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Does Response Modality Influence Conflict? Modelling Vocal and Manual
Response Stroop Interference

Alex Fennell and Roger Ratcliff
The Ohio State University

In the Stroop task, color words are presented in colored fonts and the task of the subject is to either name
the word or name the color. If the word and font color are in agreement, then the stimulus is said to be
congruent (e.g., RED in red font color); however, if the word and font color are not in agreement, the
stimulus is said to be incongruent (e.g., RED in blue font color). Conflict in the Stroop task is measured
by both RT and accuracy. In prior research, the amount of conflict differs depending on the response
modality, vocal versus manual. We applied a model for multichoice decision-making (and confidence),
the RTCON2 model (Ratcliff & Starns, 2013) to the data from 4 experiments, 2 with 2-choice manual
responses, 1 with 4-choice manual touch screen responses, 1 with both 4-choice vocal responses, and
4-choice manual keyboard responses. Changes in the rate of information accumulation captured conflict
effects for the manual-response versions, but not for the vocal-response version. Adding an extra
nondecision time parameter allowed RTCON2 to account for the data patterns in the vocal-response
version. However, to fully understand conflict in the vocal-response Stroop task, a model of conflict
processing in the vocal word production system must be developed that would explain the additional
processing time in the nondecision time parameter.
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Selectively attending to relevant aspects of the environment,
while ignoring distracting information, is key to carrying out
goal-oriented actions. The critical importance of selective attention
has made it an important area of investigation within psychology.
There are a number of tasks that have been used to investigate this,
and in this article, we focus on the Stroop task (Stroop, 1935).
There are many versions of the task, but the general idea is that
individuals are presented stimuli that vary on two dimensions, and
make a response based on one. In the classic paradigm, the
stimulus is a color word presented in a font color. If the word and
font color are in agreement, then the stimulus is said to be con-
gruent (e.g., RED in red font color); however, if the word and font
color are not in agreement, the stimulus is said to be incongruent
(e.g., RED in blue font color). Neutral stimuli have one dimension
that is relevant to the decision while the other dimension does not
contribute to the decision. Given this, the kind of neutral stimulus
will depend on the task (e.g., XXXXX in red font color, when
making a response based on font color). The participant is asked to

make a response based either on what the word says, or on the font
color in which it is presented. When making decisions based on the
font color, incongruent stimuli produce slower responses com-
pared with neutral stimuli. This is referred to as Stroop interference
and is a hallmark effect within this task. It is also sometimes
observed that individuals produce faster responses when respond-
ing to congruent versus neutral stimuli, a phenomenon referred to
as Stroop facilitation (MacLeod, 1991).

The amount of Stroop facilitation and interference are influ-
enced by a number of factors, but one that has been examined over
the years, with several different theoretical accounts, is that of
response modality. A number of studies have explicitly examined
the effect of vocal responses versus manual keyboard responses,
and there is a general finding that interference is less for manual
responses compared with vocal responses, herein referred to as the
modality effect (Neill, 1977; Redding & Gerjets, 1977; Sharma &
McKenna, 1998; White, 1969). Furthermore, there are some in-
stances in which the facilitation effect is greater for manual re-
sponses compared with vocal responses (Redding & Gerjets,
1977). This suggests that there is a difference that depends on the
response modality, but it is unclear what difference in processing
produces this difference in the patterns of responses.

In this article we use a sequential sampling model, the RTCON2
model (Ratcliff & Starns, 2013), to account for behavioral data from
the Stroop task. RTCON2 can be viewed as an extension of the
two-choice diffusion model (Ratcliff, 1978; Ratcliff & McKoon,
2008). Both models integrate reaction time (RT) and response pro-
portions to produce psychologically interpretable parameters, which
provide an account of processing. The primary aim of this study is to
use RTCON2 to identify and understand differences in processing
between these two different response modalities.
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There have been numerous attempts to provide a theoretical
account of Stroop phenomena with the use of mathematical mod-
els. Each of the models presents a different perspective on how
information is processed in this task and how it differs as a
function of response modality. Perhaps the most well-known
model of Stroop phenomena is the one developed by Cohen,
Dunbar, and McClelland (1990). This model is a feedforward
network that implemented the assumption that automaticity is not
a discrete all-or-nothing phenomenon, but rather a continuous one
(Logan, 1985; MacLeod & Dunbar, 1988). The model contains
two processing pathways, one for word and one for color, and each
one contains an input layer of nodes, a layer of hidden nodes, and
an output layer of nodes. The model is implemented with two
colors and, within each pathway, two input nodes that correspond
to the different colors used in the simulation. The connection
weights between the input and hidden nodes, and those between
the hidden and output nodes, differ between the color and word
pathways. The word pathway has stronger connection weights than
the color pathway, to reflect the fact that word reading is a more
practiced skill than color naming (MacLeod & Dunbar, 1988;
Posner & Snyder, 1975). In addition to these pathways, there are
two attentional nodes, which are activated according to whether
the task is font color naming or word reading. The font naming
node is connected to the hidden layer of the color pathway, and the
word reading node is connected to the hidden layer of the word
pathway. These attentional nodes bias activation of the hidden
layer nodes, depending on task, to make units in one pathway more
likely to be activated than the other.

With this structure, the model is able to simulate mean RTs of
Stroop interference similar to those observed in empirical data.
However, in its current form, the model in unable to account for
the modality effect. However, it may be possible for the model to
account for this effect by incorporating a node that reflects the
response modality within which the task is presented. This mod-
ification has not been explicitly implemented, but if it were suc-
cessful in capturing the modality effect, it would suggest that
differences in conflict processing between these tasks is because of
vocal responding being a more automatic process than manual
responding. The response modality node would make connections
to the word reading node that increases the activation of this node.
Therefore, more inhibition would be required when incongruent
stimuli are presented, resulting in more Stroop interference. On the
other hand, keyboard responses would require less inhibition,
resulting in less Stroop interference. This idea is supported by RT
distributional analyses of the Stroop task (Spieler, Balota, & Faust,
2000; Steinhauser & Hübner, 2009). These studies show that the
main difference in RTs between interference in the manual and
vocal Stroop tasks is that the manual response tasks produce
smaller shifts in the leading edge of the RT distributions between
neutral and incongruent conditions when compared with vocal
response versions.

One problem with the Cohen et al. (1990) model is that it
produces RT distributions of the incorrect shape (Mewhort, Braun,
& Heathcote, 1992). Thus, the model does not provide a complete
description of the data and cannot address the issue of the effect of
manual versus vocal on the leading edge of RT distributions. Also,
there is still the question of whether this additional conflict in the
vocal Stroop task is because of additional processing during the

decision-making process, or whether this is a result of additional
time taken to encode or initiate a response.

The dimensional overlap model (Kornblum, Hasbroucq, & Os-
man, 1990; Kornblum, Stevens, Whipple, & Requin, 1999; Zhang,
Zhang, & Kornblum, 1999) is a computational model that accounts
for phenomena across a wide variety of tasks, including the Stroop
task. The dimensional overlap model posits that Stroop interfer-
ence arises from incompatibility of the stimulus dimensions (i.e.,
font color, and color word) as well as incompatibility between the
stimulus and response. The main underlying assumption of this
model is that processing occurs in two stages. The first stage is
perceptual and captures the (in)compatibility of the stimulus di-
mensions. The second stage is the response production stage,
which captures stimulus-response (in)compatibility. The model
itself is represented by two layers of modules, an input layer, and
an output layer. The input layer consists of modules that corre-
spond to the relevant stimulus dimensions (e.g., font color), while
the output layer consists of modules that correspond to the dimen-
sions related to the response options. Additional modules can be
added to these layers to capture effects from irrelevant stimulus
dimensions, or irrelevant response dimensions.

Excitatory pathways connect the relevant stimulus modules to
the response modules (e.g., red font color to red response option)
while inhibitory pathways connect the irrelevant stimulus modules
to the relevant stimulus modules. In addition to this, processing is
divided into a stage-like structure in which processing in the input
layer must cross a certain threshold, before processing can begin in
the output layer. Thus, the processing time in the input layer can be
attributed to perceptual processing, whereas the processing time in
the output layer can be attributed to response production.

With this structure the dimensional overlap model has simulated
Stroop facilitation and Stroop interference, along with several
other Stroop phenomena (Kornblum et al., 1999; Zhang et al.,
1999). It is also able to simulate RT distributions that approximate
those seen across a wide variety of Stroop and related paradigms
(Zhang et al., 1999). The dimensional overlap model has not been
specifically applied to capture the modality effect, but it would be
feasible to modify the model to do so. If another module repre-
senting the task dimension was added to the model (e.g., different
modules for manual responses and vocal responses) with inhibi-
tory and excitatory connections to both the stimulus dimensions
and the response modules, then the modality effect could possibly
be simulated. The main shortcoming of this model is that it does
not predict response accuracy and so it does not provide a com-
plete description of the data.

The RACE/A model (van Maanen & van Rijn, 2007; van
Maanen, van Rijn, & Taatgen, 2012) is a model of the Stroop task
that offers a more complete explanation of the processing that
occurs during the task. RACE/A operates within the cognitive
architecture of ACT-R (Anderson, 2007), while also integrating
decision mechanisms from sequential sampling models. Before we
explain how the RACE/A model account for interference in the
Stroop task, we provide a brief overview of sequential sampling
models.

One of the more successful ways to account for data in simple
decision-making tasks has been with sequential sampling models.
These models assume that information used in making decisions is
noisy and so this information must be accumulated over time. The
models also assume that a decision is made once a decision
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boundary is crossed, one boundary for each response choice. The
accumulation process can either be absolute, with evidence accu-
mulating separately for each response option toward a separate
decision boundary for each choice (Vickers, 1970). Or the process
can be relative, with a single accumulator and with a response
being made when evidence for one response exceeds evidence for
the others by a certain criterial amount (Ratcliff, 1978). The
quality of information, or drift rate, in conjunction with the amount
of information required to make a response, or decision criterion,
allow this class of models to make predictions about RT, error
rates, and their distributions. Drift rate is dependent on stimulus
quality, with easier stimuli having higher drift rates, and difficult
stimuli having lower drift rates. Decision boundaries on the other
hand, reflect response conservativeness and are set by the individ-
ual. For a more in-depth review and comparison of sequential
sampling models see Ratcliff and Smith (2004) and Teodorescu
and Usher (2013). Thus, this class of models attempts to give an
account of the hypothesized processes which underlie the accuracy
and RT measures.

In the RACE/A model, processing is distributed across a number
of different systems (e.g., perceptual, motor response, vocal, and
memory) and produces RTs based on the summation of time spent
in these systems. The most successful application of RACE/A has
been to the picture word interference paradigm. Specifically,
RACE/A was used to test the hypothesis put forward by
Dell’Acqua, Job, Peressotti, and Pascali (2007), that processing
during picture word interference occurred during perceptual en-
coding, as opposed to response selection. This encoding view is
one way in which Stroop interference has been hypothesized to
occur (Fagot & Pashler, 1992). Using RACE/A, van Maanen, van
Rijn, and Borst (2009) demonstrated that picture word interference
and Stroop interference can be accounted for within a single
framework. This is accomplished by dividing the processing into
three stages, perceptual, decision, and response, with interference
occurring unequally in each stage. It is conceivable that RACE/A
could also capture the modality effect; however, the model has not
been applied to the modality effect. The modality effect could be
captured by changing the manner in which processes in the re-
sponse stage occur between modalities. For example, it may be
that motor responses associated with button pressing are simply
faster than those associated with vocal responding. It could also be
the case that interference occurs differently across the stages of
processing for manual responses and vocal responses. The main
drawback of the RACE/A model is that although the model pro-
vides predictions about RT distributions, these have not been
explicitly examined or compared with data, and so it is unclear
whether the differences in RT distributions between the vocal and
manual response Stroop task could be captured by this model.

We have discussed three models that offer different accounts of
how Stroop interference can be accounted for and how this differs
as a function of response modality. The Cohen et al. (1990) model
proposes that interference in the Stroop task is a result of response
competition, and responding vocally is more automatic than re-
sponding manually, which accounts for the modality effect. The
dimensional overlap model attributes Stroop interference to occur-
ring on both a semantic and response level and, thus, the modality
effect arises from differences in how inhibition interacts at both
these stages. On the other hand, RACE/A suggests that interfer-
ence is spread over many different stages of processing and the

modality effect may be accounted for by different processing in the
manual and vocal Stroop tasks. We propose RTCON2 as an
alternative model to these previous models to provide a compre-
hensive description of the behavioral data, as well as psycholog-
ically interpretable parameters that reflect processing during the
decision-making process. However, this model does not describe
sources of conflict or how attention contributes to performance on
the Stroop task. However, we suggest that the model might be a
meeting point between it and the theories just reviewed; theories
that provide little information about the decision process.

The RTCON2 model is a sequential sampling model that was
developed to account for confidence judgments in decision-
making tasks and other multichoice paradigms (Ratcliff & Starns,
2013). One of the key assumptions of RTCON2 is that the degree
of match between a stimulus and memory is conceptualized as a
distribution over the degree of match between a test item and
memory rather than a single value (Beck et al., 2008; Gomez,
Ratcliff, & Perea, 2008; Jazayeri & Movshon, 2006; Ratcliff,
1981, 2018; Ratcliff & Starns, 2009). In the current experiment,
however, evidence will be conceptualized as a single value, as was
done in the motion discrimination experiment in Ratcliff and
Starns (2013). RTCON2 uses a constant summed evidence algo-
rithm in which evidence for one option is evidence against the
others. The evidence against the other alternatives is equally di-
vided among the alternatives, so the increment in the winning
accumulator is equal to the sum of the decrements in the others.
Furthermore, drift rates across the different accumulators add to
one, evidence may go below zero, and there is no decay in
evidence over time.

The most important parameters for examining the effects of
Stroop interference are drift rate (v), nondecision time (Ter), and
decision boundary settings (b). These correspond to separate and
readily interpretable psychological constructs. The model is unable
to divide up time allocated to encoding information, accessing
memory, and initiating a response, and combines these into the
single nondecision time parameter. The primary focus of the model
is on the decision process, with drift rate and decision boundary
settings being centrally important. Drift rate is a measure of the
quality of evidence from a stimulus. Difficult stimuli have low
drift rates that produces slower and less accurate responses. For
example, incongruent stimuli in the classic Stroop paradigm would
have lower drift rates than congruent stimuli, as these stimuli
produce conflicting information, which makes decision about them
harder. Decision boundary settings reflect differences in response
style that vary across individuals. Lower boundaries indicate a less
conservative response style in which less evidence is required for
a response, which produces responses that are faster and less
accurate than the average. Higher boundaries produce responses
that are slower and more accurate.

In addition to these parameters, there are trial-to-trial variability
parameters that reflect the assumption that the system cannot
produce identical parameter settings from trial-to-trial. Across-trial
variability in drift rate (sv) reflects the assumption that the same
stimulus will not be encoded in an identical manner when encoun-
tered on different occasions. This model also assumes there is
variability in decision boundaries (sb) across trials. This assump-
tion is derived from the notion that individuals are assumed to be
unable to hold fixed boundaries across trials, and instead have
fluctuations in how much evidence is required to make a decision

T
hi

s
do

cu
m

en
t

is
co

py
ri

gh
te

d
by

th
e

A
m

er
ic

an
Ps

yc
ho

lo
gi

ca
l

A
ss

oc
ia

tio
n

or
on

e
of

its
al

lie
d

pu
bl

is
he

rs
.

T
hi

s
ar

tic
le

is
in

te
nd

ed
so

le
ly

fo
r

th
e

pe
rs

on
al

us
e

of
th

e
in

di
vi

du
al

us
er

an
d

is
no

t
to

be
di

ss
em

in
at

ed
br

oa
dl

y.

3MODELLING STROOP INTERFERENCE



from trial-to-trial. Finally, there is across-trial variability in non-
decision time (st) that represents trial—to-trial variability in pro-
cesses outside the decision process. The first two of these vari-
ability parameters have been found to accommodate differences in
the RT distributions of correct versus error responses (Ratcliff &
Tuerlinckx, 2002). Perhaps most importantly, the model includes
within-trial variability in the accumulation process (�), which
accounts for fluctuations in evidence accumulation around its
mean, during the accumulation process.

Figure 1 presents RTCON2 as applied to a color identification
task with four response options, “red,” “green,” “blue,” or “yel-
low”. The black lines under the “accumulators” column corre-
spond to evidence accumulation paths for a given trial. This is a
noisy process, so the response option with the largest drift rate
does not always win, and the RTs will vary from trial to trial even
with identical model parameters. In the example in the figure, the
evidence accumulation process terminates first for the A response
category resulting in a “red” response.

The RTCON2 model has several advantages for application in
this domain. First, the model is able to deal with tasks that have
more than two response options. Second, it is able to use all of the
behavioral data (choice proportions and RT distributions for all the
choices). Furthermore, the model does this for data from individual
participants that allow it to account for the typically large differ-
ences in response patterns across participants. This allows this
model-based analysis to examine whether an individual processes
information similarly across tasks (Ratcliff, Thapar, & McKoon,
2010, 2011). The model does not accomplish this by being overly
flexible: the RTCON2 model (as well as the standard diffusion
model) is constrained to produce RT distributions that are posi-
tively skewed. Finally, RTCON2 provides fits that can be quanti-
tatively assessed. In doing so, conclusions drawn from the model

can either be supported or refuted according to the degree of match
between the model and data.

The aim of the current article is to apply the RTCON2 model to
data from the Stroop task in order account for decision processes
involved in the task. We begin by comparing the model fits of
RTCON2 to that of the standard diffusion model for data from
two-choice Stroop tasks to show that it provides comparable fits to
the diffusion model. As was previously mentioned, the interfer-
ence effects in vocal response variants of the Stroop task are larger
than those seen in manual response variants. We can test the same
individuals in both of these tasks and use RTCON2 to examine
what processing components differ between the two tasks. The
Stroop models reviewed earlier present some hypotheses for what
processes may differ between response modalities in the RTCON2
model. The Cohen et al. model suggests that the modality effect
arises from vocal responses being more automatic than manual
responses. The dimensional overlap model suggests that the
strength of the connection between input and output layers differs
as a function of response modality. The hypotheses proposed by
the Cohen et al. model and the dimensional overlap model would
be reflected as a difference in drift rates across the tasks. On the
other hand, RACE/A suggests that interference is distributed
among all stages of processing, and this would be reflected in a
combination of differences in drift rates, decision boundaries, and
nondecision times across tasks.

Experiment 1

The first two experiments were designed to assess whether the
multialternative RTCON2 model can fit behavioral data from a
two-choice Stroop conflict paradigm and whether these fits are
comparable with those of the diffusion model. The diffusion model
was chosen for comparison as it is constrained, and has been able
to successfully account for data from a wide variety of experimen-
tal paradigms. Additionally, the RTCON2 model can be seen as an
extension of the diffusion model, and as such, its parameter values
should be consistent with those of the diffusion model across fits
to individual participant data. Although similar in structure,
RTCON2 does differ from the diffusion model. The main differ-
ence between the models is that RTCON2 must be fit by simula-
tion, while the diffusion model has a closed form solution. It
should be noted that in the context of two-choice tasks, RTCON2
is equivalent to the diffusion model. Previously, RTCON2 has
been shown to produce similar parameter values, and model fits to
other sequential sampling models, including the diffusion model,
in the context of associative recognition, item recognition, and
motion discrimination (Ratcliff & Starns, 2013; Voskuilen & Rat-
cliff, 2016). It has yet to be determined whether the RTCON2
model can account for the patterns of behavioral data typically
observed in the Stroop task, which is the aim of this study.

The first experiment is the classic Stroop experiment, presented
in a manual response two-choice format. This experiment and all
subsequent experiments were approved by The Ohio State Uni-
versity Social and Behavioral Institutional Review Board.

Method

Participants. Eighteen college-aged participants with normal
or corrected to normal vision, were recruited from the introductory
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psychology course at The Ohio State University and were given
course credit for their participation.

Materials. The stimuli consisted of four color words (“red,”
“green,” “blue,” and “yellow”) and the letter string “XXXXX.”
These were presented in one of the four character colors, or the
color white. Combining all of the color words and the letter string
with all of the colors yielded 20 stimuli. All stimuli were presented
in the center of the screen on a black background. The task
included word identification and color identification blocks whose
order was counterbalanced across participants. Each task included
32 blocks with 20 congruent items (color words presented in the
matching character color); 20 incongruent items (color words
presented in a nonmatching character color); and 20 neutral stimuli
(color words presented in white font color for word identification
blocks, or a string of X’s presented in a character color for color
identification blocks). The stimuli were randomized so that no
stimulus type, no stimulus dimension (character color, or color
word), or response key mapping was repeated more than two times
in a row. All stimuli were presented on a CRT display using a
real-time computer system.

Procedure. The task took approximately 50 min to complete.
The first two blocks of the task were practice blocks, one for word
identification, and the other for color identification. Participants
made their responses according to the name of the word in the
word identification blocks, or the color in which the word was
presented for the color identification blocks. The practice blocks
consisted of 18 items, 6 congruent, 6 incongruent, and 6 neutral
stimuli. Responses were collected using the ‘/’ and ‘z’ keys on a
PC keyboard, and participants were instructed to use their right and
left index fingers, respectively, to make responses. In this variant
of the Stroop task, only two colors were present in each block. The
two colors presented varied from block to block, but the response
key mappings stayed consistent (i.e., red and blue were always the
‘/’ key and green and yellow were always the ‘z’ key so the blocks
had either red or blue and either green or yellow). In a given block,
the color associated with the ‘/’ could be presented with either of
the two colors associated with the ‘z’ key (e.g., red could be
presented with green in one block, and yellow in another). Instruc-
tions were presented at the beginning of each block that informed
the participants the two colors that would be presented during the
block, what type of block it was (color identification, or word
identification), and with directions to make responses as quickly
and accurately as possible. Items were presented on screen until a
response was made, and were followed by blank screen that lasted
300 ms. Responses that took longer than 1,250 ms were followed
by a “TOO SLOW” message that was displayed for 500 ms.
Responses faster than 250 ms had a “TOO FAST” message that
was displayed for 1500 ms. An “ERROR” message was displayed
on screen for 300 ms when an error was made.

Analyses.
Statistical analysis. RT latencies less than 250 ms and greater

than 1,500 ms were excluded from statistical analysis (�2% of the
data). Mean RT and accuracy were submitted to a 2 (Block) � 3
(Stroop Condition) repeated measures analysis of variance
(ANOVA). Interactions were further examined with planned
paired t tests. Specifically, we examined Stroop facilitation (i.e.,
congruent minus neutral) and interference (i.e., incongruent minus
neutral) within each block type.

Model fitting. There were two response choices and six
conditions (word identification: congruent, incongruent, neu-
tral, and color identification: congruent, incongruent, neutral).
The RTCON2 and diffusion models were fit to the response
proportions and .1, .3, .5, .7, and .9 RT quantiles for each individ-
ual participant for each response choice in all conditions. Optimal
parameter values were obtained by first selecting initial parameter
values that provided predictions similar to those observed in the
data (see Voskuilen & Ratcliff, 2016), and then a simplex mini-
mization routine (Nelder & Mead, 1965) was used to search for the
parameters that provided predictions close to the observed data. A
�2 statistic was used to quantify the degree of match between the
model predictions and empirical data. This was computed using
the observed quantiles to produce the cumulative proportions
between quantiles, and the frequencies by multiplying by the
number of observations. The �2 statistic was computed for each of
the six quantile bins (Ratcliff & Tuerlinckx, 2002). Chi-square for
bins with less than seven observations used a single value from
observed and expected proportions in the �2 calculation.

For the RTCON2 model, simulations were used to generate
predicted values from the model as there are no exact solutions for
this model. The accumulation process was simulated using Euler’s
method with 1 ms steps (Brown, Ratcliff, & Smith, 2006; Usher &
McClelland, 2001). At each time step, a randomly chosen accu-
mulator was incremented or decremented, and the other accumu-
lator received an equal and opposite amount of evidence (for
further discussion of the equations see Ratcliff & Starns, 2013).
There were 20,000 iterations of the decision process used to
generate the response proportions and RT quantiles for each re-
sponse option. The resultant simulated data comprise what will be
referred to as model predictions, which are specific to a set of fixed
parameters, rather than being predictions about future data based
on fits of the current data.

The RT quantiles divide into six bins for each response option,
which, for two choices, gives 12 degrees of freedom for each
condition of the experiment. However, given that the response
proportions must add to one, the degrees of freedom for each
condition becomes 11. With six conditions, this gives a total of 66
degrees of freedom. There are 12 free parameters in the RTCON2
model for this experiment leading to 54 degrees of freedom. There
are two drift rate means for each condition (that must add to one),
each corresponding to one accumulator; this provides one inde-
pendent parameter per condition. Examination of the data showed
no bias toward one response option or the other, so data were
collapsed into correct and error responses. As a result, only one
decision boundary was free to vary, and the other was set equal to
it. Furthermore, within-trial noise in the diffusion process in the
RTCON2 model was fixed at .1, to directly compare parameter
values of RTCON2 and the diffusion models. Thus, seven param-
eters are used to model the stimulus representations used in the
decision process (six mean drift rates and one between-trial vari-
ability in the mean of the drift distribution). The other five param-
eters represent the decision process (one decision boundary,
across-trial variability in the decision boundaries, nondecision
time, variability in nondecision time, and the scaling parameter on
drift).

The diffusion model has 12 free parameters, with seven param-
eters corresponding to the stimulus representation (six drift rates
and one across-trial variability in drift rate). The other five param-
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eters, similar to the RTCON2 model, correspond to the decision
process (nondecision time, variability in nondecision time, bound-
ary separation, starting point variability, and a parameter for con-
taminant responses, the last of which is not present in RTCON2).
Starting point was fixed to be half of boundary separation because
there is no bias for one response option over the other. Taking into
account the number of free model parameters, there are 54 degrees
of freedom for the diffusion model for this experiment.

Results

RT and accuracy. The statistical analysis suggested that there
was a substantially significant Block � Stroop6 condition inter-
action for both mean RT, F(2, 34) � 14.26, p � .001, �2 � .02,
and accuracy, F(2, 34) � 27.71, p � .001, �2 � .09. Responses in
the color identification block were significantly slower than in the
word identification block, F(1, 17) � 6.76, p � .05, �2 � .04, but
error rates did not substantially differ, F(1, 17) � 1.87, p � .05,
�2 � .02. Specifically, in the word identification block, as shown
in Table 1, participants produced significantly more errors,
t(17) � 	2.87, p � .01 d � .68, but did not differ in their response
latencies, t(17) � 1.08, p � .05, d � .26, for the incongruent
compared with neutral condition. Similarly, the facilitation effect
for RTs was not significant within the word identification block,
t(17) � 1.83, p � .05, d � .43, and participants were significantly
less accurate in the congruent compared with neutral condition,
t(17) � 	3.57, p � .01, d � .84. On the other hand, in the color
identification block, responses for the incongruent condition pro-
duced significantly longer response latencies, t(17) � 3.43, p �
.01, d � .81, and more errors, t(17) � 	5.96, p � .001, d � 1.40,
than the neutral condition. There was also Stroop facilitation
present in the color identification trials, with participants produc-
ing significantly faster responses, t(17) � 	3.20, p � .01, d � .75,

and fewer errors, t(17) � 2.24, p � .05, d � .53, in the congruent
compared with neutral condition.

Model fits. This section examines whether the diffusion and
RTCON2 models fit the data and if the RTCON2 model provides
predictions and parameter values similar to those of the diffusion
model. We show that both RTCON2 and the diffusion model fit
the data well, and that the parameter estimates of the decision
process are strongly correlated across the models. Both models
were fit to each participant’s data individually that provided pa-
rameter estimates that, in turn, were used to generate predicted RT
quantiles (.1, .3, .5, .7, and .9) and response proportions for each
condition.

The difference between the conditions is accounted for by
allowing drift rate to vary among conditions. As can be seen in in
Table 2 and 3, drift rate for the incongruent stimuli in the color
identification condition is smaller than that in the neutral condi-
tion. Thus, the degree of match between the stimulus and mental
representation is smaller for incongruent stimuli, resulting in less
accurate responses.

The model fits were assessed quantitatively by comparing the
model predictions to the empirical data using a �2 statistic. For
some participants, there were few error observations in both the
neutral and congruent conditions for both tasks, and so the �2 was
based on a single value for each error response category. The
average parameter values are shown in Tables 2 and 3 for the
RTCON2 and diffusion model, respectively. The mean �2 value
was 96.2 with a SD of 22.6 for the diffusion model and 119.4 with
a SD of 26.8 for the RTCON2 model, which are both more than the
critical value (72.2 for both models as within-trial noise in the
diffusion process was fixed in RTCON2) suggesting a mismatch
between the models’ predictions and the data. For the diffusion
model, 3 participants out of 18 had �2 values lower than the critical

Table 1
Mean RT, (ms) SE in RT Across Participants, (ms) and Accuracy for Experiments 1, 2, 3, and 4

Experiment Task Stroop condition Mean RT (ms) SE in RT (ms) ACC

Experiment 1 Color identification Congruent 460 51 .94
Incongruent 494 75 .87
Neutral 471 55 .93

Word identification Congruent 454 54 .92
Incongruent 452 54 .92
Neutral 449 58 .94

Experiment 2 Color identification Identical 478 47 .96
Congruent 491 57 .95
Incongruent 519 52 .88
Neutral 490 53 .93

Word identification Identical 486 42 .95
Congruent 494 42 .95
Incongruent 519 82 .90
Neutral 495 44 .95

Experiment 3 Vocal response Congruent 533 82 .99
Incongruent 669 112 .95
Neutral 555 91 .99

Manual response Congruent 594 57 .95
Incongruent 657 75 .93
Neutral 611 63 .94

Experiment 4 Color identification Congruent 520 65 .99
Incongruent 537 76 .98
Neutral 522 63 .99

Note. ACC � accuracy.
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value, and RTCON2 had zero participants with �2 values lower
than the critical value. Although the �2 values are larger than the
critical value, the degree of mismatch is similar to that seen in
other fits of the diffusion model. The mismatch is attributable in
part to the sensitivity of the �2 test to large numbers of observa-
tions. With an average of 250 responses per condition per partic-
ipant, even small deviations between the empirical data and model
predictions will result in inflated �2 values (Ratcliff, Thapar,
Gomez, & McKoon, 2004).

A complete assessment of model fit requires not only a quanti-
tative comparison, but also a qualitative assessment, in which the
model predictions for each condition are compared with the ob-
served data. Quantile-probability plots averaged over all partici-
pants for the three Stroop conditions in the word identification
block and color identification block are presented in Figure 2. Each
column shows one experimental condition, with the .1, .3, .5, .7,
and .9 RT quantiles being plotted as a function of the proportion
responses (Ratcliff & Smith, 2004). Only correct responses are
presented because there were too few error observations to com-
pute quantiles. The different stimulus conditions, neutral, incon-
gruent, and congruent, are presented in separate columns. The X’s
represent empirical data, while the diffusion model predictions are
represented by D’s, and the RTCON2 model predictions are rep-
resented by R’s. A proportion scale is centered on the data and
shows the 1% deviation in response proportion.

The predictions for both the RTCON2 and diffusion models
match the data quite well. Predicted quantile RTs are within 30 ms
of the data for correct responses and predicted accuracy values are
within two percentage points of the data. Both models predict
shorter .9 quantiles than is observed in the data for the color

identification task. In the word identification condition, it can be
seen that the RT quantiles are nearly identical for correct responses
across all conditions. The color identification condition on the
other hand, shows a different pattern between conditions, with
incongruent correct trials resulting in a slightly longer leading edge
and a longer tail compared with the neutral condition. The con-
gruency effect results in fewer responses in the tail of the RT
distribution for congruent compared with neutral trials (i.e., a
shorter tail). This pattern of results is consistent with results from
other analyses of RT distributions for manual response variants of
the Stroop task (Aarts, Roelofs, & van Turennout, 2009; Stein-
hauser & Hübner, 2009).

The underprediction of the .9 quantile produces a large part of
the numerical mismatch in �2 between the models and the data.
This result is similar to that of Ratcliff and Starns (2009) who
found that small shifts in the RT quantiles could produce large
increases in �2. Furthermore, even small misses (�.1) in response
proportions have been shown to produce �2 values double the
critical value (Ratcliff et al., 2004). Given these caveats of the �2

fitting method, it can be seen that both models do a good job of
capturing overall trends in the data with reasonable precision.

To illustrate the variability of individual responses and the
ability of both the diffusion and RTCON2 models to fit this variety
of data, we plotted accuracy and RT quantile data for all conditions
in the color identification block. Figure 3 shows the observed
accuracy and RT quantiles plotted against the predicted values for
the diffusion (left) and RTCON2 (right) model. Error responses are
represented by crosses, while correct responses are unfilled circles.
A perfect correspondence between the empirical data and predic-
tions would be shown by the points lying on the line with a slope

Table 2
Experiments 1 and 2: RTCON2 Mean Parameter Values and SDs in the Parameter Values Across Participants

Experiment Ter as � sb st sv b1–2 vidC vcC vinC vneC vidW vcW vinW vneW �2

Experiment 1
Mean 284 .040 .1 .58 132 .064 1.59 .73 .66 .70 .72 .73 .74 119
SD 19 .010 .11 33 .021 .24 .04 .04 .04 .04 .05 .05 26

Experiment 2
Mean 297 .049 .1 .60 137 .059 1.80 .71 .70 .64 .69 .70 .69 .65 .69 132
SD 32 .004 .08 40 .012 .23 .05 .05 .04 .05 .03 .04 .03 .04 26

Note. Ter is nondecision time in milliseconds. as is the scaling parameter, multiplying drift rate, � is SD in within-trial variability in drift rate, sb is
between-trial variability in decision criterion, st is between-trial variability in nondecision time, sv is between-trial variability in drift rate, b1–2 are the
decision criterion, v is drift rate for the various conditions (C is for color identification blocks, W is for word identification blocks, id is identical, c is
congruent, in is incongruent, and ne is neutral).

Table 3
Experiments 1 and 2: Diffusion Model Mean Parameter Values and SDs in the Parameter Values Across Participants

Experiment a Ter � sz po st z vidC vcC vinC vneC vidW vcW vinW vneW �2

Experiment 1
Mean .107 309 .144 .065 .02 136 .053 .37 .27 .33 .37 .38 .41 96
SD .020 18 .080 .025 .03 .03 .010 .09 .11 .11 .10 .11 .12 23

Experiment 2
Mean .120 320 .126 .073 .01 130 .060 .39 .36 .24 .34 .36 .35 .27 .35 116
SD .022 32 .067 .024 .02 .05 .011 .10 .09 .08 .09 .06 .07 .07 .07 27

Note. a is boundary separation, Ter is nondecision time in milliseconds, � is between-trial variability in drift, sz is the range in starting point, po is
contaminant responses, st is between-trial variability in nondecision time, z is starting point, v is drift rate for the various conditions (C is for color
identification blocks, W is for word identification blocks, id is identical, c is congruent, in is incongruent, and ne is neutral).
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of one (indicated by the diagonal line on each plot). Error bars
were constructed using a bootstrap method. A bootstrap sample
was created by sampling with replacement from all of the re-
sponses in a condition for each participant. This was repeated 100
times to create the bootstrap samples which were used to generate
the SDs of the RT quantiles for each participant, condition, and
response option. The SDs for the three conditions were averaged
across participants separately for correct and error responses to
create the error bars. Error bars depicting 1 SD are shown in the
bottom right of each plot, for both errors (top) and correct re-
sponses (bottom). An error bar depicting 2 SDs is shown inter-
secting the reference line. Examination of the response proportions
shows that the data and predictions from both models match each
other quite well for all participants. There is some variability in the
lower quantiles, but most of the differences between theory and
data occur in the .9 quantiles. However, both models provide
predictions that are within 2 SDs, except in a few cases, in the 0.9
quantile RTs.

Although the diffusion and RTCON2 models do not have the
same parameters, there are some parameters that are common
across models, namely drift rate, decision boundary setting, and
nondecision time. These should be consistent across the different
conditions for each participant. Figure 4 displays comparisons of
drift rate, decision boundary and nondecision time, for all individ-
ual participants between the RTCON2 and diffusion model. The
leftmost plot displays the drift rates for each participant across all
conditions, with the diffusion model estimates on the y-axis, the
RTCON2 estimates on the x-axis, and a best fitting linear regres-

sion line. The high correlation between the parameters demon-
strates that there is a good correspondence in drift rate estimates
between the two models. Therefore, when the diffusion model
produces large drift rate estimates that suggest a fast rate of
information accumulation, the RTCON2 model does the same.
Similar results are obtained for decision boundaries and nondeci-
sion time which are shown in the other two panels of Figure 4.

Experiment 2

The goal of this experiment was the same as that for Experiment
1. In this experiment, four colors were presented throughout the
experiment (instead of two per block in Experiment 1) with two
colors consistently mapped to each of two response keys across the
entire experiment. Again, we will examine whether RTCON2 and
the diffusion model produce similar parameters and predictions for
this as in Experiment 1.

Method

Participants. Nineteen college-aged participants with normal
or corrected to normal vision, were recruited from the introductory
psychology course at The Ohio State University and were given
course credit for an introductory psychology course upon comple-
tion.

Materials. The materials used in Experiment 2 are adapted
from (De Houwer, 2003; Schmidt & Cheesman, 2005; Steinhauser
& Hübner, 2009) and are the same as those used in Experiment 1,
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with a few exceptions. Neutral stimuli are color words presented in
white characters on a black background for word identification
blocks, and a letter string of X’s presented in a color for color
identification blocks (as in Experiment 1). Identical stimuli have
the color words presented in the matching character color, while
congruent stimuli have different color words and character colors,
but they are from the pair assigned to the same response (i.e., the
word red in blue font color, because red and blue are mapped to the
‘/’ key). Incongruent stimuli have color words and character colors
that are mapped to different keys (i.e., the word green in red font
color, with green mapped to the ‘z’ key and red mapped to the ‘/’
key). The use of the word congruent may seem confusing as this
condition does entail semantic incongruity; however, we use this
terminology to remain consistent with the rest of the experiments
in this article. There were 16 stimuli of each type (Identical,
Congruent, Incongruent, and Neutral) per block with a total of 36
blocks, with half the blocks color identification blocks and half
word identification blocks.

Procedure. The procedure was identical to Experiment 1 with
a few exceptions. The most notable is that the response key
mappings are slightly different, so that two colors are mapped to
one response key (red and blue for the ‘/’ key and green and yellow
for the ‘z’ key) for all of the experiment. In addition to this, the
practice block consisted of 24 trials, evenly divided among the
Stroop conditions.

Analyses.
Statistical analysis. RT latencies less than 250 ms and larger

than 1,500 ms were excluded from statistical analysis (less than
2% of the data was eliminated). Mean RT and accuracy were
submitted to a 2 (Block) � 4 (Stroop Condition) repeated mea-
sures ANOVA. Interactions were further explored planned paired
t tests. Specifically, we examined Stroop facilitation (i.e., identical
minus neutral) and interference (i.e., incongruent minus neutral)
for each block type.

Model fitting. Model fitting was the same as in Experiment 1
except there were eight conditions (word identification: congruent,
incongruent, neutral, identical, and color identification: congruent,

incongruent, neutral, and identical) and two response options.
Because there were 8 conditions instead of 6, there were 14 free
parameters in the RTCON2 model, and 14 free parameters in the
diffusion model, with a total of 74 degrees of freedom.

Results

RT and accuracy. Mean RT and accuracy from Experiment 2
are presented in Table 1. In both blocks, participants took longer to
respond to incongruent stimuli, and made more errors compared
with neutral stimuli. In the color identification block only, re-
sponses to identical stimuli were faster and more accurate when
compared with neutral stimuli.

Statistical analyses show that there is a significant Block �
Stroop condition interaction for accuracy, F(3, 54) � 4.01, p �
.05, �2 � .03, but not mean RT, F(3, 54) � 2.01, p � .12, �2 �
.01. There was no significant main effect of block for accuracy,
F(1, 18) � 2.76, p � .11, �2 � .01, or mean RT, F(1, 18) � .018,
p � .9, �2 � .01. However, there were differences between the
incongruent versus neutral conditions for accuracy, F(3, 54) �
29.22, p � .001, �2 � .28, and for mean RT, F(3, 54) � 45.9, p �
.001, �2 � .10. Planned pairwise comparisons indicate that for the
color identification block, participants made significantly slower
responses, t(18) � 5.69, p � .001, d � 1.3, and more errors,
t(18) � 	4.15, p � .001, d � 1.4, for the incongruent compared
with neutral condition. Similarly, this interference effect was pres-
ent in the word identification blocks for both mean RT, t(18) �
4.07, p � .001, d � .93, and accuracy, t(18) � 	5.70, p � .001,
d � .68. As with Experiment 1, there was significant Stroop
facilitation in the color identification blocks, with participants
producing faster responses, t(18) � 3.87, p � .05, d � .55, and
more accurate responses, t(18) � 3.87, p � .01, d � .53, in the
identical compared with neutral condition. This was not the case in
the word identification blocks, with response latencies, t(18) �
1.52, p � .15, d � .35, and accuracy, t(18) � 	1.09, p � .29, d �
.84, not significantly differing between identical and neutral con-
ditions.

Figure 4. Comparison of drift rates (left), decision boundaries (middle), and nondecision time (right) for
RTCON2 and the diffusion model for individual participants for Experiment 1. The diagonal line is a best-fitting
linear regression line. Decision boundaries for RTCON2 were summed together to generate a single value.
Pearson’s correlation is presented in the upper left of each plot.
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Model fits. In the section that follows, the fits of RTCON2 to
those of the diffusion model are compared. We do this in the same
manner as Experiment 1. The mean parameters and SDs for the
parameters from RTCON2 and the diffusion model are presented
in Tables 2 and 3, respectively. To preview, both models fit the
data well, and provide similar parameter estimates. We first begin
the comparison quantitatively, by looking at the results from the �2

statistic. There were a handful of participants who had too few
error observations in both the congruent and neutral conditions for
both tasks, and so the �2 was based on a single value for each error
response category. The mean �2 for the RTCON2 model is 132.1
with an SD of 25.7. This is more than the critical value for 88
degrees of freedom and 
 � .05 (110.9), indicating a mismatch
between the data and the model predictions. Two out of 19
participants had �2 values lower than the critical value for
RTCON2. Similarly the diffusion model has a mean �2 of 116.1
(df � 88) and SD of 26.7, which also indicates a mismatch
between theory and data. Four out of 19 participants had �2 values
lower than the critical value for the diffusion model. However, as
was discussed earlier, these values are within the range of those
typically observed for the diffusion model and the values represent
adequate fits.

We begin the qualitative assessment of the model fits by first
examining the quantile probability plots. Figure 5 right column
shows RT quantiles plotted against response proportion both
averaged across all participants for the four Stroop conditions in
the color identification block. As before, each column repre-
sents the RT distributions for the correct responses one condi-
tion. Observed data are indicated by X’s, the diffusion model

predictions are indicated by D’s, and the RTCON2 model
predictions are represented by R’s. A proportion scale is cen-
tered on the data and shows a plus and minus 1% range in the
response proportion.

Both models fit the data well. For correct responses in both
tasks, the predictions of both models differed by no more than
20 ms from observed data, across all RT quantiles. The models’
predicted response proportions differed by less than 2% from
the empirical data for both the color identification (right side of
Figure 5) and word identification (left side of Figure 5) tasks.
Overall the patterns in the data are captured quite well by the
models, with both RTCON2 and the diffusion model making
similar predictions.

Color naming trials produce RT quantiles with a similar
pattern of results as in Experiment 1. The interference effect
produces a longer tail of the RT distribution, and a slightly
longer leading edge for incongruent compared with neutral
trials. Identical trials result in shorter .9 quantiles but similar .1
quantiles relative to neutral trials. There is a difference between
the results from Experiment 1 and 2 because the word identi-
fication blocks also produced interference. This reverse Stroop
effect emerges in the .9 quantile for the incongruent compared
with neutral condition, just as is the case in the color identifi-
cation blocks. These results replicate those observed by Stein-
hauser and Hübner (2009). As in Experiment 1, differences in
drift rate were mainly responsible for differences across Stroop
conditions in the models. Incongruent stimuli in both color
identification and word identification blocks produced lower

Figure 5. Quantile probability plots averaged over all participants for the word identification block (left) and
color identification block (right) for Experiment 1. Empirical data is represented by X’s, diffusion model
predictions are represented by the letter D, and RTCON2 predictions are represented by the letter R. The .1, .3,
.5, .7, and .9 quantiles are plotted in vertical columns as a function of response proportion. Only correct responses
are plotted. Data is divided into four different columns according to the different stimulus types, identical,
congruent, incongruent, and neutral. A proportion scale is centered on the data and shows the 1% deviation in
response proportion.
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drift rates than neutral stimuli, indicating poorer quality of
evidence for incongruent stimuli.

The correspondence between parameters of the two models can
be examined by plotting model parameters for the two models
against each other as for Experiment 1 and by examining correla-
tions between the main parameters of interest, drift rate, response
boundary, and nondecision time. Figure 6 shows plots of these
three parameters, with diffusion model parameters on the y-axis,
and RTCON2 parameters on the x-axis. The plot on the left
displays the drift rates of the RTCON2 and diffusion models for all
participants in all conditions, with a best-fitting linear regression
line. This plot demonstrates that the rate of information accumu-
lation is in agreement between the models. The middle plot shows
the decision boundary parameters for all participants for both
models, with a best-fitting regression. It can be seen that there is
close correspondence between the models for decision boundaries.
The plot on the right in Figure 6 shows the relationship between
the nondecision parameter of both models. The close clustering
around the regression line suggests that both models produce
similar estimates of nondecision time.

Experiment 3

Experiment 3 was designed to test the ability of RTCON2 to
account for the behavioral data of four-choice manual and vocal
response Stroop tasks. The experiment also allowed us to examine
whether participants’ pattern of results differed as a function of
response modality. As was discussed in the introduction, RT
distributions behave differently depending on whether participants
make responses vocally or make them manually on a keyboard. By
having the same participants complete both, model parameters can
be compared across tasks.

Method

Participants. Twenty-eight college-aged participants with
normal or corrected to normal vision, were recruited from the

introductory psychology course at The Ohio State University and
were given course credit for their participation.

Materials. The materials were the same as those used in
Experiment 1, except there was no word identification block, and
participants made responses based only on the character color. The
word identification block was removed as it was not central to our
research questions, and we wanted to collect more observations in
each condition. This design has four-choices, in which there were
equal numbers of congruent, incongruent, and neutral stimuli.
Incongruent stimuli were presented in all possible color combina-
tions (e.g., the word red in green, blue and yellow ink). Thus, out
of the total 1,440 trials, 480 were congruent, 480 were incongru-
ent, and 480 were neutral stimuli. This does create a design in
which a color word is more likely to be presented in a congruent
font color than in one of the other incongruent for colors. For
example, the word “green” will be presented in a green font color
three times to balance presenting it in red, blue, and yellow font for
the incongruent condition. Because of this balancing, the facilita-
tion effect was subject to a contingency bias (Lorentz et al., 2016;
Schmidt & Besner, 2008). However, our main interest lies in
modeling the Interference effect and, thus, the same randomization
procedure was used.

CMU sphinx 2 (Huang et al., 1993) voice recognition software
was used to record and identify vocal responses. The database of
recognized words was created using lmtool. lmtool is software
that takes user input words and builds a set of lexical and
language decoder files which CMU sphinx 2 uses to decipher
responses. The corpus of recognized words we used was re-
stricted to only the words “red,” “blue,” “green,” and “yellow.”
For the vocal response session, a research assistant recorded the
responses manually to verify the accuracy of responses pro-
duced by the speech recognition software.

Procedure. Participants completed two sessions each lasting
50 min. One session was a manual four-choice Stroop task, and the
other was a four-choice vocal response Stroop task. Order of
sessions was counterbalanced across participants. For the vocal

Figure 6. Comparison of drift rates (left), decision boundaries (middle), and nondecision time (right) for
RTCON2 and the diffusion model (with a best fitting regression line) for Experiment 2. Decision boundaries for
RTCON2 were summed together to generate a single value. Pearson’s correlation is presented in the upper left
of each plot.
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response session, the microphone responsiveness was calibrated by
having the participant say the four color words five times. If
accuracy of the identification of the words was less than 95%,
adjustments were made and the participant completed this calibra-
tion phase again. This was repeated until accuracy was 95% or
greater. All participants were able to achieve this accuracy, so no
participants were discarded. For the vocal response task, partici-
pants made responses into a microphone, with “red,” “green,”
“blue,” and “yellow” being the only responses accepted. An ex-
perimenter was present during the entire experiment to manually
record the responses and check these against the microphone
responses. If there was a discrepancy, the manual record replaced
the microphone response. The manual response task was similar to
the two-choice version presented in Experiment 1, except four
colors were present in all blocks. Red was mapped to ‘/’, blue was
mapped to ‘.’, green was mapped to ‘X,’ and yellow was mapped
to ‘z.’ The keys were covered with color patches to aid identifi-
cation by the participants. A practice block of 18 trials was
completed at the beginning of the task. Participants were given
feedback in the same way as in Experiment 1.

Statistical analysis. RT latencies less than 250 ms and greater
than 1,500 ms were excluded from statistical analysis (correspond-
ing to less than 2% of the data). Mean RT and accuracy were
submitted to a one-way repeated measure ANOVA, with the three
Stroop conditions being the independent variable. Interactions
were further explored with planned paired t tests. Specifically, we
examined Stroop facilitation (i.e., congruent minus neutral) and
interference (i.e., incongruent minus neutral) separately in each
task.

Model fitting. RTCON2 was fit using the same procedure
described in Experiment 1, except within-trial noise was allowed
to vary freely across participants. In the previous experiments,
within-trial noise was held constant to provide a balanced com-
parison of the diffusion model and RTCON2. Because we are not
conducting such a comparison, we wanted to use the model in its
freest form. There were three conditions and four response options
that gave 59 degrees of freedom with 10 free parameters.

Results

RT and accuracy. Accuracy and mean RT for both tasks in
Experiment 3 are presented in Table 1. The congruency effect
was obtained as before, with participants taking longer to
respond to incongruent compared with neutral trials in both
tasks. Also, participants were faster in the congruent compared
with the neutral condition for both manual and vocal response
variants of the task.

There was a significant main effect of Stroop condition on RT
for both the manual response task, F(2, 28) � 45.12, p � .001,
�2 � .15, and vocal response task, F(2, 28) � 97.50, p � .001,
�2 � .29. For the vocal response task participants produced both
significantly faster responses for congruent compared with neutral
trials, t(14) � 	2.60, p � .05, d � .67, as well as slower responses
to incongruent compared with neutral trials, t(14) � 11.05, p �
.001, d � 2.85. Similarly, for the manual response task, partici-
pants produced a significant facilitation effect, t(14) � 	3.38, p �
.01, d � .87, and congruency effect, t(14) � 5.92, p � .001, d �
1.53.

Statistical analysis also showed a significant main effect of
Stroop condition on accuracy in the manual response, F(2, 28) �
4.89, p � .05, �2 � .05, and vocal response tasks, F(2, 28) �
22.72, p � .001, �2 � .46. Planned comparisons showed that
accuracy did not significantly differ between incongruent and
neutral trials in the manual response task, t(14) � 	1.14, p � .05,
d � .30, although they were less accurate on congruent compared
with neutral trials, t(14) � 2.60, p � .05, d � .67. In the vocal
response task, participants made less errors for congruent com-
pared with neutral trials, t(14) � 4.78, p � .001, d � 1.23, and
more errors for incongruent compared with neutral trials,
t(14) � 	4.56, p � .001, d � 1.18.

Model fits. This experiment was designed to build upon the
previous experiments and explore how processing differs be-
tween manual and vocal response variants of the Stroop task. To
preview, the results suggest that the main difference in process-
ing between the two tasks lies outside the decision-making
process. The RTCON2 model was able to provide adequate fits
to the empirical data for the manual response task; however, the
model missed some important aspects of the data in the vocal
response task, namely, large shifts in the leading edge of RT
distributions between neutral and incongruent conditions. Re-
sults also showed weak correlations between the parameters
related to the decision-making process between the manual
response and vocal response tasks.

Table 4 contains the average parameter values and SDs derived
from model fits to individual participants’ data. The mean �2

values for this experiment were 73.1, and 84.3, with SDs of 41.3,
and 41.0 for the vocal and manual response tasks, respectively.
The �2 value for the manual response task is greater than the
critical �2, 77.9, with 59 degrees of freedom and 
 � .05, but is
within the range of values typically observed in fits of the diffusion
model to data. This indicates that RTCON2 provides an adequate
fit to the data in the manual response task. There were 13 out of 28
participants in the manual response task whose �2 value exceeded
the critical value.

There were few error observations in both the congruent and
neutral conditions for the vocal response task, and so the �2 was
based on a single value for each error response category. Thus,
there were 29 degrees of freedom for which the critical �2 was 42.6
(
 � .05), indicating a mismatch between the predictions of
RTCON2 and the data in the vocal response task. The �2 values
exceeded the critical value in 22 of the participants. However, the
�2 value is within the range of values typically observed in fits of
the diffusion model that are accepted as adequate fits.

To examine where the mismatch in the manual and vocal
response Stroop tasks comes from, the empirical response propor-
tions, .1, .5, and .9 RT quantiles, were plotted against the model
predictions, for all participants in all conditions in Figure 7. Only
correct responses are shown because few errors were observed, in
fact none for most participants in some conditions. A reference 1
SD error bar is presented in the bottom right of each plot, and a 2
SD error bar is shown intersecting the reference line. Points lying
on the reference line indicate perfect agreement between model
predictions and the observed data, while points below the line
indicate model under predictions, and points above the line are
model over predictions. The far left plot shows that RTCON2
predicts the .1 RT quantile for the incongruent condition (filled
diamonds) to be shorter in many cases than the observed value,
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although the model did adequately fit the .5 and .9 quantiles. A
similar pattern is observed for the manual response task, (the
middle right plot) with the .1 quantile under predicted in the
incongruent condition, although the misprediction is not as sys-
tematic as in the vocal response task. In the manual response task
the largest mismatch between model prediction and observed data
in the .1 quantile is 70 ms, whereas it is 100 ms in the vocal
response task. Mispredictions of this size are observed for three
participants in the manual response task and eight participants in
the vocal response task.

To account for this systematic under prediction of the .1
quantile in the incongruent condition, we decided to implement
a variant of RTCON2 with an additional nondecision time
parameter (2-Ter model) that is free to vary in the incongruent
condition (Ratcliff & Smith, 2010). This addition is inspired by
a study by Ratcliff and Frank (2012) in which an extra nonde-
cision time parameter was added to the diffusion model and was
allowed to differ between conditions to account for large shifts
in the leading edge of the RT distribution (this was one of two
possibilities in their article). This modification was based on
constraints provided by a neurally plausible basal ganglia
model (Frank, 2005, 2006). The extra nondecision time param-
eter merely reflects extra processing time occurring outside of
the decision process during the incongruent condition (and
might be seen as ad hoc in this application).

The model parameters for RTCON2, as well as the 2-Ter model,
averaged across all participants for each task, are shown in Table 4.
The �2 values for the 2-Ter model are 50.6, and 75.5, with 28 and 58
degrees of freedom for the vocal response and manual response tasks,
respectively. The nested model comparison indicates that allowing
nondecision time to vary in the incongruent condition offers a signif-
icant improvement over the initial RTCON2 model in both the vocal
response task, �2(1) � 22.5, p � .01, and manual response task,
�2(1) � 8.8, p � .01.

For the vocal response task, 14 participants had �2values that
exceeded the critical value, with the 2-Ter model compared with
22 for RTCON2 (1-Ter model). A smaller improvement in fit was
seen for the manual response task with 10 participants with �2

values that exceeded the critical value in the 2-Ter model com-
pared with 13 for the original model.

Generally, the parameters were consistent across 1-Ter and
2-Ter RTCON2 models. In the 2-Ter model, there was a difference
of 52 ms between the two Ter values in the vocal response task.
This allowed the model to capture the shifts in the .1 RT quantile
in the incongruent condition that the 1-Ter model under predicted.
A plot of model predictions against the empirical data for the 2-Ter
model is presented in Figure 7, for both the vocal and manual
response tasks. Both models provide predictions of response pro-
portions that closely correspond to the empirical data; the points
are closely clustered on the reference line. With the addition of an
extra nondecision time parameter, the 2-Ter model provides pre-
dictions across all RT quantiles that are in close agreement with
the data in both the vocal and manual response tasks.

To examine whether the model analyses suggest that the pro-
cesses involved in decision-making are consistent across the two
response modalities, we examined the correlations of model pa-
rameters across the vocal and manual response tasks for the 1-Ter
and the 2-Ter models. Scatter plots of the parameters in the 1-Ter
RTCON2 model are presented in Figure 8. Table 5 contains the
parameter correlations across both tasks for the 1-Ter and 2-Ter
RTCON2 models. The models have similar correlations of bound-
ary separation, drift rate, nondecision time, and across-trial vari-
ability in nondecision time. However, in the 2-Ter model, the
correlation of across-trial variability in drift is much higher relative
to the 1-Ter model. The average correlations across individuals
were .05 for drift rate, .60 for boundary separation, and .08 for
nondecision time. Thus, boundary setting is the only parameter
with a correlation greater than the critical value for 26 degrees of
freedom, and 
 � .05 (.37). This suggests that participants who
were conservative on one task, were conservative on the other as
well. The lack of correlation of nondecision time across the two
tasks indicates that individuals had different amounts of processing
time devoted to encoding, translation, and response execution
across the tasks. Similarly, evidence used in the decision process in
the vocal response task was not related to that in the manual
response task (drift rates were not correlated across tasks). This
then raises the question of what it is about vocal responding that
makes processing so different from manual responding, given the
similarity of the tasks.

Table 4
Mean Parameter Values and SDs for Experiments 3 and 4

Experiment Task Ter Ter2 as � sb st sv b1–4 vc vin vne �2

Experiment 3
RTCON2 Vocal Mean 264 .040 .099 .47 122 .054 2.38 .95 .70 .89 73

Manual Mean 291 .040 .119 .42 121 .049 2.48 .83 .73 .80 84
Vocal SD 47 .001 .001 .08 30 .013 .28 .14 .09 .14 42
Manual SD 38 .001 .001 .09 34 .014 .27 .07 .06 .06 41

2-Ter RTCON2 Vocal Mean 260 312 .040 .098 .45 106 .061 2.26 .90 .73 .85 51
Manual Mean 288 303 .040 .099 .46 116 .050 2.09 .73 .67 .71 75
Vocal SD 42 48 .001 .003 .09 28 .030 .26 .11 .11 .12 33
Manual SD 36 44 .001 .001 .08 27 .014 .22 .06 .05 .05 37

Experiment 4
RTCON2 Color identification Mean 322 .040 .120 .47 104 .051 2.01 1.04 .98 1.03 31

Color identification SD 52 .001 .001 .15 47 .017 .27 .11 .12 .10 19

Note. Ter2 is nondecision time for the incongruent condition in milliseconds, as is the scaling parameter, multiplying drift rate, � is SD in within-trial
variability in drift rate, sb is between-trial variability in decision criterion, st is between-trial variability in nondecision time, sv is between-trial
variability in drift rate, b1– 4 are the decision criterion, which are set equal across response options so only one is shown, v is drift rate for the various
conditions (c is congruent, in is incongruent, and ne is neutral).
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Figure 7. Empirical response proportions, .1, .5, and .9 quantile RTs for all individuals in all conditions in the
vocal response (left) portion of Experiment 3 plotted against RTCON2 (far left) as well as the 2-Ter variant
(middle left) model predictions, and the manual response (right) portion of Experiment 3 for RTCON2 (middle
right) and the 2-Ter (far right) variant. Data presented is for correct responses only, with a reference line with
a slope of 1 and intercept of 0. An error bar of 2 SD for each RT quantile is presented in the bottom left of each
plot, and an error bar of 2 SDs is shown intersecting the reference lines. Congruent and neutral trials are open
circles and incongruent trials are filled diamonds.
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Experiment 4

The purpose of this experiment was to examine if a limitation on
the number of motor response options resulted in the additional
interference observed in the vocal response Stroop task. In the
vocal response task, there is one motor response pathway that a
vocal response must traverse, while in a manual response version,
there are multiple motor response pathways, one for each finger
and hand used in the task (e.g., two fingers on each of two hands
for Experiment 3). It is possible that having only one response
pathway creates a bottleneck in which competing information
creates more interference than if there are multiple response output
options. To address this, we used a manual task in which a single
finger was used to make the response. This used a touch screen in
which one finger on one hand is used to make all of the responses.
If the number of motor response pathways is an important factor in
Stroop interference, a pattern of behavioral data similar to that in
the vocal response Stroop task should emerge in this task. On the
other hand, a pattern of RTs and error rates as observed in the
manual response task would indicate that the vocal response sys-
tem produces additional interference in a manner that is different
from manual tasks.

Participants

Twenty college-aged right-handed participants with normal or
corrected to normal vision were recruited from the introductory

psychology course at The Ohio State University and were given
course credit for their participation.

Materials

The same stimuli and randomization as in Experiment 1 was
used. Responses were collected using a 17-in. CRT with serial
resistive touchscreen (Elo-Touchsystems screen), which consists
of a resistive coating and a coversheet with conductive coating.
When the screen is touched, the flexscreen makes contact with the
glass’ coating, which generates an ultrasonic wave, and a response
is recorded.

Procedure

This task lasted approximately 50 min. As in Experiment 3,
participants made responses based upon the character color of the
stimulus for the entire task. A practice block consisting of 24 trials
was completed to make sure the participant understood the task.
Response options were presented on screen as four color squares
(red, green, blue, and yellow) in a 180 degree arc around a white
square. Each response option was 7.5 cm away from the white
square, with the color squares being equally spaced from each
other (at 0, 60, 120, and 180 degrees). The order and position of
these color squares was fixed across blocks and participants.
Participants were instructed to press and hold the white square

Figure 8. Scatter plots of drift rate for each participant in each condition (left), boundary separation for each
participant (middle), and nondecision time for each participant (right) for the 1-Ter RTCON2 model across
four-choice manual response and vocal response Stroop tasks, with a best-fitting regression line. Pearson’s
correlation is presented in the upper left of each plot.

Table 5
Correlations of Model Parameters Between Manual and Vocal Response Tasks

Response modality Ter Ter2 � sb st sv b1–4 vc vin vne

RTCON2 .08 .26 .02 .35 .15 .60��� .06 	.02 .16
2-Ter RTCON2 .17 .20 	.10 	.23 .37 .58�� .57�� .05 	.04 .23

Note. Ter is nondecision time in ms. Ter2 is nondecision time for the incongruent condition in milliseconds, � is SD in within-trial variability in drift rate,
sb is between-trial variability in decision criterion, st is between-trial variability in nondecision time, sv is between-trial variability in drift rate, b1–4 are the
decision criterion, which are set equal across response options so only one is shown, v is drift rate for the various conditions (c is congruent, in is
incongruent, and ne is neutral).
�� p � .01. ��� p � .001.
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with their right index finger to make a stimulus appear. They were
also instructed to wait to lift their finger until a decision had been
made. When the decision was made, participants were to lift the
finger and move it to touch the color square corresponding to their
choice. A “TOO SLOW PLACING” message was displayed for
500 ms if the time from lifting the finger from the white square to
placing it on the color square was greater than 400 ms. This was
done to ensure that responses were ballistic and the movement
time was separate from the time allocated to decision-making
processes. A “TOO SLOW LIFTING” message was displayed for
500 ms if a participant held their finger on the white square for
more than 1,500 ms. If the finger was lifted earlier than 200 ms
after presentation of the white square, a “TOO FAST” message
was displayed for 1,500 ms. Error feedback was given in the form
of an “ERROR” message displayed for 500 ms in the center of the
screen. RTs were the amount of time the finger was held on the
white square before lifting it to move it to the color square
corresponding to their choice.

Analysis

Statistical analysis. The movement time between lifting the
finger off the white square and placing it on the color square was
examined to ensure responses were ballistic. If there were any
significant deviations in mean movement time between the various
conditions (�40 ms), then the plan was to discard that participant’s
data. However, this did not occur, which indicated participants
followed instructions. Statistical analyses are the same as those
carried out in Experiment 3.

Model fitting. Model fitting was the same as described in
Experiment 3.

Results

RT and accuracy. Proportion correct and mean RT for Ex-
periment 4 is presented in Table 1. Participants were not any faster
or more accurate for congruent compared with neutral trials. How-
ever, interference was observed with slower and less accurate
responses for the incongruent compared with neutral condition.

There was a main effect of Stroop condition on accuracy, F(2,
38) � 11.05, p � .001, �2 � .26, with participants producing
significantly more errors on incongruent compared with neutral
trials, t(19) � 	3.43, p � .01, d � .77. However, error rates did
not significantly differ between congruent and neutral trials,
t(19) � .37, p � .05, d � .08. Stroop condition also produced a
main effect on mean RT, F(2, 38) � 11.95, p � .001, �2 � .01. As
was the case with accuracy, a significant interference effect
emerged, t(19) � 3.43, p � .05, d � .77, but facilitation was not
present, t(19) � 	1.14, p � .05, d � .26.

Model fits. In this section we address whether limiting motor
response output options results in more interference, as is observed
in the vocal Stroop task. Best fitting model parameters for indi-
viduals are presented in Table 4. As was the case with the vocal
response Stroop task in Experiment 3 there were few error obser-
vations in all conditions, so only one value was used for the �2

estimation for each of the error response options. The mean �2

value is 30.8 with a SD of 18.6, which is larger than the critical
value, 23.7, with 14 degrees of freedom and 
 � .05. Thus, the
model generates predictions that mismatch the observed data. This

is the case for 11 of the 20 participants. As for the previous
experiments, although the �2 values were larger than the critical
value, it was within an acceptable range typically observed with
the two-choice diffusion model.

The best fitting parameter values for each participant are used to
generate predicted RT quantiles and response proportions for each
condition. A qualitative comparison can be made by comparing
these predicted values to the empirical data. Figure 9 shows the
quantile RTs plotted as a function of response proportions for each
condition averaged over the participants. The X’s represent the
empirical data and R’s to the model predictions. The model pro-
duces response proportions and RT distributions that closely cor-
respond to the data, aside from some slight misses in the .9
quantile. Of central interest is how RT distributions in this task
relate to those in the vocal and manual response Stroop tasks. The
RT distributions in this task are similar to those seen in Experiment
1, except participants are more accurate in this task. There is little
interference (slowing) observed in the .1 quantile, with most
occurring in the .9 quantile. This is in contrast to the vocal
response task, in which interference was mainly present in the .1
quantile. RTCON2 can capture the change in the RT distribution in
the experiment with a change in drift rate across conditions. As
was the case in Experiments 1–3, drift rate was smaller for the
incongruent condition compared with the neutral condition for
most participants.

Discussion

This study was conducted with two main aims. The first was to
determine if the diffusion model and RTCON2 could account for
data patterns observed in the Stroop task. The second was to
understand how information is processed in the manual and vocal
response variants of the Stroop task. In Experiments 1 and 2, we fit
the diffusion model and RTCON2 model to the empirical data and
these provided predictions for response proportions and correct
and error RT distributions. Both models were able to provide
adequate fits to the data. In addition to this, the best fitting
parameter estimates for the two models correlated strongly across
participants. For Experiments 3 and 4 we used the RTCON2 model
because the two-choice diffusion model is not able to account for
data from four-choice tasks. The RTCON2 model fit the data from
the manual response task in Experiment 3 quite well, but fit the
vocal response task in Experiment 3 somewhat poorly with sys-
tematic misses in the 0.1 quantile RTs. Conflict in this task
produced a large shift in the leading edge of RT distributions for
incongruent compared with neutral trials for most participants and
the model was unable to fit this pattern. We modified the RTCON2
model to allow an additional nondecision time parameter for the
incongruent condition, and this model provided much better fits to
the quantile RTs and response proportions. The RTCON2 model
fit the data from the touch screen task in Experiment 4 quite well.
The pattern of results was similar to that observed in the manual
response task in Experiment 3 with smaller interference effects
than those of the vocal response task. Conflict in the majority of
these experiments was explained by differences in the rate of
evidence accumulation between conditions. Specifically, there was
a smaller drift rate for incongruent compared with neutral stimuli
across all experiments. The only exception was the vocal response

T
hi

s
do

cu
m

en
t

is
co

py
ri

gh
te

d
by

th
e

A
m

er
ic

an
Ps

yc
ho

lo
gi

ca
l

A
ss

oc
ia

tio
n

or
on

e
of

its
al

lie
d

pu
bl

is
he

rs
.

T
hi

s
ar

tic
le

is
in

te
nd

ed
so

le
ly

fo
r

th
e

pe
rs

on
al

us
e

of
th

e
in

di
vi

du
al

us
er

an
d

is
no

t
to

be
di

ss
em

in
at

ed
br

oa
dl

y.

17MODELLING STROOP INTERFERENCE



task in Experiment 3, in which conflict occurred outside of the
decision process.

A second purpose of Experiment 3 was to determine how
processing is related between vocal response and manual response
Stroop tasks. RTCON2 provides parameter estimates for each
participant, and these allowed individual differences in compo-
nents of processing to be compared across the two tasks. We found
that decision boundary values, but not drift rate or nondecision
time were correlated across these tasks. Thus, individuals maintain
similar decision boundaries for the amount of information required
for a decision across tasks. However, an individual who had a
small drift rate on the vocal response Stroop task did not neces-
sarily have a small drift rate on the manual response Stroop task.
Similarly, an individual who had a long nondecision time on the
vocal response Stroop task did not necessarily have a long non-
decision time on the manual response Stroop task.

This RTCON2 model had difficulty accounting for the large
systematic differences in the .1 quantile between the neutral and
incongruent conditions that were observed in the data. To account
for these shifts, we used a second RTCON2 model (2-Ter model)
with an additional nondecision time parameter for the incongruent
condition. With this modification, results showed similar patterns
of correlations of drift rate, nondecision time, and decision bound-
ary across response modalities as for the 1-Ter model. Given the
agreement in individual differences in model parameters between
these two models, the results suggest that participants process
information differently in the two tasks. The lack of correlation of
drift rates across the two Stroop modalities is surprising because
correlations in drift rates have been observed between quite dif-
ferent simple cognitive tasks such as numerosity discrimination,
recognition memory, and lexical decision (Ratcliff et al., 2010).
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Figure 9. Quantile probability plots averaged over all participants for Experiment 4. Empirical data is
represented by X’s, and RTCON2 predictions are represented by the letter R. The .1, .3, .5, .7, and .9 quantiles
are plotted in vertical columns as a function of response proportion. Only correct responses are plotted. Data is
divided into three different columns according to the different stimulus types, neutral, incongruent, and
congruent. A proportion scale is centered on the data shows the 1% deviation in response proportion.
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These are arguably more different from one another than the
manual and vocal response Stroop tasks. Results also showed that
accuracy was lower in the manual response task, and RT distribu-
tions differed across the tasks, supporting the notion that there are
processing differences depending on whether a response is given
manually or vocally.

Experiment 4 examined the possibility that the difference be-
tween these tasks is because of a limited number of response
pathways in a vocal versus manual response task. The experiment
had participants respond on a touch screen with only one hand. The
pattern of empirical data was similar to that observed in the other
manual response Stroop tasks, suggesting that the difference in the
processing of conflicting information in a vocal versus manual
response Stroop task is not because of limited response output
options.

In the introduction of this article we described models that
provide different theoretical perspectives on Stroop phenomenon.
RACE/A is a production rule model that incorporates sequential
sampling models into the architecture of ACT/R. Within this
structure, processing is divided across a number of stages (e.g.,
visual, procedural, vocal, and retrieval) and the model is able to
simulate response proportions and mean RT. Although it has not
been explicitly tested, RACE/A could possibly account for the
modality effect by allocating all of the additional interference of
the vocal response Stroop task to the response stage. This would
suggest that nondecision time is the main difference between the
two tasks. This is in agreement with findings from a study by
Gomez, Ratcliff, and Childers (2015) in which they fit the diffu-
sion model to data from a letter discrimination task that manipu-
lated response modality (key press, eye movement, and touch
screen). They found that nondecision time changed as a function of
response modality, while the other parameters related to the
decision-making process did not. However, the results presented
here suggest that the differences between the response modalities
were because of more than just nondecision time and that there are
other differences in processing that suggests that this simple ver-
sion of RACE/A would be inadequate.

As was mentioned previously, there important differences be-
tween the vocal response and manual response Stroop tasks. The
most notable are that nondecision time was longer in the manual
response task than in the vocal response task, and drift rate did not
correlate across the two response modalities. This suggests that
differences in conflict processing between the vocal response and
manual response tasks in part lies outside of the decision-making
process. This is in line with the other version of the RACE/A
model we described earlier, which predicts differences across
response modalities would be because of differences in both non-
decision and decision processes.

The Cohen et al. (1990) model is a feedforward multilayer
neural network that accounts for Stroop interference word naming
by modeling it as a more automatic process than color naming.
This is done by using separate nodes for word information and
color information. Information travels from these nodes through a
hidden layer, and then to an output or response layer. Word
information is weighted more heavily than color information and
so it is processed more quickly than color information resulting in
conflict when incongruent stimuli are presented. The model ini-
tially did not capture the modality effect, but with the addition of

a node that represents the response modality in which the task is
presented, the model would be able to account for mean RT
differences as a function of response modality. This would attri-
bute differences in conflict processing between these tasks to vocal
responding being a more automatic process than manual respond-
ing. The main shortcoming of this model is that the RT distribu-
tions it produces are of an incorrect shape (Mewhort et al., 1992).

In a similar vein, RACE/A only provides mean RT estimates.
Although it can produce RT distributions, an analysis of RT
distribution predictions has yet to be done. The third model, the
dimensional overlap model, can produce RT distributions, but not
response proportions. Finally, none of these models have been
shown to provide parameter estimates for single participants. In the
analyses presented above, without such information about individ-
ual differences, it would not have been possible to determine
whether individuals process information similarly across response
modalities. Thus, these previous theoretical accounts are incom-
plete. At this point, our results are best explained in the context of
RTCON2 and the two-nondecision time extension.

One possible explanation for the difference in processing be-
tween the vocal and manual response Stroop task is that processing
is not purely stimulus driven. Instead, processing is influenced by
the goal of the task. In a vocal response Stroop task, a participant
is naming the color, whereas in a manual response Stroop task, the
task involves categorizing the color into one of several response
options. Given that these tasks require different processes, it is
likely that the interaction of reading and color identification pro-
cesses differ according to the task. To further explain, when an
incongruent stimulus is presented, the sublexical information from
the word is processed and this will interfere with vocalizing a
response, but not when a keyboard response is required. Thus, an
assumption is that information travels down different pathways as
a function of whether the response is manual or vocal. This view
is supported by results from a recent study by Kinoshita, De Wit,
and Norris (2017) in which RT distributions were found to differ
between various neutral stimuli and incongruent stimuli in both
manual and vocal response Stroop tasks. They found results sim-
ilar to ours from Experiment 3, with the difference in RT distri-
butions between incongruent and neutral stimuli, differing accord-
ing to response modality. In addition to this, they also found that
neutral stimuli that are more “wordlike” produced more interfer-
ence in the vocal response task, but not the manual response task.
Similarly, conflict increased as a function of length of words and
pseudowords in the vocal response task, but not the manual re-
sponse task. These analyses were based on aggregate data, so there
was no analysis of individual differences as was the case in our
study. However, their results provide further support for the notion
that information is processed differently in these two tasks.

In addition to behavioral experiments, there are also studies
using electroencephalogram (EEG) that have identified neural
differences in processing according to response modality. The
most common neural EEG marker in Stroop task processing is the
N450. This ERP component has been attributed to semantic in-
congruity and is prominent in the Stroop task. Specifically, this
component is more negative for incongruent compared with neu-
tral trials and is present in both manual and vocal response variants
of the Stroop task (Badzakova-Trajkov, Barnett, Waldie, & Kirk,
2009; Larson, Clayson, & Clawson, 2014; Liotti, Woldorff, Perez,
& Mayberg, 2000). The N450 for the manual response task is
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located over medial electrodes (Badzakova-Trajkov et al., 2009;
Liotti et al., 2000), whereas it is located at frontal electrodes for the
vocal response task (Liotti et al., 2000; Rebai, Bernard, & Lannou,
1997). Source localization methods have determined that the N450
is generated by the anterior cingulate cortex (Badzakova-Trajkov
et al., 2009), although there are likely different neural generators in
the anterior cingulate cortex for the manual versus vocal response
N450 (Liotti et al., 2000). The spatial separation of this component
across response modality suggests that processing conflicting in-
formation takes a different trajectory depending on whether vocal
responses or manual responses are to be made, providing a neural
context for our current results.

RTCON2 provides a theoretical account of Stroop phenomenon
that is based on all aspects of the empirical data unlike previous
models that provide mean RTs (RACE/A), RT distributions of the
wrong shape (Cohen et al. model), or no information about accu-
racy (Dimensional overlap model). In doing so, RTCON2 provides
a detailed account of the decision process in the Stroop task.
Furthermore, it provides fits to the individual participant data,
which can be used in examining individual differences. As a result,
the model provides meaningful parameters that are associated with
how information is processed during decision-making. This en-
abled us to see that individuals set a similar decision boundary for
the amount of information required before making a decision
across response modalities, even though their encoding, motor
responses, and rate of information accumulation differed across
participants for vocal and manual response tasks.

The RTCON2 model produces response proportions, as well as
correct and error RT distributions across all conditions. It usually
must do this by only allowing drift rate to vary across conditions
and this produces the different shapes of RT distributions across
conditions. A decrease in drift rate, such as is the case between
neutral and incongruent trials, results in a slight slowing of re-
sponses in the leading edge of the distribution, and substantially
more slowing in the tail. For the data from the vocal response task
in Experiment 3, we observed a large slowing of responses in the
leading edge of the distribution, in addition to more slow responses
in the tail. Even with across-trial variability in nondecision time
(st), which can shift the leading edge of RT distributions by as
much as 10% of st for large values of drift rate (Ratcliff &
Tuerlinckx, 2002), RTCON2 is unable to provide adequate pre-
dictions for the incongruent RT distributions in the vocal response
task. On the other hand, in the manual response Stroop task, there
is only a small slowing of responses in the leading edge of the
distribution with many more slow responses in the tail of the
distribution for incongruent compared with neutral trials. This is an
effect that can be accommodated by changes in drift rate across
conditions, which is why the model predictions in the manual
response tasks are much closer to the empirical data.

Ratcliff and Frank (2012) fit the diffusion model to simulated
data from a model of the corticostriatal network and reinforcement
learning in the basal ganglia system (Frank, 2005, 2006). Data
showed large shifts in the leading edge of RT distributions for
conflict conditions and the application of the diffusion model had
the aim of determining whether allowing drift rates to vary as a
function of conflict was enough to capture conflict effects, or
whether other assumptions would be needed such as collapsing
decision boundaries instead of fixed boundaries. They also fit the
diffusion model to empirical data to examine whether differences

in drift rates could explain conflict effects. Experimental results
were similar to those from the vocal response task in Experiment
3, in which a high conflict condition resulted in a large shift in the
leading edge of the RT distribution compared with the low conflict
condition (Ratcliff & Smith, 2010). The diffusion model was not
able to accommodate this shift with drift rate only varying across
conditions. The authors added a second nondecision time param-
eter that varied as a function of conflict and they also created
another diffusion model in which the decision boundaries col-
lapsed over time in the high conflict condition (this was derived
from the Frank basal ganglia model). These alterations allowed the
model to account for this shift in the leading edge of the RT
distributions, as well as provide a quantitatively better fit. These
alterations are motivated by the neurally plausible operations
within the basal ganglia model. This approach is similar to our
modifications to the RTCON2 model that incorporated a second
nondecision time parameter. This modification allowed the
ÄRTCON2 model to successfully account for data in the vocal
response Stroop task. However, to fully understand the differ-
ences in processing between these two response modalities, a
model of vocal responding must be developed.

This study provides a theoretical account of interference in the
Stroop task using the RTCON2 multichoice decision model. The
model accounts for response proportions as well as correct and
error RT distributions and is able to do this for individual partic-
ipant data. Although RTCON2 in its current form is unable to
account for a large shift in the leading edge of RT distributions
across incongruent and neutral conditions in the vocal responding
task, adding an additional nondecision time parameter that differs
as a function of conflict offers one solution to this issue. This new
model points to a fundamental difference in processing that no
model currently explains; however, the new model does not ex-
plain why the difference occurs. RTCON2 provides fits to empir-
ical data comparable with that of the two-choice diffusion model,
and provides parameter estimates that are consistent between the
models. Our results also show that processing in the Stroop task
differs as a function of task demands, namely manual versus vocal
responding. Thus, RTCON2 offers a method in which to decom-
pose behavioral data and discriminate between decision related
processes and nondecision processes, and in turn provides a more
complete view of processing in the Stroop task.
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