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A new diffusion model of decision making in continuous space is presented and tested. The model is a
sequential sampling model in which both spatially continuously distributed evidence and noise are
accumulated up to a decision criterion (a 1 dimensional [1D] line or a 2 dimensional [2D] plane). There
are two major advances represented in this research. The first is to use spatially continuously distributed
Gaussian noise in the decision process (Gaussian process or Gaussian random field noise) which allows
the model to represent truly spatially continuous processes. The second is a series of experiments that
collect data from a variety of tasks and response modes to provide the basis for testing the model. The
model accounts for the distributions of responses over position and response time distributions for the
choices. The model applies to tasks in which the stimulus and the response coincide (moving eyes or
fingers to brightened areas in a field of pixels) and ones in which they do not (color, motion, and direction
identification). The model also applies to tasks in which the response is made with eye movements, finger
movements, or mouse movements. This modeling offers a wide potential scope of applications including
application to any device or scale in which responses are made on a 1D continuous scale or in a 2D spatial
field.

Keywords: diffusion model, spatially continuous scale, response time, Gaussian process noise, distributed
representations

Stimuli in laboratory research and in the real world are often
continuous in space and, in the real world, responses to them are
often made on continuous scales, sometimes one dimensional (1D)
and sometimes two dimensional (2D). I present a new spatially
continuous diffusion model (SCDM), a quantitative sequential-
processing model, and show that it can explain how decisions are
made about such stimuli, how decisions are expressed on contin-
uous scales, and how decisions evolve over the time between onset
of a stimulus and execution of a response.

Continuous response scales may be better suited than discrete
ones in some situations for clinical patients, children, or older
adults in that they remove the requirement of dividing the knowl-
edge on which their decisions are based into discrete categories.
There is also a broad range of potential applications in cognitive
psychology including visual search and coordinate systems (e.g.,
Golomb et al., 2014), psychometric item response theory (e.g.,
Ferrando, 1999; Muller, 1987; Noel & Dauvier, 2007), working
memory (e.g., Hardman, Vergauwe, & Ricker, 2017; van den

Berg, Awh, & Ma, 2014), number line tasks in numerical cognition
(e.g., Thompson & Siegler, 2010), relationships between binary
responses, confidence judgments, and responses on continuous
scales in perception and memory (e.g., Province & Rouder, 2012),
fuzzy set theory (e.g., Smithson & Verkuilen, 2006), visual atten-
tion (e.g., Itti & Koch, 2001), and dynamical systems models of
movements (e.g., Klaes, Schneegans, Schöner, & Gail, 2012; Wil-
imzig, Schneider, & Schöner, 2006). Many of this list of studies
used representations of stimuli and responses on continuous scales
but did not examine or model the time course of processing,
something that is essential to understanding decision making. This
modeling approach also fits naturally with models of neural pop-
ulation codes (e.g., Beck et al., 2008; Deneve, Latham, & Pouget,
1999; Georgopoulos, Schwartz, & Kettner, 1986; Jazayeri &
Movshon, 2006; Liu & Wang, 2008; Nichols & Newsome, 2002;
see the review and challenge for diffusion modeling in Pouget,
Beck, Ma, & Latham, 2013). The SCDM can also be seen as an
extension of dynamical systems and population code models that
allows them to account for both response choices and the distri-
butions of response times (RTs).

The SCDM is also an extension of one of the most successful
models of simple decision making, the sequential sampling, dif-
fusion decision model for two-choice decisions (Ratcliff, 1978;
Ratcliff & McKoon, 2008; Ratcliff, Smith, Brown, & McKoon,
2016). That model explains the choices individuals make and the
time taken to make them by assuming that noisy evidence is
accumulated over time to one of two decision criteria. This and
related models have been influential in many domains, including
clinical research (Ratcliff & Smith, 2015; White, Ratcliff, Vasey,
& McKoon, 2010), neuroscience research, and neuroeconomics
research (Gold & Shadlen, 2001, 2007; Krajbich, Armel, & Ran-
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gel, 2010; Smith & Ratcliff, 2004). There is also a growing body
of evidence that diffusion models provide a reasonable account of
the mappings between behavioral measures and neurophysiologi-
cal measures (e.g., EEG, fMRI, and single-cell recordings in
animals; see the review by Forstmann, Ratcliff, & Wagenmakers,
2016). The model is also being used as a psychometric tool in
studies of differences among individuals (e.g., Ratcliff, Thapar, &
McKoon, 2010, 2011; Ratcliff, Thompson, & McKoon, 2015:
Schmiedek, Oberauer, Wilhelm, Süss, & Wittmann, 2007; Pe,
Vandekerckhove, & Kuppens, 2013).

Historically, the earliest models for two-choice decisions were
random walk models or counter models (LaBerge, 1962; Laming,
1968; Link & Heath, 1975; Smith & Vickers, 1988; Stone, 1960;
Vickers, Caudrey, & Willson, 1971) in which evidence entered the
decision process at discrete times (see Ratcliff & Smith, 2004, for
an evaluation of model architectures). The advance from discrete
random walk processes to continuous diffusion processes resulted
in an explosion of theoretical and applied research (much of it in
the last 15 to 20 years). I believe that the advance from modeling
the time course of discrete decisions to the time course of decisions
in continuous space could have the same theoretical and applied
impact.

Diffusion models have also been used for multichoice decisions.
For example, Roe, Busemeyer, and Townsend (2001; Busemeyer
& Townsend, 1993) developed decision field theory and applied it
to tasks with multialternative decisions and multiattribute stimuli.
According to the theory, at each moment in time, options are
compared in terms of advantages and disadvantages with respect to
an attribute and these evaluations are accumulated across time
until a threshold is reached. The first option to cross the threshold
determines the choice that is made. The theory accounts for a
number of findings that seem paradoxical from the perspective of
rational choice theory. Another domain that has been studied
intensively involves confidence judgments. When individuals are
asked to indicate how confident they are in the correctness of a
decision, they typically do so by choosing one of several categor-
ical responses (e.g., very confident, somewhat confident, etc.).
Like the two-choice model, multichoice diffusion models have
provided a detailed explanation of choices and RTs (Leite &
Ratcliff, 2010; Niwa & Ditterich, 2008; Pleskac & Busemeyer,
2010; Ratcliff & Starns, 2009, 2013; Voskuilen & Ratcliff, 2016).
However, despite the tradition in which confidence judgments are
measured in discrete categories, confidence should be seen as a
continuous dimension in some situations, not a discrete categorical
one, and the modeling presented here might apply to such confi-
dence judgments made on a continuous scale.

The Spatially Continuous Diffusion Model

The core of the SCDM is conceptually simple: It is a sequential
sampling model in which information from a stimulus is repre-
sented on a continuous line or plane and evidence from it is
accumulated up to a decision criterion, which is also a continuous
line or plane. Key to the model’s success is that the noise added to
the accumulation process is spatially continuously distributed. To
demonstrate the potential of the model, the experiments below
tested it across a range of tasks, stimuli, and response modalities.
The tasks were brightness, color, and direction-of-motion discrim-
inations with static and dynamic displays with responses made on

the same scale as stimuli were displayed or with responses and
stimuli decoupled. Responses were made on 1D circles, arcs, and
lines and 2D planes and they were given by eye, finger, and mouse
movements. The effects of each independent variable were mea-
sured in at least two experiments to address the replicability of the
effects.

Figure 1 illustrates the model for a 1D task for which subjects
move their eyes from a central fixation point to the location on a
circle (actually an annulus) that is the brightest, that is, the greatest
concentration of white pixels (Figure 1A). The heavy line in Figure
1B shows the representation of a stimulus for which the center of
a bright patch is at an angle of 180 degrees from an arbitrary zero
point. The dashed and dotted lines show variability across trials,
which is discussed later. A Gaussian distribution is used for the
representation because 2D Gaussian distributions were used to
generate the patches, but a circular Gaussian von Mises distribu-
tion, traditionally used in modeling tasks with circular response
fields (Smith, 2016; Zhang & Luck, 2008), could also be used.
Gaussian and von Mises distributions are probably indistinguish-
able in the applications presented here. The representation of the
stimulus determines the rate (drift rate) at which evidence is
accumulated toward a criterion, with the highest drift rates at and
near the center of the distribution and decreasing with distance
from the center. A response is executed when the amount of
accumulated evidence reaches the criterion. In tasks with more
than one stimulus (e.g., two or more patches of bright pixels, or
more than one motion direction), the stimulus distribution has two
or more Gaussian distributions, one for each stimulus.

Noise in the accumulation of evidence for a 1D stimulus is
represented by a spatially continuously distributed Gaussian pro-
cess. For a Gaussian process, at any point on the spatial dimension,
noise in the evidence dimension has a Gaussian distribution. There
is a correlation between nearby points on the spatial dimension and
there is a kernel parameter of the model that determines the range
of this correlation. The SD in the evidence dimension (within-trial
variability or diffusion coefficient) is set to 1 per 10 ms step and
it acts as a scaling parameter in the same way as within-trial noise
in the two-choice diffusion model. For tasks with circular displays,
I have not attempted to make the Gaussian process noise contin-
uous over the 360 degree to 0 degree boundary that is present in
the current modeling. Until this becomes an issue that is critical in
modeling data, it is left for future modeling.

Figure 1C shows examples of Gaussian process noise for 1D
stimuli; the five lines show noise across angles, horizontally, and
across time, vertically. The distribution of noise is added to the
evidence from the representation of the stimulus (Figure 1D) and
the evidence from the sum of the two proceeds through time until
it reaches criterion at some location on the circle (the blue line in
1D). For 2D stimuli, the idea is the same except that variability is
represented by Gaussian random field noise. Gaussian processes
and Gaussian random fields are active areas of research in machine
learning (Lord, Powell, & Shardlow, 2014; Powell, 2014). For
example, because random Gaussian processes are summed (along
with the signal), the accumulation process can be seen as a time
autoregressive spatial model (Storvik, Frigessi, & Hirst, 2002).

The accumulation process is assumed to be continuous in space
and time but to simulate it, discrete time steps and discrete spatial
locations are used. For any simulation of a continuous process on
a digital computer, the continuous process must be approximated
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by a discrete one. A later section in this article presents a discus-
sion of how to scale the process to change the sizes of the steps in
space and time to approach continuous processes with smaller time
steps and more points on the continuous spatial dimension.

It is assumed that evidence for one location is evidence against
the others such that the total amount of accumulated evidence is
constant across time (normalized to zero at each time step; e.g.,
Audley & Pike, 1965; Bogacz, Brown, Moehlis, Holmes, & Co-
hen, 2006; Ditterich, 2006; Niwa & Ditterich, 2008; Ratcliff &
Starns, 2013; Roe et al., 2001; Shadlen & Newsome, 2001).
Ratcliff and Starns (2013), in their confidence and multichoice
model, showed that normalization of the evidence (so that the
mean over all the accumulators was zero) on each time step
allowed the model to account for shifts in reaction time (RT)
distributions that occur for about half of the subjects in their
experiments.

It is also assumed that the amounts of accumulated evidence for
nearby angles are correlated (because the angles are close to-
gether). Because of the noise in the accumulation process, the time
it takes for evidence to reach the criterion varies and sometimes the
accumulated evidence reaches the wrong location. Total RT is the
time to reach criterion plus the time to encode the stimulus into
decision-relevant information and the time to execute a response.
The latter two, which are outside the decision process itself, are
added together in one component of the model that is called
nondecision time.

The assumptions that there is noise in the process of accumu-
lating evidence and that the amount of accumulated evidence is
constant across time are shared with the two-choice diffusion
model. There are three other shared assumptions: One is that the
three components of processing (drift rate, criterion, and nondeci-
sion time) are independent of each other. Another is that the value
of the criterion is under an individual’s control; setting it higher
means longer RTs and better accuracy and setting it lower means
shorter RTs and lower accuracy. The independence of drift rate
and criterion means that an individual can set the criterion to value
speed over accuracy (or accuracy over speed), no matter what his
or her drift rate, and an individual with high drift rate (or low drift
rate) can respond more or less quickly, depending on where he or
she sets the criterion. The third shared assumption is that there is
variability across trials in drift rate, criterion setting, and nonde-
cision time, reflecting individuals’ inability to hold processing
exactly constant from one trial of a stimulus to another. Variability
in drift rate is represented by random variation in the height of the
drift-rate distribution, illustrated by the three lines in Figure 1B.
When there is more than one stimulus in the display, trial to trial
variability in the height of the drift rate distributions can act to
make the internal representation of a weaker stimulus stronger than
a strong stimulus. This acts like an attentional mechanism with a
focus on a weaker stimulus on some trials (though random noise is
the major determinant of choices of weaker stimuli and random
responding away from any stimuli).

Figure 1. (A) An example stimulus display for a task in which the subject moves his or her eyes from the
central fixation square to the brightest area on the surrounding annulus. (B) A representation of the normally
distributed stimulus representation. (C) Six examples of random Gaussian process noise. (D) Five samples of
accumulated information with the last reaching the decision criterion (the blue horizontal line). See the online
article for the color version of this figure.
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The most important feature of the SCDM is that the stimulus
representation (which determines drift rates), the noise in the
accumulation of evidence, and the response criteria are all contin-
uous in space. That representations of stimuli have a Gaussian
distribution is straightforward. However, the assumption about
noise is less so because theoretical assumptions about continuously
distributed noise across space have received almost no attention in
psychology. Earlier versions of my approach, since discarded,
assumed multiple accumulators, but this always raised the issue of
granularity (e.g., How many accumulators for a circle, 36, 360,
3,600?) and the question of scaling the number of accumulators.
Moving to continuous noise makes accumulation in continuous
space possible. As mentioned, for fitting the model to data, the
continuous functions are approximated with discrete functions but
there is a simple transformation of model parameters to vary the
number of discrete points.

In Figure 1C, for any angle, a straight vertical line drawn
through samples for that angle (five are shown) would produce a
Gaussian distribution on the vertical line. A smooth continuous
function across angles (on the x-axis) is generated by a kernel
function; a standard one was used here, a squared exponential,
(K(x, x=) � exp(�(x-x=)2/(2r2)), where x and x= are two points, K
is a matrix, and r is a (kernel) length parameter that determines
how smooth the function is. If r is varied from small to large, the
correlation in noise between nearby points starts small and be-
comes larger. A small value of r would give a function with more
peaks and troughs and larger value of r would give a function with
fewer peaks and troughs. (The precise form of the kernel function
is likely to be unimportant as long as it is unimodal because
samples are accumulated.)

To obtain random numbers from the Gaussian process, the
square root (R) of the kernel matrix, K (K � R=R, where R is an
upper triangular matrix), is multiplied by a vector of independent
Gaussian distributed random numbers (with SD 1) to produce the
smooth random function (Lord et al., 2014). If r is relatively small,
the matrix R will have only a few values off the diagonal and only
points close together in the random vector will be smoothed
together resulting in a jagged Gaussian process function. If r is
relatively large, the matrix R will have many off-diagonal elements
that are not small and the Gaussian process function will be
smooth with few peaks and troughs. In Figure 1C, r is 10 degrees.

Figure 1D shows the amounts of accumulated evidence at each
angle for time steps from one to 17, with the process terminating
at the 17th time step at an angle of about 215 degrees. The peak
emerges gradually with the spread of activity around the peak
determined by the standard deviation (SD) of the drift-rate distri-
bution and the kernel length parameter.

The parameters of the model that are common across tasks are
nondecision time (Ter), the range of nondecision times (st, uni-
formly distributed), criterion (or boundary) setting (a), the range of
the boundary setting (sa, uniformly distributed), the Gaussian
process kernel parameter (r), the across-trial range in the height of
the drift-rate distribution (sd, uniformly distributed), and the stan-
dard deviation in the drift-rate normal distribution (sw). In addition,
there is one parameter for each of the conditions in an experiment
that differ in difficulty, where the parameter (di) represents the
mean height of the drift-rate distribution. The Appendix shows
how each of these parameters affects RT and accuracy. The pa-

rameters of the 2D model are described in the section on that
model.

Fitting the Model to Data

I do not know of any exact solutions for the probabilities of
responses across the criterion line (i.e., the probabilities of re-
sponses at each angle) or for the distributions of RTs, so simula-
tions are used (usually 10,000 simulated trials) to generate predic-
tions. The data generated from the simulations are compared with
the empirically obtained data and then the generating parameters
are adjusted with a SIMPLEX fitting routine to obtain the best
match between simulated and empirical data. The data for all the
conditions of an experiment are fit to the model simultaneously
and the data for each subject are fit individually. In this article, my
aim was not to explore model fitting methods to find an optimal
method but rather to use a fairly straightforward and robust method
to show that the model can fit the data. Other methods might
produce better fits but this is a topic for future investigation.

In order to generate predictions and fit the model, both time and
space have to be made discrete. We fit the model using 10-ms time
steps and 5-degree spatial divisions. The model parameters are
presented in terms of 10-ms time steps and 1-degree spatial divi-
sions. The equation for the update to a spatial position at each
10-ms time step is the standard �xi � vi�t � ��i ��t, where
�(� 1) is the SD in within-trial noise, vi is the height of the drift
rate location at spatial position i, xi is the evidence, and �i is a
normally distributed random variable with mean zero and SD 1.
Note that the samples of noise are not correlated across time steps,
but they are correlated across spatial position (as in Gaussian
process noise). This means that the samples of noise are not
independent across spatial locations.

To fit the model, the data are grouped into three categories: the
area around the central peak (the A area in Figure 2), the two areas

Figure 2. A plot of a hypothetical distribution of responses showing how
they are divided into the central proportion (A), the side lobes (B), and
responses outside the stimulus range (T). This division is used to group the
data to provide RT distributions for model fitting. When there were two or
more possible targets, areas C, D, and so forth were added for the weaker
targets and these represented areas A and B combined for those stimuli.
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just outside the central peak (B’s in Figure 2), and the combination
of all the other areas (T’s—for tail—in Figure 2). Two areas, A
and B, were needed for the center because when only one area was
used, there was an identifiability problem because a high narrow
central peak mimicked the lower wider peak shown in Figure 2.
Using the two areas (A and B) solved the problem because the two
areas constrained the fitting method to produce responses across
the range around the peak. In experiments with more than one
response location, two areas—A and B—were used for the stron-
gest peak but only one area (C, D, etc.) was needed for each of the
weaker peaks. The cutoffs that defined the areas A and B were
selected based on the mean experimental results with a check that
each individual had a B area that contained some of the tail of the
distribution around the central peak.

For fitting the model and for displaying data and model predictions,
RT distributions are represented by five quantiles, the .1, .3, .5, .7, and
.9 quantiles. The quantiles and the probabilities of responses for each
region for each condition of an experiment are entered into a mini-
mization routine and the model is used to generate the predicted
cumulative probability of a response occurring by each quantile RT.
Subtracting the cumulative probabilities for each successive quantile
from the next higher quantile gives the proportion of responses
between adjacent quantiles. For a G-square computation, these are the
expected proportions, to be compared with the observed proportions
of responses between the quantiles (i.e., the proportions between 0, .1,
.3, .5, .7, .9, and 1.0, which are .1, .2, .2, .2, .2, and .1). The proportions
for the observed (po) and expected (pe) frequencies and summing over
2Npolog(po/pe) for all conditions gives a single G-square (log multi-
nomial likelihood) value to be minimized (where N is the number of
observations for the condition). A standard SIMPLEX minimization
routine was used to adjust the model parameters to minimize
G-square. To avoid the possibility that the fitting process ended up in
a local minimum, the SIMPLEX routine was restarted eight times
with 40 iterations per run and then finally run with 200 iterations (for
the last 100 to 150 iterations, usually there was no change in the
model parameters).

Besides the possibility of local minima in fitting the model to
data, there were some other problems. In fitting the model (and in
two-choice modeling), if nondecision time is too large and across-
trial variability in nondecision time is small, it is possible for there
to be no overlap between the predicted and data distributions at the
lower quantiles. This means that a probability cannot be assigned
to the lower quantile RTs and this produces numerical overflow in
the programs. To deal with this, a value of nondecision time at the
low end of the range for successful fits to data was selected along
with a large value of across-trial variability in nondecision time.
These were fixed for the first two runs of the SIMPLEX routine.
This allowed other parameters to move to values nearer their
best-fitting values. For the third iteration, all the parameters were
free to vary which allowed nondecision time to move to a value
near the best-fitting value for those data. The fourth iteration
started with the across-trial range in nondecision time divided by
2.5 to counteract the large value used in the initial runs (without
this adjustment, it took a lot of restarts of the SIMPLEX routine for
this parameter to move to a stable lower value). Also, nondecision
time was not allowed to become shorter than 175 ms because a
value much lower than this is implausible given the encoding and
response output processes and translation between the stimulus
representation and the decision variable processes that were

needed (this is discussed later). Initial values of the parameters
were near the mean of those from a first run of the model fitting
program and were the same for each subject, that is, they were not
adjusted for each subject. The method described above was robust
to moderate changes in the initial values (e.g., a 30%–50% change
in them).

Experiments

There is little guidance in the literature on how to design
experiments to examine performance on tasks with responses on
continuous scales while at the same time measuring RTs. There are
paradigms with responses on continuous scales but none that I
know of that are designed to provide RT measures, especially with
the constraint that decision processing should be completed prior
to initiating a response.

RTs were measured from the onset of a stimulus until subjects’
eyes, finger, or mouse left a resting location. Reducing the possi-
bility of movement before a decision was a major constraint on the
development of the paradigms used here. To do this, in all the
tasks, subjects were instructed to make movements only after they
had made their decision. Furthermore, they were instructed to
move directly to the response area to make their response. Feed-
back was provided if the movement from the resting point to the
response location was too slow. There were some false starts with
experiments that did not control or give feedback on the duration
of the movement. In these, some subjects clearly lifted their finger
or moved their eyes very quickly after stimulus presentation and
before they made their decision, and then moved to make the
response (often with slow movement times). In tasks with eye
movements, eye position was recorded every millisecond and this
allowed tracks to be examined. In some cases, tracks to interme-
diate points with a fixation at that earlier point were recorded
(Kowler & Pavel, 2013). Then the eyes moved to make a response.
The experiments reported here eliminated the majority of these
behaviors with careful instructions, monitoring, and feedback if
movement times were too long.

Recently there has been concern about the lack of replicability
of studies in psychology and, historically, there has been concern
that models or empirical results apply only to the specific design of
a single experiment. To address these concerns, nine experiments
were performed with four kinds of tasks. Each major empirical and
modeling result was replicated at least once. The tasks allowed
generalization over response modes, types of stimuli, and types of
decisions.

Data and model fits are presented from a series of experiments with
manipulations that involve the task, the stimulus, the response mode,
and the mapping from stimulus to response. The first six experiments
use different response methods—namely, eye fixations and touch-
screen finger movements. The question was whether these modalities
produce qualitatively similar or different patterns of results. The first
two experiments present a patch of colored pixels in a central location,
with one color dominant, and the task is to move the eyes or finger
(usually the index finger) to the position on a color annulus or color
half annulus that matches the dominant color in the stimulus. The
second two experiments present an annulus or half annulus of black
and white pixels with some areas brighter or darker than the back-
ground (more white or more dark pixels, respectively) and the task is
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to move the eyes or finger to the brightest or darkest area (alternating
from trial block to trial block). In the experiment with black and white
pixels, the stimulus and response are physically the same whereas in
the color experiment, the subject has to map between a degraded
central color stimulus and the nondegraded response area. The
next two experiments use quite different stimuli and the task is
to respond by moving hand or eyes to a point on a surrounding
annulus that best matches the stimulus. The fifth experiment
uses stimuli that are a collection of arrows with some propor-
tion pointing in the same direction. The task is to move the eyes
to a position on the response annulus corresponding to the
dominant direction. The sixth experiment is a moving dots
experiment with three directions of motion and with one stron-
ger than the others. The task is to move the finger to the position
on a response annulus that corresponds to the dominant direc-
tion of motion. The next two experiments are mouse-based
versions of Experiment 1 and the last experiment is a version of
Experiment 3 but with stimuli presented in a rectangular 2D
array and requiring a touch screen response in the 2D space.

All the subjects were Ohio State University students in an
introductory psychology class who participated for class credit. A
small proportion (less than 5%) finished only a few trials in an
experiment before deciding to leave and were eliminated. A few
others had trouble with the eye-movement apparatus (e.g., exces-
sive blinking, inability of the system to provide accurate eye
fixation data) and were also eliminated. The aim was to collect
data from 16 subjects in each experiment but in a few cases, the
number who signed up for an experiment was more than 16 and
data from all of them was used.

The data and predictions of the model for them are displayed in
two ways, illustrated with the data from Experiment 1. The stimuli
(Figure 3A) were center patches surrounded by a circular annulus
and a subject’s task was to move his or her eyes from the center
patch to the location on the annulus that matched the most dom-
inant color in the center patch. The data were aligned so that the
correct response was at 180 degrees. Then, as in Figure 2, the
annulus was divided into the region around the (180 degrees)
location that best matched the center patch (the A region, Figure
2), the regions immediately on each side of it (the B regions), and
all the other regions (the T regions).

Figure 3B shows the data and the predictions plotted against
each other. The upper left panel shows response probabilities,
ranging from 0.0 (for T regions) to 0.8 (for A regions). There are
144 points on the function: the three regions for each of the three
conditions (different levels of difficulty, defined later) in the
experiment for each of the 16 subjects. The fact that the data and
predictions fall tightly around the straight line indicates a reason-
ably good fit of the model to the data. The other three panels of
Figure 3B show predictions against data for the 0.1, 0.5, and 0.9
quantile RTs (quantiles with less than 10 observations are not
shown). Again, the tight fit of predications to data indicates a
reasonably good fit.

The second way predictions and data are displayed is to plot
response probabilities and RTs across angles. Figure 3C shows
histograms for response probabilities for the three conditions for
all the data from all the subjects and the predictions match the data
well. Figure 3D shows similar plots for mean RTs.

Apparatus

For the eye-movement experiments, stimuli and response fields
were presented on a CRT monitor 40 cm wide (640 pixels) and 30 cm
high (480 pixels). At the standard viewing distance used (69.5 cm),
the whole screen subtends a visual angle of 32 degrees 	 24 degrees.
For the touch screen experiments, the CRT monitor was 32 cm wide
and 24 cm high, which, at a standard viewing distance of 55.8 cm,
gave a visual angle of 32 degrees 	 24 degrees. The screen phosphors
for the CRT monitors are not known so the precise decay character-
istics of the displays are not known and the relative intensities of the
three color guns are not known. However, most of the manipulations
were within-subjects with moderately short presentation durations
(250 ms–300 ms) and differences among individual subjects were so
large that any assumptions about stimulus duration that might be
affected by slow decay of a stimulus on the screen over 20 ms or 40
ms was not important.

For the eye-movement experiments, the eye tracker was an Eye-
Link 1000 from SR Research. The system was desktop-mounted with
a chin and forehead rest. The measurements were monocular (left eye)
sampling at a rate of 1,000 Hz. Every trial began with a fixation point
(details are presented for each experiment). After some amount of
time (e.g., 500 ms) of fixation, the trial began. A response was
recorded when the eyes moved from the fixation position to a re-
sponse location and remained fixated at the response location for
500 ms. Response time was defined as the time from stimulus pre-
sentation to the time at which the eyes moved from the fixation
position.

A few times in an experiment, calibration in the eye tracker
drifted, that is, the eye tracker recorded a location systematically
away from the location to which the eyes were looking. The first
part of each experimental trial involved the subject fixating on a
box prior to stimulus presentation (usually for 500 ms). During this
time, and only this time, the position of the eye was shown on the
screen by a dot drawn at every screen refresh. Both experimenter
and subject could see the dots as they were drawn and the exper-
imenter could hit a game controller button during the fixation
period to tell the system that the subject was fixated in the box if
the system was recording fixations outside the box. The eye tracker
was then recalibrated. This happened no more than five or 10 times
per experimental session.

The touch screen (CRT) was an ELO Entuitive 1725C with
dimensions 40 cm wide and 30 cm high. Because there is consid-
erable arm fatigue in using a touch screen horizontally on a desk,
a mount was constructed so that the screen was at almost horizon-
tal and was located between the knees of subject. This eliminated
arm fatigue. A trial began when subjects hit a starting box on the
screen (details are presented in each experiment). They were
required to lift their finger and place it at the response location and
not slide it.

There were some complicating factors with the touch-screen
system used in these experiments. It uses a “surface wave” tech-
nology that detects an event based on detection of an ultrasonic
wave that is generated when a finger hits or leaves the glass of the
touch screen. The first measurements of the duration of the move-
ment from finger lift to response placement produced some delays
of only 20 ms–40 ms, too short to be legitimate measurements of
movement time.
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In light of this, calibration tests were conducted. A piezoelectric
sensor was used to measure the time at which the finger lifted,
which gave an immediate measurement of lift time. This was
compared with the time at which the touch screen recorded the lift.
In the calibration procedure, the screen was programmed to turn an
all-black screen display to an all white one when the finger lift was
recorded. A photodiode was used to record the time of this all-
black to all-white change. An oscilloscope displayed the two

events and results showed a 110-ms delay from when the piezo-
electric sensor detected the change (finger lift) until the screen
turned white. The same setup was used to record the time from a
finger press to detection of the finger press event from the touch
screen. As before, the finger press turned the black screen white
and the photodiode was used to record this change. A delay
between the finger press and recording the event of about 48 ms
was found. These numbers were verified by recording the events

Figure 3. Stimulus and results for Experiment 1. (A) An example of the stimulus and response configuration.
(B) Plots of model predictions plotted against data of the proportion of A, B, and T responses (see Figure 2) and
the 0.1, 0.5 (median) and 0.9 quantile RTs for all the conditions for data from each individual subject. The
horizontal error bars in the bottom right corner represent the minimum and maximum 1 SD in the quantile RTs
derived from a bootstrap analysis. The error bars in the top right show a 2-SD error bar from the maximum of
the error bars in the bottom right corner. This provides an upper bound of the variability in the quantile RTs. (C)
Histograms of responses for the model and data as a function of angle for all data from subjects combined with
the stimulus aligned on 180 degrees. (D) Plots of mean RT for theory and data as a function of angle averaged
over subjects. The blue brackets show the angles with most responses as shown in Panel C (and hence with
lowest variability). See the online article for the color version of this figure.
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on a video camera at a 60 Hz frame rate in a completely indepen-
dent set of measurements. The number of frames between lift of
the finger to the screen changing from black to white replicated the
110 ms measurement (as did the finger press measurement). These
delays were added into the measurements in Experiments 2, 4, 6,
and 9. It is important to perform such measurements if touch-
screen devices, such as tablets, phones, or laptop screens, are to be
used in RT experiments.

In the mouse-based experiments, subjects placed the mouse
pointer in a starting box on the screen and after some delay (so
long as the pointer remained in the box), the trial began. The
position of the mouse was displayed on the screen every 16.7 ms
as a small dot to subjects.

RTs were measured from the onset of the stimulus/response
display to the eye leaving the fixation point, a finger leaving the
resting box, or the mouse leaving the starting box. Responses that
were too slow (specific to each task) and movements off the
response dimension (e.g., off an arc) were considered spoiled
trials. To minimize visual search of the display, the stimulus was
usually presented for only 250 ms for finger and mouse move-
ments. For eye movements, the stimulus and response field re-
mained on the screen until the eye left the fixation point, at which
time the screen was blanked. To provide feedback to participants,
correct responses were defined as responses within a 50-pixel
square box of the peak of the target; responses outside that box
were followed by an error message.

The eye tracker experiments were more finicky than the
others. With touch or mouse responses, when a trial ended, the
next trial could begin. With the eye tracker, the next trial began
only when the camera sensed the subject’s eyes on the central
fixation point. For some subjects this was a smooth process, but
for others it took a few extra seconds for the fixation point to
register. Over the course of the entire experiment, if this hap-
pened with regularity then those subjects were not able to
complete the full sessions of trials. Additionally, some subjects
calibrated easily in the initial calibration process and for others,
there were problems that required the experimenter to perform
the calibration process several times. Sometimes the subjects
also had difficulty in fixating on the target (without moving
back to the central location). Also, for some subjects, there were
problems in calibration due to glasses and contact lens. A
session was planned to be the number of trials that could be
completed in 50 min if everything ran without problems, but
sometimes only a little more than half the trials could be
obtained from a subject.

Experiment 1

The stimuli were central patches of colored pixels surrounded
by a circular annulus also made up of colored pixels (Figure 3A).
Subjects responded by moving their eyes from the central patch to
the location on the annulus that best matched the dominant color in
the patch. There were three levels of difficulty; the proportion of
pixels of the dominant color in the central patch was 0.35, 0.20, or
0.10. Subjects were instructed to make their decisions as quickly
and accurately as possible and to move their eyes only after they
had made their decision.

Method

At the beginning of each trial of the experiment, subjects were
asked to fixate on a 20 	 20 pixel white box at the center of the CRT
screen. After 500 ms of fixation, the central patch replaced the box
and simultaneously the annulus was displayed. RTs were measured
from the onset of the display to when the eyes moved outside a
30-pixel (1.5-degree) radius from the fixation point.

The central patches were 44 	 44 pixels. They were created by
placing pixels of random colors (out of 253 possible colors) at random
locations on the patch. One color was selected randomly and then a
proportion of the pixels, 0.35, 0.20, or 0.10, was changed so that each
pixel was changed to the target color or one within 10 of the target.
The color selected was one of 21 from a uniform distribution with
range minus 10 to plus 10 of the target.

The annulus contained all 253 colors. Its central radius was 60
pixels (3.0 degrees) from the center of the screen and it was 16 pixels
(0.75 degrees) wide. The pixels changed from red (at angle zero,
horizontal right) counterclockwise through all 253 colors with yellow
at 60 degrees, green at 120 degrees, teal at 180 degrees, dark blue at
240 degrees, and violet at 300 degrees (Figure 3A).

There were 16 subjects in the experiment. They were instructed to
move their eyes away from the central patch only when they had
made a decision about where the central patch’s dominant color was
located on the surround. To discourage moving the eyes in more than
a single step, the display of the central patch and surround was
blanked when the eye moved outside two degrees from the fixation
point. This meant that once the eyes moved, there was no more
stimulus or response information available from the display.

There were 10 blocks of 72 trials each, preceded by two practice
blocks. Each block contained 24 trials for each of the conditions,
randomly ordered. A session was 50 min long. Many subjects did not
finish all 10 blocks: There was an average of 560 observations per
subject out of a possible 720.

Target locations were measured in terms of their x/y coordinates in
the 640 by 480 screen of pixels. The center of a target location was at
a radius midway between the inner and outer radii of the surrounding
annulus and its size was a 2-degree by 2-degree (40- by 40-pixel)
invisible box centered on the target color. The box was not rotated
based on stimulus angle, so the box had a narrower angular extent at
0, 90, 180, 270 degrees than at other angles.

To indicate whether a response was correct, if a subject’s eyes
moved to a location in the box, a “1” was displayed in the invisible
box location; if not, a “0” was displayed at the position to which
the eyes had moved—“1”s and “0”s remained on the screen for
300 ms. If the movement started later than 1,250 ms after the onset
of the display, “TOO SLOW” was presented for 500 ms in the
center of the display. If it started earlier than 150 ms, “TOO
FAST” was presented. There was a 40 ms blank screen between
the feedback messages and the fixation point for the next trial.
Generally, the task became routine and subjects rarely received
“TOO SLOW” or “TOO FAST” messages after the practice
blocks.

Results

The stimuli were aligned to set the zero point at 180 degrees.
The A area corresponded to 150–210 degrees, the B area to
100–150 degrees and 210–260 degrees, and the T area to the rest.
Figure 3B, top left panel, shows the data and predictions from the
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model for response probabilities for the three difficulty conditions
for the three response categories for the 16 subjects (144 points).
There were a few misses as large as 10%, but misses of this size
are only a little larger than the maximum expected. (If there were
200 observations per difficulty level, then for a proportion of 0.2,
the SD is sqrt(.2�.8/200) � 0.028, which means that 2 SD’s are
almost plus or minus 0.06.)

The other panels of the figure show the 0.1, 0.5 (median) and 0.9
quantile RTs. There are only 111 points on these plots because
only data for which there were more than 10 observations per
condition per response category are plotted. In the bottom right
corner of each quantile plot are two plus and minus 1 SD error bars
(horizontal because the data are on the x-axis). To construct the
error bars, a bootstrap method was used. For each condition and
response category for each subject, a bootstrap sample was ob-
tained by sampling with replacement from all the responses for
that condition. This was repeated for 100 samples and then the SDs
in the RT quantiles were obtained for that subject, condition, and
response category from the 100 bootstrap data sets. The SDs for
the three conditions and the three response categories with the
largest and smallest SDs were then averaged across subjects and it
is these two SDs that are at the bottom right corners (this excluded
T quantiles from the two easier conditions, 0.35 and 0.20, because
most subjects had less than 10 responses in those categories, and
sometimes zero, with 10 the minimum number of observations we
used for displaying quantiles). On the diagonal line of equality, a
2-SD error bar computed from the larger SD at the bottom right is
shown. This 2-SD error bar provides an upper bound on deviations
that would be expected between the predictions and data if the
model fit the data perfectly.

The results for the quantile RTs show a good match between
predictions and data; almost all of the data points fall within the
2-SD error bars. The largest misses are four values of the 0.1
quantile that show longer RTs than predicted (by about 100 ms–
200 ms). These are for single conditions and single response
categories for single subjects. If they represented a systematic
miss, then the 0.1 quantile RTs should miss for all the A, B, and
T responses (and perhaps all the conditions) but they do not.

Tables 1 and 2 show the values of the parameters that produced
the best fits of the model to data for all the experiments, averaged
over subjects. The SDs in the model parameters across subjects are

shown in Tables 3 and 4. For this experiment, the height of the
normal distribution of drift rates decreased with difficulty, as
would be expected. Discussion of the other parameters is presented
after Experiment 1–8.

For Figures 3C and 3D, predictions and data are plotted as a
function of angle, with the target locations aligned at 180 degrees.
The predictions were generated by simulation using the parameter
values in Table 1 with 10,000 simulations for each condition. For
Figure 3C, response probabilities, the data and predictions were
grouped into bins of 10 degrees. The predicted and data distribu-
tion peaks and spreads qualitatively match each other. This is
especially impressive because the predictions were generated from
the model parameters derived from fits to the response probabili-
ties and quantiles (Figure 2B) and not from fits to the distributions
of data directly. One deviation between predictions and data is the
wider distribution of responses for the data relative to the model
for the 0.1 stimulus. This suggests that a weak stimulus has greater
variability (less precision) and this could be accommodated by
assuming the SD in the drift rate distribution is larger for weak
stimuli. Another deviation between theory and data is in the
response proportions for conditions with values near zero for the
data. The model predicts values larger than zero and there are
systematic misses for some of these. In the discussion the possi-
bility that the Gaussian process noise is stimulus location depen-
dent and larger near the stimulus is considered.

For Figure 3D, RTs, the data and predictions also match well
(5-degree angles per bin). The responses nearest the target angle
(180 degrees) represent the A category, responses a little farther
away represent the B categories, and all the others represent the T
category. The blue bars in the figure show the responses in the A
and B categories. The data show higher variability in the tails away
from 180 degrees for the data than the predictions because there
were low numbers of observations for the data but 10,000 obser-
vations in the simulated values. There was little difference in RTs
across angles (i.e., across the A, B, and T response categories).
However, RTs increased with difficulty, from a mean of 507 ms
for the 0.35 condition to 576 ms for the 0.20 condition to 693 for
the 0.10 condition (these means represent the vertical shifts from
responses in one condition to another in Figure 3D). These are
large effects and ones that the model captures well.

Table 1
SCDM Parameters

Task Exp. Ter st a sa sw r sd G2 df 
2

Color 72 eye 1 177.5 33.1 15.4 5.9 37.0 14.0 .859 89.2 41 56.9
Color 72 touch 2 272.4 25.1 11.0 3.0 24.9 11.8 1.082 98.8 41 56.9
Dynamic bright eye 3 177.7 48.1 12.3 5.5 26.0 34.0 .821 102.0 35 49.8
Static bright touch 4 221.5 59.3 7.5 2.7 17.5 18.1 .761 92.6 35 49.8
Arrows 72 eye 5 186.0 22.6 11.4 5.7 26.5 24.1 .839 82.4 41 56.9
Moving dots touch 6 301.6 34.4 9.3 3.4 31.0 21.7 .925 185.2 71 91.7
Color 72 mouse 7 235.9 26.3 15.4 2.9 32.0 5.4 1.047 93.0 41 56.9
Color sp/acc mouse 8 225.6 23.4 13.6 15.3 2.4 33.7 9.8 .897 133.6 58 76.7
2D brightness 9 179.1 26.0 8.8 4.0 16.4 18.2 .528 282.4 48 65.2

Note. Ter � nondecision time; st � range in nondecision time; a � boundary setting; sa � range in the
boundary setting; sw � SD in the drift rate distribution; r � Gaussian process kernel parameter; sd � range in
the height of the drift rate distribution; G2 � multinomial maximum likelihood statistic; df � number of degrees
of freedom; 
2 � critical chi-square value; Exp. � experiment.
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Experiment 2

This experiment was similar to Experiment 1 except that the
display used a half annulus surround and the response modality
was a finger movement to the target color. Apart from this, the
geometry of the display was the same as for Experiment 1. Figure
4A shows the central patch and the response half annulus. Re-
sponses were made by finger movements on the touch screen
system. A half annulus was used because the resting position of the
arm would have obscured part of a full annulus. Difficulty was
manipulated in the same way as for Experiment 1. To anticipate,
response modality (eye movements or finger movements) did not
affect the patterns of results.

Method

There were 12 blocks of 72 trials each, 24 of each condition in
each block ordered randomly. Like Experiment 1, a session was 50
min long but, without the need for eyetracker calibration, there
were more responses, an average of 823 out of a possible 864.
There were 16 subjects.

The central patches were constructed in the same way as for
Experiment 1 except that only colors between 10 degrees and 170
degrees were used in order to avoid end effects. The central patch

was displayed at the center of the half annulus (Figure 4A) and it
was 16 pixels (.75 degrees) square. The half annulus contained 190
out of the possible 253 colors and its colors began at purple on the
far left and ended at red on the right.

Subjects began each trial by touching their index fingers to a
square that was located 9.5 degrees below the central patch. 250
ms after the touch, a plus sign appeared at the location at which the
central patch would be displayed and it remained on the screen for
500 ms; 240 ms after that, the central patch and the half annulus
were displayed. Subjects were instructed to move their fingers and
touch the location on the half annulus that best matched the
dominant color in the central patch. To discourage subjects from
changing the target locations they had chosen during the finger
movement, the central patch was turned off as soon as the finger
was lifted but, unlike Experiment 1, the half annulus remained on
the screen until the finger touch. This seemed to be more natural
than turning it off as in the eye movement experiments. In the eye
movement experiments, many of the eye movements were ballistic
and turning off the response annulus did not affect the response.
Following a response, feedback of the same kind as for Experiment
1 was presented for 300 ms, followed by the 40-ms blank screen.
Response time was measured from onset of the patch and half-
annulus to the time at which the finger lifted from the resting
square.

Table 2
SCDM Drift Rates

Task Exp. Conditions d1 d2 d3

Color 72 eye 1 .35, .20, .10 42.7 31.3 16.7
Color 72 touch 2 .35, .20, .10 29.3 25.8 19.4
Dynamic bright eye 3 .62, .58 26.2 12.2

.58, .54 14.6 5.1
Static bright touch 4 .75, .65 26.7 13.4

.65, .60 20.6 12.2
Arrows 72 eye 5 .60, .40, .20 31.1 23.4 13.2
Moving dots touch 6 .5, .1, .1 33.6 5.6 6.0

.4, .2, .1 25.3 9.6 3.3

.4, .2, .2 21.9 6.9 5.6
Color 72 mouse 7 .35, .20, .10 30.0 25.8 18.0
Color sp/acc mouse 8 .25, .10 32.1 21.4
2D brightness touch 9 .70, .50, .40 18.1 10.6 6.6

.60, .50, .40 16.3 12.1 8.3

Note. di is the height of the drift rate distribution. Exp. � experiment.

Table 3
SDs in SCDM Parameters

Task Exp. Ter st a sa sw r sd

Color 72 eye 1 12.4 13.2 2.6 2.5 2.4 10.0 .47
Color 72 touch 2 81.8 3.8 1.3 1.9 2.9 6.0 .46
Dynamic bright eye 3 20.7 15.7 1.8 .9 2.2 5.5 .25
Static bright touch 4 39.3 6.6 1.4 .7 3.5 5.7 .11
Arrows 72 eye 5 12.6 2.0 1.3 .6 1.7 4.9 .13
Moving dots touch 6 57.4 14.2 1.5 .6 2.9 5.8 .22
Color 72 mouse 7 41.7 6.3 2.6 1.3 3.9 .3 .46
Color sp/acc mouse 8 30.6 1.8 2.3 3.2 .8 3.7 .9 .28
2D brightness 9 6.9 4.0 .9 .4 1.8 17.2 .05

Note. Ter � nondecision time; st � range in nondecision time; a � boundary setting; sa � range in the
boundary setting; sw � SD in the drift rate distribution; r � Gaussian process kernel parameter; sd � range in
the height of the drift rate distribution.

Table 4
SDs in SCDM Drift Rates

Task Exp. Conditions d1 d2 d3

Color 72 eye 1 .35, .20, .10 11.2 5.9 3.9
Color 72 touch 2 .35, .20, .10 4.6 3.5 3.7
Dynamic bright eye 3 .62, .58 3.2 2.6

3 .58, .54 2.8 2.4
Static bright touch 4 .75, .65 2.4 1.3

4 .65, .60 2.3 1.8
Arrows 72 5 .60, .40, .20 3.1 2.7 1.9
Moving dots 6 .5, .1, .1 4.3 2.8 3.4

6 .4, .2, .1 4.4 2.4 1.9
6 .4, .2, .2 4.3 1.8 1.8

Color 72 mouse 7 .35, .20, .10 5.4 5.1 4.5
Color sp/acc mouse 8 .25, .10 5.3 4.4
2D brightness 9 .70, .50, .40 1.4 1.1 1.1

9 .60, .50, .40 1.3 1.1 .9

Note. di is the height of the drift rate distribution. Exp. � experiment.
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Results
The stimuli were aligned to set the zero point at 180 degrees.

The A area corresponded to 70–110 degrees, the B area to 45–70
degrees and 110–145 degrees, and the T area to the rest. The
results are quite similar to those of Experiment 1. The best-fitting
parameter values are shown in Tables 1 and 2, with the heights of
the distributions of drift rates decreasing with difficulty.

Figure 4B shows response probabilities and the 0.1, 0.5, and
0.9 quantile RTs for the three difficulty conditions for the three
response categories for each subject, and for the quantiles, SDs
constructed by the same method as for Experiment 1. There are
144 points on the probability plot and only 124 for the quantiles

because conditions with fewer than 10 observations were ex-
cluded. There are no remarkable deviations between predictions
and data for the response probabilities. For RTs, there are
perhaps two large deviations in the 0.1 quantile, one in the 0.5
quantile and four or five in the 0.9 quantile. As in Experiment
1, these deviations are not consistent across conditions for an
individual subject.

Figures 4C and 4D show predictions and data as a function of
angle. The predictions were generated in the same manner as for
Experiment 1 and they match the data well. As for Experiment 1,
there was little change in RTs across angles, RTs increased with
difficulty, and there was more variability in the tails away from

Figure 4. The same analysis as in Figure 3 for Experiment 2. Panel E shows the result of aligning the stimuli
at a common angle (180 degrees). Responses are lost (blue dashed line to the right) and areas contain no
responses (red dashed line to the right). For full details, see the text. See the online article for the color version
of this figure.
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180 degrees for the predictions than the data. RTs increased from
a mean of 536 ms for the 0.35 condition to 555 ms for the 0.20
condition to 579 ms for the 0.10 condition and the model fit these
differences well.

There is one issue to note and that is that to produce the plots in
Figures 4C and 4D, the stimulus location was repositioned to 180
degrees (with a range from 100 to 260 degrees). In Experiment 1,
this was accomplished by simple rotation, but in this experiment
there is a problem because there are separate end points for the half
annulus. To illustrate this problem, suppose the central patch had
a color that was at 135 degrees (with the center of the half annulus
at 180 degrees) and the stimulus location was rotated by 45
degrees from 135 to 180 degrees as in Figure 4E. Then responses
that were at 270 degrees move to 270 � 45 � 315 degrees which
is outside the 100- to 260-degree range (the blue dashed line to the
right in the bottom panel). Stimuli at 90 degrees rotate to 135
degrees which means that are no responses in the range from 90 to
135 (red dashed line to the left in the bottom panel).

For the responses in Figure 4C, frequencies at 135 degrees are
out of 75% of the possible frequencies at 180 degrees. This means
that the histograms in Figure 4C (for the data) underestimate the
frequencies in the tails away from 180 degrees. This does not
change the results for the 0.35 and 0.20 stimulus conditions be-
cause there are few responses in the tails, but for the 0.1 stimulus
condition, the extreme tails are lower than they would be with
equiprobable histograms. In the model predictions, the stimulus
position is set to 180 degrees only so all the other angles from
100–260 degrees are equiprobable.

In the later experiments, two or more stimuli occur at random
positions and in order to provide plots of the responses around the
peak of both stimuli and between them, it is necessary to compen-
sate for missing responses by moving responses that are outside
the range to inside the range that would otherwise contain no
responses, that is, responses in regions that do not correspond to
stimuli are filled in with responses that would be discarded.

The width of the histogram for the 0.10 stimulus condition is
larger than that for the predictions. As for Experiment 1, one way
to address this is to assume more variability (less precision) in
weak stimuli which would require increasing the SD in the drift
rate distribution (instead of keeping it constant as it was done in
the fits).

Experiment 3

The aim for this experiment was to examine a task in which
stimulus and response coincided, as they might for many devices
such as cell phones and touch screens. Each stimulus was an
annulus made up of black and white pixels (Figure 5A). The pixels
were randomly distributed across the annulus except that there
were two patches with more white than black pixels, one with a
higher proportion of white pixels than the other, and two patches
with more black than white, one with a higher proportion of black
pixels than the other. On some blocks of trials, subjects were
instructed to move their eyes from a center fixation point to the
location on the annulus that was the brightest (the largest propor-
tion of white pixels) and on the other blocks of trials, to the darkest
(largest proportion of black pixels). It turned out that dark re-
sponses to dark patches were symmetric with bright responses to
bright targets and so the two were collapsed. Also, when respond-

ing to bright targets there was no evidence that subjects were
avoiding dark patches (and vice versa) and so the status of the
patches of the other polarity was ignored in the method and
analyses presented below. Collapsing conditions produced two
conditions at different levels of difficulty with two stimulus
patches for each condition. The circular annulus was dynamic: A
new randomly generated annulus was displayed on each frame of
the display with the same brighter and darker locations.

Method

The circular annulus stimuli were constructed in the following
way: First, pixels were randomly set so that 50% of them were
white and 50% black. Then four locations on the annulus (at the
center radius) were randomly selected with the limitation that they
were at least 36 pixels apart (about 1.8 degrees of visual angle and
21 radial degrees around the annulus). Then some proportion of the
pixels at two of the locations were changed to white and at the
other two, changed to black. These locations served as the centers
of 2D normal distributions with SD 6 pixels. The proportions that
were flipped to white or to black in the patches were obtained from
the height of the normal distributions. The proportions of white or
black pixels at the peak of the normal distribution (center of the
patch) were 0.62 and 0.58 for the easier condition and 0.58 and
0.54 for the more difficult condition. The radius of the center of the
annulus was 100 pixels (5 degrees of visual angle) and it was 72
pixels wide.

The displays were dynamic. Every 10 ms (determined by the
refresh rate of the CRT monitors), a new random sample of noise
was generated and new patches were generated in the same loca-
tions with different random samples of pixels changed from black
to white or white to black.

There were 12 blocks of 72 trials, preceded by 45 practice trials.
In each block, there were two conditions for the bright or dark
targets, one with the easier proportions and one with the more
difficult ones, in random order. For half of the blocks, subjects
were instructed at the beginning of the block to move their eyes to
the brightest location and for the other half, to the darkest location.
These blocks alternated through the experiment. Subjects found
this task more difficult than that for Experiment 1 in terms of
staying on task and so very few subjects completed the experiment.
This produced an average of 457 observations per subject out of
819 total trials.

At the beginning of a trial, subjects fixated on a white square (20
pixels square, about 1 degree) at the center of where the annulus
was to appear (Figure 5A); then the annulus appeared with random
assignment of 50% black and 50% white pixels for 500 ms with a
new random assignment of black and white pixels presented every
10 ms (the frame rate of the display); then as a signal that the
stimulus appeared, the fixation rectangle changed to all black
pixels and the pixels at the four locations on the annulus changed
to the appropriate proportions of black and white pixels. RTs were
recorded from the onset of the bright and dark patches to when
eyes moved 30 pixels from the center of the fixation box. When the
eyes had moved 70 pixels from the center of the fixation box, the
screen blanked. Feedback was provided with “2” presented for a
response at the strongest peak, “1” at the weaker peak, and “0” for
the other locations. The regions around the peak used to determine
the feedback were boxes that had side lengths of 40 pixels. During
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the period that feedback was presented, the next set of images for
the stimuli was loaded into the computer memory and this took
about 1.4 s.

Results

“Bright” responses to bright stimuli were collapsed with “dark”
responses to dark stimuli because there was less than a 1% differ-
ence in accuracy between them and only a 21 ms difference in
mean RTs between them. Furthermore, subjects did not avoid
responding to the opposite parity (e.g., they were not less likely to
respond to a dark region when the task was to respond to a bright
region). Therefore, the data were collapsed across dark and bright
conditions and so modeling and data are in terms of two condi-
tions, stronger (higher proportion of black or white pixels) and
weaker (lower proportions).

Because the locations of the bright and dark patches were
randomly generated, it was necessary to align their positions in

order to group data appropriately for model fitting. The peaks of
the locations were aligned such that the stronger peak was
rotated to 90 degrees and the weaker rotated to 270 degrees. The
two peaks were usually closer than 180 degrees which means
that after aligning the peaks, the numbers of observations
between the two would be underrepresented. For example, if the
locations were at 135 and 225 degrees and responses were
moved along with the locations, then responses 135–180 would
move to 90 –135 and responses 180 –225 would move to 225–
270. Thus, there would be a gap between 135 and 225 degrees.
To compensate, these positions were filled with responses from
the 45– 0 –315 degree range on the opposite side (the red dashed
line moving up as in Figure 5E). An analysis showed that there
were no differences in response proportions from those in the
shorter distance between two peaks versus those in the larger
distance between two peaks which shows that this alignment
method did not distort results.

Figure 5. The same analysis as in Figure 3 for Experiment 3. Panel E shows the result of aligning the stimuli
at common angles (90 degrees and 270 degrees). When stimuli are moved apart, areas are left with no responses
(e.g., 135 degrees to 225 degrees—what was at 179 moves to 134 and what was at 181 moves to 226), and to
compensate, responses in areas in which there may be responses but disappear, for example, 45–0–315, the red
dashed area, are moved to the 135–225 range. See the online article for the color version of this figure.
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Responses were divided into four areas (cf., Figure 2): The A
area was 83–97 degrees with the center of the strongest location
at 90 degrees, the B area was from 69 – 82 and from 98 –111
degrees, the C area was from 249 –291 degrees (with the center
of the weaker location at 270 degrees), and the T area was all
the rest.

Figure 5B shows response probabilities and the 0.1, 0.5, and 0.9
quantile RTs for the two levels of difficulty and the four categories
of responses (A, B, C, and T) for each subject. For the quantiles,
only conditions and areas with more than 10 observations per
subject are plotted. The number of points for response probabilities
was 128 and the number for quantiles was 123.

There is a good match between predictions and data. The SD
bars in the lower right of the panels and the SD bar around the
diagonal line were computed as for the other experiments. For the
response probabilities, there were few large nonsystematic outli-
ers. For the quantiles, there were fewer observations than for the
earlier experiments, so variability was larger and there were devi-
ations in the 0.1 quantile RTs between theory and data as large as
100 ms. But the large variability in the data made these large
deviations less than 2 SD’s outside the predictions. There seems to
be less deviation between theory and data in the median RTs (0.5
quantiles), but the x-axis and y-axis scales are twice that for the 0.1
quantiles and the deviations are as large numerically. As before,
the deviations in the 0.9 quantiles (tails of the distributions) are
large also.

Figure 5C shows the proportions of responses combined over
subjects plotted as a function of angle. To construct these plots
from the data, the data are aligned as described above with the
strongest stimulus at 90 degrees and the weaker one at 270 degrees
then all responses are combined over subjects and plotted. Predic-
tions are generated from the mean parameter values from Table 1
and then plotted in the same way as for the data. The comparisons
between data and the model predictions are good especially
keeping in mind that the details of the shapes of the functions
are not fitted, rather only the A, B, C, and T groups of trials as
in Figure 2.

Figure 5D shows mean RTs as a function of angle. There was
little difference in mean RTs across the angles, but there was a
large effect of difficulty with the mean RT 549 ms for the easier
condition and 665 ms for the more difficult one.

Experiment 4

The display was a half annulus of black and white pixels (Figure
6A) and subjects were to move their index finger to the brightest
or darkest area. Like Experiment 3, there were two locations with
more white than black pixels, one with a higher proportion of
white than the other, and two locations with more black than white
pixels, one with a higher proportion of black than the other. As for
Experiment 3, bright responses to bright stimuli were symmetric
with dark responses to dark stimuli and when responding to bright
stimuli, the dark patches were not avoided and vice versa (and so
patches of the opposite polarity could be ignored). This led to two
conditions with two levels of difficulty (brightness levels) with
two patches in each of them. Unlike Experiment 3, the displays
were static.

Method

The half annulus stimuli were constructed in the same way as
for the annulus stimuli in Experiment 3. To construct the stimuli,
a half annulus of 50% randomly placed black and white pixels was
constructed with a center radius of 100 pixels (5 degrees of visual
angle) and width of 72 pixels. The patches were 2D Gaussians with
SD of 12 pixels. The patches were constrained to be at least 36
pixels apart (about 1.8 degrees of visual angle). There were two
levels of difficulty with 0.75 and 0.65 proportions of white (or
black) pixels at the strongest peak of the Gaussian and with 0.65
and 0.60 proportions at the weaker peak (the shorthand strong and
weak stimuli within the easy and difficult conditions is used
below). In the task, subjects placed a finger in a start box 190
pixels (9.5 degrees of visual angle) below the center of the half
annulus (Figure 6A), the stimulus appeared and then the task was
to move the finger to the brightest patch (or the darkest patch in
different blocks of trials).

The proportions of pixels changed were much larger and the
SDs in the Gaussians were twice as large as those for Experiment
3. This is because Experiment 3 used dynamic stimuli which
tended to average out variability leading to more visible differ-
ences at lower values of the proportions (e.g., Ratcliff & Smith,
2010).

The apparatus was the same as in Experiment 2 and there were
16 undergraduate subjects. Subjects touched their finger in a
square corresponding to the fixation square in Experiment 3 (as in
Experiment 2) which was located at the center of the screen. After
the touch there was a 250-ms period where the square remained on,
then it was erased and a “�” sign came on for 500 ms in the center
of the half annulus, then it went off and 250 ms later the stimulus
in the response annulus was presented. The annulus remained on
until a finger lift was detected. After the response, feedback was
presented for 250 ms with “2” presented for the stronger peak, “1”
for the weaker peak, and “0” otherwise. The regions around the
peak used to determine the feedback were boxes that had side
lengths of 50 pixels. Response time was measured from stimulus
presentation to the time at which the finger lifted from the resting
square to move to the target.

For modeling and data analysis, the strong and weak stimuli
were aligned on 45 degrees and 135 degrees, respectively, on the
half annulus (which subtended 180 degrees). The stimuli were
randomly placed in the display which leads to the problems dis-
cussed in Experiments 2 and 3: how to align responses and deal
with those that were outside the patches. Also, because the stimuli
were presented on the half annulus, there was the same problem as
for Experiment 2 with alignment outside the 180-degree range. In
the design of the experiment, first, no patch could be more than 90
degrees away from the others, second, patches were 3 SDs away
from the ends of the half annulus (i.e., between 21 and 159 radial
degrees), and third, patches could be no closer than 3 SDs, that is,
21 radial degrees.

To align the stimuli, the stimuli were moved in a way analogous
to Figure 5E and areas analogous to the blue area in Figure 4E and
the red area in Figure 5E were moved to fill in the empty ranges.
As for Experiment 3, there was no systematic difference between
the proportions of responses in the areas that were moved from
those that were rotated (Figure 4E).
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As for Experiments 1 and 2, the touch screen task was easier to
perform than Experiment 3 with eye movements. There were 12
blocks of 72 trials as for Experiment 3 preceded by 45 practice
trials. Trials proceeded more quickly than in Experiment 1 and
many subjects completed all trials. There was a mean of 812
observations per subject out of 819 total.

Results
As in Experiment 3, bright responses to bright stimuli were

reasonably symmetric with dark responses to dark stimuli (for
strong stimuli, the difference is 3% in accuracy and 9 ms in mean
RT and for weak stimuli the difference is 4% in accuracy and 5 ms
in mean RT) and so they were grouped into strong versus weak.
The angles used to specify the areas used to group data to produce
quantile RTs as in Figure 2 are: A 36–54 degrees, B 18–35 and
55–72 degrees, C (the area for the second peak) 126–172 degrees,
and T the rest. Also, as in Experiment 3, when the task was to
respond to bright areas, responses at dark areas were no lower than
the background (and vice versa).

Figure 6B shows plots of the model fit to the response
proportions and 0.1, 0.5, and 0.9 quantile RTs for each indi-
vidual subject for each condition of the experiment (there are
168 points in the response proportion plot and 154 in the
quantile plots, i.e., those with greater than 10 observations in
the condition.

Figures 6C and 6D show plots of the data and model for
response proportions and mean RTs. As for the other experi-
ments, these show good matches between theory and data.
There are responses to the brightest and next brightest peak in
the stimulus and the model matches the data as for Experiment
3. The RT results show little effect of difficulty on performance
with only a 10 ms effect of difficulty (0.75/0.65 vs. 0.65/0.60
stimuli). Also, the weak peak has mean RT only 5 ms shorter
than the strong peak. This lack of any difference as a function
of difficulty is quite different from the results from Experiments
1 and 2 which show quite large differences in RTs for easy and
difficult stimuli. However, the model captures all these accu-
racy and RT effects.

Figure 6. The same analysis as in Figure 3 for Experiment 4. See the online article for the color version of this
figure.
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Experiment 5

In Experiments 1 and 2, there was a direct one to one
correspondence between the dominant color in the central patch
and the target location in the surrounding annulus. In other
words, if red was the dominant color in the patch, then red was
the target location. In Experiments 3 and 4, there was also a one
to one correspondence: the brightest (or darkest) location on the
circular or half-circular annulus was the location to which eyes
or fingers moved. Experiment 5 broke these direct perceptual
correspondences. The central patches were made up of arrows
(Figure 7A) with a proportion of them pointing in the same
general direction and the others in random directions. The
surrounding response annulus was also made up of arrows, with

their directions moving around the circle from pointing upward
at the top of the circle to downward at the bottom. Subjects
were to move their eyes from the central patch to the location
on the circle that matched the dominant direction of the arrows
in the patch. This requires determining the dominant direction
in the patch and only after that has been accomplished can the
target location on the surround be determined. There were three
different conditions with different proportions of arrows point-
ing in the target direction.

Method

At the beginning of each trial, subjects were asked to fixate on
a white 20 	 20 pixel square at the center of the screen. After 500

Figure 7. The same analysis as in Figure 3 for Experiment 5. See the online article for the color version of this
figure.
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ms of fixation, the central patch and the circular annulus surround-
ing it were displayed; these remained on the screen until a sub-
ject’s eyes moved 40 pixels (2 degrees) away from the fixation
point, at which point the screen cleared.

Feedback was presented for 300 ms (“1” for a response in the
target location which was a box 40 pixels around the target
location and “0” otherwise). Feedback for fast or slow responses or
slow movement time was the same as for Experiment 1.

The central patch was a disk with radius 50 pixels (2.5 degrees
of visual angle) and contained 32 nonoverlapping arrows. The
circular response annulus was 4 degrees of visual angle (80 pixels)
from the fixation point with a width of 0.65 degrees. In both the
central patch and the surrounding annulus, the arrows were 13
pixels (0.65 degrees) long and 7 pixels (0.35 degrees) wide. The
arrows had heads and tails to minimize the possibility of using the
density of the head relative to the tail if only heads were used.
There were 36 arrows in the response annulus, one for each 10
degrees of rotation, as in Figure 7A.

In the stimulus patch, some proportion of the arrows pointed
within plus or minus 10 degrees of the target direction. Difficulty
was manipulated by the proportion that pointed in the same direc-
tion: the proportions were 0.6, 0.4, and 0.2.

There were 16 subjects. The experiment was composed of 12
blocks of 72 trials each, with 24 trials in each block for each of the
three conditions, ordered randomly. The first 90 trials were used as
practice. As for the other eye tracking experiments, few subjects
finished the 50-min session; the average number of observations
per subject was 520 out of 774.

Results

The target direction on the response annulus was rotated to 180
degrees. The A area was 161–200 degrees, B was 141–160 and
201–220 degrees, and T was the rest.

There were 144 data points for response probabilities and 127
for the RT quantiles (data points for which there were more than
10 observations). There were no systematic deviations of predic-
tions from data and only two serious deviations for the 0.5 quantile
and three for the 0.9 quantile (Figure 7B). The fit of the model was
also good for the histograms of response probabilities and mean
RTs in Figures 7C and 7D. For response probabilities, the only
miss is a slightly lower peak for the data than the predictions for
the condition with 0.2 of the central arrows pointing in the same
direction and a slightly higher level of responses away from the
peak. As before, if different SDs in the stimulus distribution were
used for the different difficulty conditions, the model would pro-
duce a much smaller miss. The RT functions are flat across angles
and increase with difficulty, from 469 ms to 519 ms to 543 ms. As
before, the predicted RTs are less variable in regions off the center
of the functions (blue brackets) than the data because they had
fewer observations.

Experiment 6

This experiment was designed to connect to a frequently used
task in research on motion discrimination (Ball & Sekuler, 1982;
Britten, Shadlen, Newsome, & Movshon, 1992; Newsome & Paré,
1988; Roitman & Shadlen, 2002; Salzman, Murasugi, Britten, &
Newsome, 1992). In the standard task, the stimuli are displays of

moving dots and there is a subset of them in which the dots are
moving in the same direction. The subjects’ task is to decide in
which direction the dots of the subset are moving and the response
categories are discrete (usually two, three, or four choices). Sub-
jects are required to respond on a continuous scale.

On each trial, there were four subsets of dots, each of three of
the subsets with the dots in it moving together (coherently) in the
same direction with the three subsets moving at 120 degrees to
each other. The other subset had the dots redrawn between frames
in random positions (cf. Niwa & Ditterich, 2008). Stimuli were
presented in a circle 100 pixels in diameter and were composed of
white dots on a black background. Responses were made to a circle
140 pixels in diameter concentric with the stimulus circle. In the
three subsets with coherent motion, a direction for a dominant
direction was chosen, and the two other directions for the other two
subsets of dots were at 120 radial degrees from the others (Figure
8A). Fixed orientations were used because if motion directions
become close together, as they might if random directions were
chosen, they become difficult to discriminate and fuse together.
Difficulty was varied with the proportions of dots that moved
coherently in each of the three subsets: in one condition, the
proportions were 0.5, 0.1, and 0.1, in another they were 0.4, 0.2,
and 0.2, and in the third, they were 0.4, 0.2, and 0.1 (e.g., Figure
8A). Subjects were to move their fingers from a start box below the
response circle to the location on the surrounding circle that
matched the direction in which the largest proportion of dots was
moving.

Method

To begin each trial, a subject placed the first finger of her or his
dominant hand on a square at the bottom center of the screen.
Subjects were to keep their finger on the square for 250 ms, after
which the response circle and a plus sign in the center of the screen
were displayed for 500 ms. Then the central patch was added to the
display and it remained on the screen for 350 ms. RTs were
measured from the onset of the patch to the time at which the
finger was lifted from the resting square.

There were 36 directions in which dots could move, separated
from each other by 10 degrees. The direction of the largest pro-
portion of coherently moving dots (0.4, 0.5) was chosen randomly
from the 36 directions and the directions of the other two, smaller,
proportions (0.1, 0.2) were each located at 120 degrees from the
direction of the largest proportion.

Each block of 108 stimuli had each of these 36 directions (for
the strong coherences) presented three times. The coherences
were: 0.5/0.1/0.1 for one third of the trials, 0.4/0.2/0.1 for one third
of the trials, and 0.4/0.2/0.2 for one third of the trials.

The size of each dot was 2 	 2 pixels. The central patch was a
circle 100 pixels in diameter. When a dot in a coherent set moved
off the circle, it was placed back on the circle 180 degrees from the
position at which it had moved off. The dot motions were pre-
sented in different frames of the display and the method followed
that in Niwa and Ditterich (2008; also Ratcliff & Starns, 2013,
Experiment 2). The first five dots were placed at random positions
in the patch in the first frame and these were assigned to one of
four groups probabilistically. For the 0.5/0.1/0.1 condition, for
example, a dot was assigned to the 0.5 condition (“1”) with
probability 0.5, the 0.1 conditions (“2” and “3”) with probability
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0.1 each, and to the random condition (“4”) with probability 0.3.
On Frame 2, the “1” dots moved coherently, the “4” dots moved
randomly, and the others remained in place. On Frame 3, the “2”
dots moved coherently and on Frame 4, the “3” dots moved
coherently. On Frame 5, the dots were randomly reassigned to
conditions (so a dot could remain in Condition 1 or it could be
reassigned to one of the other conditions) and dots in the newly
assigned conditions “1” and “4” moved, and so on.

The location of a correct response was determined by the
intersection of a line pointing in the direction of the strongest
coherence from the center to the surround. It was a box 50 pixels
square at that location. If the response was to the correct location,
“correct” appeared 35 pixels above the response location (so the
hand did not obscure it) for 250 ms and if the response was outside
the 50-pixel square, “ERROR” appeared 35 pixels above the
response location for 250 ms. RTs were measured from the onset
of the first frame to the point at which the finger left the resting

point. For RTs longer than 1,250 ms, a “TOO SLOW” message
was displayed for 500 ms. For RTs shorter than 150 ms, a “TOO
FAST” message was displayed for 500 ms.

The experiment was composed of 10 blocks of 108 trials with 36
trials for each of the three conditions in random order. Many of the
subjects finished the whole experiment and the mean number of
trials per subject was 943.

Results

Because the movement directions were at 120 degrees from
each other, it was easy to rotate the data so that the strong stimulus
direction was at 180 degrees and the two weaker directions were at
60 and 300 degrees. For the 0.4/0.2/0.1 condition, half the time the
conditions were in this order and half the time they were in the
0.4/0.1/0.2 order (clockwise). In these cases, one of them was
reflected to align the 0.2 condition on 60 degrees. The A, B, C, D,

Figure 8. The same analysis as in Figure 3 for Experiment 6. See the online article for the color version of this
figure.
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and T areas (A and B for the dominant direction, and C and D for
the other two directions) were 161–200 degrees, 141–160 and
201–220 degrees, 21–100 degrees, 261–340 degrees, respectively,
and T responses were the rest.

The model fit reasonably well with only a few mismatches for
the 0.9 quantile. There were 270 points for response probabilities
and there were 258 points with greater than 10 observations for the
quantiles.

Figures 8C and 8D show plots of response proportions and mean
RT as a function of angle that are constructed in the same way as
earlier experiments. The response proportion plots match quite
well with one exception: the secondary peaks for the model have
more pronounced peaks than the data. One possible interpretation
is that low coherent motion in the competing directions has less
precision and provides much poorer directional information lead-
ing to a smearing of the responses over position. As for the earlier
experiments, this could be addressed by increasing the SD in the
drift rate distributions for those lower coherence stimuli.

As for the earlier experiments, mean RTs across angles show
little difference. Unlike the earlier experiments, averaging over all
angles, mean RTs differ by a small amount, namely 18 ms,
between the 0.5/0.1/0.1 and the 0.4/0.2/0.2 conditions (the values
for the 0.5/0.1/0.1, 0.4/0.2/0.1, and 0.4/0.2/0.2 conditions were 506
ms, 518 ms, and 525 ms, respectively). This difference is smaller
than the difference as a function of difficulty for Experiment 3 and
is much smaller than the difference observed in Experiment 1 as a
function of difficulty. The small difference is likely because the
difference in the dominant motion coherence is relatively small for
this task (0.5 vs. 0.4).

Experiment 7

With this experiment, the computer-mouse response modality
was examined. The experiment was the same as Experiment 1 in
that central patches of colored pixels were surrounded by a circular
response annulus and subjects were to indicate the color on the
response annulus that matched the dominant color of the central
patch. Subjects indicated the color by moving a mouse from a
central resting square in which the stimulus appeared to a location
on a surrounding response annulus that corresponded to the dom-
inant color in the stimulus square (Figure 9A). There were the
same three conditions as in Experiment 1; the proportion of pixels
of the dominant color was 0.35, 0.2, or 0.1.

The main finding from this experiment was that the results
replicated those of Experiment 1. From a practical perspective, eye
trackers are expensive and touch screens are specialized (though
they are common in tablets and cell phones). Almost every PC or
laptop system has a mouse or is capable of adding a mouse and has
software to use a mouse. This allows more general opportunities to
conduct experiments with continuous stimuli and response scales
with standard PC based experimental systems. However, just prior
to submitting a revision of this article, we have implemented our
real-time system on cheap Chromebook laptop convertibles ($250
each) and can collect data from finger movements on these. Be-
cause movement times are much shorter than for mouse-based
experiments (see the analysis later in the article) and training for
the touch-screen tasks is easier for populations such as older
adults, we now lean to using touch-screen experiments on Chrome-
books.

Method

The experiment was composed of 10 blocks of 72 trials (24 for
each condition in random order) preceded by two practice blocks.
There were 16 subjects and the mean number of observations per
subject was 719.

At the beginning of each trial, a fixation box was presented at
the center of the display and subjects had to move the mouse into
the box and click it. Immediately after the click, the box disap-
peared and was replaced by the stimulus patch and the response
annulus. After 250 ms, the patch turned off but the response
annulus remained on the screen until the subject made a response
by clicking the mouse when he or she had moved it to the intended
location. The central patch was displayed for only 250 ms instead
of remaining on the screen until a movement was initiated as in
Experiment 1. This was because in a pilot study, subjects were
found to start to move the mouse before they had made a decision
which lead to curved mouse tracks instead of tracks that went
directly to the response location. RT was measured from stimulus
presentation time to the time the mouse had moved 10 pixels away
from the position clicked on to initiate the trial.

The position of the mouse was explicitly displayed on the screen
as it was moved; it was a 3 	 3-pixel black cross (with white
pixels in the corners of the 3 	 3 array) with its location refreshed
every 10 ms. The track began when the mouse position moved
outside a 10-pixel radius from the click position and stopped when
the mouse was clicked to indicate the response. After the response
click, the screen cleared to 50% gray and feedback appeared as in
Experiment 1, with a “1” for a correct response and “0” for an
incorrect response presented for 300 ms. If initiation of the mouse
motion was too fast, beginning within 300 ms of stimulus onset or
with duration less than 250 ms, a TOO FAST message appeared at
the center of the screen for 1,000 ms, shown before the “1/0”
feedback. If the mouse motion was too slow, started over 1,250 ms
after stimulus presentation or with duration greater than 1,250 ms,
a TOO SLOW message appeared at the center of the screen for 500
ms before the “1/0” feedback. After feedback, the screen cleared to
50% gray for 20 ms.

Results

The locations of the target colors were aligned in the same way as
for Experiment 1, with the central location at 180 degrees. Responses
were also grouped in the same way, into A, B, and T areas. The match
between the data and predictions for response probabilities and RT
quantiles (Figure 9B) was good with few serious outliers except for
0.9 quantile RTs that were longer than those predicted. There were
144 points for the response proportions (16 subjects by the A, B, and
T response areas, and three levels of difficulty) and 114 observations
for the quantiles (conditions with more than 10 observations). A
careful examination of response proportions shows a number with
experimental values close to zero, but predicted values from the
model were in the 0.02 to 0.1 range. As noted earlier, this might be
accommodated with stimulus location dependent noise and this is
examined in the discussion.

The distributions of responses and mean RTs over position showed
similar results as for Experiments 1 and 2. The one noticeable differ-
ence between predictions and data was that the histogram for response
probabilities for the most difficult condition (Figure 9C) had a wider
distribution for the data than the predictions which suggests that the
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SD in the drift-rate distribution increases with difficulty as discussed
earlier. Mean RTs for the three difficulty levels were 532 ms, 554 ms,
and 588 ms.

Experiment 8

A key manipulation in experimental and theoretical work in
perceptual and cognitive decision-making is a manipulation of
instructions about speed and accuracy. On some trials, subjects are
asked to make their responses as quickly as possible and on other
trials, as accurately as possible. This manipulation gives consid-
erable leverage for testing the model because it is assumed in the
model that the criteria subjects set to achieve their desired speed
and accuracy are independent of the information upon which their
decisions are based. In other words, the only parameter that should
change as a function of instructions is the decision boundary

setting (though in two-choice tasks, there is some evidence that
nondecision time also changes). The manipulation is also of prac-
tical importance because in real-world decision making, it is some-
times necessary to respond quickly and sometimes to be sure to
make the correct decision.

This experiment was the same as Experiment 7 except for the
speed-accuracy manipulation and a reduction in the number of
levels of difficulty from three to two (to give more observations
per condition).

Method

The experiment was composed of 12 blocks of 72 trials each with
the first 45 trials of the first block used as practice. There were 16
subjects. Instructions for speed versus accuracy alternated across the
blocks; for half the subjects, the first block was an accuracy block and

Figure 9. The same analysis as in Figure 3 for Experiment 7. See the online article for the color version of this
figure.
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for the other half, it was a speed block. There was a mean of 653
observations per subject. In the easier condition, 0.25 of the pixels in
the central patch were of the dominant color and in the more difficult
condition, 0.1 of them were.

Results

To apply the model to the data, the only parameter allowed to
change between speed and accuracy instructions was the decision
boundary.

There were two levels of difficulty, speed and accuracy
instructions, and three response areas (A, B, and T, Figure 2),
so there were 192 data points for the 16 subjects, which is the
number plotted for response proportions in Figure 10B. Quan-
tile RTs were plotted for the 164 conditions with greater than 10
observations. There are few data points that lay outside the
maximum 2SD error bars.

Accuracy was little different with speed instructions than
accuracy instructions, about 1%. Specifically, the proportions

Figure 10. The same analysis as in Figure 3 for Experiment 8. See the online article for the color version of
this figure.
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of correct responses (the A and B areas combined) with speed
instructions were 0.98 and 0.86 for the 0.25 and 0.1 levels of
difficulty, respectively, and 0.99 and 0.87 with accuracy in-
structions. Mean RTs differed by about 70 ms: With speed
instructions, the means were 523 ms and 557 ms for the two
levels of difficulty, respectively, and with accuracy instruc-
tions, they were 557 ms and 639 ms, respectively (for the
model, the four values were 525 ms, 565 ms, 578 ms, and 637
ms, respectively). The smaller difference as a function of dif-
ficulty with speed than accuracy instructions is captured by the
model. The predictions of the model for the distribution of
responses across angle and mean RT across angle matched this
well (Figures 10C and 10D).

Model parameters are shown in Tables 1 and 2. The boundary
parameters (13.6 and 15.3) were significantly different across the
16 subjects, t(15) � 5.1, p � .05.

In this task, it seems that subjects are reluctant to adopt more lax
speed-accuracy criteria settings that would produce a significant
increase in random errors. They are capable of slowing down or
speeding up a little, but this does not materially change the location
at which they make their response or the spread in responses over
angles. The instructions in this experiment were similar to those
used in standard two-choice tasks. But they were not strong
enough to make accuracy fall as it does in standard tasks (Ratcliff,
Thapar, & McKoon, 2001, 2003, 2004; Thapar, Ratcliff, & McK-
oon, 2003). If more extreme speed-stress instructions were used
(see Starns, Ratcliff, & McKoon, 2012), subjects might start to
move the mouse (or eyes in eye movement tasks or their finger in
the touch screen tasks) before the decision has been made or they
might guess and simply move to a random location. If more
extreme accuracy-stress instructions were given, subjects might
make multiple attempts at processing the stimulus. Probably the
main difference between the continuous response scale and two-
choice tasks is that errors in two choice tasks involve one alter-
native that is well defined. But in the continuous task, there is only
one small range of correct responses but a large number of direc-
tions for errors. Subjects are unlikely to want to produce a high
proportion of completely random responses that could be a large
distance from the correct response location when waiting a few
tens of ms longer will produce higher accuracy. These consider-
ations suggest that manipulating speed-accuracy stress in these
kinds of tasks might not be as straightforward as for two-choice
tasks.

Color Biases

The subjects in our experiments showed a bias to respond with
primary and additive colors and a bias against colors between
them. To show this, data from Experiments 1 and 7 are used in
which the central patches and response annuli were colored pixels
and the response annulus was a full circle. Responses in Experi-
ment 1 were made by eye movements and in Experiment 7, by
mouse movements. This bias has rarely been reported in other
tasks using color response scales because researchers have col-
lapsed over colors when analyzing data. However, it is likely
present in all experiments in which responses are made on a
continuous color circle.

Biases like these have been observed in long-term memory for
objects (Persaud & Hemmer, 2016) and in the visual working

memory task (Hardman et al., 2017). In Persaud and Hemmer’s
(2016) experiment, colored shapes were presented for study and at
test, a colored shape was presented and the subject had to decide
whether the color was the same or different as that in the studied
shape. There was a bias to respond “same” when the color was a
primary or additive color. They also performed experiments that
involved naming colors and experiments that involved, given a
color name, locating the color on a color wheel. Both these tasks
showed color biases. Hardman et al. (2017) also found biases
toward primary and additive colors. They used the standard visual
working memory task (see discussion of this task later). Subjects
were given several colored squares to remember and then they
were probed with one square colored gray and were to indicate the
color that square had appeared in on a color wheel. They modeled
the accuracy data with a model with both continuous and discrete
components with a multinomial model guiding which components
were used with what probability.

In Experiments 1 and 7, the biases in the data were as large as
3:1. Figure 11A shows responses from all the subjects and all of
the conditions as a function of the stimulus and the response
(positions on the color circle). There are some vertical gaps (which
are partially hidden because of the size of the circles that plot the
data) because our colors were from the 0–253 palette and we
plotted in 1-degree increments. Figure 11B shows the distribution
of stimuli averaged over subjects and conditions. Ideally, this
distribution would have been flat, that is, the probability of a target
at each angle would have been the same, but the sampling method
used to construct stimuli did not produce this. Figure 11C shows
the distribution of responses averaged over subjects and conditions
and this shows the color biases. There are more responses at red,
purple, blue, teal, green, and yellow (the vertical dashed lines on
the figure) than the colors between them. These biases were hidden
when the response angles were aligned at 180 degrees and aver-
aged over color for the analyses presented earlier in the article. The
biases in responses were not due to differences in the stimulus
probabilities because the peaks of the response frequencies do not
correspond to the peaks of the stimulus frequencies (Figures 11B
and 11C).

In order to examine groups of responses, the data were divided
into two groups: In one the stimuli are preferred colors and in the
other the stimuli are nonpreferred. The A, B, C, and D panels of
Figure 12 illustrate how biases with these two groups of data can
be modeled. For this illustration, the distributions of evidence from
stimuli are assumed to be back-to-back exponentials rather than
the normal distributions in the model, the boundary setting is
sinusoidal, there is no noise, and the stimulus distribution is
multiplied by the boundary to give a distribution of responses. This
is a simple way of illustrating the main features of the data. Figure
12A shows the distribution for an angle at a primary color and 12B
shows it for angles that are not at primary or additive colors (the
dashed lines align on the peak of the evidence distribution). Mul-
tiplying the exponentials by the sinusoid gives the distributions in
12C and 12D. When a peak of the exponentials aligns with a peak
of the sinusoid, the result is a flattened response at the peak and a
wider distribution (Figure 12C). This is because (in the SCDM),
when the peak of the drift rate distribution is at the peak, there is
a greater tendency for processes to hit the sinusoidal boundaries on
the left and right of the peak which decreases probabilities at the
peak and increases them to the sides of the peak. Similarly, when
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a trough of the exponentials aligns with the peak of the sinusoid
(Figure 12B), the result is a more peaked function (Figure 12D)
because processes close to the peak of the stimulus distribution
tend to hit at the trough of the decision boundary. This also
produces high side lobes that correspond to the next trough of the
boundary sinusoid (Figure 12D).

The full model, with normal distributions of evidence and con-
tinuous noise, is illustrated in Figure 12E. The blue line shows the
sinusoidal line as the decision criterion. The same results would be

achieved if the starting points were sinusoidal (the green sinusoid)
and the decision criterion was a straight line because the model is
a linear one and thus the two are mathematically equivalent.

To generate predictions for the color biases, the only change in
the model is that the decision criterion function (or the starting
point function) is sinusoidal. Because the primary and additive
colors are 60 degrees apart on the color wheel, the period of the
sinusoidal boundary or starting point is fixed. Thus, the only
parameter added to the model is the amplitude (height) of the

Figure 11. (A) Plots of response angle versus stimulus angle for all responses from all subjects for Experiments
1 and 7. The horizontal blobs show a bias to respond within certain ranges. (B) Plot of the number of stimuli
as a function of angle. (C) A plot of the number of responses as a function of angle. The vertical dashed lines
show the center of the primary and additive colors (red, yellow, green, teal, blue, and purple). The color scale
at the bottom and right side shows the colors that corresponds to the angle. See the online article for the color
version of this figure.
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sinusoid. To model the data for Experiment 1 and 7, the mean
values of the best-fitting parameters across subjects were used
along with the sinusoidal starting point function (the green line in
Figure 12E). The amplitude of the sinusoidal was determined by
trial and error using simulations of the model. For color bias
analyses, for Experiment 1, the decision criterion was 15.2 and the
peak-to-peak height of the starting point sinusoid was 3.2 and for
Experiment 7, the decision boundary was at 15.4 with the peak-
to-peak height of the sinusoid 2.0. Two sets of predictions were
generated, one with sinusoid aligned so that the peak was at the
peak position of the drift rate distribution (e.g., 180 degrees) and
the other with the peak at a trough of the drift rate distribution.

Figure 13 shows the observed and predicted response probabil-
ities as a function of angle for the two experiments for the pre-

ferred angles (the primary and additive ones) and the nonpreferred
ones. The results for Experiment 1 are on the left and those for
Experiment 7 are on the right. When the trough of the sinusoid is
in the preferred direction (i.e., the trough aligns with a primary or
additive color), both theory and data show peaked functions with
side lobes (especially in the most difficult, 10%, stimulus condi-
tion). When the peak of the sinusoid is in the preferred direction,
both theory and data show wider functions with flatter peaks.

Median RTs are also shown in the figures and the correspon-
dence between them is remarkably good with a maximum differ-
ence between theory and data of 14 ms. Although the shape of the
frequency versus angle functions differs quite considerably for
preferred versus nonpreferred directions, median RTs differ little
between the two; averaging over all levels of difficulty for both
experiments, the mean RT difference in preferred and nonpreferred
directions for data is 8 ms and for the Model 5 ms.

As before, the data in Figure 13 were not fit directly. Choice
proportions and RT quantiles for Areas A, B, and T (see Figure 2)
were fit (earlier) for Experiments 1 and 7 and then one additional
parameter was added (the amplitude of the sinusoidal starting
point) and this produced the predictions for the distributions of
responses over angle and mean RT in Figure 13.

The results presented in Figure 13 provide another explanation
of why the distributions of responses over angle are wider in the
data for difficult conditions than for easy conditions for the color
experiments. For easy conditions, the side lobes for the preferred
condition are quite small, but for the difficult condition, they are
wider and higher. Combining the preferred and nonpreferred dis-
tributions leads to a wider distribution for the difficult conditions
(bottom two rows) than for the easy conditions (top two rows).
However, it might be that this is not enough and there is additional
variability (less precision) in processing difficult stimuli which
leads to wider distributions of drift rates (which would be needed
in the noncolor experiments).

Hardman et al. (2017) developed a four-state multinomial model
to account for similar effects in their visual working memory task.
They assumed that responses are a probability mixture of stimulus-
driven responses and guesses. First, processing a stimulus either
finds an item in working memory or it does not. If the item is in
working memory, then either a response is made based on contin-
uous information or it is based on categorical information. If the
item is not in working memory, either a categorical guess is made
or a random guess. There are different probabilities of these states
and a common noise term. For different set sizes, some of these
parameters are the same which produces some parameter invari-
ance over conditions.

A major problem with the model is that it makes no predictions
about RTs and their distributions. In a multistate model like that of
Hardman et al. (2017), it is extremely unlikely that different
categories of responses have exactly the same RT distributions.
Guesses are not the same thing as stimulus-driven responses and it
is unlikely that the time course of making a categorical or random
guess has exactly the same time course as a response to an item
that is in working memory. One would expect that the processing
time for a strong item would be shorter than a weak item and
detecting absence from working memory would be a slower pro-
cess. The advantage of the SCDM is that only one process is
required to account for what is argued by Hardman et al. (2017) to
be a multistate or multicomponent process (see also Bays, Wu, &

Figure 12. (A) Shows plot of a sinusoidal decision boundary centered on
a peak in sinusoid and an illustrative stimulus distribution (this is not based
on the model). (B) An illustrative plot of the responses produced by
multiplying the stimulus representation by the decision bound which shows
a flat wide peak. (C) The same plot for the decision boundary centered on
a trough. (D) Resulting response distribution is highly peaked with side
lobes. (E) Same accumulation of information as in Figure 1C, but with a
blue sinusoidal decision boundary which is equivalent to a constant bound-
ary but with a sinusoidal starting point (the green starting point and red
constant boundary). See the online article for the color version of this
figure.
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Husain, 2011; van den Berg, Shin, Chou, George, & Ma, 2012,
2014; Zhang & Luck, 2008).

To further examine color biases, a number of issues could be
explored that involve examination of perceptual properties of
stimuli. First, in Figure 10C, yellow has a smaller number of
responses than green. These differences might be able to be mod-
eled with modulation of the height of the sinusoidal starting point

distribution (e.g., the peak for yellow would be lower than the peak
for green). However, it may be that the yellow stimuli are percep-
tually more difficult, that is, harder to identify, than red or blue in
the experimental apparatus used here. This would mean that per-
ceptual properties of our stimuli would have to be examined and
this would lead into issues of perceptual properties of color vision
which is beyond the scope of the topic of this article. However, in

Figure 13. Plots of the frequency of responses for responses centered on the primary and additive colors
(“preferred” plots) and those between the primary and additive colors (“nonpreferred” plots) for all responses
from all subjects for Experiments 1 and 7 for data and model predictions. Mean RTs are shown as insets. The
data are shown for the two more difficult conditions because the easy condition does not show much difference
between the two sets of plots. Results show the same kind of peaked versus flat response functions as shown in
Figures 12A and B.
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applications that use responses on color scales such as the visual
working memory domain, such issues need to be examined. Sec-
ond, if the differences across colors resulted from differences in
perceptual properties of the stimuli such as luminance, then stimuli
with equiluminant stimuli might be used instead of the colors used
in the experiments presented here. For example, color wheels of
CIELUV-space stimuli could be used. These have the added ad-
vantage of making the colors more difficult to name which would
reduce possible naming biases. Third, an alternative hypothesis is
that instead of decision biases, the results in Figure 10 could be
explained by differences in drift rates so that for a primary or
additive color, drift rate might be higher than for one in between.
However, this assumption would not produce the difference in the
shapes of the response functions in Figure 12 (peaked for on a
primary or additive color and flattened for between these colors as
in Figure 11) and so the bias explanation is the one most consistent
with the data.

Model-Based Analyses and Experimental Designs

There are four points to discuss about the data and modeling for
the 1D tasks for Experiments 1–8. First, only few experiments
similar to those presented here have been conducted in related
domains and these few have not collected RT data and have not
considered modeling the time course of the decision process.

Second, significant effort was put into designing tasks in this
article to be “natural,” easy to instruct, and easy for a subject to
perform. One focus has been on minimizing the initiation of
responding before the decision has been made. In early versions of
several of the tasks, many of the movements away from the resting
position took hundreds of milliseconds and where the tracks could
be measured, they were often to intermediate points that were not
on a line from the fixation to the eventual response (i.e., curved
tracks). In some mouse-based two-choice tasks, such slow move-
ment is a design target (see discussion in Ratcliff et al., 2016), but
data from such tasks are not appropriate for the SCDM. (In fact,
examining movement times in eye-movement tasks is a separate
research domain, cf., Kowler & Pavel, 2013.)

Third, the fitting methods used here have not been shown to be
optimal in any sense and more research would be needed to
produce better fitting methods. However, the important point is
that the fitting method produces fits that generate the predictions
shown in the experimental sections. Better fitting methods might
produce better fits and predictions than those shown here, but the
methods used here show that the model fits data at least as well as
is shown above. If alternative models are developed (e.g., Smith,
2016) that make qualitatively and quantitatively similar predic-
tions, then fitting methods and the properties of fitting methods
will become important in comparisons among models. Parameter
recovery studies are presented in the Appendix.

Fourth, the parameter space of the model has not been explored
in much detail. For example, adding across-trial variability param-
eters improved the fit, but not in any dramatic qualitative way (see
the Appendix for how the different parameters affect model pre-
dictions). As more data from more paradigms are collected and the
SCDM and related models are fit to data, a more comprehensive
view of the models and the detailed assumptions in each of the
models will begin to appear.

Model Parameters, Scaling, and Numerical
Goodness-of-Fit

Tables 1 and 2 show the best-fitting model parameters, averaged
across subjects, for Experiments 1–8. Tables 3 and 4 show SDs
across subjects in the model parameters. The values of the model
parameters are defined in terms of 10-ms time steps and 1-degree
spatial steps. To change this scaling of time steps or spatial
distance, several model parameters need to be adjusted. These
changes can be understood by examining the units of the various
model parameters. For example, drift rate is evidence per unit time
so changes in time steps will require changes in drift rate. The
diffusion coefficient (�2) has units of evidence per unit time and so
� has units of (time)�1/2. Thus, the value of � will be changed if
the time step is changed. The kernel parameter has units of spatial
distance and so changes in the number of spatial divisions will
change this parameter.

For changing the spatial distance by a factor of x, for example,
moving from 72 five-degree divisions in angle to 360 one-degree
divisions, x � 5, these parameters are adjusted:

1. SD in noise added on each time step in the accumulation
process (the parameters are scaled to this value) is di-
vided by x.

2. The boundary value and the range in the boundary (a and
sa) are divided by x.

3. The SD in the drift rate distribution (sw) and the SD in
Gaussian process noise (the kernel parameter, r) are both
multiplied by x.

4. Drift rate parameter and SD in that parameter (d and sd)
stay the same, BUT, because they multiply the height of
the drift rate distribution and because the width is in-
creased (the SD, sw, is increased and multiplied by x), the
height of normal drift rate function is x times lower (as is
the range of heights), which means that d and sd do not
change.

For changing the time step by a factor of t, for example, moving
from 10 ms steps to 5 ms steps (t � 1/2), these parameters are
adjusted:

1. Drift rate peak and range in the peak (d and sd) are
divided by t.

2. SD in noise added on each time step (�) in the accumu-
lation process is divided by the square root of t.

3. Boundary parameters, SD in the drift rate distribution and
the SD in Gaussian process noise (the kernel parameter)
all remain the same.

Nondecision times in some of the experiments are close to the
minimum that was set in the fitting program, namely 175 ms. It is
implausible for nondecision time to be less than this value because
it is close to the time taken for neural signals to be transmitted
from the eyes to frontal cortex plus the time for signals to be
transmitted from frontal cortex to the motor system (the sum is
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about 150 ms). The values for the moving dots and mouse-based
experiments are larger than 175 ms (see Table 1).

Across the experiments presented in this article, boundary set-
tings are between seven and 15 units (i.e., a 2:1 ratio) and across-
trial range in boundary setting is between two and five times
smaller than the value of the boundary setting. The Gaussian
process parameter is between 5 degrees and 30 degrees and the SD
in the drift-rate distribution is between 17 degrees and 36 degrees.
The peak height of the drift-rate distributions varies between 2:1
and 8:1 for the strongest stimulus versus the weakest stimulus.
These differences in parameter values across tasks are similar to
the size of differences across tasks in related parameters for the
two-choice diffusion model.

Generally, the G-square goodness of fit values are acceptable,
with values about twice the critical value of chi-square. This is
consistent with acceptable fits of the two-choice and confidence
judgment models to data (Ratcliff & Starns, 2013; Ratcliff, Thapar,
Gomez, & McKoon, 2004).

Parameter Recovery and Correlations Among
Model Parameters

In the Appendix, parameter recovery simulations are presented
and these provide parameter values that allow tradeoffs among
parameters to be examined. It is important to understand tradeoffs
among parameters because if there is a difference in one parameter
between two groups (e.g., a group with a disease or clinical
disorder and a control group), it is important to know whether this
is a real difference or whether it is the result of another parameter
covarying with it, with no real difference in processing between
the two groups.

Parameter recovery with 200 observations per condition (about
the same number as in an experiment) produces parameter values
that are relatively unbiased. There are correlations in some of the
model parameters so that if one is higher than the value used to
generate the simulated data, another is lower to compensate. Most
of these correlations are readily interpretable as is discussed in the
Appendix (and in Ratcliff & Tuerlinckx, 2002, for the two-choice
model). The impact of these correlations on interpreting the be-
havior of model parameters is qualified by the relative sizes of the
SDs in parameters relative to the SDs in model parameters across
subjects, that is, individual differences. The SDs across subjects
were two times or more larger than the SDs in model parameters
in the simulations presented in the Appendix. This means that the
dependencies in the model structure that allow parameters to trade
off are not likely to be a problem in interpretation of individual or
group differences, although this issue will have to be examined
using simulation methods in any application of the model to
individual differences.

Are the Across-Trial Variability Parameters Needed
and is Normalization Needed?

In modeling two-choice tasks, incorrect responses are some-
times slower than correct responses and sometimes faster, depend-
ing on the task (see the review in Ratcliff & McKoon, 2008). A
successful way to model this is to let the components of process-
ing, drift rates and starting point, vary from trial to trial. In
contrast, the results from Experiments 1–8 (as well as Experiment

9 described below) show little change in RTs across spatial posi-
tion (angle); that is, correct and incorrect responses have similar
RTs. Thus, it might seem that variability across trials is not needed
by the SCDM. However, as shown in the Appendix, there are
values of parameters that produce either slow or fast error re-
sponses relative to correct responses (area T vs. A in Figure 2) and
the combinations of all the parameters are needed to produce the
observed behavior.

The original motivation for including across-trial variability in
model components is the belief that individuals cannot hold com-
ponents of processing constant across trials. For memory, Ratcliff
(1978) followed signal detection theory in assuming that memory
strength (drift rate) varied from trial to trial. Although it was
known that this assumption produced slow errors, only later was it
found that this allowed the model to produce high-quality quanti-
tative fits to experimental data (Ratcliff & Rouder, 1998; Ratcliff,
Van Zandt, & McKoon, 1999). Recently, direct evidence has been
presented for such variability using a double pass procedure in
which exact copies of stimuli were repeated in widely separated
tests (Ratcliff, Voskuilen, & McKoon, 2018). Furthermore, in
numerosity discrimination tasks, across-trial variability in drift rate
is needed to account for otherwise puzzling patterns of results in
which RTs decrease as difficulty increases and accuracy decreases
(Ratcliff & McKoon, 2018).

Setting the across-trial variability parameters in the SCDM to
zero produced a poorer goodness-of-fit. The model was fit to
the data from Experiments 1, 3, and 5 (chosen because they
used different tasks: color, brightness, and arrows) with across-
trial variability in drift rate and boundary setting set to zero.
Results showed that goodness-of-fit, as measured by G-square
and AIC, was worse than fits with nonzero across-trial variabil-
ity parameters. For Experiments 1, 3, and 5, with across-trial
variability, the G-square values were 79.8, 82.4, 102.0, respec-
tively, and without it, the G-square values were 94.4, 99.0, and
135.8, respectively. These are large and significant differences.
The difference in G-square values has to be at least 6.0 (chi-
square with 2 degrees of freedom) and the difference in AIC
values has to be at least 4.0 for the fit to be improved with the
additional parameters. Thus, across-trial variability in drift rates
and boundary improves the model’s ability to match data.
However, there were no visible qualitative differences between
the models with and without across-trial variability. Thus, this
issue needs to be explored when more data sets become avail-
able from different tasks and when competing models are
considered.

To examine whether normalization of evidence was needed, a
similar analysis was carried out for the data from Experiment 1.
Taking out the normalization of evidence at each time step allowed
evidence to increase or decrease at each location, with the summed
evidence increasing over time. The G-square value was 93.1 as
opposed to 79.8 with normalization in the model. As above, the
difference in G-squares and in AIC were both large and supported
the model with normalization. Later we discuss another scheme for
normalization.

The Shapes of RT Distributions

The SCDM produces RT distributions that have the same
shape across conditions of the experiments, across experiments,
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and the same shape as data from two-choice tasks. Furthermore,
the SCDM and two-choice models produce RT distributions of
the same shape. Figure 14A and 14B show examples of pre-
dicted RT distributions from the model for one condition from
Experiment 1 and one condition from Experiment 4. The his-
togram shape is what is usually seen in the majority of simple
perceptual and memory tasks. Figure 14C shows mean quantiles
averaged over subjects from RT distributions from Experiment
1 with quantiles from each condition plotted against one of the
others (the one marked “1” is the standard plotted against itself,
i.e., a straight line). There are seven instead of nine for the nine
conditions because some subjects had no responses in the “T”
conditions (see Figure 2) for the high accuracy conditions (0.35
and 0.20) and so mean quantiles could not be computed. The
result is a series of straight lines showing that the RT distribu-
tions have the same shape. Figure 14D shows one of many
possible examples in which six of the quantiles from Experi-
ment 1 (from those in Figure 14C) are plotted against quantiles

of RT distributions from the two-choice motion discrimination
task in Ratcliff and McKoon (2008, Experiment 1). The
quantile-quantile plots are largely linear showing similar
shaped RT distributions. These results show once again remark-
able invariance in RT distribution shape across conditions and
tasks (Ratcliff, Smith, & McKoon, 2015). This suggests a
general finding and that is that models that assume accumula-
tion of evidence to decision criteria naturally produce RT
distributions of a shape that matches experimental data (Figures
3D–10D).

Modeling Responses in Two Dimensions

The generalization of the 1D SCDM to two dimensions repre-
sents the decision making process as a growth of evidence in a 2D
plane to a criterion. This process is consistent with neurophysio-
logical results in motor and saccadic systems. In motor cortex,
evidence accumulation can be viewed as growth of activity in a 2D

Figure 14. (A) and (B) Sample RT distributions predicted from the model for Experiments 1 and 4 for the easiest
condition for correct responses. (C) Plots of quantiles from Experiment 1 from the 7 conditions with enough responses
to form quantiles plotted against the quantiles from the easiest condition. Results show straight lines which shows
similar distribution shapes across condition. (D) Plots of quantile RTs averaged over subjects for six conditions from
Experiment 1 (a continuous color identification task) plotted against six conditions from Experiment 1 in Ratcliff and
McKoon (2008, a two choice motion discrimination task) which again show straight lines which suggests similar
distribution shapes between tasks and subjects. See the online article for the color version of this figure.
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motor map that represents the possible choices. In the saccadic
system, evidence accumulation can be seen as growth in a 2D
motor map in areas such as LIP, FEF, and SC.

For responses on a line or circle, the theoretical advance is to
represent noise in the decision process as a continuous 1D
variable, and in this case, Gaussian process noise is a natural
choice. In the 2D case, the natural choice is a Gaussian random
field. Just like the Gaussian process, the distribution at any
point in a Gaussian random field is Gaussian and nearby points
are correlated with each other.

A Gaussian random field is a simple generalization of the
Gaussian process to two dimensions (Lord et al., 2014; Powell,
2014). Gaussian random fields can be generated using the same
Cholesky decomposition method used in the 1D model but in
two dimensions. However, this method is quite inefficient:
Cholesky decomposition of a N 	 N matrix takes on the order
of N3 operations and the matrix-vector multiplication takes on
the order of N2 operations. A more efficient method is termed
circulant embedding which uses a property of stationary Gauss-
ian processes: The covariance matrix is invariant under trans-
lations. This means that the covariance matrix is fully deter-

mined by the first row or column (hence “circulant”). The
method uses Fourier transforms to compute eigenvalues and the
method takes on the order of Nlog(N) operations. The matlab
code in Kroese and Botev (2014, p. 8) was translated into
Fortran for use with the Intel MKL toolkit and parallelized the
code using openmp. Our parallelization has each simulated
decision performed on a different core of the workstation. The
2D program takes about 8 hr per subject on a 64 core AMD
workstation with a 160 	 100 matrix compared with about 20
min per subject for the 1D model with a 72-element vector.

The model is illustrated in Figure 15 and is a straightforward
generalization of the 1D model. Figure 15A shows a decision
plane, Figure 15B shows a single Gaussian stimulus, and Figure
15C shows a single realization of a Gaussian random field. (Any
line through the plane will produce a realization of Gaussian
process.) Figures 15D to 15F show three Gaussian random fields
with different SD kernel parameters that represent the spatial range
of the correlations. In the experiment there are three response areas
and so there are three Gaussian stimuli (there would be three peaks
in Figure 15B). In our simulation of this process, on each time step
(10 ms as for the 1D case), there is an evidence array that

Figure 15. A representation of the 2D model. (A) Shows a decision plane. (B) Shows a 2D normal distribution
of drift rates. (C) Shows the Gaussian random field noise distribution (by analogy to the Gaussian process
distributions in Figure 1). (D–E) Examples of Gaussian random field with different kernel SD parameters. See
the online article for the color version of this figure.
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represents accumulated evidence and to this is added the stimulus
(three peaks instead of the one in Figure 15B) plus a new realiza-
tion of the Gaussian random field. This is repeated until one point
on the evidence array hits the decision plane (if more than one
point hits, the one with the largest distance above the decision
plane is chosen).

The model is fit to data in the same way as for Experiments 1–8.
An area around the peak of the strongest stimulus is defined as A
as in Figure 2. Then an area surrounding that is designated B.
Other stimuli are designated C and D and the remaining area is
designated T (tail). The model is used to generate predicted
choices and RTs as for Experiments 1–8 and plots are shown in
Figure 16.

Experiment 9

In this experiment, the stimulus was presented in a 2D plane of
black and white pixels. The background was 50% white and 50%
black pixels and the stimulus was composed of three bright patches
or three dark patches randomly placed in the plane (Figure 16A).
The task used a touch screen display and subjects were required to
move their index finger from a resting box to the brightest or
darkest patch in the display. This is the 2D analog of Experiment
4 in which the response was to the brightest or darkest patch on a
half annulus.

Method

The same display and apparatus as Experiment 4 were used in
this experiment. Sixteen undergraduates from the same pool as the
other experiments were tested. The stimulus was presented in a
320 	 200 array of black and white pixels in a 640 	 480 pixel
screen. The background was set to 50% black and 50% white
pixels. Then three points in the stimulus array were randomly
selected and a 2D Gaussian with SD radius of 12 pixels was used
to provide values for the probability of flipping pixels in the
stimulus array. There were two levels of difficulty with three
patches in each difficulty condition. The probability of flipping a
pixel (from black to white or white to black) at the centers of the
three Gaussians was either 0.7, 0.5, and 0.4 or 0.6, 0.5, and 0.4.
This led to the proportion of white or black pixels at the peak of
0.85, 0.75, and 0.70 or 0.80, 0.75, and 0.70. The centers of these
patches were selected with the restriction that they could not be
less than 64 pixels from the left and right edges of the stimulus
array and 40 pixels from the top and bottom. The peaks of the three
patches were not closer than 36 pixels.

In the task, a starting box was presented (Figure 16A) below the
stimulus at a location centered at 320 	 430 pixels that was 40 	
40 pixels square. The subject was instructed to place their finger in
the box to initiate the trial. After a delay of 250 ms, a “�” sign was
presented at the center of the stimulus rectangle which remained
on for 500 ms, then the screen was blanked for 250 ms and then
the stimulus array was presented until the finger was lifted
from the box. Following this, the stimulus array was cleared
from the screen.

After the stimulus was presented, the subject moved their finger
and placed it at the position in the stimulus rectangle correspond-
ing to their decision. If the delay before finger lift after stimulus
presentation was greater than 600 ms, then a message “TOO

SLOW” was presented for 500 ms. If the delay between lifting the
finger and responding was greater than 300 ms, then a “TOO
SLOW MOVEMENT” message was presented for 500 ms. If a
finger lift occurred earlier than 220 ms after the stimulus turned on,
the message “TOO FAST” appeared for 500 ms. If the subject
responded by placing their finger in a square 50 pixels on each side
centered on the strongest stimulus peak, “2” was presented, if the
response was on one of the weaker peaks, “1” was presented, and
“0” otherwise. Feedback was presented for 250 ms and 30 pixels
above their response.

Figure 16. (A) An example stimulus with three bright patches. (B) Plot
of response proportions and quantile RTs for theory plotted against data
with error bars produced in the same way as for Figure 3. (C) Plots of the
data and theoretical predicted responses for all subjects for each condition
with the data aligned with the strongest stimulus patch in the middle
(100 	 180), the next strongest at 100 	 60, and the weakest at 100 	 270.
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The stimulus was presented until the finger was lifted which
suggests that the subjects could have searched the array strategi-
cally for the brightest location. But the time limits were made
short, with the warning “TOO SLOW” after 600 ms and the
stimulus display turning off after 800 ms, and these encouraged
very fast responding. The median RTs were almost all below 400
ms which is relatively little time for anything more than a couple
of eye fixations. In retrospect, the design of this experiment could
be improved, but this is what we had at this stage of development.

Results

Because the number of combinations of positions of the three
stimuli is very large (infinite), they were aligned in a similar way
to as was done in Experiments 3 and 4. The strongest stimulus was
placed at 160 	 100, the next strongest at 50 	 100 and the
weakest at 210 	 100. Responses at a circular radius of 40 pixels
were moved to consistent positions around these locations and
responses outside the three areas were randomly placed in the rest
of the space. In future designs, it would be better to select several
configurations in terms of the angle and separations of the stimuli
and use them in some proportion of the trials (e.g., three config-
urations in 40% of the trials) with the configurations rotated and
translated from trial to trial (e.g., Experiment 6). This would allow
specific questions about the distribution of responses between
stimuli and away from stimuli to be examined, for example, to see
if stimulus location dependent noise is required.

The model was fit to data from each individual subject in the
same way as for Experiments 1–8. An area around the peak of the
strongest stimulus was defined as A as in Figure 2. Then an area
surrounding that was designated B. Other stimuli were designated
C and D and the remaining area was designated T (tail). The A
region was a 10.8 pixel radius around the central peak, the B
region was an annulus with inner radius 10.8 pixels and outer
radius 39 pixels. The same SIMPLEX minimization routine was
used as in the fits to earlier experiments and the same G-square
statistic was minimized using choice proportions and quantile RTs.

The predicted choice proportions and RT quantiles are plotted
against the data in Figure 16B. The quality of the fits looks similar
to those in the earlier experiments, but there are some systematic
misses. At the bottom left of the response proportion plot there is
a vertical stack of points in which the theory predicts between 0
and 0.05 proportion of responses, but in the data the proportion is
near zero for many of the conditions by subjects. Second, there are
misses in the leading edge of the RT distribution for some condi-
tions and subjects. The model predicts larger values than the data
especially those in which the 0.1 quantile RTs for the data are in
the 250 ms–270 ms range. The median RTs fit quite well, and there
are a few longer 0.9 quantile RTs than the model predicts.

Figure 16C shows plots of the choice proportions for the aligned
data for each subject and choice. The data around the central peak
have too many observations to display, but the range and density
of the secondary peaks show correspondence between theory and
data.

The parameters for Experiment 1–8 are defined in terms of
angular distance, while the parameters for Experiment 9 are in
terms of number of pixels divided by two in the array. This means
that the parameters sw, r, and sd are not directly comparable unless
the scaling from pixels to angle is examined.

The 2D model fit the data adequately but not as well as the 1D
model fits data from 1D tasks. The main issue seems to be that the
model predicts more responses at larger distances from the stimuli
than occur in data. This suggests that noise is too large away from
stimuli which suggests that one way to deal with this is to make
noise larger around the stimuli and smaller at larger distances away
from the stimuli (cf., something like Poisson noise). The main
problem in exploring this model is the high computational cost.
But with additional computational resources, variants of this model
(such as assuming that noise varies as a function of the distance
from stimuli) will be able to be examined. This model and fits
should be viewed as highly suggestive, but the fits are not quite
good enough yet. Thus, the application of this model structure to
tasks using responses in 2D space appears promising.

Saccade, Mouse, and Finger Movement Durations

Subjects were asked in our experiments to make rapid one-shot
decisions and to make their decisions before beginning to move
their eyes, fingers, or mice to the target location. In contrast to
decision times, measured as the time between stimulus onset and
movement, movement times are defined as the time between the
eyes, fingers, or mice moving away from their resting position to
a response (eyes fixating on a response location, fingers pressing
on a response location, or a button on a mouse being pressed). We
examined the distributions of movement times for each experiment
and looked to see whether fast versus slow movement times
affected the accuracy or RTs of decisions. If short decision RTs
were associated with long movement times and vice versa, then it
might be that the decision was during the movement time rather
than prior to the movement. Thus, analyses of movement times
provide some evidence as to whether our instructions were suffi-
cient to ensure that the decision process was finished before
movement began (at least, on most trials).

Figure 17 shows the distributions of movement times for the
nine experiments. The first thing to notice is that eye movements
have differently shaped distributions than finger and mouse move-
ments. For Experiments 1 and 3, most of the eye movements were
rapid (20 ms–60 ms) and a few were from a wide distribution that
started at about 200 ms. The slower ones came from movements to
an intermediate position and then a corrective movement to the
target. For Experiment 5, again most movement times were fast,
but a greater number of them than for Experiments 1 and 3 were
200 ms and above. (Note that for these experiments, the stimulus
was erased as soon as the eyes left the fixation point so moving
early did not allow additional information to be gathered from the
stimulus.)

Finger movements on the touch screen have quite narrow dis-
tributions of movement times (Experiments 2, 4, and 9), consistent
with a roughly ballistic movement with the decision made before
the movement. Movement time is slower for Experiment 6, most
likely because the finger resting point was farther from the re-
sponse circle than for the other experiments. This would also
explain why the distribution is wider than for those from Experi-
ments 2, 4, and 9.

The two experiments with mouse responses (Experiments 7 and
8) show considerably wider distributions of movement times. This
is to be expected because moving and clicking a mouse is more
complicated than moving eyes or fingers. For Experiment 8, the
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movement distributions for speed instructions largely overlapped
with those for accuracy instructions, so subjects were not trading
the speed and accuracy of decisions against movement time. (The
much larger movement times for mouse experiments relative to
touch screen experiments is one reason we now favor touch screen
tasks with Chromebooks mentioned earlier.)

For each experiment, we calculated the mean RTs for the data
averaged over all the conditions of the experiment and condition-
alized on the movement time, namely the half of the RT data based
on the fastest half of the movement times and the half based on the
slowest half of the movement times. For Experiments 1 through 9,

respectively, the mean RT for the fastest half of the movement
times minus the mean for the slowest half was �10 ms, �32
ms, �1 ms, �15 ms, �71 ms, �42 ms, �21 ms, �4 (for the speed
instruction condition and �31 ms for the accuracy instruction
condition), and �19 ms. The positive numbers are relatively small
and show that almost all decisions are made prior to movements.
The negative numbers are larger and show that slow movement
times are associated with slow decisions. The largest difference is
for Experiment 5, the arrow task. This may represent decisions
being made after movement begins. But generally, movement
times are only weakly related to RTs.

Figure 17. Plots of the movement times from the time at which the eyes, finger, or mouse left the
resting/fixation point until it reached the response target for all the experiments. Exp. � Experiment.
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For Experiment 6, the finger resting point was below the re-
sponse circle so that movement distance was larger than for the
other experiments. The movement times were divided into near
(bottom half of the response circle) and far (top half). The mean
differences in movement time (from leaving the resting square to
hitting a point on the response annulus) were different by about 53
ms, consistent with the distance traveled.

Saccadic eye movements have different properties than finger
and mouse movements, which may explain why subjects wanted to
move their eyes to intermediate locations before a final decision.
Saccadic eye movements have lower processing costs and in
natural situations are generated by systems that seem to set global
rates of production (Kowler & Pavel, 2013). This means that it
costs the processing system relatively little effort to make saccades
to low information targets or even to targets with no useful
information. In some paradigms, many saccades to low informa-
tion targets are followed by brief fixations (e.g., 100 ms) that are
too fast for much useful information to be extracted (Araujo,
Kowler, & Pavel, 2001). Although this is suboptimal in some
laboratory tasks, it may be an important strategy in viewing natural
scenes in which cognitive operations are decoupled to some degree
from the current fixation (Kowler & Pavel, 2013). When designing
experiments with eye movements, this complication should be kept
in mind, but in the experiments reported in this article, these
complications were minimized by the instructions and paradigms,
which, except for Experiment 5, produced mainly direct eye move-
ments.

Discussion

Previously there have been no models that explain how
decisions are made about stimulus representations that are
continuous in space with responses on continuous dimensions
and that explain both the accuracy of decisions and the time
taken to make them. To construct the SCDM (see Figure 1),
spatially continuously distributed noise represented within-trial
variability in the decision process (spatially continuous Gauss-
ian process noise or Gaussian random field noise for responses
in 1D and 2D spaces, respectively). The combination of this
continuously distributed noise and a continuously distributed
stimulus representation allowed the model to explain the results
from the experiments. Across the experiments, the stimuli were
displays of black and white and colored arrays of pixels, arrays
of arrows, and arrays of moving dots, with static and dynamic
displays. Responses were made by eye, finger, and mouse
movements. In each experiment, there were several levels of
difficulty. The model accounted for accuracy and RT distribu-
tions for all the experiments quite well with relatively few
outlier responses per experiment. The model captured the spa-
tial distributions of responses and the full distributions of RTs.

To fit the model to the data, responses and the model’s
predictions were grouped into the A, B, and T categories (plus
a C or D category for some of the experiments), which approx-
imately correspond to correct responses, near-correct responses,
and errors (see Figure 2). Predictions from the model were
generated by simulation and a SIMPLEX minimization routine
was used to find the values of the model’s parameters that
provided the best fit of the model to the data, that is, to the
proportions of responses and the RTs for each of the categories.

The model was successfully fit to the data from each individual
subject, which offers the possibility of using the parameters of
the model in future studies of differences among individuals
(e.g., IQ, assessing neuropsychological and clinical deficits).

Surprisingly, there were only small to nonexistent differences
in RTs across positions on the response dimension (Figures
3D–10D), even when there were competing stimuli (e.g., two
patches of bright pixels). In other words, incorrect responses
had about the same RTs as correct ones, a contrast with the
two-choice decision model for which RTs are usually signifi-
cantly different for correct and incorrect responses (the differ-
ences are explained by the two-choice model’s assumptions of
across-trial variability in drift rates and starting point). This is
not to say that there were no RT effects in the experiments here:
as difficulty increased, RTs increased by over 100 ms in some
tasks. For the more difficult conditions in some of the experi-
ments, the model’s predictions for the distributions of responses
over spatial location were wider than the data. However, only
one SD in the drift rate distribution(s) was used for all the levels
of difficulty in an experiment (sw); if the SD differed between
levels of difficulty (in other words, there was precision and
more uncertainty in location for weaker stimuli), the model
would produce wider distributions. For the experiments with
colored stimuli, there was an additional salient result; subjects
were biased in their responses toward primary and additive
colors over other colors. These biases were explained by as-
suming a sinusoidal boundary or starting point function so that
less evidence was needed for a primary or additive color deci-
sion than colors between them.

The model fit all the features of the data with relatively few
parameters: nondecision time and the across-trial variability in it,
the response boundary and the across-trial variability in it, the
Gaussian-process kernel parameter for the continuous distribution
of noise in the process of accumulating evidence, the across-trial
variability in the height of the distributions of drift rates, and the
SD in the drift-rate distributions, plus a drift-rate parameter for
each level of difficulty. For the color biases, there was one addi-
tional parameter for the amplitude of the sinusoidal response
boundary (or starting point). Overall, this is a dramatic reduction
from the number of degrees of freedom that would be needed to fit
the full distributions of responses and RTs across spatial locations.

At this point the question might arise: Why have theories about
decision making for continuous stimulus and response dimensions
not been developed and fit to RT and choice proportion data before
this? There are a number of tasks for which the stimulus and
response dimensions are continuous, but there appear to be no
attempts to model choice proportions and RT data. Such tasks
include working memory tasks (e.g., Zhang & Luck, 2008), num-
ber line tasks (e.g., Thompson & Siegler, 2010), and tasks for
which individuals indicate how confident they are in their deci-
sions on a continuous scale (e.g., How confident they are in their
decision about whether or not a test item had been previously
presented in an experiment; e.g., Province & Rouder, 2012). One
possible answer is that assumptions about spatially continuous
noise and stimulus representations have not been considered in
attempting to model such tasks.

An important direction for further research is to link the SCDM
to models of perceptual processing. In all of the experiments
reported here, precise control was not exerted over color, lumi-

T
hi

s
do

cu
m

en
t

is
co

py
ri

gh
te

d
by

th
e

A
m

er
ic

an
Ps

yc
ho

lo
gi

ca
l

A
ss

oc
ia

tio
n

or
on

e
of

its
al

lie
d

pu
bl

is
he

rs
.

T
hi

s
ar

tic
le

is
in

te
nd

ed
so

le
ly

fo
r

th
e

pe
rs

on
al

us
e

of
th

e
in

di
vi

du
al

us
er

an
d

is
no

t
to

be
di

ss
em

in
at

ed
br

oa
dl

y.

920 RATCLIFF



nance, or other physical characteristics of the stimuli. At this point
of theory development, I was not concerned with the link between
precise quantitative perceptual characteristics of stimuli and the
information actually used in the decision process. The aim in this
article was to develop and test a model of decision processes. In
future research, it will be important to link perceptual properties to
the distributions of evidence used to make decisions, both their
heights and their SDs. For example, it might be that perceptual
template models that specify the representations of perceptual
stimuli (Lu & Dosher, 2008) or Smith and Ratcliff’s (2009) inte-
grated systems model of attention and perceptual processing could
be adapted to add the SCDM to account for RTs and choices on
continuous scales.

Examining the Structure of the Model and
Alternative Assumptions

A number of variants of the SCDM can be explored. First,
stimulus variability from trial to trial has been represented as
variability in the height of the drift-rate function driving the
decision process. An alternative would be to have the same height,
but have the function vary from trial to trial in its location on the
angle axis. Second, a normal distribution of drift rates has been
assumed. However, other distributions are possible such as back-
to-back exponentials or circular Gaussian von Mises distributions
(which are similar to normal distributions). Third, different distri-
butions for the across-trial variability parameters are possible, but
it may be that choices of these distributions are not critical and
produce similar patterns of results to the choices in the model
implemented here (e.g., Ratcliff, 2013). Fourth, instead of normal-
izing evidence, perhaps the drift rate distributions could be nor-
malized so the average drift is zero. In Figure 1D, this would mean
that zero drift would be at about 0.3 on the y-axis and drift rates
between 120 degrees and 240 degrees would be positive and drift
rates outside this range would be negative. Then mean evidence
would not be set to zero after each time step. I have implemented
this model and found that it provides somewhat better numerical
fits for some but not all experiments. But a more comprehensive
evaluation is needed before it could be used as an alternative to the
model used to fit the experiments. These examples show that there
may be tweaks to the structure of the model presented in this
article that might provide a better description of the data.

One issue that has not been addressed for circular response
dimensions is how to generate Gaussian process noise that is
continuous across the 360–0 degrees boundary. This is because a
line was used to represent the circle and Gaussian process was
assumed on the line. For a circle, the function should be continu-
ous from one end of the line to the other, for example, in Figure
1C, each function at 0 degrees should be the same as the value at
360 degrees. This is specific to the SCDM and applications to
responses on a circular scale. However, this is probably not too
important because the stimulus was placed away from the 0- and
360-degree end points and so would only affect model predictions
for a relatively small number of responses in distances far away
from the stimulus.

In several of the experiments, there were two kinds of small but
consistent misses between the model and data. First, the model
overpredicts the probability of responses at distances far away
from the stimulus. One way to improve the fits would be to change

the assumption that noise comes from a Gaussian process with
constant amplitude. The modification would be to assume that the
Gaussian process noise is stimulus location dependent so that the
amplitude of noise is larger at the stimulus location and decreases
as a function of distance to a constant level outside the range of the
drift rate distribution (e.g., constant in the tails outside 100–260
degrees in Figure 1B). This would lead to fewer responses in
locations away from the stimulus. The behavior of RTs across
spatial position would be a key measure that would indicate
whether this assumption was reasonable or not. A second issue is
that the distribution of responses over angle is often wider for the
low accuracy conditions than the model predicts. It was assumed
that the SD in the drift-rate distribution is constant over levels of
difficulty. But, if that assumption were relaxed and it was assumed
that weaker stimuli have more variability and wider distributions
(less precision), the model would fit the data better. These two
additional assumptions were not made in the fits presented in this
article because the aim was to present the simplest model with the
fewest degrees of freedom, to show how it accounted for data, and
to show deviations and suggest what assumptions might be needed
to accommodate them (because there may be alternatives to the
ones suggested here).

The Appendix contains examples of how changes in each of the
model parameters affect the predictions of the model for choices
and mean RTs across spatial position as well as RT distributions.
One prominent finding is that across-trial variability in drift rate
and boundary setting affect the relative speed of correct and error
responses (A and B vs. T in Figure 2) in the same way as for the
two-choice model: Across-trial variability in drift rate and bound-
ary setting produces errors slower than correct responses and
errors faster than correct responses, respectively.

The Appendix also shows that for four examples using simu-
lated data, the fitting method recovers the parameter values with
SDs lower than the SDs across individuals. For two of the simu-
lated data sets, tradeoffs among parameter values are examined,
and these suggest that although there are some large tradeoffs,
these are readily interpretable. These results mean that the fitting
method (at least for these and those with similar parameter values)
does not introduce biases into the parameter estimates and pro-
duces estimates that are sufficient for individual difference anal-
yses. In the future, alternative fitting methods can be explored (cf.,
the efforts to develop methods for the two-choice diffusion model,
Lerche, Voss, & Nagler, 2016; Ratcliff & Childers, 2015; Ratcliff
& Tuerlinckx, 2002; Vandekerckhove & Tuerlinckx, 2007; Voss
& Voss, 2008; Wiecki, Sofer, & Frank, 2013). Such studies are
important if the model is to be applied to examine differences in
performance in different populations, such as those with cognitive
deficits, disease, or development or aging. Using the best method
for estimating model parameters will be especially important for
examining differences among individuals or diagnostic tools.

Cognitive Models That Use Distributed Representations

Spatially continuous distributions of stimulus information like
the ones used in this model have been used in letter matching and
confidence judgment tasks with discrete response choices. For
tasks in which subjects are asked to decide if one string of letters
matches another one, it has been assumed that the letter represen-
tation for an item just studied is distributed over spatial position.
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Thus, when several letters are presented, the representations over-
lap and this allows the model to account for low accuracy and long
RTs when adjacent letters are switched in position compared with
higher accuracy and shorter RTs when nonadjacent letters are
switched in position. In some models for confidence judgments
about memory, it has been assumed that memory strength, which
determines confidence, is continuously distributed.

In the letter-matching task used by Gomez, Ratcliff, and Perea
(2008) and Ratcliff (1981, 1987), a string of three to seven letters
was presented then erased and a second string was presented and
the task was to respond “same” or “different.” If two adjacent
letters were switched in position it was more difficult to respond
different than if two farther-apart letters were switched. To model
this, letters in the first string were assumed to be distributed over
position. Criteria were placed between the letters and the areas
between the criteria were summed to provide a measure of the
degree of match between the first string and the second. This
model accounted for all combinations of transpositions of letters
(adjacent and nonadjacent), replacements of letters with new let-
ters, repeated letters, strings of different lengths, letter migrations,
and transpositions with words and nonwords. Ratcliff (1981) found
a linear relationship between drift rates from the two-choice dif-
fusion model and overlap in the model, which suggested that a
combination of these models might explain both accuracy and
response time measures in this paradigm. The assumption of
distributed representations is consistent with the assumption in the
SCDM.

In a typical confidence judgment procedure, subjects choose
which of some small number of categories best describes their
degree of confidence (e.g., “sure,” “very sure,” and so on). To
model confidence judgments about memory (the RTCON and
RTCON2 models, Ratcliff & Starns, 2009, 2013; Voskuilen &
Ratcliff, 2016), memory strength was assumed to be distributed
and confidence criteria were placed on the strength dimension. The
area under the strength distribution between the criteria provided
the drift rate for an accumulator for that confidence category. The
model accounted well for the proportions of responses for each
category and their RT distributions.

In an earlier approach, I attempted to use a version of the
RTCON model to approximate continuous response dimensions
with discrete accumulators, one for each small range on the
continuous scale. If the stimulus distribution was such that the
evidence at nearby points was correlated, then this might ap-
proximate a continuous process. The problem is that there is no
proof that the limiting version of this would be a continuous
process and it is difficult to see how to go about developing a
proof. In the SCDM, discrete values are used for time steps,
stimulus representations, and response dimensions, which
might make the model appear to be discrete. But the same
results are produced (subject to numerical approximation) if the
size of the discrete steps is made small with appropriate scaling
of the model’s parameters. In the limit as the step sizes ap-
proach zero, the process is continuous.

The stimulus representation used in the RTCON model is sim-
ilar to the representations used in the SCDM and so the combina-
tion could be used to compare modeling confidence judgments
recorded on both continuous and discrete scales.

The Circular Diffusion Model

Smith’s (2016) circular diffusion model was designed to model
tasks in which a stimulus is presented and a response is made on
an annulus (e.g., Experiments 1, 3, 5, 6, 7, and 8). In the circular
model, a diffusion process in two dimensions begins at the center
of a circle and evidence is accumulated in two dimensions until the
process hits the circumference of the circle, which is the decision
boundary. The stimulus determines a drift rate which is repre-
sented by a distribution that causes the process to drift toward one
position on the edge of the circle. Smith (2016) derived exact
predictions from the model for the distributions of choices at the
boundary and their RT distributions and tested them by examining
predictions for the qualitative effects of standard manipulations of
experimental variables in this task (although he did not fit data
directly). Plots of the model’s predictions for RT quantiles from
conditions with different drift rates, boundary values, and across-
trial variability parameters were plotted against the quantiles for
one reference condition (Q-Q plots). The results were a straight
line which indicates that the distribution shape was the same over
these different conditions (cf. Figure 14 in this article).

The SCDM is more general than Smith’s (2016) because it can
be applied to a wider range of tasks. However, direct comparisons
between the two models across a range of tasks and manipulations
will provide fertile questions for future research. For example, one
issue will be whether the circular model can account for results
when two or more stimuli are presented in the same display (e.g.,
the several bright/dark patches in Experiment 3). The simplest
assumption would be to combine information from the several
stimuli into a single, bimodal distribution of drift rates but, contra
our data, this would produce an increase in the number of re-
sponses between the stimuli. Another possibility would be to
assume that on each trial only one stimulus is encoded so that
responses would be a probability mixture of responses to the two
(or more) individual stimuli.

Population Code and Neural Models

The SCDM can be seen as an implementation of population
code models in neuroscience (e.g., Beck et al., 2008; Deneve et al.,
1999; Jazayeri & Movshon, 2006; Liu & Wang, 2008; Nichols &
Newsome, 2002; Pouget et al., 2013). Population code models
assume that activity is distributed over an array of elements (neu-
rons) and a response to a stimulus is a weighted average of the
activity in the population. The SCDM extends population code
models by using a spatially continuous distribution of noise in the
decision process and by using this, it is able to fit response choices
and RTs across spatial locations, including the distributions of
RTs. None of these population code models have yet dealt with
choice proportions and RT distributions from experiments with
responses on a continuous scale such as the ones here.

Beck et al.’s (2008) Bayesian population code model is similar
in many ways to the SCDM. It was developed to explain compu-
tations carried out in the motion system with assumptions about
the representation and processing in MT (middle temporal), LIP
(lateral intraparietal), and SCb (superior colliculus-motor burst
neurons). They assume these represent an input layer, an evidence
accumulation layer, and a readout layer where motor output is
generated. LIP units accumulate input activity from MT cells that
fire in response to a continuously changing moving-dot stimulus.
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Activity is accumulated in a series of accumulators along a line
and the amounts accumulated are correlated between nearby ac-
cumulators (nearby locations in the stimulus and noise are also
correlated).

The Beck et al. (2008) model makes assumptions about short-
range activation and long-range inhibition within the LIP accumu-
lation layer. However, Ratcliff et al. (2011) used simultaneous
recordings of pairs of neurons and found no evidence of long-
range inhibition in buildup neurons in the SC (activity that should
mirror activity in LIP). The SCDM assumes no such inhibitory
interactions. In the Beck et al. (2008) model, a decision is initiated
in the SCb layer which implements a winner-take-all network
based on an estimate of the probability of firing as opposed to the
actual firing rate of a neuron.

The Beck et al. (2008) model was applied to motion discrimi-
nation tasks like our Experiment 6 in which subjects decided if the
direction of coherently moving dots was to the left or the right (or
left, right, up or down). The model accounted for choices and mean
RTs for correct responses in discrete two-choice and four-choice
tasks, but it has not accounted for the full distributions of RTs or
RTs for incorrect responses.

Beck et al. (2008) argued that their model can be extended to
time-varying stimuli. The model assumes that when a stimulus is
turned off, the accumulation process stops and evidence begins to
decay with some time constant). However, Ratcliff and Rouder
(2000; see Ratcliff, Smith et al., 2016 for further discussion)
showed that when a stimulus is presented briefly, the best
model is one in which drift rate is constant; it does not rise with
stimulus onset and fall to zero with stimulus offset. This is
consistent with the Beck et al. (2008) proposal if their time
constant is large (e.g., over 500 ms). Smith and Ratcliff (2009)
developed a model that accounts for manipulations of attention,
contrast, and stimulus duration for briefly presented perceptual
stimuli. In that model, stimulus information is encoded into a
visual working memory and a constant output from working mem-
ory is used to drive the decision process. In the SCDM, brief
presentations (e.g., 200 ms–300 ms) are assumed to produce con-
stant drift rates, and this can be justified by assuming a stationary
drift rate produced from a distributed working memory represen-
tation. A related question is whether the model should allow drift
rate to ramp up over a few 10’s of a millisecond. Ratcliff (2002)
showed such ramping up is mimicked by a constant drift model
and so a constant drift model accommodates a model with drift rate
ramping up.

The SCDM is simpler and more general than the Beck et al.
(2008) model, but it does not deal with details of neurophysiology
as the Beck model does. It is unclear whether the Beck model can
account for the aspects of the behavioral data that the SCDM can
and whether it can be modified to account for decision-making in
tasks like those presented in this article. However, the similarities
between the two models outweigh the differences.

Liu and Wang (2008) developed a model for motion discrimi-
nation with (normally distributed) evidence from a stimulus driv-
ing populations of direction-sensitive neurons. The dynamics of
evidence accumulation were based on synaptic currents for several
types of neurotransmitters. As far as I know, this model is too
complicated to be explicitly fit to RTs and choice probabilities to
produce estimates of model parameters. However, the model pro-
vides a plausible detailed neural implementation of an evidence-

accumulation process. Liu and Wang (2008) generated predictions
from the model for accuracy and RT distributions for a two-choice
task, but the model was not actually fit to data. It was also used to
account for results from microstimulation experiments in which
electrical current is injected into MT neurons. At this point it
would be a daunting task to fit the Liu and Wang (2008) model to
data. However, in the future, it might be possible to develop a
simplified version of the model, as Wong and Wang (2006) did for
another model for two-choice decisions, and use such a simplified
model to account for experimental data from the kinds of tasks and
data in this article.

There are also models in which collections of accumulators are
used to represent neural population codes (Zandbelt, Purcell,
Palmeri, Logan, & Schall, 2014). Such collections show similar
behavior to single accumulators if there is a modest correlation in
firing rates between the individual accumulators in the collection.
Also, collections with different numbers of accumulators show
similarities to each other. Early in development of the SCDM,
models were developed that used arrays of separate accumulators,
but as discussed above, models with spatially continuous evidence
and noise provide a more natural account of processing in the tasks
used here. However, by using neurophysiological constraints and
the kinds of models developed by Zandbelt et al. (2014) it might
be that a model with plausible assumptions about collections of
accumulators would show similar behavior to the SCDM.

Dynamical-Systems Neural Field Models

Klaes et al. (2012) developed a model that represents activity in
a series of 1D continuous maps that are similar to those used in our
1D model. The maps proceed from an input map to an association
field to premotor and motor maps. The motor map is similar to the
accumulated evidence in the SCDM and the input mapped through
the association field is similar to our drift rate distribution. The
mapping from the stimulus through the association field highlights
the important insight that a stimulus has to be transformed to a
decision-related representation. For example, the color stimuli in
Experiment 1 have to be mapped onto a 1D decision representa-
tion. The model was applied to reaching data for monkeys (but not
to RTs). A related model by Wilimzig et al. (2006) was applied to
saccadic decision making in simple saccadic tasks. As in Klaes et
al. (2012), there was a field representing the input, an initiation
field, and a selection field. One difference between their models
and ours is that noise in the Klaes et al. (2012) and Wilimzig et al.
(2006) models is represented as independent Gaussians in the units
of the model whereas ours is continuously distributed and corre-
lated across position. The Klaes et al. (2012) and Wilimzig et al.
(2006) models are closely related to the SCDM and so the insights
from those models and similarities between the two kinds of
models can help guide future modeling.

Visual Search Models

The SCDM is also relevant to visual search models (e.g., Thorn-
ton & Gilden, 2007; Wolfe, 2007) that are applied to tasks for
which an array of objects is displayed and subjects decide whether
there is or is not a particular target object in the array. A common
assumption is that the objects in an array each have a diffusion
process and the processes for all of the objects race to a threshold.
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For the SCDM, it could be assumed that objects are represented in
continuous space with a peak of activity corresponding to each
object in the array. However, there are two important questions
that this implementation of the SDCM would not address. The first
is how the system constructs representations of the objects in terms
of the dimension on which decisions are made. For example, in an
array of letters, the task might be to choose the letter “x” or it
might be to choose the object that was red. Hence, the activities for
the objects in an array would need to be dependent on the dimen-
sion being searched for, something the SCDM does not address.
An example of how this may be accomplished is using a salience
map (Klaes et al., 2012) that modulates the 2D representation of
the stimulus so that only objects with the right color or shape
produce activation. But this would not answer the questions of why
some features are integrated in search while others are separable
(Garner, 1974) and why some stimuli pop out and others do not.

The second question is how the system can make a judgment
that the target is not in the array. This has been problematic for
visual search models and search models in general and the SCDM
does not address it. However, for a task requiring a present/absent
judgment for stimuli in a 2D array, the stimuli could be represented
by a Gaussian peak for each item in the display that has the desired
property (brightness, color, shapes, etc.), as in Figure 15B. Then a
horizontal plane through the representation of the array could be
used to separate present versus absent stimuli. The integrated
activity or peak activity above or below the plane could be used as
drift rate in a two-choice diffusion model.

The main point is that to produce a reasonably comprehensive
model, the relationship between stimulus and decision representa-
tions has to be understood. This is taken up later in this discus-
sion.

Complications in Relationships Between Domains

The relationship between population code models and the
SCDM and tasks used to test the model was discussed above.
However, in research that examines responses on continuous
scales in neuroscience, there is a great deal of complexity and
models of the kind proposed here (including population code
models and the SCDM) will be only part of the story. Two
examples that suggest that the relationships are more complicated
are presented below.

Early research found that response areas in motor cortex and in
movement-related oculomotor areas have maps that represent 2D
space. If an individual is to make an arm movement to a position
in space, then an area in motor cortex corresponding to the direc-
tion of movement increases its firing rate (e.g., Georgopoulos et
al., 1986). Also, if an eye movement is to be made to a position in
space, then buildup cells in a corresponding area on a retinotopic
map in the superior colliculus (SC) increase their firing rates (e.g.,
Wurtz & Optican, 1994) and when the firing rates reach a criterial
level, burst cells fire and the eyes move. Results in both these
domains have suggested that winner-take-all networks select the
reaching or saccade goal. It might seem that it would be relatively
easy to add mechanisms to population code and winner-take-all
models based on these observations to account for RTs and choice
probabilities.

However, more recent research makes clear that some aspects of
the decision processes are much more complex. For example,

Optican (2009) pointed out that the SC contains a spatially coded
map, but feedback (the motor error) is temporally coded and so SC
output must be converted to a temporal code and this has not yet
been modeled. Likewise, Churchland et al. (2012) argued that
reaching should be viewed as a dynamical process represented in
a state space rather than a simple population code. When the
SCDM is at least somewhat mature and validated against data,
hypothesis about possible relationships between it and neural
models can be generated and tested and used to examine wider
issues about neural representations and processes.

Visual Working Memory

The task in Experiment 1 is similar to one that has been used to
study visual working memory (VWM; Zhang & Luck, 2008, and
subsequent studies). In these studies, several colored squares were
presented briefly at locations around a fixation point. They
were followed by squares in the same locations but without colors.
The lines of one of them were bold and for that square, subjects
were to move their eyes to the color that that square had contained
on a circular color wheel. Zhang and Luck (2008) proposed that
the probability of reporting the correct color is a combination of a
von Mises distribution over angle on the color wheel and guessing.
Later models (e.g., Bays et al., 2011) assumed a mixture of von
Mises distributions or a continuous mixture of them (Bays, 2014;
Bays et al., 2011; Zhang & Luck, 2008). On some trials of the task,
the stimulus was only a single colored square so, to prevent
subjects anticipating where the color was located on the circular
color wheel, the wheel was randomly rotated from trial to trial.
However, rotating the color wheel means that, in addition to
making a decision about what color was in the box, there is also a
search process to find the color. This is why in our color wheel
tasks, the wheel was fixed across all trials to eliminate search time
and avoid having to model that combination of processes.

As just described, patterns of results for VWM tasks have often
been modeled with a mixture of processes, specifically a process
based on memory for the stimulus and a guessing process (e.g.,
Zhang & Luck, 2008). In other domains, it is usually found that
guessing processes have different time courses from stimulus-
based processes (e.g., Luce, 1986; Ratcliff & Tuerlinckx, 2002). In
fact, it would be highly unlikely that stimulus-based and guessing
processes had identical time courses. However, in the experiments
in this article, the RT distributions for processes away from the
stimulus and the RT distributions for processes near the stimulus
were quite similar (Figures 3, 4, 9, and 10). This makes mixture
models implausible for the experiments presented here. Results
from experiments in the VWM domain similar to Experiments 1,
2, 7, and 8 in this article have been explained with these guessing
mixture models, but RT results for the experiments have not been
reported. In using the SCDM to model these processes, search
processes mentioned above would have to be eliminated as in
Experiments 1 and 2 for example, by fixing the color wheel across
trials. If results with such a modification to the paradigm were
produced and if the RT functions were flat across position, then the
single process SCDM might explain the decision process used in
the task with only a single process with continuously varying
evidence. But if error RTs (in the T area of distributions, Figure 2)
were shorter or longer than those around the peak, then a mixture
model might be more appropriate with some proportion of re-
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sponses based on a zero drift process or some other kind of guess.
Such an analysis would lead to an explanation of both the spatial
distribution of choices and RTs and would provide a more com-
plete explanation of processing in this kind of paradigm.

There are other model-based analyses of VWM but these have
been based on two-choice tasks and not on tasks with responses on
continuous scales. For example, Donkin, Nosofsky, Gold, and
Shiffrin (2013) and Pearson, Raskevicius, Bays, Pertzov, and
Husain (2014) have applied the LBA and LATER models, respec-
tively, to two-choice VWM tasks. However, there is some dispute
as to whether such two-choice tasks are appropriate for examining
VWM and it has been argued that continuous scales are necessary
because they can provide information about the contents of VWM
that discrete responses cannot (Fougnie, Suchow, & Alvarez,
2012; Ma, Husain, & Bays, 2014; van den Berg et al., 2014, 2012).

Mapping Between Stimulus and Decision Representations

When a stimulus is presented to the processing system for a
decision, information relevant to the decision must be extracted
from the representation of the stimulus. For example, with a letter
string as a stimulus, decision tasks with different mappings might
be was the string a word or nonword, was studied earlier or not,
was upper or lower case, was red or green, was large or small, and
so forth. Some of these dimensions might be separable (Garner,
1974) in that the value on one dimension (e.g., red vs. green) may
have no effect on a decision made on another dimension (e.g.,
word vs. nonword), but others may be integral (e.g., a previously
studied letter string may produce more “word” responses in a word
vs. nonword task than an unstudied string). For Experiment 3
above, it is the brightest or darkest of the patches that is relevant,
not whether the brightness of a patch is greater or less than 60%
white pixels or whether the patches are on the same or different
sides of the stimulus annulus. The process by which information
on the relevant dimension is extracted from the stimulus must take
some amount of time and in the SCDM that time is part of
nondecision time. Neurophysiological estimates of encoding and
response output put their duration at about 150 ms so if the
translation of the stimulus to a decision variable is more compli-
cated than identifying a bright patch on a display, nondecision time
should be somewhat larger than 150 ms.

Studies using EEG measures provide evidence for differences in
the representations that occur over the time course of processing.
Philiastides, Ratcliff, and Sajda (2006) used a face/car discrimi-
nation task with briefly displayed degraded pictures. They re-
corded EEGs from multiple electrodes and combined (weighted)
the signals to obtain a single number (a regressor) for each trial
that best discriminated between faces and cars. This single-trial
regressor was significant at two times, around 180 ms and around
380 ms. Ratcliff, Philiastides, and Sajda (2009) reasoned the
regressor was an index of how car-like or how face-like each
stimulus was. So, in each condition of the experiment, subjects’
behavioral responses (“car” or “face”) were sorted based on the
EEG regressor into ones that were closer to faces and ones that
were closer to cars. The two-choice diffusion model was fit to the
two halves of the behavioral data and the drift rates for them
differed substantially but only for the later component, 380 ms.
This shows that the later EEG signal indexes difficulty across trials
prior to the onset of the decision process (estimated to be at

350 ms–400 ms by fits of the model). With these results, it appears
that the earlier signal represents perceptual encoding from which
decision-related information must be extracted. Ratcliff, Sederberg
et al. (2016) performed a similar analysis of EEG data from a
recognition memory task. In this domain, an argument has been
made for an early frontal familiarity signal and a later parietal
recollection signal. However, only the later parietal signal (peak-
ing around 600 ms following stimulus presentation) was impli-
cated in decision making because it, and not the earlier signal,
affected drift rate.

The estimated duration of nondecision time is quite short in
some of the tasks, as low as the 175 ms lower limit placed on the
model fitting process. This value is lower than for other perceptual
tasks with two-choice decisions (e.g., 270 ms, Smith & Ratcliff,
2009 and as low as 330 ms over several perceptual tasks in
Ratcliff, 2014). It may be that for tasks in which the subject is to
move his or her eyes or fingers to a location at which the stimulus
appears, less translation of the stimulus representation is involved,
but even so, the short duration of nondecision time estimated in
some of the experiments presented here is a concern.

The more general issue is that computing a decision represen-
tation (sometimes called a decision variable) is a key issue that is
implicit in much of the current work on decision making. In
conflict tasks (e.g., the Stroop task, the Simon task, the flanker
task), models explicitly represent the opposition of different
sources of information. But for other tasks, memory or perceptual
variables are sometimes simply assumed to be available or directly
mapped from perceptual representations.

An example of how stimulus representations must be trans-
formed to decision representations is given by Sperling’s centroid
computation task (Drew, Chubb, & Sperling, 2010; Sun, Chubb,
Wright, & Sperling, 2016). In this task, dots of different lumi-
nances or sizes are displayed in a 2D plane and the task of the
subject is to point to the centroid.

The model that best explains how the center of mass is com-
puted uses a weighted sum of the coordinates of the dots or
patches. The x-coordinate is a weighted sum of the x-coordinates
of the items and the y-coordinate is a weighted sum of the
y-coordinates. This model could be easily integrated with the
SCDM by assuming that the representation driving the decision
process is a weighted sum of stimuli instead of a direct represen-
tation of the stimuli themselves (as is used for the brightness tasks
in Experiments 3 and 4). As discussed earlier, this suggests that the
decision variable is a function of the stimulus and the task require-
ments.

Population Code Models and the Two-Choice
Diffusion Model

On the face of it, there appears to be a conflict between popu-
lation code models and standard two-choice diffusion models.
Population code models and the SCDM require a distribution of
drift rates to drive the decision process on each trial, but the
two-choice models have only a single drift rate for each trial.
However, for the two-choice models, it could simply be assumed
that trial-to-trial variability in drift rate represents a distribution of
drift rates used to drive the decision process instead of a distribu-
tion from which a single drift rate is selected. The mathematics of
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the diffusion model is indifferent to these two possible accounts of
variability in the two-choice model.

This population code assumption would require an identical
distribution of drift rate on each trial. However, there has to be
variability from trial to trial in the stimulus representation (Rat-
cliff, 1978). To have such variability and a population code, a
population code distribution could be assumed with a mean that
varied from trial to trial so the combined SD was the across-trial
SD in drift rate (as in the RTCON2 model for confidence and
multichoice decision making; Ratcliff & Starns, 2009, their Figure
2; Ratcliff & Starns, 2013; Voskuilen & Ratcliff, 2016; Voskuilen,
Ratcliff, & McKoon, 2018).

Conclusions

SCDM can be viewed in three ways. For one, it is a general-
ization of the successful two-choice diffusion model and it pro-
vides a new domain of study for modeling decision processes. For
another, it adds a decision component to dynamical systems mod-
els of decisions in a continuous space (eye movements and arm
movements). For a third, it adds a spatially continuous decision
process to neural population code models and so is consistent with
population code interpretations of neurophysiological data from
motor cortex and areas involved in generating eye movements. In
such neurophysiological data, activity rises in 2D planes with the
position of the maximum activity corresponding to a movement in
space and the 2D SCDM can be seen as representing this activity
and the process of selecting a response.

The SCDM was designed to account for both choice proportions
and RT distributions in a variety of tasks, but at this point, there
has been no attempt to model perceptual processes and the pro-
cesses that translate encoded stimulus information to decision-
related information (see Klaes et al., 2012, for an example of such
modeling in which the mapping is 1:1). Integrating models of
perception with the SCDM (as in Smith & Ratcliff, 2009, with the
two-choice diffusion model) will potentially be a fertile domain for
understanding the transformation of stimulus representations to
decision-related representations on continuous dimensions.

There are three major features of this research that provide a
basis for advancing theory. The first is to take continuous spatial
dimensions seriously by using continuously distributed represen-
tations of stimuli. The second is to represent variability in the
decision process with continuously distributed Gaussian noise
(Gaussian process noise for 1D and Gaussian random field noise
for 2D). The properties of Gaussian processes and Gaussian ran-
dom fields are active areas of research in machine learning (Lord
et al., 2014) and so the SCDM offers the possibility of linking
research in machine learning with modeling decision-making on
continuous scales. The third feature is a set of experiments that
collect RTs and choices on continuous dimensions with a variety
of stimulus and response types and tasks. These provide a template
for paradigms that can be used to collect RT and choice data, but
more importantly show that patterns of results generalize across
stimulus and response modes.

The SCDM also offers the possibility of applications in domains
that go beyond simple perceptual tasks, including psychometric
tasks on continuous scales, any simple rating scale judgment (such
as preferences for items), and confidence judgments. More gener-

ally, it offers the possibility of being applied in a wide range of
tasks that require responses in a continuous 1D or 2D space.
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Appendix

Parameter Behavior, Parameter Recovery, SDs in Model Parameters, and Covariance in Model Parameters

In this appendix I show how each of the parameters of the
SCDM model affects predictions of the model, how well the fitting
method recovers model parameters, and how the model parameters
trade off against each other. Because the SCDM is a new model
with no existing guidelines for how to fit it, the method I chose to
use is one that is robust and has had success in other applications
(e.g., Ratcliff & Starns, 2013). There is one critical fact to stress in
evaluating results produced by the fitting method: the model fits
the data at least as well as is reported in the figures for each
experiment and alternative methods can only improve on these.

The Effects of Changing Single Parameters

Figure A1 shows predictions from the model for the mean
parameter values from Experiment 1 (Tables 1, 2, and A1) with the
second drift rate (31.3). The plots show the results of changing
single model parameters to a high and a low value (except mean
nondecision time which only produces a shift in RTs). The terms
correct responses and error responses are shorthands for the re-
gions A and T, respectively, in Figure 2.

A. Drift rate, d (the values were 10 and 50): Increases in
drift rate produced more peaked distribution of re-
sponses over position with more responses in the tail.
There was also an increase in mean RT over position
by over 200 ms. Errors were slower than correct
responses for the high drift rate but errors were about
as fast as correct responses for the low drift rate. The
change in the 0.1 quantile RT was modest relative to
the 200 ms–300 ms change in mean RT.

B. Boundary setting, a (the values were 11.2 and 19.2):
Increasing the value of a produced a modest increase
in the peak of the distribution of responses over posi-
tion but a large increase in mean RT. The 0.1 quantile
RT increased substantially, by over 200 ms, and mean
RT changed by over 300 ms. Errors were slower than
correct responses for the high boundary setting, but
about as fast for the low boundary setting. Boundary
setting and drift rate affect performance in the same
way as the corresponding parameters for the two-
choice model.

C. Across-trial variability (the range) in drift rate, sd (the
values were 0.01 and 1.80): Increases in the range
produced similar behavior as for the two-choice

model. Error responses became slower than correct
responses with little change in the distribution of
choices over position (cf., accuracy in the two-choice
model).

D. Across-trial variability in boundary setting, sa (the
values were 1. and 12.): Greater trial-to-trial variabil-
ity in the boundary setting produced shorter error RTs
relative to correct RTs, again, similar to the two-
choice model. Because the SCDM is a linear model,
trial-to-trial variability in the boundary with a fixed
starting point produces identical behavior to the same
trial-to-trial variability in the starting point with a
fixed boundary.

E. Gaussian process kernel parameter, r (the values were
9.0 and 19.0 degrees): Increases in this parameter had
little effect on the distribution of responses across
position, but produced longer RTs for larger values of
the parameter. If there is greater spatial variability
(more peaks and troughs, the 1D analog of Figure
15D), there is more chance for a process at some small
range of locations to hit the boundary relative to pro-
cesses with less spatial variability (fewer peaks and
troughs, the 1D analog of Figure 15F). As the kernel
parameter became larger, errors tended to become
slower than correct responses.

F. Width of the drift rate distribution, sw (the values were
5.0 and 9.0): As this became larger, the distribution of
responses across position became wider with a smaller
peak and RTs became longer (because the height be-
came smaller).

G. Range in nondecision time, st (the values were 3 and
73 ms): This had little effect on performance and
could possibly be dropped from modeling for the tasks
with short RTs in this article (especially those with
nondecision time restricted to be no smaller than 175
ms). However, tasks with longer RTs may need the st

parameter to model the behavior of the leading edge of
RT distributions (cf., Ratcliff, Gomez, & McKoon,
2004). But more importantly, this parameter is in-
cluded because I subscribe to the view that encoding
and response output times could not be identical from
trial to trial.

(Appendix continues)
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Parameter Recovery
To examine parameter recovery, mean parameter values from

Experiments 1 and 3 were used to generate simulated data and then
the model was fit to these simulated data. These experiments were
chosen because the first had one central stimulus and the second
had two stimulus patches. Table A1 shows results from parameter-
recovery simulations. The mean model parameters were used to
generate 32 sets of simulated data with either 4,000 observations
per condition or 200 observations per condition. The latter mirrors
the number of observations in the data per individual subject and
reflects what I consider close to the minimum number needed for

model fitting. Table 1A shows the mean recovered parameter
values and the SDs in those parameter values. These can be
compared with the SDs across individuals (which represent indi-
vidual differences) which are reproduced from Tables 3 and 4. The
simulated data sets are generated with identical parameter values
for each set.

First, there are few consistent biases in recovered model
parameters across the two sets of parameter values. Drift rates
are slightly overestimated, but what might be a bias for some of
the parameters for Experiment 1 has an opposite bias for
Experiment 2.

(Appendix continues)

Figure A1. Predictions for the parameter values in top line of Table A1 with the value of one parameter
changed per panel. The values of the parameters changed are presented in the text. For each panel, the
distribution of responses over position and mean RTs over position are shown. The inset for the mean RT plots
show quantile RTs. The black lines in the plots are predictions for the parameter values in the top line of Table
A1, the green/light gray lines are for low values of the parameter and the dark gray/red lines are for the high
values of the parameter. See the online article for the color version of this figure.
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Second, the SDs in recovered parameters from the simulations
with identical input parameter values and 200 observations per
condition are (with a couple of exceptions) between two and five
times smaller than the SDs across subjects (i.e., individual differ-
ences). For 4,000 observations per condition in the simulated data,
the SD’s halve in most cases. It might be expected that the SD

should be reduced as the ratio of square root of the number of
observations, then most of the SDs should be reduced by a factor
of 4.5. However, the model is fit with predictions generated with
10,000 sets of simulated data per condition and the variability in
the predicted values adds variability in the recovered parameter
values reducing the ratio.

(Appendix continues)

Figure A2. Scatter plots, histograms, and correlations for SCDM model parameters for fits to simulated data
with 40,000 observations per condition. Each dot represents the parameter values for one of the 32 simulated data
sets. The identity of the comparison in each off-diagonal plot or correlation is obtained from the task labels in
the corresponding horizontal and vertical diagonal plots. The lines in the scatter plots are LOWESS smoothers
(from the R package). See the online article for the color version of this figure.
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There does appear to be a systematic bias in nondecision time
for 200 observations per condition. But this is artificial because the
lowest value of nondecision time that I allow is 175 ms. Thus, if
moderately large variability in this parameter occurs because of
low numbers of observations, fits of the model would attempt to
produce a wide difference in the nondecision time. But truncation
at 175 ms would only allow values of 175 ms and higher to be
produced and this would result in a value higher than the parameter
used to generate the simulated data (e.g., 177.5 and 177.9 for
Experiments 1 and 3, respectively).

Scaling

In the standard two-choice diffusion model, the parameters are
not all identifiable. For drift rate, boundary, starting point, and

within-trial noise (diffusion coefficient) parameters, increasing one
by some proportion and increasing or decreasing the others by the
same proportion produces identical fits. Thus, one of the model
parameters, usually the diffusion coefficient, is chosen as a scaling
parameter and fixed to some value and then the other parameters
are identifiable. The diffusion coefficient is usually chosen be-
cause it reflects noise in the accumulation process that is typically
assumed not to change with the strength of the stimulus (cf., Smith
& Ratcliff, 2009).

In the SCDM, I have chosen the same parameter to scale the
other parameters against, namely the value of within-trial noise.
There are two dimensions for Gaussian process noise, the evidence
dimension (vertical) and spatial dimension (horizontal, which is
controlled by the kernel parameter). The model parameters are

(Appendix continues)

Figure A3. The same plots as in Figure A2 but for simulated data with 200 observations per condition. See the
online article for the color version of this figure.
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scaled with respect to the evidence dimension. A different issue
that is related to the scaling issue is how to change the spatial and
temporal step sizes in the model simulation. Model parameters can
be scaled so that if the steps are made smaller, parameters can be
adjusted to produce the same fits subject to variability in the
simulations that generate predictions. Note that there may be some
small biases if the time or spatial step sizes are too large.

It is plausible that other parameters are subject to scaling issues.
I tried fixing some of these (such as the kernel parameter, r, or the
SD in the evidence distributions, sw), but this resulted in fits that
got considerably worse as the value of the parameter moved away
from the value in Table 1A. In fact, changing the kernel parameter
to half the value in Table 1A produced goodness-of-fit values that
were numerically 10 times worse. This suggests that it is not
possible to replace a pair of model parameters with one parameter
that has the same function as both of them.

Correlations Among Parameter Values

In interpreting results from model fitting, it is important to
understand covariation among model parameters that are charac-
terized by correlations in the parameters across sets of simulated
data. Random variation in data can lead to changes in two or more

parameters to compensate and this can lead to correlations in the
parameters. An example of compensation be seen in linear regres-
sion. Figure 5 (Ratcliff & Tuerlinckx, 2002) shows how random
variation in data (bottom panel), especially at the two ends of the
line, produces increasing intercept and decreasing slope (or vice
versa) which produces a high negative correlation (�0.85) be-
tween slope and intercept (top panel). In the two-choice diffusion
model, Ratcliff and Tuerlinckx (2002, Figure 7) show how random
variation in one quantile RT would produce compensatory changes
in other model parameters. Table 3 and Figure 6 (Ratcliff &
Tuerlinckx, 2002) show some quite large correlations between
different two-choice diffusion model parameters. However, they
point out that the SDs in the recovered parameter values are much
smaller than the SDs across individuals and so they have little
impact on parameter estimates for the group means and for indi-
vidual difference analyses for the two-choice diffusion model.

Figure A2 and A3 show correlations and scatter plots of param-
eter values for fits of the model to the two simulated data sets in
the second and third lines of Table A1. For these simulations, there
were three stimuli as in the experiment (three drift rates), and
4,000 observations per stimulus condition, and 200 observations
per condition.

(Appendix continues)

Table A1
Means and SDs in SCDM Parameters From Simulation Studies

Data set Param Ter st a sa sw r sd d1 d2 d3 d4 G2

Experiment 1

Mean

177.5 33.1 15.4 5.9 37.0 14.0 0.859 42.7 31.3 16.7 89.2
Sim. data N � 4000 176.0 26.6 14.1 4.2 36.7 20.6 0.721 44.8 33.5 18.5 54.4
Sim. data N � 200 181.0 25.1 13.8 4.4 37.6 22.9 0.761 46.4 34.5 18.8 37.2

Experiment 3 177.7 48.1 12.3 5.5 26.0 34.0 0.821 26.3 12.2 14.6 5.1 102.1
Sim. data N � 4000 179.9 58.3 12.7 6.3 25.8 31.5 0.917 27.2 13.1 15.1 6.0 46.2
Sim. data N � 200 182.8 55.7 12.7 6.3 26.0 31.1 0.945 28.3 14.2 15.7 6.6 34.4

Experiment 1

SD

12.4 13.2 2.6 2.5 2.4 10.0 0.47 11.2 5.9 3.9
Sim. data N � 4000 2.0 1.9 0.2 0.4 0.5 1.0 0.06 1.0 0.8 0.5
Sim. data N � 200 4.9 2.6 0.3 0.5 1.5 2.0 0.10 2.7 2.3 1.6

Experiment 3 20.7 15.7 1.8 0.9 2.2 5.5 0.25 3.2 2.6 2.8 2.4
Sim. data N � 4000 4.9 5.0 0.2 0.2 0.6 1.6 0.07 1.1 0.9 0.6 0.5
Sim. data N � 200 8.4 5.5 0.4 0.2 1.2 3.2 0.13 2.1 2.1 1.2 1.4

Note. Ter is nondecision time, st is the range in nondecision time, a is the boundary setting, sa is the range in the boundary setting, sw is the SD in the
drift rate distribution, r is the Gaussian process kernel parameter, sd is the range in the height of the drift rate distribution, di is the height of the drift rate
function, and G2 is the multinomial maximum likelihood statistic.
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For the fits to the 4,000-observation simulated data, there were
large correlations between the boundary setting (also trial-to-trial
variability in the boundary setting), the Gaussian process kernel
parameter, and between-trial variability in the height of the drift-
rate distribution. The interpretation of these is straightforward:
Decreasing the kernel parameter makes noise more bumpy over
spatial position and so provides more opportunities for the process
to hit the boundary quickly at some point, because there are more
points or regions on the function fluctuating randomly. To com-
pensate for this decrease in RT, boundary setting has to be higher.
Also, more variability (height) in the drift rate function can pro-
duce more faster responses and to compensate, the boundary
setting has to be higher. Although these examples have one direc-
tion of causality, bidirectional explanations can be shown for each
pair of the three parameters. In addition to these correlations, there
are two other large correlations, between the boundary setting and
trial-to-trial variability in the boundary setting, and between the
width of the drift rate distribution and the value of its height.
The first of these can be seen as a multiplicative scaling effect (the
higher the boundary, the more variability). The second results from
the requirement that probability density has to be assigned to the
A, B, and T areas. If the width of the drift rate function increased,
there would be less probability density in the A area and the height
of the drift rate function would be increased to compensate.

For the fits to the 200-observation simulated data, some of the
correlations that were large for the 4,000-observation simulated
data are small. The only large ones are the correlations between
boundary setting and the kernel parameter and between the drift
rate function height and width. The interpretations are the same as
above. Also, because of the lower numbers of observations, there
is increased variability in parameter estimates and this might be
partly responsible for the reductions in the correlations.

Similar results were obtained for the simulations with the pa-
rameter values for Experiment 3. High correlations between the

kernel parameter and boundary setting and between the height and
width of the drift rate function were obtained. The correlation
between the kernel parameter and trial-to-trial variability in the
drift rate function was small for both simulated data sets.

Only one drift rate is shown in Figures A2 and A3. However, for
Experiments 1 and 3, respectively, the means over the combina-
tions of pairs of the three drift rates correlate 0.52 and 0.77 with
the 4,000 observations per condition, and 0.36 and 0.34 with 200
observations per condition.

Summary

In conclusion, the parameters of the model have identifiable
effects on behavioral data. Error RTs (T areas, Figure 2) can be
longer than correct RTs if across-trial variability in the height of
the drift rate distribution is large and they can be shorter than
correct RTs if across-trial variability in the boundary setting is
large. This is similar to the behavior of the two-choice model with
changes in the sizes of analogous parameters. Parameter recovery
with 200 observations per condition (about the same number as in
an experiment) is relatively unbiased and variability in model
parameters is moderately to much lower than variability across
individuals. Finally, there are correlations between model param-
eters that are readily interpretable, but because the variability
across individuals is larger than the variability in the parameter
from simulated data, these tradeoffs are not of major concern. The
most important point here is that the model is fit to data of
individual subjects and the fits show the matches between theory
and data for these individuals.
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