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There is growing interest in diffusion models to represent the cognitive and
neural processes of speeded decision making. Sequential-sampling models
like the diffusion model have a long history in psychology. They view decision
making as a process of noisy accumulation of evidence from a stimulus. The
standard model assumes that evidence accumulates at a constant rate during
the second or two it takes to make a decision. This process can be linked to
the behaviors of populations of neurons and to theories of optimality. Diffusion
models have been used successfully in a range of cognitive tasks and as
psychometric tools in clinical research to examine individual differences. In
this review, we relate the models to both earlier and more recent research in
psychology.

Modeling Simple Decision Making
Decision making is intimately involved in all of our everyday activities. Many decisions are made
rapidly and at a low level cognitively, for example, deciding whether to drive left or right round a
car in front. Others, such as deciding which candidate to vote for or which car to buy, are made
at a higher level with prolonged deliberation. The diffusion models we discuss are of the former
type. In the real world, they involve a rapid matching of a perceptual representation to stored
knowledge in memory, which allows us to identify things in our immediate surroundings and
determine how we should respond to them. Much of what we have learned about such
decisions comes from laboratory tasks in which people are asked to make fast two-choice
decisions. The measures of performance are typically response times (RTs) and the probabilities
of making the two choices. Researchers are usually interested in how and why RTs and choice
probabilities change across experimental conditions, for example, whether a person tries to
respond as quickly as possible or as accurately as possible.

There have been a moderate number of models for these tasks and most assume accumulation
of noisy evidence to decision criteria representing each of the two choices. The models can
include one versus two accumulators (see Glossary), decision rules that are relative or
absolute, models with drift rate constant or varying over time, discrete or continuous time
evidence, stochastic versus deterministic evidence, and models with inhibition and decay.
Ratcliff and Smith [1] showed the relationships between the models along with a detailed
evaluation of the models (Figure 1, Key Figure).

The standard model that we will discuss was developed by Ratcliff in the 1970s [2] and has only
changed in assuming a single diffusion process instead of racing processes [3] and in adding
across trial variability in starting point [4,5] and nondecision time [6]. In this model
(Figure 2A), evidence about a stimulus from perception or memory accumulates from a starting
point to a boundary or threshold (i.e., a criterion), one boundary for each choice. The
boundaries represent the amount of evidence that must be accumulated before a response

Trends
Diffusion models with drift and bound-
aries constant over time account for
accuracy and correct and error
response time distributions for many
types of two-choice tasks in many
populations of participants.

Collapsing decision bounds implement
optimal decision making in certain
cases, but fits to data show humans
use constant boundaries.

Brief stimulus presentation produces
time varying input, but data suggest
that evidence is integrated to produce
constant drift in the decision process.
(Other tasks can produce nonstation-
ary evidence.)

Evidence is assumed to vary from trial
to trial, as in signal detection theory.
This explains why incorrect decisions
are often slower than correct decisions.

It is not clear if variability in a sequence
of stimulus elements in expanded judg-
ment tasks is equivalent to moment-
by-moment internal noise in tasks with
a single stationary stimulus.
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Glossary
Accumulator: an assumed structure
in an evidence accumulation model
that has the purpose of gathering
evidence in favor of one response.
Across-trial variability: the
assumption that drift rates vary from
decision to decision, motivated by
the idea that, even if physical
stimulus conditions are identical, the
internal representation of the
decision-relevant information is not.
Attractor model: a network (graph-
based) model of interconnected
nodes with a dynamic updating
process. The updating process
causes changes that lead to a stable
end state (at the ‘attractor’).
Collapsing boundary: an
assumption that the amount of
evidence required to trigger a
decision (the ‘threshold’) becomes
smaller as the time taken to make the
decision increases. This contrasts
with the standard assumption that
the threshold is unchanging.
Confidence: a subjective rating of
the likely accuracy of a decision
provided by the decision maker.
Evidence accumulation: also
known as ‘sequential sampling’. The
idea that decisions are made by
gathering evidence from the
environment, continuing until
sufficient evidence (a ‘threshold’
amount) is gathered.
Fast errors: an empirical
phenomenon in which the mean RT
for incorrect responses is longer than
that for correct responses. Reliably
observed when decision making is
easy or decision makers stress
speed. It has been important for
model development because it is
inconsistent with many theories of
decision making. See also ‘slow
errors’.
Hopfield network: a type of
attractor model based on recurrent
connections that has been used to
model human memory and decision
processes, among other things.
Latency–probability (LP) and
quantile–probability (QP) plots:
parametric plots that show the
relationship between the probabilities
of different classes of responses and
the timing of those responses.
Response times can be plotted either
as means (LP) or as quantiles (QP).
Nondecision time: the component
of RT that is not due to evidence
accumulation. Usually modeled as

is made. The accumulation process is noisy; at each moment in time, the evidence might
point to one or the other of the two boundaries, but more often to the correct than the
incorrect one.

The main components of the model for the decision process represent the rate of accumulation
and the settings of the boundaries. In Figure 2, the boundaries are set at 0 and a with starting
point z. Evidence accumulates in a noisy manner, and the average rate of accumulation is called
the ‘drift rate’. In addition, there are nondecision components: encoding the evidence from
a stimulus that will drive the decision process, extracting the dimension(s) of the stimulus that
form the basis of the decision from the stimulus or memory, and executing a response. These
nondecision components are combined and labeled the ‘nondecision’ component, which has a
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Figure 1. Relationships between the models, a flowchart of processing, and three issues addressed in the article.
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mean time of Ter. To set the measurement scale, one parameter of the model must be fixed
(otherwise, e.g., doubling all the rates of evidence accumulation while also doubling the
boundary separation would not change the predictions of the model). In theory, any model
parameter could be fixed; in practice, usually the parameter governing moment-by-moment
variability in evidence accumulation is fixed. Concise introductions to this model, which we will
refer to as ‘the diffusion model’ in this review, are available elsewhere [7], as are more general
comparative studies of the large class of sequential sampling models (Figure 1).

either a fixed offset or a rectangular
additive distribution.
Random walk model: a theory of
how decisions are made that posits
evidence accumulating semi-
randomly over time until enough is
gathered in favor of one decision
over another.
Response signal task: decision-
making paradigm in which an
experimenter-controlled signal
informs the participant when a
response is required. Also called
‘time controlled task’, ‘exogenous RT
task’, and ‘deadline task’ (although
the latter usually refers to a task in
which the same signal duration is
used in a block of trials, hence
allowing subjects to adopt different
criteria for the different deadlines).
Sequential probability ratio test
(SPRT): a statistical process for
making decisions, due to Wald. The
SPRT is identical to the random walk
model in certain cases. The SPRT is
also optimal in that it minimizes
decision time for a given level of
accuracy.
Slow errors: an empirical
phenomenon in which the mean RT
for incorrect responses is longer than
that for correct responses. Reliably
observed when decision making is
difficult and decision makers are
careful. It has been important for
model development because it is
inconsistent with many theories of
decision making. See also ‘fast
errors’.
Speed–accuracy tradeoff: the
empirical phenomenon that decision
makers can decide to make faster
decisions, sacrificing accuracy, or
more accurate decisions, sacrificing
speed.
Threshold: also known as ‘criterion’
or ‘decision boundary’. The amount
of evidence required to trigger a
decision response.
Urgency signal: an assumption,
related to the ‘collapsing boundary’,
that the accumulated evidence is
amplified more and more as the time
taken to make a decision grows.
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Figure 2. An Illustration of the Diffusion Model. (A) Shows two (irregular) simulated paths in the diffusion model (green).
The blue curves represent response time (RT) distributions for correct responses (top) and errors (bottom). The red lines
represent the fastest, medium, and slowest responses. (B) Shows the effect of lowering drift rate by a fixed amount. The
black double arrows show the effect on fast, medium, and slow average drift rates and the magenta arrows show the effect
on the fastest and slowest responses from the blue RT distributions. There is a small change in the leading edge of the
distribution and a large change in the tail. (C) Shows the effect of moving a boundary away from the starting point [a-speed
(as) to a-accuracy (aa), the blue broken arrow] to represent a speed–accuracy manipulation (both boundaries would move in
a real experiment). The magenta arrows show the effect on the fastest and slowest responses from the blue RT distributions.
There is a moderate change in the leading edge of the distribution and a large change in the tail. The difference in effects
between (B) and (C) discriminates manipulations that change boundaries from manipulations that change drift rates. (D)
Shows how a bias toward the A response can be modeled by a change in the starting point (blue broken arrow with the
starting point moving from the black line to the red line). RT distributions change as in (C). (E) Shows how a bias toward the A
response can be modeled by a change in the zero point of drift rate (blue broken arrow with the zero point moving from the
black line to the red line). (F) Shows the effect of a change in the zero point of drift rate, from (E). Drift rate is first symmetrical
(black arrows) and then biased toward A (the red arrows). RT distributions change as in (B). The parameters of the model are
boundary separation (a), starting point (z), drift rate (v, one of each condition), nondecision time (Ter), which is the duration of
encoding and response output processes and the transformation from the stimulus representation to a decision-relevant
representation. Parameters of the model are assumed to vary from trial to trial, drift rate is normally distributed with standard
deviation h, starting point and nondecision time are assumed to have rectangular distributions with ranges sz and st,
respectively.
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The diffusion model and others like it have become increasingly influential over the past 10 to 15
years as models of the psychological and neural processes involved in decision making. Box 1
gives a comprehensive list of advantages of the standard model and Box 2 presents a list of the
paradigms and areas of research to which it has been applied. There are three main reasons for
this success. First, the models account for all the behavioral data, namely accuracy and the
shapes and locations of the distributions of RTs for correct responses and for incorrect
responses. Second, they have been linked to neural processing for single cells and populations
of neurons and they have been linked to aggregate behavior as measured by electroencepha-
lography (EEG), functional magnetic resonance imaging (fMRI), and other imaging methods
(Box 3 discusses explicit links between neural models and diffusion models). Third, they have
been successful in explaining decision making across wide domains of psychology such as
aging, child development, various clinical populations, and animal species, often providing new
interpretations of data. For example, as age increases in adults RT increases. In many tasks, fits
of the diffusion model show that the quality of the evidence encoded from a stimulus (drift rate)
does not decrease; instead, the slowing occurs because the boundaries are set to increase
the amount of evidence required for a response and nondecision times are longer.

Current diffusion models are the culmination of 50 years of theoretical and empirical research
[2,8–11], which has identified the key features of experimental data that a model must explain
and the key properties by which a model can do so. Many recent studies have focused on new
phenomena and new areas of application but neglected findings in the older literature. This
neglect is potentially detrimental because the older literature contains modeling and experimen-
tal work that speaks directly to current issues. Our aims in this review are to redress this neglect

Box 1. Advantages of Diffusion Model Analyses

The model relates speed and accuracy to the same underlying components of processing for fast (less than 1–2 s) two-
choice decisions and it explains why speed and accuracy are sometimes correlated and sometimes not (especially
across individuals).

An individual can decide to respond as quickly or as accurately as possible. The diffusion model factors out speed–
accuracy settings and thus provides better estimates of the quality of the evidence entering the decision process than is
available from RT or accuracy data.

The model provides a fit to data that allows us to know whether the model is an adequate description of the data.

When there are limited numbers of materials, fitting the model to fillers and critical items increases the power for the critical
items. This is because fillers are weighted heavily in determining model parameters common across conditions [115–118].

When accuracy is at ceiling, it is still possible to estimate drift rates if some of the conditions have lower accuracy. These
conditions are weighted most heavily in determining some model parameters and then RTs alone are sufficient to
determine drift rates [118,119].

The variability in model parameters is usually smaller than the variability between subjects, which means that the effects of
individual difference measures on performance can be measured, for example, IQ and working memory [120–123].

Fitting packages are available (but subject to misuse if not understood): fast-dm [124], DMAT [125], HDDM [126], as well
as alternative fitting methods [127]. See evaluations elsewhere [128,129].

Other current sequential sampling models usually offer similar explanations of phenomena in terms of the behavior of
model components (parameters) [130,131].

In addition to standard two-choice tasks, the model has been successfully applied to go/no-go, response signal and
deadline tasks. Related diffusion models have been applied to multialternative decision making and confidence judgments.

The model can accommodate changes in the rate of evidence accumulation during the time course of a trial [54,56–59].
The distribution of nonterminated processes is well known (derived from the Fokker–Planck forward equation) and this
can be used as a new starting point distribution in a second phase of evidence accumulation after a change in drift rate.
Changes in other model parameters can be examined using simulation methods.
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and to highlight findings in the older literature that present challenges to currently accepted
interpretations of data and currently unresolved issues.

The Two-Choice Diffusion Model
Figure 2 shows simulated paths that represent the accumulation of evidence on individual trials
(Figure 2A) and it shows the effects of changes in drift rate (Figure 2B) and boundary settings
(Figure 2C) on RT distributions. Because there is a minimum on RTs but no maximum, the model

Box 2. Domains of Application of Diffusion Model Analyses

Diffusion and other models have been applied to many basic perceptual and memory tasks such as item and associative
recognition [2,15,121,122,132], lexical decision [121,133], perceptual tasks including brightness, letter, motion, visual
search, contrast, orientation discrimination tasks [7,14,16,44,103,104,134,135], numeracy judgments [13,121,123],
categorization [132,136], and text processing and priming [116,117]. Other tasks that have more interdisciplinary
relationships include stop signal tasks [137,138], conflict tasks [70,71], reinforcement learning [69,139], preferential
choice and value-based decisions (Box 7), and social decisions [140,141] (Box 7).

Relationships have been established between diffusion model analyses and behavioral measures such as eye tracking
[128,137] and pupil dilation [142]. Many studies have established relationships between diffusion models and neuro-
physiological measures such as single cell recordings in rodents and monkeys [52,88,105,143–148], EEG
[42,43,149,150], fMRI [42,43,139,151–155], transcranial magnetic stimulation (TMS) [156], and transcranial alternating
current stimulation (tACS) [157]. Diffusion model analyses have also been applied to bees and animal swarms [158,159]
and even to slime molds [160].

Diffusion model analyses have been used to study manipulations of state such as sleep deprivation [161], hypoglycemia
[162], and alcohol [163]. They have been used to study individual differences in IQ, working memory, and reading
measures [120–123], and to examine deficits in populations such as aphasics [164], older adults and children
[13,14,121,122], children [165], low literacy adults [166], dyslexics [167], attention deficit hyperactivity disorder (ADHD)
[168,169], schizophrenia [170], and in depressed and anxious individuals [171,172].

Box 3. Linking Neural Firing Rates to Diffusion Processes

Qualitative links have been made between neural firing rates and diffusion processes [143,144,173]. More explicit
modeling has attempted to link the dynamics of attractor networks to decision making by identifying decision making
with a neural network entering an attractor state. This uses linear approximations of the network equations and
constraints on the network parameters to reduce its dimensionality.

One theoretical challenge is to show that these network models can reproduce the structure found in families of RT
distributions for correct responses and errors for real decision-making data.

The attractor model developed by Wang assumes two pools of excitatory neurons coupled via a third pool of inhibitory
neurons [174,175]. A two-component linear diffusion approximation to the network dynamics was proposed and the
model was reduced to a much simpler representation consistent with current diffusion models. One attractive aspect of
this modeling approach is that neurally plausible assumptions are made about inputs based on currents, neurotrans-
mitters, etc.

A different approach assumed two pools with a nonlinear diffusion approximation containing both linear and cubic terms
[176]. The cubic term was designed to mimic the attractor dynamics of Wong and Wang [174]. It is an open question
whether the cubic diffusion equation can also reproduce the detailed features of accuracy and RT distributions found in
human behavioral data.

The attractor network model, the Ising Decision Model [177], is based on a stochastic Hopfield network. Stimulus
information, represented as the drift of an approximating diffusion process, is identified with (minus) the gradient of a
potential field that sets the attractor states of the network. A decision is made when the network first enters one of two
neighborhoods surrounding the attractor states. The model successfully reproduces the behavior of RT distributions
found in human data and the model makes an explicit theoretical connection between the physics of diffusion and the
properties of the potential field that determine the attractor states of that network.

Diffusive noise in a decision process can be derived from a Poisson shot noise model of stimulus representations
[178,179]. The Poisson shot noise process represents the variability in the postsynaptic potential across a neural
population that is induced by volley of action potentials modeled as a Poisson process. In this model, stimulus information
is represented by the difference between excitatory and inhibitory shot noise pairs. The model produced the families of RT
distributions predicted by the standard diffusion model.
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automatically produces right-skewed distributions that have the same shape as those found in
most simple two-choice tasks. That the model predicts RT distributions that are the same as
those found experimentally is one of the most important properties of the model and one of the
strongest tests of it [12].

Drift rates are determined by the quality of evidence extracted from the stimulus or memory
(often a different value for each condition of the experiment). Speed–accuracy tradeoff
effects and the effects of bias toward one of the boundaries over the other are ubiquitous
in the experimental literature and they are explained naturally by the structure of the model.
Usually (Figure 2C), speed–accuracy effects are explained by changes in the boundary settings
(e.g., [4,13–16]) and much smaller changes in nondecision time [17,18], although instructions
that extremely stress speed can reduce drift rates ([19], see also [20]).

Figure 2D–F illustrates ways in which the model can accommodate bias toward one alternative
or the other [21]. If the probability that one alternative is tested is made higher than the other, then
the starting point moves toward the higher probability boundary (Figure 2D) [5,22–26]. Some
recent investigations have suggested that the effects of this manipulation for both humans
and monkeys can be accounted for better by a bias in drift rate, not starting point [27]. However,
both accounts make key predictions about the behavior of RT distributions, which were not
examined. Bias can also be manipulated by payoffs, for example, paying more for correct
responses to one of the alternatives than to the other. In this case, the result is a combination of
bias in starting point (Figure 2D) and drift rate (Figure 2E,F) [23–25].

Changes in starting point and drift rates can also explain sequential effects [21,28–33] in which
trial-by-trial variations in RT are partly determined by the prior stimulus and the prior response.
With a rapid rate of presentation for easy stimuli, sequential effects can extend for several trials,
but for slower presentation rates and more difficult stimuli, they are found only for the immedi-
ately preceding trial. Adaptive regulatory mechanisms to account for trial-by-trial effects have
been proposed by a number of investigators [34–36]. In the diffusion model, sequential effects
can be modeled by making the starting point and drift rate functions of prior trials [5].

In many experimental reports, plots of either accuracy or mean RT alone are used to describe
data. However, the two dependent variables must be considered simultaneously. The data in
Figure 3A–D come from a motion discrimination task in which participants see a display of dots
and decide whether a subset of them is moving right or left; the fewer the dots moving
coherently, the more difficult the decision (Experiment 1 [7]). The effects are typical – more
difficult conditions have lower accuracy (Figure 3A) and slower responses (Figure 3B), but it is the
relation between them (the latency–probability function in Figure 3C) and the shapes and
locations of the full RT distributions (the quantile–probability function in Figure 3D) that must be
the targets for models. In Figure 3D, the RT distribution is represented by the 0.1, 0.3, 0.5, 0.7,
and 0.9 quantile RTs. The numbers are the data and the circles with lines between them are the
values predicted by the diffusion model. The model fits the data well, and it does so quantitatively
as well as qualitatively. The model is falsifiable in that it must predict the right-skewed shape of
RT distributions [37].

Some researchers question the need to fit RT distributions; some simply omit any consideration
of them. The importance of distributions is illustrated in Figure 3E,F, which show data from a
letter discrimination task with dynamic random pixel noise (Experiment 1 [38]). These data
cannot be fit with only drift rate changing (in Figure 3E the magenta line should go through the ‘1’
symbols, the red line through the ‘3’ symbols, and the blue line through the ‘5’ symbols).
Figure 3F shows how fitting the median RT alone can give misleading results. The red line goes
through the ‘3’ (median) symbols, which indicates a good fit, but the RT distributions that would
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be predicted miss the data badly (the predicted 0.1 and 0.9 quantile RTs miss the data by several
hundred milliseconds). Thus, we strongly recommend that predictions for RT distributions be
examined in any application of the model to data. Diffusion models for multialternative decision
making and confidence are discussed in Box 4.

Across-Trial Variability in Model Components
A problem with early random walk models, which were discrete time precursors of diffusion
models, was that they predicted identical RT distributions for correct and incorrect responses
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Figure 3. Relationships between Variables. (A–D) Plots of data from a motion discrimination experiment, Experiment 1
[7]. (A) Response proportion plotted against motion coherence. (B) Mean response time (RT) plotted against motion
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(digits) and model predictions (open circles and lines). The quantiles used were the 0.1, 0.3, 0.5, 0.7, and 0.9 quantiles and
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RT. The median (red) fits well, but the other quantiles miss badly.
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(when the starting point is equidistant from the boundaries), which is never observed empirically.
Several different approaches to this problem have been investigated, including: dynamically
changing decision boundaries; nonlinear evidence accumulation processes; and non-normal
random walk increments. The most extensively evaluated approach to the problem has been
the assumption of trial-to-trial variability in model parameters [2,7,9]. In the standard model, drift
rate is normally distributed across trials with standard deviation (SD) h, the starting point is uniformly
distributed with range sz (starting point variability is equivalent to variability in the boundaries), and
nondecision time is uniformly distributed with range st (Ratcliff examined these parametric forms
[39]). Recently, it has been argued that with assumptions of across-trial variability, any pattern
of data can be accommodated, but the argument only applies to deterministic models (Box 5).

The assumption that model parameters vary from trial to trial is made by most current models
that successfully account for experimental data in psychological applications [1,40]. This
assumption has a long history [2,4,9] of extensive testing and it allows models to explain the
relative speeds of correct and incorrect responses. When decisions are difficult and decision
makers are cautious, incorrect responses are reliably slower than correct responses (see later in
relation to collapsing boundary models). When decisions are easier and decision makers are
hurrying, incorrect responses are reliably faster than correct responses (see [32]).

Across-trial variability in drift rate produces slow errors (relative to correct responses) because
trials with randomly higher drift rates are associated with fast responses, but very few errors. By

Box 4. Multialternative Decision Making Including Confidence Judgments

There is no simple generalization of the two-choice diffusion model to multiple alternatives [9,180]. Instead, the usual
approach assumes independent racing single boundary diffusion processes. This generalizes easily to any number of
alternatives, but differs from the standard model because the racing diffusion model does not include response
competition as in the standard model. Response competition can be easily added to the model so that movement
toward one boundary entails movement away from the others.

Recent studies have examined models for multialternative decision making that use diffusion processes
[24,41,72,79,80,181–189] and a number of algorithms have been used:
(i) Independent racing accumulators with termination when one reaches its decision criterion.
(ii) Independent racing accumulators with a relative stopping rule (termination occurs when one accumulator beats the
maximum of the others by some amount).
(iii) Accumulators with dependence between accumulators: inhibition between accumulators that depends on the
amount of accumulated evidence.
(iv) Accumulators with dependence: evidence for one alternative is evidence against the others so that the total evidence
is constant. When one accumulator is incremented, the others are decremented (termed constant summed evidence or
feed-forward inhibition). This can be seen as a generalization of the two-choice model in which evidence for one choice is
evidence against the other.
(v) Other architectural choices include whether evidence can fall below zero, whether there is decay, and whether
parameters vary across trials. The models that implement these choices are difficult to discriminate (see [186]).

Confidence judgment tasks are also multialternative tasks. In them, subjects are often asked to rate their confidence in a
decision about two alternatives. In the majority of applications, the proportions of responses at each level of confidence
are the primary data, and signal detection theory has been the dominant model. These tasks have had a long history in
psychology [190–192].

Previously, little attention has been paid to confidence RTs [193,194] and even less attention to modeling them. However,
recent work in psychology has accounted jointly for response proportions and RT distributions in confidence judgment
tasks [186,195,196].

In animal work, it seems impossible to get animals to respond on a scale (e.g., six confidence choices). An opt-out
procedure has been used to examine confidence in animals [146,147].

In recent modeling in neuroscience, time has been used as a measure of decision confidence. However, in many studies,
RT distributions for different levels of confidence overlap and thus RT cannot uniquely determine the confidence levels.
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contrast, trials with randomly lower drift rates are associated with slow responses, many of
which are also incorrect. From this mixture (fast errors with low probability and slow errors with
higher probability), error responses are slower than correct responses (see [7], Figure 4). For
similar reasons, across-trial variability in starting point gives fast errors. We have seen few, if any,
patterns of incorrect RTs versus correct RTs that cannot be accounted for with the across-trial
variability assumption, although many such possibilities exist. Note that there are other ways
of producing fast or slow errors (relative to correct responses) such as collapsing bounds
(discussed later), but few of these have received extensive testing [41].

Box 5. Is the Diffusion Model Identifiable or Too Flexible?

If the forms of across-trial variability distributions are unconstrained, then Jones and Dzhafarov argued that the diffusion
model and other evidence accumulation models can exactly match any data (response probabilities and RT distribu-
tions), rendering the models unfalsifiable [197]. Below are considerations about this argument [198].
(i) The most important point is that the evidence in [197] applies only to completely different deterministic or near-
deterministic models, which the diffusion model is not.
(ii) In a deterministic model, if every process travels the same fixed distance (starting point to the boundary), then every
RT can be converted into a velocity (drift rate) by velocity = distance/time (drift rate is a constant multiplied by 1/RT), thus
producing a one-to-one mapping between drift rates and RTs (Figure IA).
(iii) In such a deterministic model, to account for errors, complex, bimodal distributions of drift, consisting of two
unequally sized, asymmetrical lobes, must be assumed. The probability mass in each corresponds to the proportion of
responses of each type (Figure IB). Every different RT arises from a different value of drift (because it is a constant times
1/RT) and the drifts for correct responses and errors have opposite signs because errors can only occur when the sign of
the drift is wrong.
(iv) Because response probabilities and RT distributions vary from condition to condition, a different bimodal distribution
of drift with a different shape is needed for every condition of an experiment. In the standard model, if the distributions of
drift rate or starting point are changed modestly [2,39], the model produces similar predictions (within trial noise washes
out effects of distribution shape as in the central limit theorem).
(v) The resulting model is complex with highly unintuitive properties. As stimuli become more discriminable and easier,
the asymmetry of the distribution of drift and the separation between its positive and negative lobes increases (Figure IB).
(vi) To account for the finding that repeated presentation of the same stimulus can lead to different responses, the model
must assume that the sign of the drift can vary from presentation to presentation and that the magnitude of the difference
between drifts leading to correct responses and errors increases as the task becomes easier (i.e., error drift rates
become more strongly negative).(vii) In a few cases, neurophysiological data can address the distributions of drift rates. For example, single trial
EEG measures are consistent with unimodal distributions rather than bimodal distributions [197] ([42],see
Figure 2D,E in main text).
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Figure I. Drift Rates and RT Distributions from the Deterministic Model. (A) An example of correct and error RT
distributions generated by the standard diffusion model and the distribution of drift rates in the deterministic model used
to generate them. (B) Examples of the distributions of drift rate in the deterministic model for different levels of drift rate.
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Another source of support for across-trial variability in drift rate comes from a face/car perceptual
discrimination task in which EEG signals are used to sort responses into two groups, those that
are more face-like and those that are more car-like ([42], see also [43]). When the diffusion model
was applied to the RT and accuracy data for the two groups separately, robust differences in drift
rates were produced, showing that the EEG signals indexed the trial-to-trial differences in
evidence entering the decision process.

The assumption that drift rate varies from trial to trial [2] has been controversial in some circles
[44–46], but across-trial variability in drift rate is no different than variability in signal strength in
signal detection theory and, ironically, the latter assumption is almost universally accepted.
Alternatives to the across-trial variability assumption have been proposed including the assump-
tion that drift rates ramp up over time (an ‘urgency signal’) and the assumption that boundaries
collapse over time. Although these can predict slow errors, they cannot account quantitatively
for the full range of data and we discuss this shortly.

Response Signal and Go/No-Go Tasks: Implicit Boundaries
In the response signal task, a stimulus is presented and then after some amount of time, a
signal is given. Participants are asked to choose between two alternatives just as in the usual
two-choice procedure except that they are asked to respond as quickly as possible after the
signal (in, say, 200–300 ms). The stimulus-to-signal time varies from trial to trial [47–50], which
means that processing can be assumed to be the same for all signal times up to each specific
signal time [2]. A response signal task is often used in animal studies in which responses are
made following a cue (e.g., [51–53]).

In application of the diffusion model to response signal data [17,54,55], there are two response
boundaries just as for the usual two-choice task. When a decision is made at some signal lag,
responses come from a mixture of processes: those that have terminated at a boundary and
those that have not (Figure 4A). As the stimulus-to-signal time increases, a larger and larger
proportion of processes will have terminated before the signal. For nonterminated processes,
there are two possible hypotheses: that decisions are made on the basis of the partial
information that has already been accumulated (which has low accuracy relative to terminated
processes [55]) or that they are guesses. In fits of the diffusion model, these hypotheses could
not be discriminated [17].

Response signal studies from the 1980s show that drift rate can change from stimulus-to-signal
intervals that are about the mean RTs in the usual procedure (600 ms or less) up to intervals of
around 2 s [56–59]. Changes in drift rate occur when two sources of information are pitted
against each other. For example, early in processing, responses to ‘a bird is a robin’ are mainly
‘true’, reflecting the strong association between birds and robins, but later in processing they are
‘false’. This differential availability of information over time might be thought similar to data from
mouse-tracking paradigms in which, for example, tastiness information becomes available
earlier than healthfulness information in a dietary choice task [60]. However, the smooth mouse
tracks obtained on single trials in such studies do not match the highly irregular paths of the
diffusion model (Figure 2A). The link between smooth mouse tracks or arm-reaching trajectories
and the underlying process of evidence accumulation is unlikely to be as simplistic as the one-to-
one mapping commonly assumed (e.g., [61]).

In a go/no-go task, participants are to respond to one of the two types of stimuli (e.g., dots
moving left) but withhold a response to the other (e.g., dots moving right). In neuropsychological
and clinical research, a pervasive view is that the task measures inhibitory control (e.g., [62–64]).
However, in the diffusion model, when it is assumed that there are two boundaries, one implicit,
the shorter RTs and lower accuracy for ‘go’ stimuli are explained as a bias of the starting point
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toward the ‘go’ boundary [65,66]. What has been assumed to be an ability to suppress
responses is interpreted simply as a bias in processing (sometimes a combination of biases,
as shown in Figure 2D–F).

Another domain that concerns stationarity in processing is how changes in evidence might be
detected. Diffusion and related model analyses of tasks in which stimulus information varies from
moment to moment provide a theoretical account of change detection [67,68] in which evidence
accumulation has to be balanced against changes in the stimulus environment.

Conflict Tasks
Another class of paradigms that appear to require dynamic changes in diffusion model param-
eters over time are conflict paradigms. In a reinforcement learning paradigm, subjects had to
choose one of a pair of letters and feedback indicated which one was ‘correct’ on that trial.
Feedback was probabilistic with one letter of the pair being reinforced more often than the other.
Later in the session, conflict conditions were created by pairing the letters from different pairs
that had low probability of reinforcement. Responses to these conflict pairs had shifts in RT
distributions relative to the training pairs and other pairs in which high probability letters were
paired with other letters. The conflict conditions were modeled with collapsing decision bound-
aries that accounted for the shifts in RT distributions [69]. (This pattern of shifts in the RT
distributions could also be modeled by shifts in nondecision time.)

A second conflict paradigm is the Eriksen flanker paradigm. In this, ‘>’ symbols are used to
indicate the direction of the response (‘>’ right and ‘<’ left). The flanker manipulation involves
placing other symbols indicating the same direction or the other direction around the central
target that indicates the response. Two diffusion models have been developed, one that
assumes dual stages, and one that assumes that evidence driving the process changed
continuously over time as a result of attention gradually focusing on the central target
[70,71]. The key for testing these models is the behavior of RT distributions: the behavior of
error versus correct RT distributions provides the critical tests of the models.

Optimality
Considerations of optimality have played a significant role in the theoretical and experimental
analysis of human and animal decision making. Theories of optimality prescribe how the available
evidence should be used to produce a best decision, in some specified sense; experimental
studies of optimality have investigated whether actual behavior approximates the theoretical
ideal. In simple decision making, two different senses of optimality have been promoted (Box 6).
One of these is based on Wald's sequential probability ratio test (SPRT) from statistics; the
other is based on reward rate maximization. Wald showed that a random walk decision process
that accumulates the log-likelihood ratios of the observed evidence sequence, given the two
decision alternatives, is optimal in the sense of needing the smallest number of evidence
samples to reach a prescribed level of accuracy. Optimality in Wald's sense was influential
in the development of early random walk models of human decision making in psychology
[8,9,22]. A pure (Wiener) diffusion process, with no across-trial variability, can be viewed as a
continuous-time log-likelihood ratio accumulator, and is optimal in the same sense [72,73].

A significant limitation of the Wald SPRT test is that it restricts its applicability to real world
decision tasks with constant evidence and boundaries and thus it applies only to decisions
between pairs of alternatives whose properties are known. It is not applicable, for example, to
tasks in which stimuli of varying discriminability are presented in random order in a block of trials
unless the boundary settings are set differently for each different difficulty level (and optimally, for
each one). In most decision environments, this is not possible because setting the appropriate
boundary requires advanced knowledge of the upcoming decision difficulty. However, in the few
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cases where it is possible to set different boundaries for each difficulty level, human decision
makers seem fairly efficient at setting those many boundaries in an optimal manner [74,75].

An alternative definition of optimality is reward rate maximization [76], defined as maximizing the
number of correct decisions (and the associated reward) per unit time [72,77–81]. This definition
of optimality has been promoted, especially in animal studies that use water-deprived animals
and liquid rewards, as a biologically principled theory of optimality. In these tasks, it seems likely
that animals will be motivated to maximize their reward rate because it also minimizes the time
until the next reinforcement. Although reward rate maximization has been promoted as a general
definition of optimality with equal applicability to animals and humans, it is not clear that human
decision makers are motivated in the same way. Rather than seeking to maximize the returns per
unit time, humans seem to be motivated to maximize the returns in the available time. For
example, if two students take a 2-h exam and one obtains 60% correct in 1 h while the other
obtains 80% correct in 2 h, the second student will perform better on the course. There are some
situations in which reward rate is explicitly set as a goal (e.g. ‘speed tests’ in schools) but even
there, there is little evidence that people actually attend optimally to this goal. Indeed, when we
have investigated this hypothesis, it fails (Box 6).

Collapsing Bounds
The link with optimality theory, on the one hand, and neural studies of decision making, on the
other, has led to models in which decision bounds collapse over time. In the collapsing bound
model, less evidence is required to trigger a decision as time passes, that is, the boundaries
collapse from initially wide spacing toward the center (Figure 4B). Another assumption with much
the same effect is that fixed boundaries are maintained, but an ‘urgency signal’ is added to the
accumulated evidence [82,83]. This signal is like a gain that magnifies evidence by larger and
larger amounts as time passes. Models with collapsing bounds have been identified with
urgency gating signals in some recent theoretical accounts of optimal coding in neural pop-
ulations and in empirical single cell recording studies [41,78,82–85].

Box 6. Optimality: Do Subjects Adopt Optimal Boundary Settings?

There are two senses in common use:
(i) A diffusion process is optimal in that for a single drift rate, the process requires the minimum time on average to
produce a given level of accuracy (determined by boundary settings).
(ii) For any experiment with any number of conditions, a value of boundary settings (with bounds constant over time)
can be computed that makes the number correct per unit time a maximum (reward rate optimality).

Problems

For (i): If parameters vary from trial to trial and/or there are multiple conditions in an experiment, sense 1 of optimality no
longer holds.

It is possible to compute the optimal boundary shape, and this varies as a function of time.

It is difficult to see, especially in the first trials of a task, how enough information could be gathered trial by trial to allow the
shape of this optimal bound to be computed. The stimulus condition is almost always not known and the response
choice and RT are stochastic and thus reliable information needed to compute the bound is not available. In the
derivations of optimality, there is no term in the computations (e.g., based on feedback) representing the duration or effort
needed to compute and update the optimal boundary.

For (ii), when experiments have tested whether boundary settings are optimal, generally they are not. Only with feedback
does performance of young adults approach reward rate optimal [199]. But older adults rarely moved more than a few
percent away from asymptotic accuracy.

In experiments in which blocks of trials are difficult or easy, there is a fixed time for the block, and subjects are instructed to
get as many correct regardless of errors. For difficult relative to easy blocks, subjects slow down when it is reward rate
optimal for them to speed up [200].
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Another issue concerns the relative speed of correct and incorrect decisions. In many para-
digms, particularly those with difficult decisions and an emphasis on decision caution, incorrect
responses are systematically slower than correct responses, on average. Standard evidence
accumulation models account for this effect by assuming variability in decision difficulty across
trials [2]. Collapsing boundaries or increasing urgency signals provide an alternative way to
predict that incorrect responses are slower than correct responses.

Because many of the predictions of fixed bound and collapsing bound models are very similar, a
test between them is only likely to be successful if it uses large samples and is carried out at the
distribution level. A large-scale investigation of data from hundreds of participants in ten different
studies, from three different laboratories addressed these questions empirically [86]. The data of
the great majority of participants were better described by the regular, fixed bound diffusion
model than by either of the collapsing boundaries or urgency signal variants. What support did
exist for the new variants was mostly confined to experiments involving non-human primate
participants, or using experimental procedures optimized for non-human primates (but with
human participants). Other studies that have identified support for nonstationary models have
mostly employed unusual decision-making tasks, for example, with very long decision times or
slowly changing stimulus properties [85,87].

Figure 4C,D illustrates, using example experimental data, that the fixed bound model out-
performed the collapsing boundaries and urgency signal models. While it is true, in theory, that
the collapsing boundaries can help the model to predict slow errors, in practice its predictions
did not match data because the model systematically overpredicts the slowing of incorrect
responses relative to correct responses. The lower-right panel of Figure 4D shows the best fit of
a model with an urgency signal to decision data from monkeys [88] – these data are actually
some of the most favorable for the collapsing bounds and urgency signal accounts. Incorrect
responses (red crosses) in these data are slower than correct responses (green crosses).
However, the urgency signal model overpredicts this effect, with incorrect responses becoming
slower from right to left across the plot. This effect is almost never observed in data. Instead,
especially in human data, there is almost always a characteristic inverted U shape to these plots,
which is accommodated well by the standard fixed bound model, but not by the collapsing
bound model (see top row of Figure 4D).

Expanded Judgment Tasks
Most recent applications of diffusion models have been to experimental tasks in which a single
stimulus is presented and the noise in the evidence accumulation process arises from moment-
by-moment variability in the cognitive representation of the stimulus. However, some of the
earliest applications of random walk models [8,22] were to expanded judgment tasks in which a
noisy sequence of stimulus elements has to be integrated to make a decision. Studying such
tasks was motivated by the Wald SPRT test [89], which provided an optimality theory for
decisions about discrete sequences.

There has been a recent resurgence of interest in the application of diffusion and random walk
models to expanded judgment tasks, especially in neuroscience, motivated in part by a renewed
interest in optimality [76,90,91]. Many researchers have used a coherent motion discrimination
task (e.g., the moving dot paradigm mentioned earlier), originally developed in vision science as
a pure motion stimulus, as a fast-paced expanded judgment task, assuming that successive
states of the motion signal are accumulated directly by the decision process.

At present it is an open question whether the decision process treats variability in a sequence of
stimulus elements as equivalent to moment-by-moment internal noise in the cognitive repre-
sentation of a single stimulus. The hypothesis that external stimulus noise and internal noise are
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equivalent is an attractive one, but there are enough differences in the perceptual and memory
demands between single stimulus decision tasks and expanded judgment tasks to make the
equivalence questionable. Only one stimulus representation is required in single stimulus tasks,
whereas expanded judgment tasks require a new representation of every element in the sequence,
which must be integrated with the memory representation of the elements that precede it.

Currently, little is known about how this memory updating process might take place, how long it
might require, or how it might depend on the complexity of the individual stimulus elements.
Expanded judgment tasks vary widely in the types of stimuli they use and the way the stimuli are
presented. The stimuli have included random dots [44], colored lights [92] and patches [93], line
segments [94], sinusoidal gratings [95], clicks and visual pulses [52], and geometric shapes [96],
with interelement intervals ranging from a few tens of milliseconds to several hundred milli-
seconds or longer. Unless memory updating is rapid and effortless, one would expect working
memory capacity limitations to have a significant effect on performance.

Consistent with this expectation, the picture of the decision process that emerges from expanded
judgment studies is more complex than the one that has come from single stimulus studies, and
some of the findings have no obvious counterpart in single stimulus studies. For example, one
study [52] reported that the sole source of variability in decision making by human and animal
subjects was external noise in the stimulus; they found no effect of internal noise, or leakage, that is,
decay of the memory representation of the stimulus sequence with the passage of time.

Other studies [93,95] found there was a strong recency weighting of stimuli: stimulus elements
occurring later in the sequence were weighted more heavily in the decision than were earlier
elements. Recency weighting has been observed in other studies [97] using longer stimulus
sequences, but other studies found both primacy and recency effects [45]. Recency weighting
has been explained by various mechanisms, including a gain control process [95] and a working
memory capacity limitation [97].

Most studies using expanded judgment tasks have not analyzed RT distributions. When they
have been analyzed [94], the decision time distributions were much more variable than those
found in single stimulus tasks and could not be predicted by a random walk model with normally
distributed increments, which is the discrete time counterpart of the diffusion model with no
across-trial variability in drift rates or starting points. Instead, they were better described by a
version of the Vickers accumulator model [98], in which only large stimulus elements are
accumulated and small ones are ignored.

Studies using stimuli that are perturbed by external dynamic noise cast further doubt on the
assumption that the decision process treats internal noise and external noise as equivalent. Many
studies have assumed that the decision system accumulates the noisy output of a motion
discrimination system, in which the noise arises from variability in the stimulus sequence (following
[88,99]). These effects are typically modeled using a constant drift diffusion model in which the
drift rate is proportional to the mean strength of the motion signal. Other work [38] has found
that the effect of dynamic noise on letter discrimination was to shift the entire RT distribution to the
right, delaying all responses by a constant amount. They attributed the delay to the time needed
to compute a stable stimulus representation, which determines the drift rate of the diffusion
process. RT distributions from the dynamic noise task were modeled with a diffusion model with
a time-varying drift, in which the growth of the drift rate depended on external noise [100].

These examples highlight the fact that expanded judgment tasks and tasks in which stimuli are
presented in external noise differ in significant ways from tasks in which the only source of
noise is internal to the decision process. These differences caution against any a priori equating
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of the effects of internal and external noise and suggest that further work is needed to
understand the relationship between them.

Brief Stimulus Presentation
There is a growing interest in whether there is nonstationarity in processing that reflects changing
stimulus information over time. This is often studied with stimuli flashed for very brief times (e.g.,
50 ms) and is also partly motivated by the thought that stimulus quality can change during the
time course of an expanded judgment task. In a highly relevant example from about 15 years
ago, the question was whether drift rate tracks the stimulus or not. In other words, whether drift
rate begins at some value reflecting the stimulus information and then drops to zero when the
stimulus turns off, or instead, whether information from the stimulus is integrated over time into a
short-term representation that provides a constant drift rate to drive the decision process [101].
Drift rate tracking stimulus availability would be equivalent to the starting point moving nearer the
boundary for correct responses, which predicts errors much slower than correct responses
because errors would have much further to travel to the incorrect boundary. However, the
distributions of RTs for errors and correct responses were similar, supporting a model in which
drift rate is driven by a constant representation of the stimulus (see also [14,16,37,102]).

Later work [103] examined manipulations of contrast, stimulus presentation duration, and
attention with Gabor patch stimuli and culminated in a model that integrated the processes
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that construct a representation of stimulus information in short-term memory with the decision
process of the diffusion model [104]. Constructing a representation is necessary because stimuli
are multidimensional (e.g., size, color, they might correspond to entities in memory) and thus
there must be processes to pick out the dimension relevant to a decision. There are neuro-
physiological data that support this view. For example, in motion discrimination tasks that use a
brief pulse of motion [105], there is a long-lasting effect (up to 800 ms) on decision-related firing
rates in the lateral intraparietal cortex. Other studies in animals and humans have found that
accuracy does not increase after some stimulus duration [37,106–110], suggesting a time by
which the relevant stimulus information has been constructed. Integration time, as assessed by a
change in accuracy thresholds as a function of stimulus duration, was shown to be the same
(around 400 ms) for high and low coherence stimuli [107]. This suggests that the exposure
duration effects in this paradigm may reflect perceptual integration processes involved in
computation of the drift rate rather than evidence accumulation by a decision process.

Figure 5 illustrates how a nonstationary model mispredicts data when drift rate turns on at a
relatively high value for 80 ms and then returns to zero (Figure 5A). Figure 5B shows the average
position of the accumulation process rising over the first 80 ms and then falling back toward the
starting point. Figure 5C,D shows the difference in the RT distributions for correct and error
responses. The red circles are the 0.1, 0.3, 0.5, 0.7, and 0.9 quantile RTs for correct responses
and the blue are the quantiles for errors. Overall, error responses are slower than correct
responses, not the result found elsewhere [14,16,37,102]. This illustration also demonstrates
that RT distributions are the critical test between stationary and nonstationary processes. Some
investigations have supported nonstationarity but have not generated the critical predictions for
correct and error RT distributions ([52,87,111–113], see also [45,86,114]).

This discussion raises a related question, whether the stimulus evidence driving the decision
process turns on abruptly. In a simulation, drift rate was ramped linearly over 50 ms from zero to
a constant level [37]. The standard constant drift model fit the simulated data almost perfectly
(with different parameters than those used to generate the simulated data – increases in across-
trial variability in nondecision time and starting point, and also nondecision time), suggesting that

Box 7. Preferential Choice and Value-Based Decision Making

Diffusion models have been applied to complex preferential choice applications from judgment and decision making that
apply to economics and consumer behavior. Wiener and Ornstein–Uhlenbeck diffusion models have been applied to
preferential choice, value-based decisions, and economic decisions for more than 25 years. The tasks in these
applications are not simple speeded decisions, but rather choices between risky gambles or multiattribute consumer
products.

Initial work on preferential choice was carried out using what is called decision field theory (DFT) [201]. In this model, a
decision maker's attention switches from one attribute to another over time, and the advantages and disadvantages of
each alternative are accumulated into a preference state. When one option reaches a decision threshold, that choice is
taken. DFT has been used to fit choice and RT data from choices between risky and uncertain gambles [201]. Later, a
multialternative version of DFT was used to account for the context effects (similarity, attraction, compromise effects) on
choice found by consumer researchers [181]. In related research, Tsetsos et al. [202] used the leaky competing
accumulator diffusion model to predict context effects on choice. DFT has also been used to account for puzzling
reversals in preference between choice and price of gambles [203] and to explain choice and RTs for intertemporal
choice [204].

Recent research on value-based decision making has used the attention drift diffusion model [205,206]. The model
assumes that attention to an option changes the drift rate during preference accumulation. Novel eye tracking methods
have been used to track attention to options across time and use these measurements to moderate the drift rate across
time. This model has achieved impressive success to account for eye fixation data as well as both choice and RT
distributions for choices between food items.

This and other diffusion models have been used to account for, among other things, value-based decision, social choice,
and purchasing decisions [150,152,153,157,207–210].
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ramped drift and constant drift models mimic each other and that constant drift models are a
good approximation even if drift rate does ramp up over time.

Concluding Remarks
Current research in modeling decision processes has used diffusion models extensively. They
are being applied in clinical and educational domains, economic decision making (Box 7), and
the neuroscience of decision making. Here we have examined current issues that have a history
in psychology and we have discussed the earlier research and how it complements new
research. In some cases, the earlier research provides an answer to new research questions.
Although we have separated the issues, many of them are related. Collapsing decision bounds
have been argued to be optimal and able to replace assumptions of across-trial variability in drift
rate. Likewise, nonstationary drift rates are related to collapsing bounds and are one hypothesis
of what would occur with brief stimulus presentation. These basic questions are important as the
field uses this modeling approach in clinical and neuroscience domains (see Outstanding
Questions).
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Outstanding Questions
What is the best architecture for multi-
ple choice decisions and confidence
judgments? There are a number of
models but they are complicated and
difficult to test against data and against
one another.

What is the signal that initiates the deci-
sion process? One assumption is that
there is a release from inhibition in the
accumulation process, but this needs
to be formally modeled. A change
detector based on the perceptual sig-
nal has been used to model this.

How are decision boundaries set (crite-
rion settings in general such as the
criterion in signal detection theory and
the drift criterion in the diffusion model)?
Optimality theory attempts to do this but
no model is completely satisfactory.

The issue of criterion setting is even
more of a puzzle because humans
can set criteria to verbal instructions in
one or two trials. In other words, there
is no chance for feedback (in some
experiments with human subjects, no
feedback is given) to provide information
with which to adjust criteria.

Much of the neurophysiological study
of decision making uses tasks with
responses in different locations in a
retinotopic map for eye movement
responses or a motor map for motor
responses. However, in humans, it is
easy to make the alternative responses
two arbitrarily chosen words (‘one’/
‘two’, ‘case’/‘plumb’, ‘cricket’/‘foot-
ball’). A diffusion model could represent
the decision process, but the process
by which the categorical output is
mapped onto the verbal response
(such as by using a dynamical speech
production model) is unexplored.

The relationship of criterion settings to
control structures in basal ganglia and
working memory processes in frontal
cortex is beginning to be explored.

We are a long way away from truly
integrated models of motor processes
in decision making in the motor cortex
and oculomotor system.

Applications to economic decision-
making tasks are beginning to pene-
trate the field of economics.

Applications that bring this type of cogni-
tive modeling to neuropsychological and
educational testing are just beginning.
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