Using ROC Data and
Priming Results to Test
Global Memory Models

Roger Ratcliff and Gail McKoon
Northwestern University

INTRODUCTION

In this chapter, we summarize two lines of work that relate closely to Ben
Murdock’s interests and to his approach to research. The first line of work uses
ROC curves to test fundamental properties of the recently proposed global memory
models (Gillund & Shiffrin, 1984; Hintzman, 1986, 1988; Murdock, 1982, 1983).
The second uses empirical results to support a compound cue interpretation of
priming phenomena (implemented in global memory models, Ratcliff & McKoon,
1988). While these two lines are quite independent, they form a nice contrast
between two of the different kinds of research issues that arise from theoretical
modeling, one concerning the search for critical tests with which to evaluate
complicated and non-intuitive models (cf. Hintzman, this volume), and the other
concemning the role of models in guiding and developing new explanations of
known phenomena. ‘

The global memory models have been designed to provide a comprehensive
account of a number of memory phenomena. Their range of coverage is impressive,
and they attain this coverage with relatively few degrees of freedom. The models
were developed in part as a response to criticisms of the limited applications of
earlier models. What has taken a back seat during this development effort has been
the testing of fundamental assumptions. One reason for this is that coming up with
tests of basic assumptions is by no means a simple task. A large element of luck is
involved in discovering a potential test, and in finding that- the test is truly
constraining and not subject to variations in parameter values. The specific test we
present in this chapter is a test of the models’ accounts of recognition memory, and
uses ROC curves to determine the relative variances of the signal and noise
distributions for old and new test items.
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The second line of research described in this chapter is an empirical investi-
gation of priming phenomena. The issue is whether priming effects can be obtained
only between concepts that are strong direct associates, as would be claimed by
some of the global memory models, or whether priming can also be obtained
between concepts that are not so strongly connected. Initial data (de Groot, 1983;
Balota & Lorch, 1986) showed priming in lexical decision only between high
associates and not between more weakly associated words. However, later data
(McNamara & Altarriba, 1988), with a slightly different procedure, did show
priming between weakly associated words. McNamara and Altarriba (1988) argued
that this weak associative priming effect came about because of a “mediating”
concept between the prime and target. For example, beach primes box because of
the mediating concept sand. Such mediated priming is inconsistent with the global
memory models’ explanations of priming, and so seems to indicate that the models
are wrong. We describe new data that shows that what has been labeled “mediated
priming” is actually the result of weak direct associations, and not mediating
concepts.

ROC CURVES

It has long been known that in signal detection analysis, the relative standard
deviations of the signal and noise distributions can be obtained easily if the two
distributions are normal. When hit rate and false alarm rate are transformed to
z-scores and plotted against each other, then the resulting ROC curves are straight
lines with a slope that is equal to the ratio of the noise standard deviation to the
signal standard deviation, op/Gs, and an intercept that is equal to the ratio of the
mean of the signal distribution to the standard deviation of the signal distribution,
Hs/Os (setting the mean of the noise distribution to zero).

The global memory models make strong predictions about the behavior of the
signal and noise distributions for old and new items. First, each of the models makes
assumptions that entail normally distributed old and new item distributions, which-
in turn leads to a prediction of linearity for z-transformed ROC curves. Second, the
models make strong, but different, predictions about the ratio of the standard
deviations (SD) of the signal and noise distributions. Murdock’s TODAM model
predicts that the SD in the noise distribution is about the same as the SD for the
signal distribution, so that the ratio should be about 1.0. In contrast, Hintzman’s
MINERVA 2 model and Gillund and Shiffrin’s SAM model predict that the SD of
the noise distribution is smaller than the SD of the signal distribution, ¢ that the
ratio should be less than 1.0, and also that the ratio should decrease as the signal
strength increases.

Because the models make such strong predictions about the ratio of the
standard deviations of signal and noise distributions, the slopes of empirical ROC
curves provide tests of the models. ROC curves can be obtained from experiments
which manipulate the response criterion used by subjects to make their recognition
decision. The criterion is manipulated either by varying old/new test item prob-
abilities or by using confidence judgments. If the resulting z-transformed ROC

. curves are linear, then the data are consistent with the assumption of normal
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distributions, and so the slope of the curves can be used to test whether the ratio of
the signal and noise standard deviations has a value that would be predicted by one
or another of the models. We describe experiments that provide this test later.

For these experiments, there is another set of issues that concerns the “list
strength effect.” “List strength” refers to the effect on the strength of an item in
memory due to the other items in its list. In a typical experiment, three kinds of
lists are presented to subjects: A “pure weak” list in which all items are intended
to have weak strength either because they are presented for only a short time or for
only a few repetitions; a “pure strong” list in which all items are intended to have
high strength because their presentation time is long or their number of repetitions
is large; and a “mixed” list in which half the items are weak and half strong. Strong
items should, of course, be recognized better than weak items. The prediction of
the global memory models concerns how much better, The models predict that the
difference between weak and strong items in a mixed list will be larger than the
difference between weak and strong items in the pure lists. This is because in the
mixed list, there is only one new item distribution (with one standard deviation)
for both weak and strong items, whereas in the pure lists, the standard deviation
for new items increases as a function of strength of the old items. Because of the
increase in standard deviation for new items in pure lists, the increase in strength
for the strong items in these lists should be attenuated relative to the increase in the
mixed list. However, in contradiction to this prediction, data from a number of
experiments show that the pure and mixed list conditions provide about the same
difference in strength (as measured by d*) between weak and strong items (Ratcliff,
Clark, & Shiffrin, 1990; Shiffrin, Ratcliff, & Clark, 1990). One interpretation of
this data is that increasing:the strength of old items in a pure list does not increase
the standard deviation of new item familiarity. Hence, the mixed-pure list experi-
ments, like ROC curves, give a way of examining the behavior of old and new item
standard deviations as a function of strength of the items. In total, the mixed-pure
experiments and the manipulations of response probabilities and confidence judg-
ments can provide a relatively comprehensive picture of how variance in item
strength behaves as a function of strength.

DESCRIPTION OF THE EXPERIMENTS

Ratcliff, Sheu, and Gronlund (1991) report five experiments that examined ROC
curves in mixed list/pure list designs. Four of these experiments used presentation
time per item to vary the strength of items and the fifth used number of repetitions
per item. ROC curves were produced in two ways: by manipulating the prob-
abilities of old and new test items in the test list in order to alter the criterion setting,
and by using confidence judgments to provide hit and false alarm rates at different
levels of confidence. ' : ’
Experiments 1 and 2 varied criterion by means of manipulating the prob-
abilities of old and new test items in the test list. Experiment 1 used 16 pairs of
words for study and 48 test words, varying from probabilities of 4 old to 1 new, to
1 old to 4 new. Strength was varied by presentation time per item: 1 s per pair for
weak items and 5 s per pair for strong items. Experiment 2 varied strength of items
by repetition. Weak items were presented once and strong items five times, so that
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FIGURE 15.1 z-transformed ROC curves for Experiment 1
(presentation time manipulations and probability of old and new
test items varied). The curves represent mixed strong, pure strong,
pure weak, and mixed weak, reading top to bottom on the left
hand data points.
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FIGURE 15.2 z-transformed ROC curves for Experiment 2
(repetition manipulation and probability of old and new test items
varied). The curves represent mixed strong, pure strong, pure

weak, and mixed weak, reading top to bottom on the left hand data _
points. Conditionalized data means tests were performed on items
from the same range of study positions for the long (5 repetitions)
and shorter lists.
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study lists varied in length, with weak lists of 20 items, mixed lists of 60 items, and
strong lists of 120 items. Test lists were 24 items long, and varied in probability
from 5 to 1 old to new, to 1 to 5 old to new. Experiments 3, 4, and § were variants
on Experiment 1 but used confidence judgments to construct the ROC curves.
Responses were made on a six point scale using the x through m keys on a CRT
keyboard. There has been some discussion of possible differences between esti-
mates of ROC curves based on the two methods (confidence judgments and varying
old/new probabilities in the test list). While the suggested differences (Markowitz
& Swets, 1967) probably are not relevant to recognition (they had to do with the
relative familiarities of different auditory tests) it is still worth using the two
different but converging methods.

The variable that distinguished Experiments 3, 4, and 5 was presentation time
per item. For Experiment 5, pairs were presented for study at 1 s and at 5 s per pair,
in order to replicate Experiment 1 with the confidence judgment procedure.
Experiment 4 used single words during the study phase instead of pairs, and
presentation time was 50 ms per item for weak items and 200 ms per item for strong
items. Experiment 5 was the same as Experiment 4 but with study times of 100 ms
and 400 ms per item.

The motivation for the rapnd presentation rate was a result reported by
Yonelinas, Hockley, and Murdock (1990). Using rapid présentation rates, they
found a larger difference between d’ values in mixed lists than in pure lists, which
counters the generality of the results of Ratcliff, Clark, and Shiffrin (1990) who
had found no such effect at slower rates. One difference between the studies of
Yonelinas et al. (1990) and Ratcliff, Sheu, and Gronlund (1991) was that the latter
used blocked study lists, whereas Yonelinas et al. used study lists in which items
with the two presentation rates were randomly intermixed. For the Ratcliff, Sheu,
and Gronlund (1991) studies, the blocked design was used to minimize rehearsal
redistribution (i.e., rehearsal of weak items during presentation of strong items).
However, Yonelinas et al. (1990) point out that at presentation times of a hundred
ms or faster, rehearsal redistribution is unlikely if not impossible. On the other hand,
there is another possible problem with intermixed presentation rates when the fast
presentation rate is as fast as 50 ms per item: There may be inverse rehearsal
redistribution. It might be that in a mixed list, long items are rehearsed during the
presentation of subsequent short items, so that the short items are not processed at
all. This would lead to a larger mixed list difference than pure list difference
between strong and weak items. To examine an inverse rehearsal redistribution as
a possible explanation of the mixed/pure difference in the Yonelinas et al. (1990)
experiments, Experiments 3 and 4 used a blocked design.

RESU LTS

The main results are shown in Flgures 15.1 through 15.5 (details of the analyses
are presented in Ratcliff, Sheu, & Gronlund, 1991). First, the figures show that the
ROC curves are mainly linear. This is consistent with the global memory models’
assumption of normality for the old and new item familiarity distributions. Second,
Figure 15.6 shows the values of slope for the ROC curves for the five experiments
as a function of the intercept of the ROC curve. This represents the ratio op/0g (the
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FIGURE 15.3 z-transformed ROC curves for Experiment 3
(presentation time manipulations and confidence judgments). The
curves represent mixed strong, pure strong, mixed weak, pure
weak, reading from top to bottom on the left hand data points.
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FIGURE 15.4 z-transformed ROC curves for Experiment 4
(presentation time manipulations and confidence judgments). The
curves represent pure strong, mixed strong, mixed weak, pure
weak, reading from top to bottom on the left hand data points.
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FIGURE 15.5 z-transformed ROC curves for Experiment 5
(presentation time manipulations and confidence judgments). The
curves represent pure strong, mixed strong, pure weak, mixed
weak, reading top to bottom on the left hand data points.

ratio of standard deviations) and pis/og, closely related to strength or familiarity of
the item. Given that /05 is constant at 0.8 except at the lowest values, the result
would be the same for other definitions of d’ (in terms of the noise distribution or
in terms of a pooled standard deviation).

The result that the ratio of standard deviations is constant at 0.8 as a function
of old item strength causes problems for all the global memory models. The
predictions of the current incarnations of the models are inconsistent with the data.
The challenge then is to see if there is any way to modify the models to handle this
result without altering the ability of the models to account for the range of other
data to which they have been applied.

The third result of note is the mixed/pure list difference in d’. Strictly speaking,
there is no invariant measure of d” except when the signal and noise distributions
have equal variance. When the variances are unequal, standard practice is to use
either the difference in means divided by the noise, signal, or a pooled standard
deviation (when these can be estimated from ROC curves). When the data provide
only a single hit and false alarm rate, there is no way of estimating d’. (A discussion
about the interpretation of d’ in this situation led to this research.) The estimate of
d’ will be different at different criterion settings for the same sensitivity (see
McNicol, 1972). Estimates of the ratio of the ratio of mixed strong/mixed weak to
pure strong/pure weak are shown in Table 15.1. In all these ratios, there is no hint
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Table 15.1

Ratio of Mixed Strong/Mixed Weak to Pure Strong/Pure Weak d' Values
Experiment
1 2 3 4 5
Strength Ratio 5:1 5:1 5:1 4:1 4:1
Ratio of Ratios 1.04 1.21 .99 .69 .84

of a mixed/pure difference (the 1.21 value for Experiment 2 is reduced to 1.13 if
the analyses are performed on individual subjects). This both replicates Ratcliff,
Clark, and Shiffrin (1990) and fails to replicate the results of Yonelinas et al. (1990).
Thus the arguments of Ratcliff, Clark, and Shiffrin (1990) carry through to analyses
based on full ROC curves. (For further arguments against rehearsal redistribution,
see Mumane & Shiffrin, 1990.)
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FIGURE 15.6 Ratio of noise standard deviation to signal standard
deviation as a function of presentation time per item (bottom

panel) and as a function of item strength (top panel). The data

from Experiments 1-5 and results from Murdock & Dufty (1972)
are included.
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In the following sections, we review each model and its predictions for the
ratio of standard deviations for old and new item familiarities. The details of the
models can be found in the original papers, and details of the predictions in Ratcliff,
Sheu, and Gronlund (1991).

TODAM

Murdock’s TODAM model assumes that items are vectors of attributes, and that
all studied items are stored in a common memory vector. For item recognition, a
test item vector is matched against the memory vector by taking the dot product of
the two vectors. Each attribute is assumed to be derived from anormal distribution
with mean zero and standard deviation 1/N where the dimensionality of the vector
is N. To illustrate why the model predicts that the signal and noise variances should
be about equal, the parameters of the model are first set to simple values; that is,
no forgetting, no probabilistic encoding, attention weight set to 1, and independent
vectors. Then, each study item vector (in the common memory vector) that does
not match the test item vector contributes 1/N to the variance of the test item, while
each study item that does match contributes 2/N to the variance (Murdock, 1982;
Weber, 1988). Hence, for study lists of length 32, the difference between the match
and nonmatch variances will be 33/N vs. 32/N ; the standard deviations are about
equal. ‘

MINERVA 2

Hintzman’s MINERVA 2 model also uses a vector representation but instead of
pooling the study item vectors into acommon memory vector, each is kept separate.
The results of matching a recognition test item against each study vector are pooled
at retrieval. The model assumes that the elements of a vector are either -1,0, or+1,
and elements of a vector are encoded into memory with some probability, p. At test,
the dot products between each encoded study vector in memory and the test item
vector are obtained (with the dot product normalized by the vector length minus
the number of times there is a zero in both memory and test vector in the same
position). The values of these dot products are cubed and summed to give the “echo
intensity” (familiarity or strength) on which the recognition decision is based. The
prediction of the model that the variance of old test items is much larger than the
variance of new test items arises because of the cubing operation. New items have
amean echo intensity of zero and the cubing operation shrinks the overall variance.
of the dot product. However, for old items, the matching comparison produces a
positive dot product and the cubing operation stretches this scale (see also Sheu,
1990). This leads to the prediction that the standard deviation for old items will be
considerably greater than that for new items.

SAM

Gillund and Shiffrin’s SAM model assumes that each study item is represented
separately in memory. For encoding, a simple buffer model builds a retrieval
structure which takes the form of a matrix of connections between cues (test items)
and images (representations of items in memory). The parameters of this encoding
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process are expressed in terms of units per second, and measure the strength that
accumulates per second. The parameter a refers to context strength, b to interitem
strength (connections between all items in the buffer accumulate b units of strength
per second), ¢ to self strength, and d to residual strength; that is, strength existing
prior to the experiment. Variability is added through a parameter v so that the value
actually placed in the retrieval structure is either (1-v), 1, or (1+v) times the value

in a pure list is: 324 / (32d + bt + ct), where tis the time the item is in the rehearsal
buffer. ' '

This expression indicates that the ratio of standard deviations cannot be 0.8
for both weak and strong items. Thus the model in its current form cannot fit the
data reported earlier. : :

_Differentiation Variant of SAM

In order to deal with the results from the mixed list/pure list experiments (the list
strength effect), Shiffrin et al. (1990) introduced a new version of the SAM model.
In this version, it is assumed that the better encoded an item, the more differentiated
it is from other items in memory. Thus, instead of the residual strength of a test
item to an image remaining constant as in the original SAM model, it decreases as
a function of the strength with which the image is encoded into memory. This can
be quantified with the assumption that the residual strength is an inverse function
of context strength (d=k / (at), where k is a constant), With this assumption, the
variance in the new item distribution is independent of strength of old items, leading
to the prediction that the difference between d’ values for weak and strong items
will be the same in mixed and pure lists (i.e., no list strength effect; Shiffrin et al.,
1990). o
Using the expression d =k 4)(at), the expression for the ratio of variances
becomes: 32k / (32k + ab® + act?). | SOEE T
This expression does not allow the ratio of standard deviations to be constant
as a function of familiarity of old items. Thus the new version of SAM cannot deal
adequately with the ratio of standard deviations derived from the ROC curves.
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Other Models

There are other memory models such as the matrix model of Pike (1984) and the
convolution model of Eich (1982). Both of these models have the same kind of
structure as TODAM, with items stored in a common memory vector. To calculate
the match values for old and new items, it is necessary to add contributions from
matches and nonmatches as in TODAM, and for lists of, for example, 32 items, the
nonmatch contribution dominates, so that the ratio of variances is near 1. Again,
this is inconsistent with the data.

Ratcliff, Sheu, and Gronlund (1991) reviewed two connectionist models,
Carpenter and Grossberg’s (1987) ART! model and a backpropagation-based
encoder model (see Ratcliff, 1990). These models have various problems with the
variance ratio. ART1 has an architecture that maps from a distributed representation
at input to a local representation. Ratcliff, Sheu, and Gronlund (1991) examined
several possible decision rules for recognition. For example, one decision rule was
based on the activity of the most active local node. The problem was that ARTI
predicts that the variance in the most active top level node becomes very small as
a function of repetition of items. This leads to very small variances for old items
after about four repetitions of an item, while the variance for new items is relatively
large. Thus, the model’s predictions conflict with the data.

The multilayer backpropagation encoder model discussed by Ratcliff(1990)
predicts that the variance of old items is smaller than the variance of new items. In
part, this is because of a scaling problem (the better the match, the nearer its value
is to 1.0, and the smaller the variance by the binomial theorem). The second factor
is that items that are trained are more uniformly leamed than new items that might
have a lot or relatively little in common with the test item, Modifications to the
encoder model by Kortge (1990) that overcome some of the forgetting problems
noted in Ratcliff (1990) still produce this inverse prediction about the old and new
item variances.

COMPOUND CUE MODELS AND MEDIATED PRIMING

The second line of work we present in this chapter concems application of the
global memory models to priming. Ratcliff and McKoon (1988) proposed a
compound cue model to account for primin g phenomena (see also Dosher &
Rosedale, 1989). In this model, a prime and target form a compound, and memory
is probed with the compound. If the prime and target are associated with each other
in memory, then the match of their compound against information in memory (the
compound’s “familiarity™) is better than if the prime and target are not associated.
A high degree of familiarity for the compound leads to facilitation (“priming™) of
responses to the target. ' '

In MINERVA 2 and TODAM, the compound of a prime and target would be
formed by placing the two items in a common vector and probing memory with
that vector. In MINERVA 2, if the joint vector matches a memory vector, the match
value is cubed which will add a much greater increment to echo intensity than if
the prime and target match different, not joint, memory vectors. In TODAM, the -
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range of priming: if items are directly connected in memory, then MINERVA 2,
TODAM, and SAM predict priming; if items are not directly connected but share
a common associate, then SAM predicts priming (but less than if they are directly
connected). All other possibilities will not produce priming, according to these
models.

decision task to look for indirect priming. Previous work by de Groot (1983) and
- by Balota and Lorch (1986) had found that direct associates gave priming in lexical
decision, but mediated associates (e-g., beach-box, mediated by sand) did not.
However, by changing the experimental procedure, McNamara and Altarriba were

Our claims are that there is a counter explanation for McNamara and Altarri-
ba’s results, and that the compound cue model is correct (so notions of activation
spreading through semantic networks can be discarded). The counter explanation
is that so-called mediated priming comes about instead from weak direct associa-

sufficiently high familiarity as a compound.

The way that Balota and Lorch, de Groot, and McNamara and Altarriba defined
mediation was through a free association production task. They reasoned that if
concept A produces concept B with high probability, and B produces C with high
probability, but A never produces C directly, then A and C are “mediated” and not
directly related. The pairs of words used in the experiments demonstrating medi-
ated priming were defined in this way. However, the pairs of words can also be
described in another way: the Aand C concepts are more related to each other than
they are to randomly chosen other words (as measured by asking subjects to rate
how “related” are the A and C words). This relatedness suggests that it might be
their familiarity as a compound that is giving rise to a priming effect.
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To test the compound cue hypothesis against spreading activation accounts,
we used pairs of words with the same relatedness as the mediated pairs used in the
earlier studies, but with no mediator between the A and C concepts; that is, no
mediator between prime and target as measured by the same production task as was
used by Balota and Lorch. Then, these pairs were tested in an experiment along
with the previously used mediated pairs. The experiment, therefore, allowed degree
of mediation to be varied from very high to very low, with relatedness kept constant.
If priming is due to activation spreading through links from mediator to mediator,
then there should be priming for the mediated pairs but not for the non-mediated
pairs. However, if priming is due to the degree of familiarity that arises from direct
associations between the words of the pairs, then the amount of priming should be
the same for the two kinds of pairs.

The non-mediated word pairs were based on the mediated pairs used by Balota
and Lorch (1986), and McNamara and Altarriba (1988). Each non-mediated pair
had the same prime as one of the mediated pairs but a new target. The new target
was picked to be intuitively about as related to the prime as the old target was, and
ratings collected from subjects confirmed that the relatedness values of the medi-
ated and non-mediated pairs were equivalent. The new targets were also chosen so
that there was no mediator between prime and target that we could imagine. To
verify that there was no mediator, we collected free associations in the same kind
of production task that was originally used to produce the mediated pairs. One
group of subjects was given the prime of each pair and instructed to give the first
eight associates that came to mind. Another group of subjects was given the top
four associates that were produced for each prime, and asked to generate four
associates from these words. Finally, a third group of subjects was given the
mediator for the original prime-target pair, and asked to generate four associates to
this word. For all of the pairs, the new target was produced either as direct associate
or as an associate of an associate with essentially zero probability. Thus, we defined
the pairs as non mediated.

The norming tasks showed that the non-mediated pairs were actually non-me-
diated as defined by the production task, and that the mediated and non-mediated
pairs had equivalent relatedness values. To measure priming, the two sets of pairs
were tested in a lexical decision experiment (using the procedure in McNamara
and Altarriba, Experiment 2). The results showed about equal amounts of priming
for the two sets of pairs. For the mediated pairs, the priming effect was 14 ms
(replicating McNamara & Altarriba, 1988), and for the non-mediated pairs, the
priming effect was 13 ms. Thus, while mediation was varied from very high to very
low (and relatedness was held constant), the size of the priming effect was constant.
Thus, free association production, the measure used (o calibrate distance between
concepts, had no effect on priming. The data provide no evidence for activation
spreading through a network.

In a second experiment, we examined another basis for evaluating whether
two concepts are related in memory. The idea was to use the co-occurrence of
properties of words to evaluate relatedness. Ken Church at AT&T Bell Labs has
developed statistics to calculate the probability with which two words occur
together in a large corpus of text (.. several million words from the AP Newswire),
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was defined as appearing together in a six word window in an AP newswire corpus
- of 6 million words. From the retumed words, we picked one that had a relatively
high significance value and one that had a relatively low value, Neither of these
words was the high associate ora synonym of the high associate. From these words,
we were able to form three pairs, each with the associate of the originally chosen

response to the high and low probability primes with essentially zero probability.

The three kinds of pairs, along with a control condition inwhich the target was
preceded by an unrelated word, were tested in a lexical decision experiment. The
amount of facilitation varied across the four conditions, with significant amounts

the corpus with high probability.

This experiment suggests that Co-occurrence leads to weak direct associations
that give pairs of words enough familiarity to produce priming in an experimental
situation. The implication of this result is that any word in the language probably
has a number of direct weak associates that are capable of producing priming
effects, in the absence of mediating associates. '

GENERAL DISCUSSION

In the first section of this chapter, we presented tests of the current global memory
models. The tests used standard recognition memory experiments to collect ROC
curves for weak and strong test items (using confidence judgments or manipulating
old/new test item probability in the test list). The slope of the z-transforms of the
hit and false alarm rates for the various criterion placements were plotted, and the
resulting curve was linear, which is consistent with the assumption of normal
distributions for old and new item fam iliarity values. For normal distributions, the
slope of this curve is the ratio of the standard deviations for the noise and signal
distributions, The empirically obtained slope was approximately constant at 0.8
over a wide range of d’ values. None of the current models can accommodate this
result. The composite models predict that the variances of the signal and noise
distributions should be about the same (i.e., the slope should be 1.0), and the
instance-based models (SAM and MINERVA 2) predict that the signal variance
should be greater than the noise variance with the ratio increasing as the strength
of old items increases.

The predictions of the models cannot be changed in any simple way to
accommodate a ratio of the noise and signal standard deviations equal to 0.8, In

TODAM and MINERVA 2, the predictions arise from the fabric of the model and
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These data, along with the data from the mixed/pure list designs (Ratcliff,
Clark, & Shiffrin, 1990; Shiffrin et al,, 1990), provide useful building blocks for
testing and developing new models and variants on the old models. The issue for
new models is how to decide what should be the fundamental data on which to
build a model. Clearly, with regard to empirical effects, the List length effect, list
strength effect, repetitions effects, and so on are basic. If a model does not produce
better performance on an item the longer or more often the item is studied, then it
is not adequate. But equally clearly, these empirical effects are ‘not enough to
constrain models, as shown by the tests in this chapter. If the empirical effects were
completely constraining, then there would not be the variety of models reviewed
carlier, or the models would be mimics of each other. To reiterate, these models
have vastly different assumptions in terms of structure, representation, and proc-
essing (e.g., local vs. distributed, separate vs. common memory, etc.), they make
many of the same predictions, but they produce different predictions in many other
cases. Given that this variety of models can handle the empirical effects with
varying but overall success, we believe that some of the fundamental assumptions
(such as the variance effects) need to be tested in conjunction with the empirical
effects. If a model fails on some of these fundamental properties, but can be
modified to give success, then the modified model still has to account for a range
of empirical effects (which may require a new and comprehensive set of fits to the
data for which the older version was developed). We believe that the data specifying
the behavior of the variance of the familiarity distributions are exactly the kind of
data that will prove to be fundamental in evaluating old models-and developing
new models. B} o

The second section of the chapter deals with the- application of the global
memory models to priming phenomena. Ratcliff and McKoon (1988, see also
Dosher & Rosedale, 1989) presented a theory of priming phenomena based on the
assumption that memory-is probed with a cue made up of a compound of the piime
and target items. Ratcliff and McKoon accountedfor a range of empirical data with
this compound cue notion and showed that it made a few strong predictions that
the main competitor (spreading activation) did not make, In this chapter, we
reviewed a test of one of these predictions, that weak priming effects should be
obtained between weakly associated words for which there is no mediating concept
through which activation could spread. We found that such effects did occur,
consistent with the compound cue view but not with spreading activation theories.
The effects can be predicted from the probability that the prime and target words
co-occur significantly often in a large corpus of text, suggesting that there are large
numbers of weakly related pairs of words in memory that can give small priming
effects.
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Spreading activation was first proposed as a general retrieval mechanism that
would provide paths of connected concepts in semantic memory, so that the
connections among the concepts could be evaluated. It is this function, long range
spread of activation, that is perhaps the primary function of spreading activation.
Thus, if the available data show no evidence of long range spreading, then the utility
of the concept of spreading activation is diminished. In contrast, the compound cue
theory predicts that the range of priming is short and that only direct associates (or,
in the SAM version, pairs that share associates) will show priming, To the extent
that there is no evidence for long range spreading activation, the compound cue
model is supported. The data that McNamara and Altaribba presented as showing
the compound cue model wrong (“mediated” priming) can be reinterpreted as
showing weak (but direct) associative priming, '

To conclude, we must echo the theme present throughout Ben Murdock’s
research: Our goal is to develop theories of representation and process in memory.
Without theory (be it explicitly quantitative or more qualitative), it is impossible
to decide what is important and what is trivial. In this chapter, we have presented
two kinds of research. One kind is motivated by theory (ROC curves), and without
theory would be of little interest. The other (priming) shows how theory can guide
interpretation and understanding of “interesting phenomena.” When is a phenome-
non interesting? When it speaks to theory, whether formally or intuitively.
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