When the log model was successful,
the SDs should have been approximately constant and they were:
constant at 0.03 (compared with 0.16 and 0.18 for Experiment 2).

Experiment 4

Experiments 4 and 5 are two of the experiments we conducted
to replicate results from the context of one set of independent
variables to another set. The task for Experiment 4 was the B/Y
task from Experiment 1: the arrays were intermingled blue and
yellow dots and subjects decided which had the greater number.
The new variable was dot size: the dots were either about the same
sizes as for Experiments 1, 2, and 3 or they were very small
(Figure 4G). The results replicated those of Experiment 1 for both
sizes: RTs decreased as accuracy decreased, the area variable
affected performance, and the linear model fit the data better than
the log model.

The stimuli for Experiment 4 were constructed in the same way
as for Experiment 1 except for the manipulation of dot size. The
manipulation of area was the same as for Experiment 1 and the
numeracy conditions were the same, 15/10, 20/15, 25/20, 30/25,
40/35, 20/10, 30/20, 40/30, 30/10, and 40/20. The radii of the dots
were either 8, 10, 12, 14, 16, or 18 pixels or 2, 3, 4, 5, 6, or 7
pixels.

RT and Accuracy Results

Responses to blue dots were combined with responses to yellow
dots in the appropriate way. The effects of size and the area
variable averaged over numerosity are shown in Table 5. Re-
sponses were less accurate and slower for the equal-area condi-
tions than the proportional-area conditions, F(1, 15) � 124.4, p 	
.05, for accuracy and F(1, 15) � 74.2, p 	 .05, for RTs. They were
less accurate and slower for the small dots than the regular-sized
ones, F(1, 15) � 45.3, p 	 .05, for accuracy and F(1, 15) � 9.1,

Figure 9. Quantile-probability plots for Experiment 3 for the log and
linear models for “large” and “small” responses separately. See the online
article for the color version of this figure.
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p 	 .05, for RTs. The interactions were also significant, F(1, 15) �
6.9, p 	 .05, for accuracy and F(1, 15) � 13.7, p 	 .05), for RTs.
The effects of area on accuracy and RTs were larger than those of
dot size, 11 and 4%, respectively, for accuracy and 29 and 15 ms,
respectively, for RTs.

Figure 10 shows quantile-probability plots for small dot sizes on
the left panel and the larger ones on the right, x’s the data and o’s
the predictions of the linear model. Difficulty increased from the
ends of the functions toward the middle and accuracy and RTs
decreased, replicating Experiment 1. Fits of the models to the data
are described after Experiment 5.

Experiment 5

This experiment was a replication of the Y25 task from Exper-
iment 3 with the added manipulation of dot size. Blue and yellow
dots were intermingled in single arrays and subjects decided
whether the number of dots of one of the colors was larger or
smaller than 25. There were 10, 15, 20, 30, 35, or 40 of the
target-color dots in each array, 15 or 35 dots of the other color, and
the summed areas of the dots were equal or proportional. The sizes
of the small and regular-sized dots were the same as for Experi-
ment 4.

Results

Table 6 shows the data for correct responses collapsed over the
three numbers of dots smaller than 25 and the three numbers of
dots larger than 25. As difficulty increased from the ends of the
functions toward the middle, accuracy decreased and RTs in-
creased, replicating Experiment 3.

The areas of the dots did not significantly affect accuracy or
mean correct RTs (Fs less than 0.8). The number of nontarget dots
did not significantly affect accuracy, F(1, 15) � 0.8, but it did
significantly affect RTs, F(1, 15) � 8.9, p 	 .05, although the
effect was only 7 ms. The size of the dots had a significant effect
on accuracy, about 2%, F(1, 15) � 16.6, p 	 .05, and on RTs,
about 10 ms, F(1, 15) � 20.7. The interactions were not signifi-
cant; Fs were less than 2.4 for accuracy and less than 2.2 for RTs.

Figure 10 shows quantile-probability plots for the larger and
smaller dot sizes all in the same plot, x’s the data and o’s the
predictions of the linear model (the log model predictions were
indistinguishable). As difficulty increased from the ends of the
functions toward the middle, accuracy and RTs decreased, repli-
cating Experiment 3.

Fitting the Models to the Data for Experiments 4 and 5

Tables 2 and 3 show the best-fitting parameter and mean G2

values and Figure 10 shows the quantile-probability plots with
predictions from the linear model. The shapes of the plots are the
same as those for Experiments 1 and Experiment 3. The log model
failed to fit the data for Experiment 4, as it did for Experiment 1,
and it fit the data about as well as the linear model for Experiment
5, as it did for Experiment 3.

For Experiment 4, as difficulty increased and accuracy de-
creased, RTs decreased for differences in numerosity of 5, the
effect was smaller for differences of 10, and the functions flattened
out for differences of 20, the same pattern as for Experiment 1.

To fit the linear model to the data, there were the usual four
parameters for the diffusion model plus the constant component of

Figure 10. Quantile-probability plots for Experiments 4 and 5. For Ex-
periment 4, the inner functions are for equal-area conditions, the outer
functions for proportional-area conditions. See the online article for the
color version of this figure.

Table 5
Experiment 4: Accuracy and Correct Mean RT Collapsed Over
Stimulus Difficulty

Measure

Small-size dots Large-size dots

Proportional
area

Equal
area

Proportional
area

Equal
area

Accuracy .751 .652 .809 .682
Mean RT 578 600 557 592

Note. RT � response time.

T
hi

s
do

cu
m

en
t

is
co

py
ri

gh
te

d
by

th
e

A
m

er
ic

an
Ps

yc
ho

lo
gi

ca
l

A
ss

oc
ia

tio
n

or
on

e
of

its
al

lie
d

pu
bl

is
he

rs
.

T
hi

s
ar

tic
le

is
in

te
nd

ed
so

le
ly

fo
r

th
e

pe
rs

on
al

us
e

of
th

e
in

di
vi

du
al

us
er

an
d

is
no

t
to

be
di

ss
em

in
at

ed
br

oa
dl

y.

198 RATCLIFF AND MCKOON



the across-trial SD in drift rate, four drift-rate coefficients, one for
each of the area by dot-size conditions, and the SD coefficient.
There were 430 df (11 Times 40 conditions minus the 10 param-
eters) for a critical �2 of 479.3. The mean G2 value was 474, a little
below the critical value.

The linear model separated the effects of confounded variables,
as it did for Experiments 1, 2, and 3, by estimating the relative
sizes of them in the drift-rate coefficients. For Experiment 4, for
the linear model, the area manipulation doubled the drift-rate
coefficient, from 0.018 for equal areas to 0.035 for proportional
areas, F(1, 15) � 101.8, p 	 .05 and the dot-size manipulation had
a 30% effect, the drift-rate coefficient was 0.023 for small dots and
0.030 for regular-size dots, F(1, 15) � 61.2, p 	 .05. The inter-
action was also significant, F(1, 15) � 10.2, p 	 .05. These
drift-rate coefficients provide measures of the effects of the ma-
nipulations and dot size on numerosity discrimination. Although
there is an interaction, the effects of the two variables appear to be
proportional or multiplicative rather than additive (see Table 3).

For individuals, G2 values were lower for the linear model for
11 out of 16 subjects and the slope of the RT versus overall
numerosity function for differences of 5 was less than 0 for 56 out
of 64 comparisons (equal and proportional area crossed with dot
size for 16 subjects). Both of these support the linear model for
individual subject data.

For Experiment 5, dividing the data by the two area conditions,
the number of nontarget dots and dot size gave too few errors for
many of the high-accuracy conditions (i.e., less than the 5 needed
to produce error RT quantiles). Furthermore, the differences be-
tween the equal- and proportional-area conditions were only 0.2%
in accuracy and 2 ms in mean RT, so we combined the two
conditions. This reduced the number of conditions to 24. There
were the usual four parameters for the diffusion model, the con-
stant component of the across-trial SD in drift rate, the coefficient
for across-trial SD in drift rate, a drift-rate criterion (because
subjects did not set the zero point of drift exactly at 25), the
starting point of the diffusion process, and four drift-rate coeffi-
cients. Note that the drift-rate criterion for the linear model in
Experiment 5 seems large relative to the drift-rate coefficients, but
the drift rates are derived from the coefficients by multiplying
them by the number of dots minus 25 (so the drift rates for the
coefficient 0.032 in Table 3 are 0.16, 0.32, and 0.48 that are larger
than the drift rate criterion of �0.032). There were 252 df (11
times 24 conditions minus 12 parameters) and the critical value
was 290.0. The mean G2 from the fits to the data was a little larger
than this, 328, showing a good fit to the data. For individuals, G2

values were lower for the linear model for 12 out of 16 subjects
that supports the linear model for individual subject data.

The effects of the confounded variables were small. The effect
of the number of nontarget dots, 0.035 versus 0.033 for 15 non-
target dots compared with 35, was significant, F(1, 15) � 4.2, p 	
.05 but the size was only 6%, which is comparable with the 10%
effect in Experiment 3. The effect of the size of the dots was also
significant, F(1, 15) � 28.8, p 	 .05, but the effect was not large,
about a 15% effect, with the drift-rate coefficient for large stimuli
0.036 and the coefficient for small stimuli 0.031. The interaction
was not significant, F(1, 15) � 0.6.

The results of the area manipulation for Experiments 4 and 5
replicated the effects of the confounded variables in Experiments
1 and 3. For the B/Y task (Experiment 4), the area conditions had
large effects on accuracy, RTs, and drift-rate coefficients but for
the Y25 task (Experiment 5), area had nonmeasurable effects.

The SD coefficients differed significantly between the two ex-
periments, with the coefficient for Experiment 4 larger than the
one for Experiment 5, t(23.4) � 3.4, p 	 .05. As for Experiments
1 and 3, this is likely because extracting information about the
relative number of two stimuli from an intermingled array pro-
duces more variability than comparing one array to a standard. The
SD coefficients are used to produce across-trial SDs in drift rate
(�) using the numerosity values for each condition in the experi-
ments (using the equation in Figure 2C). For linear models, for
Experiment 4, the smallest value was 0.17 and the largest 0.44 and
for Experiment 5, the smallest was 0.13 and the largest 0.21. These
results are similar to those from Experiments 1 and 3.

The other model parameters were similar to those from Exper-
iments 1 and 3, respectively. The values of boundary separation
and nondecision time differed little between Experiments 4 and 5
and, although the differences in the range of starting point and the
range in nondecision time appear larger, the large variability
associated with those parameters means that they do not differ in
a meaningful way.

Correlational/Individual Differences Analyses

Experiments 1 through 5 have shown that numerosity discrim-
inations are not based on exactly the same aspects of stimuli across
tasks. When the task was to compare the numerosity of blue and
yellow dots intermingled in a single array (the B/Y task) or dots of
the same color in two side-by-side arrays (the L/R task), area and
dot size had large effects on performance; discrimination was
easier for proportional- than equal-areas and easier for larger dots
than smaller ones. However, when the task was to compare the
numerosity of one array of dots against a standard (the Y25 task),
area and dot size had small or nonexistent effects.

Table 6
Experiment 5: Accuracy and Correct Mean RT Collapsed Over Stimulus Difficulty

Measure Area

Small-size dots Large-size dots

15 nontarget dots 35 nontarget dots 15 nontarget dots 35 nontarget dots

Accuracy Proportional .827 .813 .835 .840
Equal .821 .813 .847 .840

Mean RT Proportional 558 566 544 556
Equal 555 561 548 551

Note. RT � response time.
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The findings just enumerated are complex and this brings up
two questions: are the numerosity skills an individual brings to a
numerosity discrimination task the same from one level of a
dimension to another and are they the same from one task to
another?

Within a task, for Experiments 1 and 2, there were two levels of
the area variable. The correlations between subjects’ drift-rate
coefficients for the equal- and proportional-area conditions were
high, 0.83 in Experiment 1 and 0.85 in Experiment 2. For Exper-
iment 3, there were two dimensions, area and number of nontarget
dots, each with two levels, giving six correlations; the average of
them was 0.93. For Experiment 4, the dimensions were area and
dot size and the average of the six correlations was 0.97. For
Experiment 5, the dimensions were area, dot size, and number of
nontarget dots. Collapsing over area, the average of the six pairs of
correlations was 0.88. Altogether, these correlations show that
subjects who were good at one level of a dimension or combina-
tion of dimensions were good at the others, indicating that the
numerosity skills that a subject used were about the same for all
the conditions in the experiments.

The second question was whether the B/Y, L/R, and Y25 tasks
assess the same numerosity abilities, in other words, are drift-rate
coefficients highly correlated across tasks? These are critical ques-
tions for research in numerical cognition; if the skills an individual
brings to one numerosity discrimination task are not correlated
with those of another task, then choices about what tasks to use to
measure and investigate the abilities that might underlie math
achievement are compromised. It would be difficult to argue that
numerosity in general is predictive of or related to achievement.
We addressed this issue with Experiments 6 through 9, for which
subjects were each tested on two or more tasks.

Experiment 6

Subjects were tested on the B/Y task, deciding whether there
were more blue or yellow dots in a single array and the Y25 task,
deciding whether the number of blue dots or the number of yellow
dots in a single array was larger or smaller than 25. The two tasks
were tested in a single 50-min. session so to keep the number of
observations per condition large, only equal-area arrays were used.

For the B/Y task, there were the same 10 numerosity conditions
as for Experiment 1, which varied levels of numerosity and dif-
ferences between the levels. For the Y25 task, there were the same
six levels of numerosity and the same two numbers of nontarget
dots, 15 and 35 as for Experiment 3. Which task was presented
first alternated across subjects.

Results

Responses to blue dots were combined with responses to yellow
dots in the appropriate way for the B/Y task. For analyses for the
Y25 task, there was only a 2.5% difference in accuracy and only
a 3 ms difference in correct mean RTs between the 15 and 35
numbers of nontarget dots, so the data were averaged over them to
give more observations (because in many of the conditions there
were too few errors to provide quantile RTs for fitting).

Figure 11, left panel, shows the quantile-probability plots for the
B/Y task and the predictions of the linear model: RTs decrease as
accuracy decreases for constant differences in numerosity just as

in Experiments 1 and 4. The right panel shows the quantile-
probability plots for the Y25 task and the predictions of the linear
model: RTs increase as accuracy decreases, just as in Experiments
3 and 5. The best-fitting parameter values and the mean G2 values
are shown in Tables 2 and 3.

The linear model fit the data reasonably well for both tasks. For
the B/Y task, the number of df was 103 (10 conditions and seven
model parameters, boundary distance, across-trial range in starting
point, nondecision time, across-trial range in nondecision time, the
constant component of the SD coefficient, the SD coefficient, and
a drift-rate coefficient, Tables 2 and 3). The critical �2 value was
132.1 and the mean G2 value was a little larger than this, showing
a good fit to the data. For the Y25 task, the number of df was 57
(six conditions and nine parameters, the same six parameters that
were listed first for the B/Y task plus a drift-rate criterion, the
starting point of the diffusion process, z, and one drift-rate coef-
ficient). The critical chi-square value was 75.6. The mean G2 value
was a little larger than the critical value, showing reasonable fits.

The log model also fit both tasks reasonably well, and the
numerical mean G2 value was only a little larger for the log model
than the linear model. For the B/Y task, G2 values were lower for
the linear model than the log model for 21 out of 35 subjects and
the slope of the RT versus overall numerosity function for differ-
ences of 5 was less than 0 for 32 out of 35 comparisons. This
shows that the overall fit was quite similar for the two models, but

Figure 11. Quantile-probability plots for Experiment 6. See the online
article for the color version of this figure.
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the qualitative pattern of data (decreasing RT with increasing
numerosity function for differences of 5) clearly supported the
linear model. For the Y25 task, G2 values were lower for the linear
model for 15 out of 35 subjects, which shows similar amounts of
support for both models.

Figure 12 shows scatter plots and correlations among the dis-
tance between the boundaries, a, nondecision time, Ter, the SD
coefficient, �1, and the drift-rate coefficient v1 for the two tasks.
The critical value of the correlation coefficient for 32 observations
(32 subjects) is 0.35 with 30 df.

The main aim of this experiment was to examine whether a
subject brought the same numerosity skills to the two tasks. Skill
is measured by the drift-rate coefficient, v1, and it was significantly
correlated between the two tasks (top left panel of Figure 12). The
SD coefficients were also significantly correlated (top right panel).
The distances between the boundaries correlated strongly (bottom
left panel); subjects who responded more slowly and more care-
fully in one task also did so in the other task. Nondecision times
were significantly correlated but less strongly (Figure 12, bottom
right panel), although the small correlation might be because of
outliers (the correlation was larger in Experiments 7, 8, and 9).

Experiment 7

Subjects were tested on two tasks. One was the B/Y task from
Experiments 1, 4, and 6. The other was new: the stimuli were 5 �
5 arrays of X’s and O’s and subjects decided whether there were
more X’s or O’s (we call this the X/O task). The total number of
X’s and O’s was always 25 (Figure 4E). To make the two tasks as
similar as possible, we made the number of dots in the B/Y task
sum to 25 and we made the combinations of the numbers of blue
and yellow dots match the combinations of X’s and O’s. The
combinations were 18/7 and 7/18 for the easiest conditions, 16/9

and 9/16 for the medium difficulty conditions, and 14/11 and 11/14
for the most difficult conditions. For the dots, the areas were either
equal or proportional.

In this experiment, the differences in numerosity were not
constant as numerosity increased as they were in Experiment 1
(e.g., the differences between 10 and 15, 15 and 20, and 20 and 25
were all 5). This excluded the conditions that led to Experiment 1’s
counterintuitive result. Thus, the linear and log models both fit the
data reasonably well and so we examined correlations between
model parameters for the two tasks for both models.

The two tasks were tested in a single 50-min. session. All the
blocks of one task were completed before all the blocks of
the other task and the order was switched for successive subjects.
The X’s and O’s were white characters on a black background (the
inverse of Figure 4E), presented in a square that was 235 pixels per
side (6.3 degrees of visual angle) in the center of the screen. The
X’s were 30 pixels wide and 35 pixels high and the O’s were 33
pixels wide and 35 pixels high (subtending angles of 0.81 � 0.95
degrees and 0.89 � 0.95 degrees, respectively). The X’s and O’s
were spaced 50 pixels apart vertically and horizontally.

Results

The data for “blue” and “yellow” responses were symmetric and
so were “X” and “O” responses, so they were each combined in the
appropriate way (e.g., correct responses for X’s for the easy
condition were combined with correct responses for O’s for the
easy condition, error responses for X’s for the easy condition were
combined with error responses for O’s for the easy condition, and
so on, for the other conditions). The linear and log models both fit
the data well and we plot results only for the linear one (parameter
values for both are shown in Tables 2 and 3). The quantile-
probability plots for the linear model are shown in Figure 13. They
show that the quantile RTs for all the conditions for each experi-
ment fall on a single quantile-probability function.

For the B/Y task, accuracy averaged over the numerosity con-
ditions was better with proportional than equal areas, 0.83 and 0.74
correct responses, and mean RT for correct responses was shorter
(569 and 604 ms). The differences were significant, t(31) � 13.4,
p 	 .05, for accuracy and t(31) � 8.7, p 	 .05, for mean RT. For
the X/O task, accuracy averaged over the numerosity conditions
was 0.77 correct responses and correct mean RT averaged over the
numerosity conditions was 585 ms, thus the two tasks showed
comparable performance. (Median RTs and accuracy values can be
read off the quantile probability plots in Figure 13—median RTs
are the middle one of the five horizontal lines).

There were 58 df for the B/Y task (six conditions and eight
parameters, boundary separation, across-trial range in starting
point, nondecision time, across-trial range in nondecision time, the
constant component of the SD coefficient, the SD coefficient, and
two drift-rate coefficients, one for the equal-area conditions and
one for the proportional-area ones. Because the data were sym-
metric, the starting points in the models could be set to half the
distance between the boundaries. Similarly, there were 26 df for
the X/O task (three conditions and seven parameters). The critical
�2 value was 76.8 for the B/Y task and 38.0 for the X/O task. The
mean G2 values for both tasks were a little higher than their critical
values, showing reasonably good fits, and the G2 values for the
B/Y task supported the linear model, but the G2 values for

Figure 12. Scatter plots and correlation coefficients for the ANS-
diffusion model parameters between the B/Y discrimination task and the
Y25 task in Experiment 6.
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the linear and log models for the X/O task were close to the same
(see Table 3). The two drift-rate coefficients for the B/Y task were
significantly different, t(31) � 15.1, p 	 .05, for the linear model
and t(31) � 13.1, p 	 .05, for the log model (as for Experiment 1).

For the B/Y task for individuals, G2 values were lower for the
linear model for 24 out of 32 subjects while for the X/O task, there
were equal numbers for each model (16 out of 32). These provide
support for the linear model for individual subject data but no
differential support for the X/O task.

The correlations between the model parameters for the two tasks
are shown in Table 7. The critical value for the correlation coef-
ficient is 0.35 with 30 df. The drift-rate coefficients were signifi-
cantly correlated between the two tasks, indicating that common
numerosity skills are used. The distance between the boundaries
and nondecision time were also significantly correlated (as in
Experiment 6).

The SD coefficient �1 was not significantly correlated between
the tasks (unlike Experiment 6). This is because the value of the
across-trial SD in drift rate differed little across numerosity con-
ditions and so produced little constraint on the value of �1. The SD
coefficient produces the values of the SD in drift rate across trials,

�, for each condition in an experiment using the coefficients and
the numerosities for the two stimuli as in the bottom equation in
Figure 2C. The numbers of blue and yellow dots and of X’s and
O’s were 18 and 7, 16 and 9, or 14 and 11. The values of � for the
linear model for the X/O task were 0.101, 0.103, and 0.106 and for
the B/Y task they were 0.131, 0.134, and 0.141. These are indis-
tinguishable from constant values that, along with high estimation
variability (Ratcliff & Tuerlinckx, 2002), means that they are
relatively poorly estimated and this explains why they do not
correlate significantly across the tasks.

The most important result from this is that the drift coefficients,
boundary settings, and nondecision time parameters correlate
across these two tasks. This suggests that processes and represen-
tation are related across tasks and especially that the two tasks are
tapping into the same numerosity aptitude. Later we discuss a way
of manipulating many possible confounding variables and estimat-
ing drift rate coefficients for each variable to see which ones carry
discriminative power.

Experiment 8

One of the tasks for this experiment was an X/O task like that
used in Experiment 7, with subjects deciding whether there were
more X’s or O’s in a 5 � 5 display. The other task was an asterisks
task, with subjects deciding whether the number of asterisks in a
10 � 10 array was larger than 50 or not.

We have used this asterisks task in a number of other studies
because it provides a way to map accuracy from near chance to
near ceiling. This range of accuracy and RT distributions for
correct and error responses provides significant constraints with
which to test the diffusion model (Leite & Ratcliff, 2011; Ratcliff,
2006, 2014; Ratcliff et al., 1999, 2001, 2007, 2010, 2012, 2015,
2016). Drift rates for this task correlate positively with drift rates
for recognition memory and lexical decision tasks (Ratcliff et al.,
2010), suggesting future research to investigate whether other
numerosity discrimination tasks produce correlations with those
tasks. Significant correlations have also been found with symbolic
number discrimination and memory for numbers (Ratcliff, Thomp-
son, & McKoon, 2015; Thompson, Ratcliff, & McKoon, 2016).

When the diffusion model has been fit to the data for this
asterisks task, there has been no representation model and so drift
rates are estimated from the data with a different drift rate for each
level of numerosity (e.g., Ratcliff, 2014; Ratcliff, Thompson, &
McKoon, 2015). In these earlier applications, it has been assumed
that the SD in drift rate across trials (�) is constant. When drift
rates were plotted against number of asterisks, the functions ap-
peared linear (Ratcliff, 2014; Figure 2). This is a puzzle because in
ANS models, the difference in drift rates between 15 and 20
asterisks would be expected to be larger than the difference be-

Table 7
Experiment 7, Correlations Between and Within Tasks

B/Y vs. X/O B/Y

Model a Ter sz st �1

(v1 � v2)
vs. v1 v1 vs. v2

Linear .68 .71 �.05 .49 �.13 .71 .72
Log .60 .71 .43 .49 .15 .58 .90

Figure 13. Quantile-probability plots for Experiments 7, 8, and 10. See
the online article for the color version of this figure.
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tween 80 and 85, just as the difference between 15 and 20 dots was
larger than the difference between 30 and 35 dots in the Y25 task
in Experiment 3. For the Y25 task, the linear model fit well, but it
required that � increase with numerosity.

There are two possible resolutions to this puzzle. One is that
subjects treat the asterisks task not as one in which the number of
asterisks is compared to a standard (50), but instead as one in
which the number of asterisks in a display is compared to the
number of blank spaces. This makes the task like the B/Y and L/R
tasks. The second is that the arrangement of asterisks in a regular
grid with all characters of the same size may allow a much better
assessment of numerosity relative to a criterion than dots of
random sizes in random positions. The difference between these
two schemes is what enters the calculation of �. In the first
scheme, N2 � 100 � N1 whereas in the second N2 � 50.

When the range of asterisks is 31–70, the means of the extreme
bins are 33 and 68. For N1 � 33, 50, and 68 asterisks, the value of
sqrt(N1

2 � N2
2) for the first scheme is 75, 71, and 75, while for the

second it is 60, 71, and 84. If the constant �0 were half the average
value of �, then the differences in � across conditions would be
quite small and impossible to detect.

If subjects are judging whether there are more or fewer spaces
or asterisks then we can use the linear model as implemented for
the X/O task in Experiment 7. Thus, we can determine whether the
models fit in the same way for the two tasks and to determine if
individual differences are the same across the two tasks.

The asterisks were presented in 10 � 10 arrays 4.0 cm wide �
8.8 cm high, subtending 4.3 � 9.5 degrees of visual angle. The
numbers of asterisks in the displays ranged from 31 to 70 in steps
of 1 (the number of blanks and asterisks always add to 100). The
displays of X’s and O’s were constructed in the same way (not the
same as in Experiment 7) such that the size and visual angles were
half of those for the asterisks stimuli. The numbers of X’s and O’s
ranged from 5 to 20 in steps of 1, always adding to 25. All the
blocks of one task were completed before all the blocks of the
other task and the order of the tasks was switched for successive
subjects.

Results

We grouped the number of asterisks into eight conditions,
31–35, 36–40, . . . 66–70 and the number of X’s and O’s into eight
conditions, 5–6 X’s and 19–20 O’s, 7–8 X’s and 17–18 O’s, and
so on. Responses were symmetric for both experiments, so the data
were also grouped over above or below 50 and above or below
12.5 in the appropriate way to form four conditions. (For the
asterisks task, the accuracy values for the four groups for small
stimuli were 0.93, 0.88, 0.80, and 0.58 and for large stimuli, the
values were 0.92, 0.88, 0.81, and 0.61 that shows no accuracy
compression for large numbers of asterisks and shows why com-
bining small and large numbers is valid). Full psychometric func-
tions for this task are examined in Experiment 9 and the Weber
fraction analysis later.

To compare the tasks, for the asterisks task we assumed that
subjects were deciding whether an array of asterisks contained
more asterisks or more blank spaces (i.e., not comparing the
number of asterisks to 50), just the same as deciding whether there
were more X’s or O’s. This means that N1/N2 were 32/68, 37/63,

42/58, and 47/53. (We also fit the scheme in which N2 � 50 and
found fits and parameter values that were almost identical.)

The linear and log models were applied in the same way as in
Experiment 7 with the same parameters (shown in Tables 2 and 3)
and they fit the data indistinguishably well, as in Experiment 7.
The quantile-probability plots are shown in Figure 8 (middle) with
the predictions of the linear model. There were 44 df (four condi-
tions and the same seven parameters as for Experiment 6) with a
critical �2 value of 52.5 for both tasks. The mean G2 from the fits
were below the critical value for each model and task, showing
good fits. There was support for the linear model in individual fits
with 24/32 subjects better fit by the linear model by G2 (the mean
G2s were quite similar for the log and linear models; Table 3).

The application of the models used the assumption that the
numbers of asterisks and spaces (just like the numbers of X’s and
O’s in the X/O task) enter the computation for the SD in drift rate
across trials. We can compute how much � changes across con-
ditions using the expression in Figure 2C. For the middle and the
most extreme numbers of asterisks, 50 and 70, � is 0.20 and 0.21,
which means that the SD in drift rate across trials in the model for
the hardest to the easiest condition was essentially constant. This
is consistent with all the prior applications of the diffusion model
to this task for which it was always assumed that � was a constant
across conditions.

The correlations between the tasks for the linear and log models
are shown in Table 8. The drift-rate coefficients correlated across
tasks (0.52 and 0.60), as they did for Experiments 6 and 7. There
were strong correlations between the boundary separations (0.55
and 0.54) and the nondecision times (0.72 and 0.67) for the linear and
log models, respectively. The SD coefficients correlated 0.35 and
�0.12. As for Experiment 7 and as discussed above, the data are
fit with approximately constant values of across-trial SD in drift
rate and this explains the lack of correlation between the SD
parameters.

As for Experiment 7, the drift coefficients, boundary settings,
and nondecision time parameters correlated across the two tasks.
This suggests that processes and representation are related across
tasks and that the two tasks are tapping into the same numerosity
aptitude.

Experiment 9

At this point, we have shown significant correlations in drift-rate
coefficients from one task to another for three pairs of tasks. In this
experiment, we confirm and extend these results by testing each
subject on four tasks, the B/Y, Y25, L/R, and asterisks tasks. These
were the tasks from Experiments 1, 2, 3, and 8.

There were two sessions of the experiment, each with two tasks,
25 min each, always tested in the same order (B/Y, Y25, L/R, and

Table 8
Experiment 8, Correlations Between and Within Tasks

Asterisks vs. X/O

Model a Ter sz st �1 v1

Linear .55 .72 .27 .47 .35 .52
Log .54 .67 .12 .53 �.12 .60
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asterisks). The independent variables for the B/Y and L/R tasks
were the 10 numerosity combinations from Experiments 1 and 2
and for the Y25 task they were the six numerosity conditions from
Experiment 3. The areas of the dots were always equal (to produce
more observations per condition because there was only half a
session for each task). The asterisks task was the same as for
Experiment 8 except that the range of the numbers of asterisks was
reduced to between 36 and 65. For each experiment, we collapsed
across conditions in the same way as for the previous experiments,
giving 10 conditions for the B/Y and L/R tasks and 6 for the Y25
and asterisks tasks.

Results

The linear and log models were fit to the data and the one that
best fit the data for each task was the same as for the earlier
experiments. These best-fitting models were used in the correla-
tional analyses below.

The B/Y task showed the decrease in RT as accuracy decreased
(Figure 14; Table 9) and the linear but not the log model fit the
data well. The mean G2 value for the linear model (133) was close
to the critical value, 127.7 for 103 df. The L/R discrimination task
showed the increase in RTs as accuracy decreased. (This was less
apparent with numerosity differences of 5 than with 10 and 20.)
The log model fit the data better than the linear model with the
mean G2 value for the log model (133) a little larger than the
critical value of 127.7.

For the B/Y task, there is support for the linear model over the
log model with G2 values lower for the linear model for 29/32
subjects and slope of the median RT versus numerosity function
less than 0 for 26/32 subjects (for a numerosity difference of 5).
For the L/R task, the log model had 18/32 subjects with lower G2

values than for the linear model and 21/32 slopes of the median RT
versus numerosity function greater than 0.

For the Y25 task, the number of distractors was manipulated,
but we collapsed over these two sets of conditions to obtain more
observations per condition. This is justified because there was less
than a 1% difference in accuracy and a 10 ms difference in mean
RT for few distractors versus many distractors. The linear model
fit better than the log model. The critical value of G2 was 75.6 for
57 df and the mean G2 from the linear model was about a third
larger than the critical value indicating a good fit of the model to
data. The linear model fit the data better than the log model and the
difference in goodness of fit is larger here than for Experiment 3.
The critical value of G2 was 75.6 for 57 df and the mean G2 from
the linear model was about a third larger than the critical value
indicating a good fit of the model to data. As before, the model
underestimated the RT quantiles for small stimuli by a modest but
consistent amount.

For the asterisks task, the linear model fit a little better than the
log model. The mean G2 value (76.6) was close to the critical value
(75.6) that indicates a good fit. There appears to be compression in
large stimuli relative to small stimuli, but this is mainly a bias in
drift rate in which small stimuli for all the conditions are more
likely to be called large and this is captured by the drift criterion
(see Table 9).

For the asterisks and the Y25 tasks, there is little decisive
support for either the linear or log models from G2 values for
individual subjects. The number of subjects with mean G2 values

support the linear model, for the asterisks task was 22 out of 32 and
for the Y25 task, 17 out of 32.

As for the asterisks task in Experiment 8, we can check whether
the linear model is consistent with a constant value of across-trial
SD in drift rate. Using the equation in Figure 2C and the parameter
values from Table 9, the SD drift rate across trials for 38 and 63
asterisks (means of the two extreme ranges) were 0.12 to 0.14 and
these are not discriminable from a constant value of the SD. In
contrast, for the Y25 discrimination task and the linear model, for
the extreme numerosity values of 20 and 40, the SD drift rate
across trials values were 0.17 and 0.24. For the B/Y task and linear
model, for 10 versus 15 dots and 35 versus 40 dots, the SD drift
rate across trials values were 0.14 and 0.32, and for the L/R task
and the log model, the SD drift rate across trials values were 0.27
and 0.32. These values in the SD in drift rate across trials are
consistent with constant values for the asterisks and L/R tasks and
are consistent with the linear model with increasing SD for the B/Y
task and Y25 task.

Figure 14. Quantile-probability plots for the four tasks in Experiment 9.
See the online article for the color version of this figure.
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The correlations between all the pairs of tasks (see Figure 15)
for the drift-rate coefficients, the distances between the boundar-
ies, and nondecision times were all significant (critical value of
0.34) as they were in Experiments 7 and 8. The results are
consistent with the hypothesis that the four tasks tap into common
numerosity abilities. However, the number of subjects was not
large for an individual differences study and the data could not be
used, for example, to determine whether the correlation between
one task and a second was larger or smaller than the correlation
between that task and a third task.

Experiment 10

This experiment had the goal of examining two new manipula-
tions while replicating results from earlier experiments. Subjects
judged whether the number of dots in a display was larger or
smaller than 25, but unlike the Y25 task used in the earlier
experiments, the dots were all of the same color (i.e., there were no
nontarget dots). Second, the dots in the arrays were located in
random positions, as in all the earlier experiments with dots, or
positioned on a grid like that used for X’s and O’s and asterisks.
Examples of the stimuli are shown in Figure 4F. The question was
whether or not the presence of the nontarget dots was in some way
responsible for the finding that area had no effect on performance.
To anticipate, results were just the same as for the earlier Y25
experiments.

There were six numerosity conditions, 10, 15, 20, 30, 35, or 40
dots. Areas were either equal or proportional. For half the trials,
the dots were displayed in random positions and for the other half,
positions on a 8 � 8 grid.

Results

Accuracy and correct mean RT were collapsed over the numer-
osity conditions and results are shown in Table 10. As for all the
other Y25 experiments, area had no significant effect on accuracy,
about 1%, F(1, 14) � 4.3, and its effect on RTs was 0 ms, F(1,
14) � 0.0. The effects of random versus grid positions were also
not significant. The effect on accuracy was about 1.5%, F(1, 14) �
4.6 and the effect on RTs was 3 ms, F(1, 14) � 2.0.

Figure 13 (bottom) shows the quantile-probability plots and the
predictions of the linear model (the log model’s fits to the data
were not distinguishably different). The data points from all the

conditions fell on the same quantile-probability function. There
were 252 df (24 conditions and 12 model parameters, the same as
for Experiments 3 and 5 except the four drift-rate coefficients were
for area crossed with grid vs. no grid). The critical �2 value was
290.0 and the mean G2 values for the linear and log models were
both a little larger than the critical value, showing good fits. For
individual subjects, there was support for the linear model, with 10
out of 15 G2 values supporting the linear model, but little other
compelling evidence for one model over the other. The manipu-
lations of the area and random versus grid variables had no more
than a 6% effect on the drift-rate coefficients and their main effects
and interaction were not significant (the three F values were less
than 0.2). Neither the presence of nontarget dots nor the grid
arrangement affected the pattern of results for the Y25 task and so
neither was responsible for the linear model fitting data a little
better than the log model in Experiment 3.

Experiment 11

For all the experiments in this article, when the log or linear
model fit the data well, it did so with across-trial variability in drift
rates; that is, the value the model produced for a single stimulus’s
drift rate was not identical from one presentation of it to another
presentation of it. However, it has been claimed that this is not
correct, that there is no such across-trial variability in drift rates in
applications to perceptual decision-making (Churchland et al.,
2008; Ditterich, 2006a, 2006b; Drugowitsch et al., 2012; Kiani et
al., 2014; Kira, Yang, & Shadlen, 2015; Palmer et al., 2005; Zhang
et al., 2014; see the discussion in Ratcliff, Smith, Brown, &
McKoon, 2016). Here, we use a double-pass procedure to show
that there is in fact across-trial variability. We do this with the B/Y
task because the assumption of across-trial variability is most
critical for this task; it is required for the linear model to account
for the counterintuitive pattern of data.

With the double-pass procedure, an exact copy of a stimulus is
repeated from one block of trials to another (Burgess & Colborne,
1988; Cabrera, Lu, & Dosher, 2015; Gold et al., 1999; Green,
1964; Lu & Dosher, 2008). The logic is that if there is no across-
trial variability in drift rates, then the only variability comes from
variability within each trial, which means that the probability that
the response on the second presentation is the same as on the first
will be at chance. If instead there is across-trial variability in drift
rate, then the probability can be greater than chance. For example,

Table 9
Model Parameters for Experiments 9 and 11 and Experiment 1, Ratcliff (2014)

Experiment and model Task a Ter �0 10�1 sz st z v1 vc G2 df
Number
preferred Slope 	 0

9 linear Aster .121 .402 .038 .016 .082 .184 .057 .023 .011 77 57 22/32
9 log Aster .115 .397 .045 .011 .062 .184 .054 1.000 .021 80 57 10/32
9 linear Y25 .112 .410 .072 .036 .065 .195 .051 .033 .045 104 57 17/32
9 log Y25 .104 .408 .092 .015 .052 .199 .046 .657 .070 122 57 15/32
9 linear B/Y .108 .461 .040 .053 .065 .271 a/2 .018 133 103 29/32 26/32
9 log B/Y .106 .456 .091 .026 .062 .267 a/2 .333 139 103 3/32
9 linear R/L .097 .375 .055 .090 .063 .158 a/2 .066 144 103 14/32 11/32
9 log R/L .092 .367 .239 .015 .060 .150 a/2 1.175 133 103 18/32
11 linear B/Y .097 .441 .036 .051 .057 .267 a/2 .033 94 60
Ratcliff (2014, Experiment 1) linear Aster .125 .368 .056 .008 .068 .168 .056 .013 .011 245 255 19/19
Ratcliff (2014, Experiment 1) log Aster .115 .400 .021 .013 .068 .235 .045 .543 .034 405 255 0/19
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if for all stimuli, a subject tends to attend more to the middle of a
display and a particular stimulus has more blue dots than yellow in
the middle, the subject might be biased to respond “blue” and this
bias would hold for the second presentation as well, making the

probability of the same, “blue”, response greater than chance.
Ratcliff, Voskuilen, and McKoon (in press) used the double-pass
procedure with four perceptual tasks and the asterisks task and for
all of them found greater-than-chance probabilities that responses
were the same from one presentation of a stimulus to the second.

The numbers of blue and yellow dots in the displays were 15/10,
20/15, 25/20, 30/25, 35/30, and 40/35 and the areas were always
proportional. There were 18 blocks of 96 trials and each second
successive block was identical to the one before it so that there
were 96 trials intervening between a stimulus and its exact repe-
tition.

Results

Responses for blue and yellow dots were symmetric so the data
were grouped in the appropriate way and the starting point for the
diffusion model was set halfway between the boundaries. The
linear model fit the data well, with both RTs and accuracy de-
creasing with increasing numerosity. The top panel of Figure 16
shows the quantile-probability plots, which replicate those from
Experiments 1, 4, 6, and 9. The mean G2 value was 96.8 with a
critical �2 value of 77.9 with 59 df (six conditions with seven
parameters, the distance between the boundaries, across-trial range
in the starting point, nondecision time, across-trial range in non-
decision time, the constant component of the across-trial SD in
drift rate, the SD coefficient, and one drift-rate coefficient).

The bottom panel of Figure 16 illustrates how double-pass data
can be displayed. Accuracy is plotted against the probability that
the two responses to a stimulus are the same (the “agreement”
probability). We generated simulated data to give the eight curves
in the figure. There were seven levels of drift rate (that gave seven
levels of accuracy) and eight levels of across-trial SD in drift rate
(�). The data were simulated using these drift rates and across-trial
variabilities in drift rate, � (not ones derived from the drift rate
coefficients), plus the best-fitting values of boundary separation,
nondecision time, across-trial range in starting point, and across-
trial range in nondecision time from to fits to accuracy and RT
data. The seven drift rates were 0.0, 0.05, 0.1, 0.15, 0.2, 0.3, and
0.5 and the seven SDs varied from 0.0–0.3 in steps of 0.05.

For the first presentation of a stimulus, for each condition in the
plot, that is, each drift rate and each across-trial SD in drift rate, a
random drift rate was generated from that distribution. The starting
point and nondecision time values were chosen randomly from
their across-trial distributions. For the second presentation, the
same value of drift rate was used. New values for the starting point
and nondecision time were chosen from their distributions. For
each combination of drift rate and across-trial variability in drift

Table 10
Experiment 10: Accuracy and Correct Mean RT Collapsed Over
Stimulus Difficulty

Measure

Random arrangement Grid arrangement

Proportional
area

Equal
area

Proportional
area

Equal
area

Accuracy .858 .838 .861 .860
Mean RT 505 507 502 500

Note. RT � response time.

Figure 15. Scatter plots, histograms, and correlations for boundary separa-
tion (top panel), nondecision time (middle panel), and drift rate coefficient
(bottom panel) for the four tasks. Each dot represents an individual subject.
The identity of the comparison in each off-diagonal plot or correlation is
obtained from the task labels in the corresponding horizontal and vertical
diagonal plots. The lines in the bottom left of the plots are lowess smoothers
(from the R package). See the online article for the color version of this figure.
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rate, we generated 20,000 simulated choices and RTs (using the
random walk method for generating simulated choices from the
diffusion model; Tuerlinckx et al., 2001) and plotted accuracy
against agreement probability for Figure 16. Each line in the figure
joins points that have the same value of across-trial SD in drift rate,
with drift rate varying along the line.

The red squares are the mean values of agreement from the data
with groupings of pairs of conditions (15/10 and 20/15, 25/20 and
30/25, 35/30 and 40/35). The values of probability and agreement
fall close to the line for which � � 0.15. The SEs in the values of
agreement are 0.019, 0.015, and 0.017 for the data groups corre-
sponding to low, medium, and high numerosity values (in other
words, the agreement probabilities are significantly different from
those in the zero � line). The values of the SD in drift rate across
trials corresponding to the same three conditions were 0.15, 0.22,
and 0.29. Thus, in the relationship between the model and data, the
SD in drift rate that is common between the two presentations as
estimated from the double pass procedure did not appear to in-
crease with numerosity. Furthermore, the value of the SD in drift

rate across trials read off of Figure 16 was about the same size as
the value of � for the lowest value of numerosity from fits of the
linear model to data. This suggests that with larger numerosity
there is more random variability that is added to the drift rate,
variability that is not common across repeated presentations. The
model also predicted a low correlation between RTs on the two
trials (0.06) and the data showed such a low correlation (0.10).

The data and model predictions from this task show that there is
variability in drift rate from trial to trial and some of this variability
represents consistent differences in encoding the stimuli from one
to another presentation. This provides direct evidence for variabil-
ity from trial to trial in drift rate, variability that is crucial to fit the
linear model to the data from this kind of task.

Weber Fraction

In perception, the Weber fraction (w) is the difference in stim-
ulus intensity needed to produce a certain level of accuracy divided
by the intensity; it is usually a constant. The Weber fraction is used
extensively as an index of numerical acuity or ability (e.g., Hal-
berda et al., 2012; but see Inglis & Gilmore, 2014), where it is
defined as the amount the mean value of a numerosity, N, must be
multiplied by to give the SD of the distribution around that nu-
merosity, that is, SD � N�w (i.e., the coefficient of variation). In
the standard model, evidence is represented by normal distribu-
tions as in signal detection theory as in Figure 1.

The Weber fraction is not just a measure that summarizes data
like mean accuracy and mean RT do. Instead, it is derived from a
model that is fit to data. This means that its validity can be assessed
by a standard �2 goodness-of-fit statistic. It is an accuracy-based
model with numerosities represented on a linear scale and vari-
ability around numerosities increasing as numerosity increases, the
same assumptions as for the linear model used here. The log model
cannot provide the same estimate of the Weber fraction because if
distributions that are normal on a log scale are transformed to a
linear scale (to be consistent with the Weber-fraction computa-
tion), the transformed distribution would not be normally distrib-
uted and so the computations would not be the same as those for
the linear model. Simple numerical methods might be used to
assess whether the two models produce similar estimates of the
Weber fraction (which they might). However, the important point
is that anyone using or promoting the log model cannot validly use
the Weber fraction without further investigation because the We-
ber fraction is computed from a different model, namely, the linear
model with normal distributions of numerosity around their central
values.

We compared the Weber-fraction model’s predictions of accu-
racy to the linear-diffusion model’s using a �2 statistic. The linear
model’s predictions came from fitting the model to accuracy and
RT data as usual. We used the data from Experiment 9 that
includes four of the main tasks for this article. We also used the
data from the asterisks task in Ratcliff (2014; Experiment 1) that
varied the number of asterisks across a large range (from 2–98)
and which provided a strong test of the Weber model as well as
providing a strong test of the linear and log models as applied to
the asterisks task. To give accuracy predictions for each task of
Experiment 9, we used whichever of the linear or log models gave
the best fit to the data. For the asterisks task, we used the linear
model because it fit the data better than the log model.

Figure 16. Quantile-probability plots for Experiment 11 (top panel) and
a plot of accuracy against agreement between the two responses in the
double pass procedure. Seven values of drift rate were used to produce each
function (shown as the small dots on the lines) and 8 values of the SD in
drift rate across trials (�) were used to generate each function. The other
model parameters were the means from the fits to the data. The red squares
are values of accuracy plotted against agreement for the conditions of the
experiment. See the online article for the color version of this figure.
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The Weber fraction plays a similar role to the drift-rate coeffi-
cient in the ANS-diffusion models because drift rate is most
related to accuracy. However, it is important to note that acuity in
the Weber-fraction model is related to the SDs in the distributions
whereas acuity in the ANS-diffusion models is measured by the
drift rate coefficients (that are related to the means, not the SDs).
We can compute correlations between them to see if they vary in
the same ways across individuals. In terms of the fits of the models
to data, we expected the diffusion model to fit data worse than the
Weber-fraction model because the diffusion model is constrained
by RTs as well as accuracy. Park and Starns (2015) also present a
detailed analysis of the relationship between drift rate and the
Weber fraction. They showed that the Weber fraction is contam-
inated by speed–accuracy trade-offs and that drift rate is a better
predictor of math ability.

Table 11 shows Weber fractions, drift-rate coefficients, SD
coefficients (�1), the mean �2 values for the two models for
accuracy, the number of subjects with nonsignificant �2 values,
and the correlations between the Weber fraction and the appropri-
ate linear or log model. The df for the �2 in the data from
Experiment 9 were 10 for the B/Y and L/R tasks and 6 for the Y25
and asterisks tasks, because there were 10 or 6 pairs of correct and
error responses, respectively, and the probabilities for each pair
add to 1, giving 1 df per condition (accuracy value).

We subtracted 1 from the df for the data for the one parameter
in the Weber-fraction model. It is difficult to perform an equivalent
comparison for the diffusion model because it used more param-
eters to fit data and it is fit to quantile RTs and response propor-
tions that have many more df. Therefore, for the comparison here,
we computed �2 for the model fit to accuracy data alone and we
used the same critical value for the �2. For the experiment from
Ratcliff (2014), the data were grouped into 24 conditions so the df
were 23.

Figure 17 shows plots of predictions from the appropriate ANS-
diffusion model and the Weber-fraction model averaged over
subjects, the o’s the predicted values and the x’s the data. For the
B/Y and L/R tasks, the top four panels, the probabilities of correct
responses are plotted against the smaller of the two numbers for
each condition (e.g., 10 is the smaller of the two numbers for the
15/10, 20/10, and 30/10 conditions so there are three points in the
vertical line above 10). The Weber-fraction model fit these data a
little better than the ANS-diffusion model, as expected (because it
was also fit to RT quantile). The number of subjects with nonsig-
nificant �2 values was larger for the Weber models than the
diffusion model (see Table 11).

For the Y25 task, third row in Figure 17, the proportions of
responses that were “small” are plotted against the number of dots.
The linear diffusion model fit the data better than the Weber model
with �2 values four times larger for the Weber model. Half the
subjects showed nonsignificant �2 values for the diffusion model
and only six for the Weber model. For the asterisks task for
Experiment 9, the diffusion model again fit the data better with the
mean �2 value about five times larger for the Weber model and 28
subjects with nonsignificant �2 values for the diffusion model as
opposed to 14 for the Weber model. Figure 16 (third and fourth
rows) shows how the Weber model misfit the data for the Y25 and
asterisks tasks. The data for both tasks are roughly symmetric
about the mid-point and the functions are consistent with asymp-
totes less extreme than 0 or 1. The Weber model for both tasks
produces a function that approaches 1 with the lower values of
numerosity and approaches 0 more slowly than the data (though
appears about to cross over at the largest numerosity). In contrast,
the deviations between diffusion model predictions and the data
are much less systematic.

To do the same analysis for the asterisks task from Ratcliff
(2014; Experiment 1), we fit both linear models to the data and
found they were indistinguishable. For the linear model with
N2 � 50, the value of G2 was 245 (see Table 9) and values of �
for N1 � 4, 50, and 96, were 0.19, 0.15, and 0.19. For the scheme
with N2 � 100 � N1, the value of G2 was 243 (the values of the
other parameters were within a few percent of each other). For this
model, �0 � 0.056 and �1 � 0.00082 that gave values of � for
N1 � 4, 50, and 96 of 0.10, 0.11, and 0.14. The values of � from
both models are not distinguishable from constant values.

We then generated predictions and compared the predicted
accuracy values to those from the fit of the Weber-fraction model
to the accuracy data. The model was fit to the RT quantiles and
response proportions as in the earlier experiments. The mean G2

(245) was less than the critical value (293.2 with 255 df) and only
1 out of 19 subjects had a significant value above the critical value.
We also fit the log model to these data and the fit was much worse
than the linear model. The mean G2 was 404 and all subjects had
G2 values larger than the critical value. The values of the param-
eters are shown in the bottom two rows of Table 9.

Table 9 and Figure 17 (bottom panels) show predictions from
the Weber model, the predictions from the linear model, and the
proportion of “small” responses plotted against the number of
asterisks. The diffusion model fits to the choice proportions missed
the data slightly at around 60 asterisks (the thin solid/red line
shows the values for the log model). The value of �2 from the

Table 11
Mean Weber Fractions, Mean Diffusion Model Drift and SD Coefficients, Mean �2 Goodness of Fit, Numbers of �2 for Individuals
Less Than the Critical Value, and Parameter Correlations

Experiment and model Task w v1 10�1

�2

Weber
�2

diffusion
N 	 Critical

Weber
N 	 Critical

diffusion
Correlations

w, v1

Correlations
w, �1

9, linear B/Y .647 .0180 .0538 10.5 12.7 29 25 �.67 �.02
9, log L/R .223 1.194 .0130 6.7 14.7 31 23 �.54 .29
9, linear Y25 .341 .0327 .0364 57.2 13.9 6 16 �.70 �.35
9, linear Asterisks .211 .0231 .0160 30.9 6.3 14 28 �.67 �.16
Ratcliff (2014, Experiment 1),

linear Asterisks .206 .0129 .0082 54.5 29.6 6 13 �.58 �.21
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response proportions was 29.6 with a critical value of 36.4 with 24
df and 14 out of 19 subjects had �2 values less than the critical
value. The Weber-fraction model missed at the low numbers of
asterisks; it predicted values that were at ceiling (approaching 1)
while the data had values near 96% correct. The �2 value was 54.5
and only six of the subjects had �2 values less than the critical
value. The values of the drift coefficient parameters shown in
Table 9 are comparable with those from the fits to the asterisks
task in Experiment 8 but with the drift rate and SD in drift
coefficients about half the values of those from Experiment 8.

In the literature, the Weber fraction seems to be treated as a
property of an individual rather than a property of a task and an
individual. However, the mean values of the Weber fraction across
individuals for the four tasks from Experiment 9 differed consid-
erably. The values (in Table 11) ranged from 0.22 to 0.65 and for
the asterisk task from Ratcliff (2014), the value was 0.21. For
Experiments 1 and 3, the values were 0.643 (0.277 for the
proportional-area condition) and 0.269 (0.165 for the proportional-
area condition), respectively. These results show that the Weber
fraction depended not only on the experimental task, but also on
the independent variable.

The large variability in the Weber fraction as a function of tasks
and variables suggests it has limited use as a measure of an
individual’s numerical acuity. On the other hand, if Weber frac-
tions correlate across tasks, then they might provide relative mea-
sures of individuals’ acuity. In fact, Weber fractions did correlate
with each other across the four tasks; the mean was 0.58 for the six
pairwise combinations and the range was 0.38–0.76. The analog
from the diffusion model is the drift-rate coefficient and its mean
correlation across tasks was 0.53 (from the values in Figure 15).

We also examined the correlations between the Weber fractions
and the drift-rate coefficients within tasks. The mean of the four
correlations in Table 11 was 0.65. This suggests that the drift-rate
coefficients and Weber fractions can provide similar measures of
individual differences. (The correlation of the Weber fractions and
the SD in drift coefficient was small and inconsistent, showing that
this measure was not related to the Weber fraction.)

These analyses suggest further exploration of the possibility that
the Weber-fraction model might, for some purposes, provide an
account of accuracy data as good as that of the ANS-diffusion
models. For the two-array stimulus tasks, it gave slightly better fits
than the diffusion model, but for the one-array tasks, the diffusion
model gave fits that were several times better. However, the
numbers of subjects in our experiments were small for individual
differences studies, so any conclusions that could be drawn about
differences in the sizes of correlations among tasks would be
tentative.

There are two main conceptual problems with the Weber-
fraction model. First, the numerosity distributions are normal and
because the distribution spans minus to plus infinity (Figure 1 top),
there is some probability that a number will be perceived as
negative. For example, the large value for the Weber fraction for
the B/Y task with equal-area dots (0.65) produces an estimate of
negative values with probability 6.2% of the time for five dots.
This means that the Weber fraction model should be modified to
have a lower limit on the distributions. However, for most other
empirically obtained Weber fractions, the probability of negative
values will be small (perhaps vanishingly small), but it is still
nonzero. The spread of the distributions into negative values is not

Figure 17. Plot of accuracy against numerosity for the four tasks in
Experiment 9 and the asterisks task in Ratcliff (2014; Experiment 1). The
x’s are the data and the o’s are the predictions from the Weber-fraction
model (left column) and the diffusion model (right column). The red/thin
line in the bottom right plot is from the log model fit. See the online article
for the color version of this figure.
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a problem for the integrated models because drift rates can be
negative (as in Figure 8). The second problem is that, because the
behavior of numerosity appears to be qualitatively different for
numbers less than 5 compared with numbers higher, we might not
want to apply the Weber (or any of the models) uniformly across
all the range of nonzero numbers.

This then leads to the issue of what is the basis for estimation of
numerosity in this task with these stimuli? The results from the
B/Y task in Experiments 1 and 9 suggest that the effect of area
cannot be separated from numerosity, in fact, in the B/Y task with
intermingled dots, area and numerosity appear to be integral stim-
uli in the Garner (1974) sense. We take this up in the general
discussion.

Discussion

A key point our results make is that measures of numerosity
skills and abilities are context dependent. The pattern of RTs
against accuracy depends on the task, the cognitive processes by
which numerosity judgments are made depends on the task, the
cognitive representations of numerosities on which performance is
based depend on the task, and whether a confounding variable
affects performance depends on the task. This represents remark-
able flexibility in how the cognitive system deals with numerosity
information. It can encode numerosities on a linear scale or a log
scale; it can encode them with larger variability in their represen-
tations or smaller variability, and it can include information other
than number (e.g., area) in the representations or not. Decision-
making processes for numerosity discrimination must accommo-
date all of these possibilities.

These conclusions about context dependency were made possi-
ble by the integrated ANS-diffusion models because the interpre-
tations of data that the models give are constrained simultaneously
by accuracy and RTs. For the tasks to which they were applied,
they must, and did, explain data in full—accuracy, the distributions
of RTs for correct responses and for errors, and how these change
as a function of independent variables.

The diffusion model breaks performance apart into components
of decision-making processes. These are the information (drift
rate) that drives the decision process, the criteria (boundaries) that
determine how much information must be accumulated from a
stimulus to make a decision, and processes outside the decision
process itself (nondecision time). These components are indepen-
dent of each other (or nearly so in many fits of the model to data)
and that means that drift rates provide a direct view of the infor-
mation driving a decision; it is not obscured by the speed/accuracy
settings an individual adopts or the time taken by nondecision
processes.

In almost all previous applications of the diffusion model, drift
rates have not been determined by a model of the cognitive
representations of stimuli that drive decisions (but see Nosofsky et
al., 2011; Nosofsky & Palmeri, 1997; Ratcliff, 1981; Smith &
Ratcliff, 2009; White et al., 2011, for exceptions in which diffu-
sion and random walk models are matched or integrated with
models of representation). In the numerical cognition domain,
independently, Park and Starns (2015) and Reike and Schwarz
(2016) implemented the log model. In most other earlier applica-
tions, the drift rates and the across-trial SD in them (a constant
across drift rates) have been free parameters and as such they have

been estimated by fitting the model to data with a different drift
rate for each condition that varies in difficulty. Instead, the ANS
models provide representations of stimuli and so provide the
decision process with drift rates and their across-trial SDs. From
the point of view of a representation model, the diffusion model
allows it to predict accuracy and RT data, which it could not do on
its own. From the point of view of the diffusion model, a repre-
sentation model constrains drift rates and their SDs. The combi-
nation of the diffusion model and a representation model reduces
the df for fitting data considerably, for example, from 44 param-
eters for fitting 220 df in the data to 8 parameters for the linear and
log models for Experiments 1 and 2 (44 parameters are needed for
the standard diffusion model because different drift rates and
different values of SD are needed for each condition). One way to
think about the combination is that the diffusion model provides a
meeting ground between models of representations and RT and
accuracy data.

To determine drift rates, the ANS models produce a coefficient
that multiplies the difference between two numerosities for the
linear model and the difference between the logs of the two
numerosities for the log model. These assumptions set the means
of the Gaussian distributions around each numerosity (Figure 2C).
As we showed, the representations are subject to confounding
variables. Equal-area stimuli were more difficult than proportional
ones for experiments that required judgments about two stimuli
and so the coefficient for equal areas was smaller. This made the
differences between the means of the distributions smaller; in other
words, the difference between 30 and 40 on the x-axis in Figure 1
shrank compared with proportional-area stimuli.

The SDs in the drift rates are produced by a coefficient that
multiplies the square root of the sum of squares of the two
numerosity values (Figure 2C), plus a constant. The SD coefficient
for the linear model must increase with numerosity for the model
to explain why both accuracy and RT decrease as numerosity
increases with a constant difference between two numerosities.
The usual assumption for the log model is that the SD is constant
but we allowed it to change with numerosity in the same way as for
the linear model to give it the same flexibility as the linear model.
Thus, there were four possible models, the linear model and the log
model each with a constant SD or with increasing SD. Applying
the linear and log models allowed us to examine whether the scale
on drift rate (the log model) or the variability in drift rate (the
linear model) is responsible for changes in discriminability with
numerosity. The interesting result was that it depends on the
paradigm.

Evidence for Stimulus- and Decision-Related
Signals in EEG

Philiastides et al. (2006) applied multivariate pattern analysis to
electroencephalogram (EEG) activity from an array of electrodes
in a face/car discrimination task. The analysis produced a single
regressor value for each trial that indicated how strongly the
stimulus represented a face or a car. An early (170 ms) and a
late (300 ms) event-related potential (ERP) component were pre-
dictive of decision accuracy. Ratcliff, Philiastides, and Sajda
(2009) examined the data on a trial-by-trial basis and found that a
higher late-component amplitude on a trial was associated with a
higher drift rate for that trial; this was not true for the earlier
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component. Thus, for nominally identical stimuli, the amplitude of
the late ERP component predicted the quality of information
processing. Ratcliff, Sederberg, Smith, and Childers (2016) con-
ducted a similar analysis of EEG data from a recognition memory
task. They showed that higher late parietal signals were associated
with higher drift rates, again on a trial-by-trial basis, but higher
earlier frontal signals were not.

These results are consistent with the view that a perceptual
representation is built for a stimulus and then decision-relevant
information is extracted from it to drive the decision process. The
EEG results are consistent with this view: amplitudes of EEG
measures for the initial representation are not predictive of evi-
dence used in the decision process but the amplitudes of later
measures are.

Our results for the numerosity tasks in the experiments de-
scribed here fit within this framework. For intermingled blue and
yellow dots, a stimulus representation is built and, depending on
the task, either relative evidence for blue versus yellow is extracted
(the B/Y task) or evidence about one of the colors is extracted (the
Y25 task). For the B/Y task, relative numerosity information
cannot be extracted independently of other variables such as the
areas of the two stimulus classes. This description in terms of
representations does not require a strong commitment to the as-
sumption of stimulus and decision representations per se. It is
easily possible to describe this view in terms of processing and
evidence extracted at different points in the process rather than
representations and still be consistent with the modeling.

Speculations

One can speculate about why the log and linear models apply to
the tasks that they do. It may be that Fechner’s log representation
is restricted to whole objects and possibly only to comparisons
between whole objects (as opposed to comparisons with a stan-
dard). For Experiment 2, the stimuli were two side-by-side arrays
and so they could each be considered as wholes and so the log
model applied. For Experiment 1, the stimuli were single arrays. If
the log model applies only to whole arrays, then separate log
representations for the two stimulus types cannot be extracted from
an array with intermingled elements of two types and so a log
representation cannot be used to decide whether there are more of
one type than the other. For Experiment 3, the linear model fit a
little better than the log model, but there were no qualitative
differences between predictions that allowed the two to be unam-
biguously discriminated. It may be that a somewhat different
representation is used in comparing an array to a standard, but the
data show that a representation of one of the stimuli can be
extracted from a display with two types of stimuli intermingled.
One can also speculate about why area is sometimes relevant to
decisions and sometimes not. The results can be redescribed in
terms of Garner’s (1974) integral versus separable dimensions:
When two arrays of dots are compared, extraneous dimensions like
area are integral and so cannot be dissociated from numerosity, but
when one array is compared with a standard, the other dimensions
have minimal impact on performances.

Correlations Among Tasks

With the separation of drift rates, boundary settings, and non-
decision times, we asked about relationships across tasks. The

most important question was whether the numerosity skills that an
individual brought to a task were generally the same as those for
other tasks. The answer was yes. The correlations between the
drift-rate coefficients for all the pairs of tasks that we tested had a
mean of 0.55. The same was true of boundary settings (mean 0.56)
and nondecision times (mean 0.67); if an individual was conser-
vative in one task (i.e., set boundaries farther apart), he or she was
conservative in the others; if he or she was slow on encoding
and/or response execution processes, he or she was slow on the
others. Ratcliff, Thompson, and McKoon (2015) showed further
correlations among numerosity discrimination, symbolic number
discrimination, and memory for numbers. All of these results
suggest that the numeracy skills used for one task are strongly
related to those used for other tasks. However, such a conclusion
is somewhat premature because the numbers of subjects in our
experiments and Ratcliff et al.’s were only around 32. Studies with
larger numbers of subjects should be conducted to investigate
whether, for example, some pairs of tasks are less related than
others. Nevertheless, our studies show the feasibility of correla-
tional studies and their potential for new understandings of rela-
tionships among different ways of encoding and making decisions
about numeracy.

Difficulties in Numerosity Research:
Failures to Replicate

The ANS-diffusion models may also offer opportunities for
resolving the seemingly inconsistent results in numeracy research
that we enumerated above. First, the effect of some particular
independent variable on performance has been different from one
study to another and this may arise, at least in part, because the
studies used different empirical measures (usually only one),
sometimes RTs, sometimes accuracy, sometimes the Weber frac-
tion, and so on. Second, the correlations among tasks have also
been different from one study to another, with performance on
symbolic tasks sometimes correlated with performance on non-
symbolic tasks and sometimes not. Again, one issue with some of
the studies is the use of different dependent variables. Third, it has
often been found that accuracy and RTs are not correlated, which
has led to proposals that they measure different skills. The ANS-
diffusion models explain how the two measures can rely on the
same skills while being themselves uncorrelated. We believe that
the ANS-diffusion model approach will allow some rationalization
of the current practice whereby different researchers choose dif-
ferently from four or five dependent variables, often based on
particular laboratory traditions.

Difficulties in Numerosity Research:
Confounding Variables

Another persistent problem has been that it has not been possi-
ble to separate whether numerosity decisions are based on numer-
osity information alone, some other confounding variable alone
(e.g., area), or both. We showed that the ANS-diffusion models
provide a way of measuring contributions from these different
sources of information. The models translate stimulus information
into decision-relevant drift-rate coefficients, where the coefficients
may or may not reflect a particular aspect of a stimulus. If the
coefficients are different for two equal-area sets of dots than two
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proportional-area sets of dots, then area is decision-relevant; if
there is no difference between the coefficients, then area is not
decision-relevant. If the coefficients are different for mixtures of
red and green dots than mixtures of blue and yellow dots, then
color is decision-relevant; if not, it is not. If only area, not numer-
osity, is relevant, then coefficients would multiply differences in
area instead of differences in numerosity. More specifically, in the
B/Y task with proportional areas, the amounts of blueness and
yellowness plus numerosity contribute to performance. With equal
areas, only numerosity contributes and the drift-rate coefficient is
much smaller. Thus, it seems that it is not possible for the pro-
cessing system to extract an estimate of numerosity separate from
area in this task. For the L/R task, area still affects performance
even though there are two separate arrays. For the Y25 task, the
estimate is relative to a criterion value and area (and likely other
perceptual variables) is not a reliable predictor and it does not
affect performance.

Perhaps one way to look at this is that in tasks with mixed
elements (blue and yellow dots), usually the number of elements
and other perceptual variables are correlated and so the processing
system has learned to use all of these variables (or it just came that
way!) in estimates of relative numerosity. However, in tasks in
which the task is to judge the numerosity relative to standard (our
Y25 task), area and other perceptual variables are not predictive of
numerosity. For example, seeing an array of blue M&M’s close up
with large visual area does not make it seem that there are more
than if they are seen further away with a smaller visual area. More
generally, our results show that the effects of confounding vari-
ables on the information used in decisions about numerosity are
task dependent.

To this point, we have used the ANS models to measure the
effects of possibly confounding variables by assuming that each
level of a variable can have a different drift-rate coefficient. These
drift-rate coefficients are defined by the ANS model, linear or log.
Another way of estimating the contributions of variables is simply
to enter them into a linear regression where drift rate is determined
by a combination of the variables. Experimentally, stimuli could
be generated with different combinations of variables, for exam-
ple, randomly selected values or values that maximize the differ-
ences among them (e.g., with combinations such as large numer-
osity and small dots vs. large numerosity and large dots).

Linear and log models can be implemented with drift rate a
linear combination of measurements of the various independent
(confounding) variables. For example, in the linear model with two
arrays of dots intermingled, v1 � a1(N1�N2) � a2(area1�area2) �
a3(dotsize1�dotsize2) � a4(convexhullsize1�convexhullsize2) �
. . . In the log model for two separate arrays, the equation would
have logs of the variables (cf. DeWind et al., 2015). The expres-
sion for SDs would have to be explored. The most obvious ex-
pression would be sqrt(b1(N1

2 � N2
2) � b2(area1

2 � area2
2) � . . .),

but it might be better to have the SD a combination of numerosity
values only.

With this regression approach it would be possible to examine
correlations among the coefficients to see whether two factors are
measuring the same property of the stimulus and whether the coeffi-
cients are different from zero, that is, whether that physical property
affects performance. To use this approach, a maximum likelihood
fitting method would need to be used in which each individual RT,
choice, and all the independent variables were used for each response

(Ratcliff & Childers, 2015; Ratcliff & Tuerlinckx, 2002). Because the
maximum likelihood method is sensitive to outliers, care would have
to be taken to use cooperative subjects. Ratcliff, Sederberg, Smith,
and Childers (2016) used this exact approach with single-trial EEG
regressors as the independent variables in a diffusion model analysis.
They found coefficients different from zero that means that the EEG
regressor measured the same evidence used in the decision process as
drift rate in the diffusion model. This regression proposal differs from
the ANS-diffusion analyses because it would not control some of the
variables and it would require a large experiment and a detailed
analysis of the method because it is not guaranteed to work as might
be expected. If successful, it would be complementary to the ANS-
diffusion models because it would allow the effects of several vari-
ables to be examined in one experiment with a random combination
of the variables.

Replications

In the Introduction, we mentioned our concern to demonstrate the
replicability of our results. Toward that end, we conducted several
experiments that are not reported in this article. Four were variations
of Experiment 2. The task for Experiment 2 was to decide which of
two side-by-side arrays with dots of the same color was more numer-
ous. For two variations, the dots for the two arrays were different
colors (blue and yellow; which side was which color switched sides
randomly). Either subjects decided which array had more dots, left or
right, or they decided which color had more dots. Both patterns of
results matched those from Experiment 2 closely. This means that
the difference between Experiments 1 and 2 is not the result of the
difference in the colors of the two arrays and not the result of the
decision being based on left/right versus blue/yellow responses. For a
third variation, stimuli stayed on the screen for 750 ms (Park & Starns,
2015) instead of 250 ms. Results showed an attenuation of RT
differences relative to those in Experiment 2 (Figure 5 right panel),
which might have been because of subjects comparing the arrays
sequentially with eye movements between them (cf., Krajbich, Armel,
& Rangel, 2010). For a fourth variation, we masked stimuli after 250
ms and obtained the same results as in Experiment 2. All together, the
results of Experiment 2 were robust with respect to these variations.
We also conducted a variation of Experiment 1 in which the arrays
stayed on the screen until a response was made, instead of a 300 ms
presentation duration. The data replicated those from Experiment 1
and showed the results robust to the availability of stimulus informa-
tion. The results from these experiments also illustrate a different kind
of file drawer problem than is usually discussed, namely a file drawer
full of replications instead of one full of failures to replicate.

Neurophysiological Studies

There have been a number of neurophysiological studies of nu-
meracy. The procedures and measures cannot be directly compared
with the tasks we have used here, but they do suggest that there might
be possible connections in the future.

There is evidence from single-cell recording studies in monkeys
and neuroimaging studies in humans that numerosity is repre-
sented topographically in areas such the parietal and prefrontal
cortex. Experiments with monkeys have used small numerosities
that are in the range of subitizing in humans. For example, Nieder
and Miller (2003; see also Roitman, Brannon, & Platt, 2007) used
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a matching task in which arrays of dots were presented succes-
sively and the monkey had to release a lever if the number of dots
matched. They found cells in the lateral prefrontal cortex that
responded to different values of numerosity (in the range 2–6) so
that their peak firing rate was at a specific numerosity and firing
rates declined with increasing numerical distance from the pre-
ferred numerosity. Nieder and Merten (2007) extended this to the
range 1–30 and found similar results.

In many of the studies with humans using functional magnetic
resonance imaging (fMRI) and EEG, dots stimuli are presented in a
sequence and viewing is often passive, requiring no overt response
(except sometimes on catch trials). The manipulation to assess nu-
merosity is to change stimulus properties but keep numerosity con-
stant up to some point at which numerosity changes so as to separate
numerosity from other variables. Piazza et al. (2004) measured the
neural response after the numerosity change as a function of the
numerosity of the stimulus before the change. The difference showed
activation curves with increased activity as a function of the differ-
ence between the two numerosities (see also, Hyde & Spelke, 2009,
2012). Harvey et al. (2013) presented stimuli with 1 to 7 dots in
ascending and descending order and found the peak BOLD signal
varied over the posterior parietal cortex to form a topographical
representation of numerosity. Park et al. (2016) presented EEG data
that showed changes in activity in early visual processing (75 to 180
ms after stimulus presentation) as a function of changes in numerosity
that were larger than changes in other visual properties of the stimu-
lus. They argued that this provided evidence for rapid and early
extraction of numerosity information in the visual pathways. In con-
trast, Gebuis and Reynvoet (2013) argued that results from their EEG
data showed no automatic extraction of numerosity from a visual
stimulus and that numerosity judgments are based on sensory prop-
erties of stimuli. Piazza (2010) argued that representations of exact
numbers evolved from parietal coding schemes for approximate nu-
meracy.

In most of the neurophysiological studies above, the variability in
the neural response increased with numerosity and the difference in
the peak activity between adjacent numerosities decreased with in-
creasing numerosity. When these were plotted on a log scale, the
spread of the distributions of activity was about the same, which is
consistent with the log model we used here. However, there are few
if any neurophysiological studies with stimuli like those in Experi-
ment 1 (intermixed arrays of dots of different colors; Halberda et al.,
2008) and so data are not available to test the linear model. Further-
more, most of the studies had slow presentation of stimuli and did not
require any explicit decision because they recorded brain activity from
passive viewing. The differences between such neurophysiological
studies and the procedures we used with fast explicit decisions are
large enough to make it difficult to see how they could relate to each
other.

Conclusions

The results of the studies we have reported have a number of
implications for cognitive numeracy research. One is that they
provide a solution or at least the beginning of a solution, to the
problem that it has not been possible to decide whether cognitive
representations of numerosity are linear or logarithmic. There are
two interconnected reasons for this, one that tests of representation
models have been based only on accuracy and the other that the

models have not been tied to a model of decision processes. With
both RT and accuracy data and the diffusion model for two-choice
decisions, we showed instances for which the two models were
significantly and qualitatively different in their accounts of exper-
imental data.

Our results also suggest an agenda for numeracy research.
Studies are needed to observe the effects of independent variables
(possibly confounding variables) through the lens of an ANS-
diffusion model (or some other model that uses RT and accuracy
data jointly) so that numeracy skills, as measured by drift-rate
coefficients, can be more directly observed, not obscured by an
individual’s boundary settings or nondecision time. The same
kinds of studies are needed to measure correlations between tasks,
between independent variables, and between the skills used in
different tasks.

The results of the individual difference studies suggest that it
might be worth considering using a single-stimulus task to mea-
sure numerosity skill instead of the two-stimulus tasks. The former
has the advantage of being insensitive to the other variables such
as area and density and so might provide a more pure measure of
numerosity skill.

In two-stimulus tasks, when the effects of the other variables are
measured, it might be that they are all correlated across individuals
that means that confounding variables might be less of a problem
(because they all tell the same story about ability). However, some
researchers believe that numerosity discrimination is largely or
totally performed with discrimination based on nonnumeric vari-
ables. If the single-stimulus task is largely insensitive to these
variables, it is more difficult to argue this point.

Another agenda item is to use the ANS-diffusion models to help
understand the development of numeracy skills in children. It may
or may not be that different tasks show identical developmental
paths and which tasks do this may or may not be the same from
one age to another or one point in development to another.

Still another agenda item is to use the ANS-diffusion models to
help understand how simple numeracy abilities are related to perfor-
mance on tests of math abilities. The models’ more direct measures of
abilities than those used previously may lead to new research on, for
example, whether abilities in symbolic and/or nonsymbolic discrim-
ination tasks support performance on achievement tests and whether
they do so in the same or different ways, whether nonsymbolic
abilities are the basis for development of symbolic abilities, and
whether symbolic and nonsymbolic abilities have the same or differ-
ent developmental trajectories. However, we reiterate the caveat that
answers to questions like these may be different when different tasks
are used to address them.

Overall, the analyses we have presented demonstrate the power of
quantitative models to understand data and the power of combining
models for the cognitive representations of stimuli with decision-
making models. We hope that further research with such models will
eventually lead to advances in the ways children are taught numer-
osity skills and the ways numerosity skills can be supported for
populations for which they are problematic such as older adults.
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Appendix

Examining Fits of the Models for Individual Subjects and Conditions

A different way of showing the quality of fit of the models to
data is to plot predicted values of accuracy and response time (RT)
quantiles for the model predictions against data (e.g., Ratcliff et al.,
2010). Figure A1 shows these plots for each individual condition
for each subject for Experiments 1 and 2. The plots show quite

good correspondence between theory and data and the few points
that show relatively poor fits should be considered in the context
of the number of points in the plots (shown in the bottom right
corner of each panel) and the fact that an eight parameter model
produced all these fits.
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Figure A1. Plots model predictions plotted against data for response proportions and the 0.1, 0.5 (median), and
0.9 quantile response times (RTs) for all the conditions for data from each individual subject.
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