
Examining Aging and Numerosity Using an Integrated Diffusion Model

Roger Ratcliff and Gail McKoon
The Ohio State University

Two experiments are presented that use tasks common in research in numerical cognition with young
adults and older adults as subjects. In these tasks, one or two arrays of dots are displayed, and subjects
decide whether there are more or fewer dots of one kind than another. Results show that older adults,
relative to young adults, tend to rely more on the perceptual feature, area, in making numerosity
judgments when area is correlated with numerosity. Also, convex hull unexpectedly shows different
effects depending on the task (being either correlated with numerosity or anticorrelated). Accuracy and
response time (RT) data are interpreted with the integration of the diffusion decision model with models
for the representation of numerosity. One model assumes that the representation of the difference depends
on the difference between the numerosities and that standard deviations (SDs) increase linearly with
numerosity, and the other model assumes a log representation with constant SDs. The representational
models have coefficients that are applied to differences between two numerosities to produce drift rates
and SDs in drift rates in the decision process. The two tasks produce qualitatively different patterns of
RTs: One model fits results from one task, but the results are mixed for the other task. The effects of age
on model parameters show a modest decrease in evidence driving the decision process, an increase in the
duration of processes outside the decision process (nondecision time), and an increase in the amount of
evidence needed to make a decision (boundary separation).

Keywords: integrated diffusion model, approximate number system, response time and accuracy, aging
and numeracy, perceptual variables and aging

Many researchers have found that numeracy abilities decline
with age, especially in tasks that assess high-level reasoning-type
decision-making (e.g., financial and health literacy, risk assess-
ment, drug choice, Boyle et al., 2013; Delazer, Kemmler, &
Benke, 2013; Finucane & Gullion, 2010; Li et al., 2015; Szrek &
Bundorf, 2013; arithmetic, Charron, Fischer, & Meljac, 2008;
Wood & Hanock, 2012; a charity-giving survey, Bruine de Bruin,
McNair, Taylor, Summers, & Strough, 2015; subjective numeracy,
Fraenkel, Cunningham, & Peters, 2015). Yet others have found
that these skills are maintained, especially lower-level skills (e.g.,
estimation, Gandini, Lemaire, & Dufau, 2008; Gandini, Lemaire,
& Michel, 2009; Lemaire & Lecacheur, 2007; number discrimi-
nation with one-digit numbers, Trick, Enns, & Brodeur, 1996;
subitizing, Watson, Maylor, & Bruce, 2005; Watson, Maylor, &
Manson, 2002). Across these studies, a variety of skills in a variety
of tasks were examined, with high-level tasks showing more
consistent declines. If numeracy abilities are not a single skill, we
might expect that different tasks and different aspects of numer-
osity might be preserved or might decline with age. Of clinical

interest, numeracy impairments are found across all ages for pa-
tients with mild cognitive impairment (Delazer et al., 2013; Grif-
fith et al., 2003; Kaphingst, Goodman, MacMillan, Carpenter, &
Griffey, 2014; Pertl et al., 2014; Triebel et al., 2009), which is
often a precursor of Alzheimer’s disease, and also patients with
early Alzheimer’s disease (Maylor, Sheehan, Watson, & Hender-
son, 2008; Maylor, Watson, & Muller, 2005).

Some studies have examined age differences in adults using
low-level numerosity tasks of the kind we used in this study (e.g.,
Cappelletti, Didino, Stoianov, & Zorzi, 2014; Halberda, Ly,
Wilmer, Naiman, & Germine, 2012). Halberda et al. used a nu-
merosity discrimination task in which an array of blue and yellow
dots was displayed, and subjects were asked to decide whether
there were more blue or more yellow dots. The dots were selected
randomly from several sizes, and they were displayed for 200 ms.
The data were collected from the Internet for over 10,000 individ-
uals. Results showed that accuracy (the Weber fraction) decreased
with age from about age 30 on up, and response time (RT)
increased with age from about age 18 on up. Cappelletti et al.
performed a similar study with the same blue-dot and yellow-dot
displays. In one condition, dots were selected randomly from
several sizes such that area was proportional to numerosity, and in
another condition, the total area of blue dots was equated to the
total area of yellow dots. This was done by making the area of each
of the dots for the more-numerous color smaller on average than
those for the less-numerous color. Their results showed no aging
effect for accuracy on the proportional-area condition but did for
the equal-area condition. Also, RTs differed between the two
conditions for older adults but only to a small degree for young
adults.
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Simple numerosity discrimination tasks have also been impor-
tant in the developmental literature because performance has been
predictive of math skills for children (e.g., Halberda et al., 2012;
Halberda, Mazzocco, & Feigenson, 2008). Furthermore, training
on these tasks has been found to improve math performance for
children (Park & Brannon, 2013, 2014). Results such as these
suggest it is worth using these tasks to examine whether there are
declines in numerosity processing in aging and whether they can
be usefully explored with quantitative models. This is accom-
plished in this article by showing that our models apply to older
adults, and this allows us to examine aging effects by comparing
model parameters for different age groups. In our experiments, we
used two groups of older adults, 60–69- and 70–90-year-olds, and
when we use the term “older adults,” we mean this to apply to both
groups.

In the experiments for this article, we examined the performance
of college-age adults, 60–69-year-old adults, and 70–90-year-old
adults. In Experiment 1, subjects were to decide whether there
were more blue dots than yellow dots in a single array (B/Y task,
Figure 1A), and in Experiment 2, subjects were to decide whether
there were more yellow dots in the left or right of two horizontally
spatially separated arrays (L/R task, Figure 1B). The standard
findings (replicated in our experiments) are that it is easier to
discriminate 10 from 20 objects than 15 from 20 (accuracy de-
creases as the difference in two numerosities decreases; the “dis-
tance” effect) and that it is easier to discriminate 10 objects from
20 than 60 objects from 70 (accuracy decreases as numerosities
increase; the “size” effect). In research using tasks like ours,
“easier” has almost always meant more accurate. For college-age
adults (Ratcliff & McKoon, 2018), the patterns of accuracy and
RTs were qualitatively different for the two tasks, and the exper-
iments here examined whether older adults show the same pat-
terns.

Two popular, and competing, models have been proposed to
explain the size and distance effects (Dehaene & Changeux, 1993;
Gallistel & Gelman, 1992). Both have been developed in the
context of a postulated “approximate number system” (ANS) that
provides representations of numeracy to cognitive processes, with
the representation of each number normally distributed on a nu-
merosity scale. The differences between the models lie in their
assumptions about scale and variability. In one (the “linear”
model), numerosity is represented on a linear scale, and the vari-
ability around numerosities (i.e., their standard deviations [SDs])
increases linearly as numerosity increases. In the other (the “log”
model), numerosity is represented on a logarithmic scale with
equal variability around all numerosities (Figure 1C). Both models
conform to Weber’s law, that is, the difference in two numerosities
divided by the total number is constant (Dehaene & Changeux,
1993; Gallistel & Gelman, 1992; see Zorzi, Stoianov, & Umilta,
2005, for a review).

It has been claimed that the two models cannot be discriminated
on the basis of empirical data (e.g., Dehaene, 2003), but that
argument has been based solely on accuracy, not RTs. In fact, the
models can be discriminated when RTs are taken into account.
Ratcliff and McKoon (2018) integrated the ANS representation
models with Ratcliff’s diffusion decision model (Ratcliff, 1978;
Ratcliff & McKoon, 2008; Figure 1D and Appendix A). In the
experiments presented here, stimuli varied on two dimensions,
numerosity and area. In the B/Y task, we varied the overall areas

of the blue and yellow dots, the differences in numerosity between
the blue and yellow dots, and the overall numerosity of both kinds
of dots. For the B/Y task, Ratcliff and McKoon (2018) found that
as overall numerosity increased, for a fixed difference of 5 be-
tween the numerosities of the blue and yellow dots, not surpris-
ingly, accuracy decreased—but surprisingly, RTs also decreased.
It was not the case that RTs increased with difficulty (i.e., overall
numerosity). As we show soon, the linear model can account for
this pattern of data, but the log model cannot. For the L/R task,
stimuli varied in numerosity and area in the same way as for the
B/Y task. Ratcliff and McKoon found that as overall numerosity
increased, with a fixed difference between the numerosities of the
two arrays, accuracy decreased and RTs increased, the usual
relation between accuracy and RTs. The log model could account
for this pattern of data, and the linear model could not.

In both the B/Y and L/R experiments, there were six possible
dot sizes, and each stimulus had a mixture of sizes. For both
experiments, there were two conditions for the area variable. In
one, the size of each dot was selected randomly from the six
possible sizes, and this means that the total area of the dots of one
color (B/Y task) or one side (L/R task) was on average propor-
tional to the number of dots. For the second condition, dot sizes
differed in the stimulus display, but the total area of the dots was
equal for the dots of the two colors (B/Y) or both sides (L/R).

The experiments and model-based analyses were designed to
address five issues of importance for older adults’ numerical
cognition: whether the older adults produced the same patterns of
results as the young adults, whether the older adults showed a
deficit in the numerosity information available to them to make
decisions relative to young adults, whether the older adults relied
on area (a perceptual variable) more than the young adults in
making numerosity decisions, whether young and older adults
were affected by the perceptual variable convex hull (this is
discussed in detail in a later section), and whether there were
consistent individual differences across the tasks. In the discus-
sion, we suggest the following way of understanding the conclu-
sions: For the B/Y task, the linear integrated model applies, and we
argue that this is because differences in the number of dots are all
that can be used to make decisions. For the L/R task, in Ratcliff
and McKoon (2018), the log integrated model applied, and it was
argued that this is because approximate magnitudes for the two
arrays can be separately computed. However, the results presented
here are ambiguous compared with the results from Ratcliff and
McKoon, and there is no clear-cut winner, but there is a tendency
for very old adults to use differences rather than separate repre-
sentations. In the next sections, we describe the ANS models and
the diffusion model and how they are integrated.

The ANS-Diffusion Models

In the ANS-diffusion models, drift rate (evidence driving the
accumulation process) and the SD in drift rate across trials are
provided by the ANS model (Figure 1C). Boundary settings,
nondecision times, and the ranges in starting point and nondecision
time come from the diffusion model (see Appendix A).

Figure 1C shows how drift rates for the two models are com-
puted. For the linear model, drift rate (v) is a coefficient (v1)
multiplied by the numerical difference between the blue and yel-
low dots for the B/Y task and the numerical difference between the
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Figure 1. Panel A: Examples of stimuli for Experiment 1, the B/Y task. Panel B: Examples of stimuli for
Experiment 2, the L/R task. Panel C: Models of numerosity representation and the equations that translate numerosity
to drift rate and across-trial variability in drift rate. Panel D: Illustration of the diffusion decision model. The top panel
of 1D shows the decision process with three simulated paths and with model parameters. The bottom one shows the
additional components of the decision model that produce the total RT. SD � standard deviation; RT � response time.
v is drift rate, v1 is the drift rate coefficient, N1 and N2 are the numbers of dots in the two arrays, � is across trial
variability in drift rate, �1 is the across trial variability coefficient, �0 is the constant across trial variability in drift rate,
and Ter is nondecision time. See the online article for the color version of this figure.
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number of dots on the left and those on the right for the L/R task.
For the log model, drift rate is the difference in the logs of two
numerosities multiplied by a coefficient (v1). For both models, the
coefficient of drift rate is most related to accuracy and so it is most
likely to be most related to the numerosity abilities of individuals;
a larger coefficient gives higher accuracy. Figure 1C also shows
how across-trial SD in drift rate (�) is computed. For the linear
model, it is a constant (�0) plus a coefficient (�1) multiplied by the
square root of the sum of squares of the two numerosities (the
square root of the sum of squares is how SDs are combined;
variances are added).

For the log model, we might assume that � remains constant as
numerosity increases, as in the log model for accuracy (e.g.,
Dehaene, 2003). However, there is no guarantee that an ANS
model combined with the diffusion model would fit data the best
with a constant value of �. Therefore, we gave our log ANS
diffusion model the same flexibility in across-trial variability as
the linear model, with the same expression for � as for the linear
model. Then, when the model is fit to data, the result could be a
constant value of � as numerosity increases (i.e., with �1 near
zero) or a value of � that increases with numerosity.

This has the advantage of giving the linear and log models the
same number of parameters, and this makes model selection less
ambiguous because different measures such as Akaike’s informa-
tion criterion (AIC) and Bayesian information criterion (BIC) give
the same results. The expressions for AIC and BIC are a likelihood
(we use a multinomial likelihood measure for model fitting that is
based on fits to accuracy values and RT quantiles; see later) minus
a term based on the number of parameters. If the number of
parameters is the same, then model selection through AIC, BIC,
and likelihood is the same. Thus, the only difference between our
linear and log models was that the drift rate assumption was
different: linear versus log. We examine this issue in more detail
in Appendix C including an analysis in which we fit the log model
with across-trial SD in drift rate set to a constant that reduces the
number of parameters by one and allows us to use AIC and BIC in
model comparison.

With the standard diffusion model with no representation model
to provide drift rates, there would be 20 different drift rates and 20
different across-trial SDs in drift rates for the conditions of both
experiments (10 equal-area conditions and 10 proportional-area
conditions). However, in each integrated model, drift rates (and
their SDs) are set by the representation model. For example, there
would be one coefficient for the 10 equal-area conditions and one
for the 10 proportional-area conditions, plus two parameters for
across-trial variability in drift rate (a coefficient to multiply the
square root of the sum of the squared numerosity values plus a
constant value; Figure 1C). If the equal-area conditions are more
difficult than the proportional-area ones, then the drift-rate coef-
ficient would be smaller for the equal-area conditions.

Overall, for the integrated models for both experiments, there
are six free parameters plus one drift-rate coefficient for each of
the area conditions (equal and proportional). From the diffusion
model, there are the distance between the boundaries, nondecision
time, and the ranges in the starting point and nondecision time. For
the experiments presented here, the starting point can be set to
halfway between the two boundaries because “blue” responses to
blue stimuli were symmetric in accuracy and RTs to “yellow”
responses to yellow stimuli in the B/Y task and “left” responses to

left stimuli were symmetric with “right” responses to right stimuli
in the L/R task. We used this symmetry to combine data from the
pairs of conditions to provide half the number of conditions and
double the number of observations per condition.

Why Does the Linear Model Produce Shorter RTs as
Accuracy Decreases?

To illustrate how the linear ANS model produces shorter RTs as
accuracy decreases when there is a constant numerosity difference,
we used the simple case for which the boundaries of the diffusion
process are equidistant from the starting point. We used two values
of across-trial SD in drift rate, one large and one small, to show
how the RTs shorten and accuracy decreases as across-trial SD in
drift rate increases. In both examples in Figure 2, the distributions
of across-trial variability were normal and centered at 0.1. The red
solid line represents the larger across-trial SD in numerosity, and
the blue dashed line represents the smaller across-trial SD in
numerosity. Two values of drift rate were selected from each
distribution at about plus or minus one SD, �0.05 and 0.25 for the
larger numerosity and 0.05 and 0.15 for the smaller.

Figures 2A and 2B show the RT distributions for correct and
error responses, with the two values of v for the smaller numerosity
(Figure 2A) and the two values for the larger numerosity (Figure
2B). For the smaller numerosity, the 0.15 and 0.05 drift rates
produce accuracy values of 0.86 and 0.65, respectively, which
average to 0.76, and they produce RTs of 685 ms and 748 ms for
correct responses, which, when weighted by their probabilities
(0.86 and 0.65), average to 717 ms. For the larger numerosity, the
0.25 and �0.05 drift rates produce accuracy values of 0.95 and
0.35, which average to 0.65. They produce RTs of 616 ms and 748
ms for correct responses, which, when weighted by their proba-
bilities (0.95 and 0.35), average to 652 ms. Thus, accuracy is lower
for the larger numerosity, 0.65, than the smaller, 0.76, and this
produces the counterintuitive result: RTs are shorter for the larger
numerosity, 652 ms versus 717 ms. The computations for RTs for
errors are shown at the bottom boundary in the figures.

To explain this generally, when the distribution of drift rates has
a large SD, then drift rates in the left tail are negative (Figure 2B).
Responses are slower than responses in the right tail at the same
distance from the mean, but they have lower probabilities of being
correct (because their drift rate is toward the error boundary). This
means that fast correct responses in the right tail are weighted
more heavily (there are more of them) than slower responses in the
left tail, which leads to overall faster responses. As numerosity
increases, the SD increases, which leads to lower accuracy and
faster responses.

Experiments

In the two experiments, we collected data from three groups of
subjects, which allowed us to compare the log and linear ANS-
diffusion models for the B/Y task (Experiment 1) and the L/R task
(Experiment 2) as a function of age. The same subjects were tested
in both experiments, which allowed individual differences in
model parameters (correlations) to be compared across the two
tasks.
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Subjects

Sixty older adults, ages 60 to 90, were recruited from senior
citizen centers in the Columbus area and paid $18 per session.
Thirty had ages between 60 and 69, and 30 had ages between 70
and 90. We collected data from the Mini-Mental State Examina-
tion (Folstein, Folstein, & McHugh, 1975) and the Vocabulary and
Matrix Reasoning subtests of the Wechsler Adult Intelligence
Scale–Third Edition (Wechsler, 1997). The subjects met the fol-
lowing criteria: a score of 26 or above on the Mini-Mental State
Examination, no evidence of disturbances in consciousness or
medical or neurological diseases that could impair cognition, no
head injuries with loss of consciousness, and no current psychiatric
disorder. Their static visual acuity was screened to ensure a min-
imum corrected visual acuity of 20/30 using a Snellen “E” chart.
The 30 young adults were recruited from The Ohio State Uni-

versity student body and were paid $12 per session for partic-
ipation. All participants provided informed consent under a
protocol approved by The Ohio State University’s institutional
review board.

Each subject took part in two sessions, with approximately three
fourths of each session completing an experiment and one fourth
collecting demographic information and IQ measures. The order of
the experiments was randomized across subjects. The subjects
were being tested in several experiments, and for the young adults,
60–69-year-olds, and 70–90-year-olds, the B/Y task was the first
tested on eleven, eight, and eight subjects, respectively. The L/R
task was the first tested on four, six, and six subjects (for the three
subject groups), and some other task preceded these two tasks for
15, 16, and 16 subjects, respectively. Demographic and IQ scores
are shown in Table 1.

Figure 2. An illustration of how the predictions of the linear model arise. The distributions of drift rate (across
trials) for high numerosity (wide solid distribution) and low numerosity (narrow dashed distribution) are shown
at the tops of the panels. To illustrate averaging over these distributions, two drift rates are chosen (v1 and v2),
and accuracy values and mean response times (RTs) are shown. Accuracy for the mixture is the average of the
two accuracy values, and mean RT is a weighted sum of the two mean RTs. Panel A shows the averages for
the low-standard-deviation (SD) condition, and Panel B shows the averages for the high-SD condition with the
averages for correct responses. For completeness, error responses are also shown; note that for boundaries
equidistant from the starting point, for a single drift rate, correct and error RTs are the same. Pr is probability,
a is boundary separation and z is the starting point of the process. See the online article for the color version of
this figure.

Table 1
Subject Characteristics

Measure

Younger
adults

60–69-year-
olds

70–90-year-
olds

M SD M SD M SD

Age 20.5 2.0 63.5 2.7 75.3 15.7
Years education 13.7 1.6 15.4 2.2 15.7 2.5
MMSE 29.3 0.9 29.1 0.9 28.9 1.1
WAIS-III Vocabulary (scaled score) 14.2 2.4 14.0 2.2 13.8 2.2
WAIS-III Matrix Reasoning (scaled score) 13.7 2.5 12.8 2.3 13.1 3.1

Note. MMSE � Mini-Mental State Examination; WAIS-III � Wechsler Adult Intelligence Scale—Third
Edition.
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Apparatus and Stimuli

The stimuli were presented on ASUS Chromebook computers.
These have an 11.6-in. diagonal screen with a width of 25.7 cm
and height of 14.5 cm. The resolution was 1366 � 768 pixels. The
dots had radii of 6, 8, 10, 12, 14, and 16 pixels, and one pixel was
0.0188 cm per side, which corresponds to 0.0203° at 53-cm
viewing distance. Within an array, the minimum distance between
dot edges was five pixels, and the maximum was 360 pixels.

For the B/Y stimuli (Experiment 1; Figure 1B), the array of dots
was displayed on a gray pedestal of 640 � 640 pixels. For the L/R
stimuli (Experiment 2; Figure 1C), the two arrays were displayed
side by side with a thin line between them. The minimum distance
between dots in the two patches was 80 pixels, and the stimuli
were presented on a pedestal of 1262 � 640 pixels.

Method

There were 20 blocks of 100 trials for both experiments, giving
a possible total of 2,000 observations per subject. Subjects initiated
each block of trials by pressing the space bar on the keyboard. The
first block of trials and the first response in each block were
discarded, which gave a total of 1,881 possible trials per session.
Subjects were tested for about 40 min on each of these tasks, and
they usually did not finish all the possible trials available (because
demographics and IQ were collected in the remaining time of the
hour testing time). This resulted in mean numbers of responses for
the B/Y and L/R tasks, respectively: for young adults, 1,480 and
1,575; for 60–69-year-old adults, 1,412 and 1,597; and for 70–
90-year-olds, 1,352 and 1,427. Ratcliff and Childers (2015; Figure
2) conducted an analysis of diffusion model parameters as a
function of the number of trials in two experiments (numerosity
discrimination and lexical decision) and found little difference in
model parameters even with differences in the numbers of obser-
vations as large as 2:1.

Stimuli in Experiments 1 (B/Y) and 2 (L/R) were presented for
300 ms and 250 ms, respectively, and then the screen returned to
the background color. The short display time was intended to
reduce the possibility of subjects using slow, strategic search
processes to make their decisions. Subjects were instructed to
respond as quickly and accurately as possible, and responses were
collected by key presses on the Chromebook keyboard using the
“/” and “z” keys, one for each choice. For both tasks for practice
and training, there were four trials in which a stimulus was

presented until the response key was pressed. For these trials, the
research assistant administering the task instructed the subject
about the nature of the stimuli. For each of the four trials, a
message indicated what kind of stimulus it was (e.g., “an example
of a large number of yellow dots”). As noted above, the first block
of trials was considered practice and eliminated.

In both experiments, if an RT was longer than 1,500 ms, the
message “too slow” was presented for 500 ms. If an RT was
shorter than 280 ms, a “too fast” message was presented for 1,500
ms. Accuracy feedback in the form of the word “correct” or “error”
was presented on each trial for 250 ms, followed by a blank screen
for 250 ms.

The stimuli in Experiment 1 were blue and yellow dots inter-
mingled in a single array (B/Y task; Figure 1B), and subjects
decided whether there were more blue or more yellow dots. The
total numbers of dots and the differences between them varied
across conditions. For a difference of five, the combinations were
15/10, 20/15, 25/20, 30/25, and 40/35. For a difference of 10, they
were 20/10, 30/20, and 40/30, and for a difference of 20, they were
30/10 and 40/20. These numerosities were chosen to produce a
range of accuracy values from low to high.

The areas of both the blue and yellow dots were either randomly
selected from the six radii, in which case area was proportional to
the number of dots, or the total area of the two colors was
controlled to be equal to the total area that would be obtained from
25 dots randomly selected. This means that the area of each of the
dots in the smaller number was larger on average than the area of
each of the dots in the larger number.

The stimuli in Experiment 2 were side-by-side arrays of dots, all
of them yellow, and the task was to decide whether there were
more dots on the left or the right (L/R task; Figure 1C). There were
the same combinations of numbers of dots and area manipulations
as for Experiment 1. In both experiments, the 20 conditions rep-
resented by the 10 numerosities and two area conditions were
presented five times in a block of 100 trials in random order.

Results

In this section, we present the results of the experiments in three
ways. First, the data are shown as plots of RTs for correct re-
sponses against the corresponding proportions of correct respons-
es; these display the main features of the RTs and accuracy data.
Table 2 shows mean accuracy and RT across subjects and numer-
osity conditions for both experiments. Accuracy shows a decrease

Table 2
Accuracy, Drift Rate, and Mean RT as a Function of the Area Variable

Task and
age

Proport.-area
prob.

Equal-area
prob. vp ve

Proport.-area
mean RT

Equal-area
mean RT

B/Y young 0.813 0.699 0.0319 0.0169 604 635
B/Y 60–69 0.792 0.633 0.0287 0.0099 728 796
B/Y 70–90 0.725 0.579 0.0233 0.0070 710 752
L/R young 0.903 0.859 1.1220 0.9072 454 465
L/R 60–69 0.892 0.817 1.1805 0.8033 537 566
L/R 70–90 0.868 0.776 0.9446 0.5965 564 595

Note. Proport. � proportional; prob. � probability; RT � response time; B/Y � Experiment 1; L/R �
Experiment 2. vp is the drift-rate coefficient for the proportional-area condition, and ve is the drift-rate coefficient
for the equal-area condition. The drift-rate coefficients are for the linear model for the B/Y task and the log
model for the L/R task.
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with age, a decrease from the proportional-area condition to the
equal-area condition, and an increase in the size of the area
difference with age. There are parallel effects for mean RT with an
increase with age, an increase from the proportional-area condition
to the equal-area condition, and with the difference in mean RT for
the two area conditions increasing with age. The second way
results are presented is in the fits of the models to the data, which
are displayed in quantile-probability plots (for both correct and
error responses) with predictions and data averaged across subjects
in exactly the same way. The third way results are presented is in
plots of predictions against data for each subject and each condi-
tion for accuracy and the 0.1, 0.5, and 0.9 quantile RTs. These
show whether there is any serious deviation between theory and
data for individual subjects or individual conditions. The mean
values of the model parameters and the mean G2 statistic over
subjects are reported in Table 3. Statistical analyses are given for
the data (accuracy and mean RTs) and the model parameters.
These focus on aging effects and the effects of the area variable.
Finally, we discuss what the models tell us about decision-making
in numerosity tasks.

For all the analyses, we removed trials with RTs shorter than
300 ms and longer than 4,000 ms for the B/Y and L/R tasks for the
older adults, 300 ms and 2,000 ms for the B/Y task for young
adults, and 250 ms and 2,000 ms for the L/R task for young adults.
The lower cutoff was set at 250 ms instead of 300 ms because
accuracy was above chance for many of the young adults at 300 ms
for the L/R task. For the B/Y and L/R tasks, for young adults, the
proportions of responses eliminated were 0.019 and 0.016, respec-
tively; for 60–69-year-old adults, the proportions were 0.005 and
0.012, respectively; and for 70–90-year-old adults, the proportions
were 0.017 and 0.016, respectively.

Accuracy and RT Results

Figure 3 shows latency-probability plots of the data for correct
responses (Audley & Pike, 1965; Ratcliff, Van Zandt, & McKoon,
1999; Vickers, Caudrey, & Willson, 1971). Mean RTs for correct
responses are plotted against accuracy, that is, response propor-

tions, for equal-area conditions (the Xs) and proportionate-area
conditions (the Os). As difficulty decreases, the proportion of
correct responses increases. The lines connect data points that have
the same difference in numerosities: A line of five points repre-
sents the 10/15, 15/20, 20/25, 25/30, and 35/40 conditions; a line
of three points represents the 10/20, 20/30, and 30/40 conditions;
and a line of two points represents the 10/30 and 20/40 conditions.

For the B/Y task, the three groups of subjects show the same
pattern of results (Figure 3A�3C). As expected, accuracy de-
creased as difficulty increased. Specifically, accuracy decreased
both as the total of the numerosities of the dots of the two colors
increased (e.g., from 15/10 to 40/35) and as the difference between
the numerosities of the dots of the two colors decreased (e.g., from
the conditions with a difference of 20, to 10, to five), the standard
results with these manipulations. Also as expected, equal-area
discriminations were more difficult than proportional-area dis-
criminations.

What was not expected (but replicates the results in Ratcliff &
McKoon, 2018) is that RTs decreased as difficulty increased for a
constant numerosity difference and increasing total numerosity.
The usual and intuitive effect is that RTs increase as difficulty
increases. Figures 3A, 3B, and 3C illustrate the counterintuitive
result. For numerosity differences of five and 10 (the lines with
five and three points), as accuracy decreased, RTs also decreased
for 10 of the 12 plots in the figures (for proportional areas for the
young adults, the plot was slightly increasing). For differences of
20, results were mixed, with four increasing and two decreasing
functions. The decrease in RTs with decreasing accuracy is ob-
tained for both area conditions and for young and older adults,
although the effect is smaller for the young adults.

The highly unexpected pattern is not obtained in almost all
studies with single stimuli changing on one dimension (although it
has been obtained in perceptual and value-based tasks in which
there are two stimuli and magnitudes and differences between the
two stimuli are manipulated; Hunt et al., 2012; Niwa & Ditterich,
2008; Ratcliff & McKoon, 2018; Ratcliff, Voskuilen, & Teodor-
escu, 2018). Here, the importance of RT data is that they give an

Table 3
Mean Values of Integrated Diffusion Model Parameters for the Three Age Groups, Two Tasks, and Two Models

Task and
age Model a Ter 100�1 sz st vp ve �0 G2 G2 �1 � 0

B/Y young Linear 0.100 0.466 0.540 0.046 0.260 0.0319 0.0169 0.023 261.4
B/Y 60–69 Linear 0.121 0.537 0.623 0.041 0.294 0.0287 0.0099 0.036 258.3
B/Y 70–90 Linear 0.117 0.518 0.715 0.052 0.277 0.0233 0.0070 0.022 263.6
B/Y young Log 0.096 0.462 0.175 0.037 0.257 0.5751 0.3054 0.091 276.2 277.6
B/Y 60–69 Log 0.117 0.529 0.326 0.030 0.291 0.5023 0.1752 0.091 275.3 281.0
B/Y 70–90 Log 0.116 0.512 0.564 0.045 0.275 0.3859 0.1088 0.072 277.2 281.4
L/R young Linear 0.091 0.367 0.781 0.054 0.173 0.0692 0.0548 0.022 258.1
L/R 60–69 Linear 0.115 0.419 0.880 0.056 0.184 0.0722 0.0489 0.066 251.8
L/R 70–90 Linear 0.112 0.422 0.784 0.049 0.169 0.0570 0.0354 0.045 243.2
L/R young Log 0.083 0.363 0.069 0.038 0.172 1.1220 0.9072 0.121 256.3 256.4
L/R 60–69 Log 0.107 0.412 0.102 0.043 0.179 1.2265 0.8311 0.212 240.4 245.6
L/R 70–90 Log 0.107 0.416 0.174 0.036 0.164 0.9446 0.5965 0.158 257.0 261.2

Note. The parameters were boundary separation a, starting point z � a/2, and mean nondecision component of response time Ter. The constant coefficient
of standard deviation in drift across trials is �0, and the coefficient that multiplies the square root of the sum of the squared numerosities is �1. Range of
the distribution of starting point is sz, and range of the distribution of nondecision times is st. vp is the drift-rate coefficient for the proportional-area
condition, and ve is the drift-rate coefficient for the equal-area condition. G2 is the multinomial likelihood statistic. The B/Y task is Experiment 1, and the
L/R task is Experiment 2.
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understanding of these numerosity tasks that is quite different from
that based on accuracy alone.

Unlike the results for the B/Y task, the L/R task shows a
pattern of results that is more like the pattern that might be
expected from single-stimulus experiments. Figures 3D, 3E,
and 3F show plots for the L/R task that are equivalent to those
from the B/Y task. In Ratcliff and McKoon (2018), the func-
tions corresponding to those in Figures 3D�3F had RTs in-
creasing as accuracy decreased for a constant numerosity dif-
ference, with increasing overall numerosity. The curves all fell
on a single latency-probability function to a good approxima-
tion. However, the results from the L/R task here are somewhat
mixed. For young adults with differences in numerosity of five,
the functions are flat for the higher accuracy values, with the
right-hand points lying a little off what looks like a single
function. For 60 – 69-year-old adults, this deviation becomes
more pronounced, with two points lying off the single function
(these are for the 15/10 conditions). For the 70 –90-year-olds,
the functions look more like those for young adults for the B/Y
task. What seems to be happening for the L/R task is a transition
in how the task is performed as a function of age, which will be
discussed later.

In the next two paragraphs, we present analyses of variance on
accuracy and mean RTs, collapsing over the different numerosity
conditions for each experiment, to examine the effects of the age
and area variables. For the B/Y task, analysis of variance on

accuracy with two factors, the two area conditions and age,
showed a significant effect of age, F(2, 87) � 17.5, p � 4.2 �
10�7, �p

2 � .153, and area, F(1, 87) � 815.3, p � 2 � 10�16, �p
2 �

.414, and a significant interaction between age and area, F(2,
87) � 7.6, p � 1.8 � 10�4, �p

2 � .008. The L/R task showed
similar effects on accuracy with significant effects of age, F(2,
87) � 9.5, p � 9.0 � 10�4, �p

2 � .117, and area, F(1, 87) � 282.0,
p � 2 � 10�16, �p

2 � .252, and a significant interaction between
age and area, F(2, 87) � 10.8, p � 6.3 � 10�4, �p

2 � .019.
Similar results were obtained for mean RTs. For the B/Y task,

an analysis of variance with the two area conditions and age
showed a significant effect of age, F(2, 87) � 8.0, p � 6.5 � 10�4,
�p

2 � .149, and area, F(1, 87) � 160.2, p � 2 � 10�16, �p
2 � .022,

and a significant interaction between age and area, F(2, 87) � 8.7,
p � 3.6 � 10�4, �p

2 � .002. The L/R task showed similar effects
on mean RT with significant effects of age, F(2, 87) � 15.0, p �
2.6 � 10�6, �p

2 � .249, and area, F(1, 87) � 105.6, p � 2 �
10�16, �p

2 � .013, and a significant interaction between age and
area, F(2, 87) � 7.4, p � .0011, �p

2 � .002.

Quantile-Probability Plots

Quantile-probability plots are a way of displaying the joint
behavior of RT distributions and accuracy. We also use them in
Figures 4 and 5 to show fits of the models to RT distributions
and accuracy values. Here, we show plots for data averaged

Figure 3. Plots of mean response time (RT) against accuracy for Experiments 1 (B/Y) and 2 (L/R). The Xs are
for equal-area conditions, and the Os are for proportional-area conditions. For panels A�D (Experiments 1 and
2), the conditions with differences of five (10/15, 15/20, 20/25, 25/30, 35/40) are represented by the groups of
five points joined by lines with the conditions arranged from right to left, with smaller numbers to the right
(10/15). The groups of three points are differences of 10 (10/20, 20/30, 30/40), with smaller numbers to the right,
and the pairs of dots joined by a line are to the right 10/30 and to the left 20/40. The end points of these pairs
are labeled in Panel B for the proportional-area conditions. See the online article for the color version of this
figure.
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over subjects and predicted values averaged over subjects in the
same way. The 0.1, 0.3, 0.5, 0.7, and 0.9 RT quantiles are
computed from the data for each condition and plotted verti-
cally on the y-axis above the value of the choice proportion for
that condition plotted on the x-axis. There is 0.2 probability
mass between each pair of these quantiles, and drawing equal-
area rectangles between them produces an approximation to RT
distributions (see the top left panel of Figure 4, and for exam-
ples and a complete description, see Figure 3; Ratcliff &
McKoon, 2018). Correct responses are on the right of 0.5
accuracy, and errors are on the left (because we have grouped
correct “blue” responses with correct “yellow” responses and
correct “right” responses with correct “left” responses and the
same for errors, the error probabilities are symmetric with the
correct probabilities, i.e., error probability is 1 minus the cor-
rect probability). Note that these figures include error RTs,
while Figure 3 only contains correct RTs.

Quantile-probability plots make it easy to see changes in RT
distribution locations and spread as a function of response
probabilities. If changes in RT are due to the distributions
spreading and not shifting, the 0.1 quantile (leading edge)
changes a little, but the 0.9 quantile changes a lot. If the
distributions shift, the 0.1 quantile as well as the others change.
Also, the relative speeds of correct and error responses can be
observed by comparing quantiles across the two halves of the
plots (through the lines that join them; see Ratcliff & McKoon,
2008). In these ways, quantile-probability plots allow all the
important aspects of both the accuracy and RT data to be read
from a single plot.

Figures 4 and 5 show the quantile-probability functions for
the B/Y and L/R tasks, respectively, and the fits of the models
to them. The Xs are the data, and the Os and the lines joining
them (within each group of correct responses or error re-
sponses) are the predictions of the models. The proportional-

Figure 4. Quantile-probability functions for the linear model for Experiment 1 (B/Y) for the young adults,
60–69-year-olds, and 70–90-year-olds. These plot RT quantiles against response proportions (correct responses
to the right of 0.5 and errors to the left). The green/central lines are the median RTs. The number of dots in the
conditions in the plots is shown in the top right corner, with the top one in each condition corresponding to the
right-hand point in the plot. The more extreme functions (more visible for Experiment 1) are for proportional-
area conditions, and the less extreme for equal-area conditions. The quantiles are labeled on the left-hand side
of the top left plot and equal-area rectangles drawn between the quantiles are shown on the right side of the plot.
RT � response time. See the online article for the color version of this figure.
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area conditions are farther to the right for correct responses and
further to the left for errors because they have higher accuracy
(and so lower error rates) than the equal-area conditions, which
are nearer the center. The horizontal lines that connect correct
and error responses across 0.5 are not meaningful; they are
there only to show which correct responses correspond to which
error responses. The median RTs, the middle rows of quantiles
vertically, approximately match the means shown in Figure 3
(note that in both Figures 4 and 5, the vertical scales differ
among the panels).

The quantile-probability functions for the B/Y task show that
the decrease in RT with decreasing accuracy for the constant
numerosity differences of five and 10 occurs for all of the five
quantiles. This is true for both the equal-area conditions and the
proportional-area conditions. In contrast, the functions for the
L/R task show the typical inverted-U-shaped functions, with
RTs increasing as accuracy decreases over all the quantiles but
with the exception for the 70 –90-year-olds and the exception
described earlier for Figure 3: For the conditions with a differ-
ence in numerosity of five, the functions are somewhat
U-shaped in all the quantiles.

Fits of the Integrated Models to the Results of the
Experiments

Details of the fitting method are given in Appendix B. The first
thing to note is that the models are highly constrained by the data.
There are eight model parameters that, through the model, must
account for 220 degrees of freedom in the summary of the data.
This is a massive reduction in degrees of freedom, a degree of
reduction that is rarely seen in modeling in psychology. It is also
important to note that changing a single parameter in the model
changes all aspects of the data, so it is not possible to alter the
model, for example, to fit a few deviant data points.

Four of the eight parameters were from the diffusion model: the
distance between the boundaries, across-trial range in the starting
point, nondecision time, and across-trial range in nondecision time.
The other parameters were derived from the ANS models: a
drift-rate coefficient (ve) for the equal-area conditions, a drift-rate
coefficient for the proportional-area conditions (vp), the SD coef-
ficient (�1), and the constant component of the across-trial SD in
drift rate (�0). The 220 degrees of freedom in the data were derived
from the number of conditions multiplied by the 11 degrees of

Figure 5. Quantile-probability functions for the log model for Experiment 2 (L/R) for the young adults,
60–69-year-olds, and 70–90-year-olds. RT � response time. The symbols and other details are the same as for
Figure 4. See the online article for the color version of this figure.
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freedom for the proportions of responses between and outside the
.1, .3, .5, .7, and .9 bins for correct and error responses minus 1
because the proportions add to 1 and minus the number of param-
eters. Then, the number of degrees of freedom from applying the
models to data was 220 – 8 � 212.

Table 3 shows the parameter values of the models that best fit
the data, and Table 4 shows the SDs across subjects. The critical
value of the chi square for 212 degrees of freedom is 246.0. The
mean G2 values for the two models and three subject groups were
only moderately larger than the critical value, which is typical of
fits of the diffusion model to data (because of the conservativeness
of the chi-square statistic to even small deviations; see Ratcliff,
Thapar, Gomez, & McKoon, 2004) and so indicates a good fit of
the model to data.

Using the mean G2 values, for the B/Y task, the linear model
fit the data modestly better than the log model (mean differ-
ences in G2 between 15 and 18 for the three subject groups). For
the L/R task, the results were not conclusive, with the G2 values
about the same for the two models for the young adults and
60 – 69-year-olds, but for the 70 –90-year-old adults, the linear
model fit better than the log model. Detailed discussion of this
including analyses based on other fit statistics, fits with the SD
in drift-rate coefficient set to zero, the number of subjects fit
better by each model, and an analysis of qualitative trends in the
data is presented in Appendix C.

In Figure 4, we show the fits of the linear model for the B/Y
task, and in Figure 5, fits of the log model for the L/R task. The
results for the linear model show a good qualitative and quantita-
tive match between theory and data. The model produces the
decreases in RT quantiles as accuracy decreases (the counterintui-
tive finding), the larger and sharper decreases for the equal-area
conditions than the proportional-area conditions, and the larger
decreases for the higher than the lower quantiles. It also produces
the flattening of the functions as the difference in numerosities
between the blue and yellow dots increases (from five to 10 to 20).
The systematic differences between the model and data are an
overprediction for the 0.9 error RT quantiles for older adults in the

B/Y task (note that the 0.7 quantiles are not systematically misfit)
and the misfit in the RTs for the log model for the L/R task. Apart
from these, there were no systematic differences.

The G2 goodness-of-fit measures are not greatly different for the
log and linear models, even though the models produce quite
different qualitative predictions. This can be understood by exam-
ining the top left panels of Figures 4 and 5. The lines in Figure 4
capture the decreasing quantiles and accuracy, but the lines in
Figure 5 do not. If the predictions were switched, then the lines
would go through the majority of the data missing the decreasing
or increasing functions, but these misses would not be too large.
This illustrates why the G2 values are not greatly different for the
two models.

The fit of the models to the data is impressive for several
reasons. First, for the two experiments, there is only one drift-
rate coefficient for the 10 equal-area conditions and only one
for the 10 proportional-area conditions; drift rate is determined
by the coefficient and the two numerosities being compared.
Second, the values of the four parameters from the diffusion
model and the constant component of the across-trial SD in drift
rate are fixed across all 20 conditions. Third, the eight param-
eters for the models here contrast sharply with the numbers of
parameters that would usually be used to fit the diffusion model
to data (20 drift-rate parameters and possibly 20 parameters for
across-trial SD in drift rates). Integrating the linear and log
models with the diffusion model reduces this to two drift-rate
coefficients and two SD coefficients, the constant SD coeffi-
cient (�0) and the one that specifies how the SD changes with
numerosity (�1).

Figures 6 and 7 show plots of model predictions against data for
accuracy and the 0.1, 0.5, and 0.9 quantile RTs for each of the
experiments for the three subject groups for correct responses.
These plots show the data and predictions for the linear model for
the B/Y task and the log model for the L/R task. The plots provide
a way to seeing if there are any systematic misfits for specific
subjects or conditions. If so, there would be a cluster of data points
away from the diagonal lines that represent equality. The general

Table 4
Standard Deviations of Integrated Diffusion Model Parameters for the Three Age Groups, Two Tasks, and Two Models

Task and
age Model a Ter 100�1 sz st vp ve �0 G2

B/Y young Linear 0.015 0.074 0.237 0.029 0.088 0.0102 0.0062 0.043 24.1
B/Y 60–69 Linear 0.029 0.107 0.560 0.034 0.101 0.0093 0.0048 0.039 21.1
B/Y 70–90 Linear 0.024 0.117 0.505 0.038 0.103 0.0162 0.0055 0.044 39.6
B/Y young Log 0.018 0.073 0.212 0.030 0.089 0.2355 0.1192 0.090 27.8
B/Y 60–69 Log 0.029 0.108 0.559 0.024 0.101 0.1555 0.0919 0.064 23.9
B/Y 70–90 Log 0.025 0.116 0.493 0.038 0.102 0.1570 0.0796 0.102 38.3
L/R young Linear 0.018 0.057 0.467 0.023 0.078 0.0326 0.0272 0.039 28.0
L/R 60–69 Linear 0.030 0.083 0.564 0.026 0.093 0.0306 0.0239 0.095 23.1
L/R 70–90 Linear 0.022 0.082 0.531 0.036 0.069 0.0319 0.0213 0.070 22.9
L/R young Log 0.013 0.057 0.122 0.023 0.080 0.4670 0.3873 0.112 26.0
L/R 60–69 Log 0.031 0.081 0.303 0.028 0.090 0.4837 0.3568 0.116 20.3
L/R 70–90 Log 0.023 0.083 0.230 0.033 0.071 0.4932 0.3403 0.126 24.1

Note. The parameters were boundary separation a, starting point z � a/2, and mean nondecision component of response time Ter.The constant coefficient
of standard deviation in drift across trials is �0, and the coefficient that multiplies the square root of the sum of the squared numerosities is �1. Range of
the distribution of starting point is sz, and range of the distribution of nondecision times is st. vp is the drift-rate coefficient for the proportional-area
condition, and ve is the drift-rate coefficient for the equal-area condition. G2 is the multinomial likelihood statistic. The B/Y task is Experiment 1, and the
L/R task is Experiment 2.
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shapes of the spreads in data points around the diagonal lines are
symmetric, which shows no systematic deviations between theory
and data. In the bottom right corner are error bars of plus or minus
two SD on the data. For accuracy, we used a simple binomial SD
(sqrt[p{1 � p}/N]) with p � .7. For RT quantiles, the SDs were
computed using a bootstrap method: Random samples of the RTs
were selected with replacement from the RTs from each condition
(the number selected was equal to the number of RTs). Then the
0.1, 0.5, and 0.9 quantiles were computed, and this process was
repeated 100 times. The two SDs were the means over conditions
from the SDs computed from the 100 quantiles. Generally, the
spread of the data was about the same and in the plus or minus two
SD range.

The next paragraphs give the results from analyses of variance
for the model parameters for the two experiments (the means are
shown in Table 3 and the SDs across subjects in Table 4). The age
effects in boundary separation were significant for the B/Y task,

F(2, 87) � 6.9, p � .0017, �p
2 � .136, and for the L/R task, F(2,

87) � 9.9, p � 1.3 � 10�4, �p
2 � .186. Boundary separation

increased from young to older adults but not from 60–69- to
70–90-year-old adults. Age effects in nondecision time were sig-
nificant for the B/Y task, F(2, 87) � 3.9, p � .024, �p

2 � .082, and
for the L/R task, F(2, 87) � 4.6, p � .013, �p

2 � .095. As for
boundary separation, nondecision time was shorter for young
adults than older adults, but the differences between 60�69- and
70–90-year-old adults was small.

For the drift-rate coefficients, for the B/Y task, age was signif-
icant, F(2, 87) � 9.0, p � 2.9 � 10�4, �p

2 � .083, and area was
significant, F(1, 87) � 333.5, p � 2 � 10�16, �p

2 � .405, but the
interaction between age and area was not significant, F(2, 87) �
1.6, p � .05. For the L/R task, age was significant, F(2, 87) � 3.2,
p � .044, �p

2 � .057, area was significant, F(1, 87) � 177.4, p �
2 � 10�16, �p

2 � .115, and the interaction between age and area
was significant, F(2, 87) � 4.5, p � .013, �p

2 � .006. These results

Figure 6. Plots of accuracy, the 0.1, 0.5 (median), and 0.9 quantile correct response times (RTs) for every
subject and every condition for Experiment 1 (B/Y task) for the young adults, 60–69-year-olds, and 70–90-
year-olds. The two-standard-deviation (SD) error bars for RTs are computed from a bootstrap method, and for
accuracy, they are based on binomial probabilities. See the online article for the color version of this figure.
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show that both the proportional-area and equal-area drift-rate co-
efficients decrease with age. Furthermore, the difference between
the proportional-area and equal-area drift-rate coefficients was
larger for the B/Y task than the L/R task, replicating the results for
young adults from Ratcliff and McKoon (2018). For the B/Y task,
the ratio was 2:1 for young adults and 3:1 for both groups of older
adults. For the L/R task, the ratio was 1.2:1 for young adults and
1.5:1 for both groups of older adults. We found age effects on
drift-rate coefficients for both tasks but an interaction of age with area
only for the L/R task and not the B/Y task. This interaction showed a
larger difference between the equal-area and proportional-area coef-
ficients for older adults than for young adults.

None of the other parameter differences were significant
(Fs �1.6) except for the constant drift-rate coefficient for the L/R
task, F(2, 87) � 3.5, p � .034, �p

2 � .075. Even though this
coefficient was significant for the L/R task, it did not change in a

regular way (it had a larger value for 60–69-year-olds than the
other two age groups).

Although we do not give statistics comparing data and param-
eter values between the two tasks, we can see large differences.
Table 2 shows that accuracy was higher for the L/R task than the
B/Y task by between 0.1 and 0.2. Mean RTs were about 150 ms
shorter for the L/R than the B/Y task. This is reflected in model
parameters with boundary separation lower for the L/R task than
the B/Y task, and nondecision time was about 100 ms lower for the
L/R task than the B/Y task. Some, but not all, of this difference in
mean RTs may be due to the smaller stimulus presentation time for
the L/R task (250 ms) than the B/Y task (300 ms). For both the
linear model and the log model fits to the data from the two tasks,
the drift-rate coefficients were 2–3 times larger for the L/R task
than the B/Y task. Overall, the B/Y task was more difficult than the
L/R task and the model parameters reflect this difference.

Figure 7. Plots of accuracy, the 0.1, 0.5 (median), and 0.9 quantile response times (RTs) for every subject and
every condition for Experiment 2 (L/R task) for the young adults, 60–69-year-olds, and 70–90-year-olds. The
two-standard-deviation (SD) error bars for RTs are computed from a bootstrap method, and for accuracy, they
are based on binomial probabilities. See the online article for the color version of this figure.
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Correlational/Individual Differences Analyses

Ratcliff and McKoon (2018), Ratcliff, Thompson, and McKoon
(2015), and Thompson, Ratcliff, and McKoon (2016) examined
individual differences in diffusion model parameters for several
numerosity tasks. In those studies, each parameter, boundary sep-
aration, nondecision time, and drift rates, was significantly corre-
lated across the different tasks. Here, correlation coefficients be-
tween the B/Y and L/R tasks are shown in Table 5. For the B/Y
and L/R tasks with 30 subjects per group, there were 28 (N-2)
degrees of freedom, and correlation coefficients were significant at
0.36 and 0.31 for two-tailed and one-tailed tests, respectively, at
the 0.05 level.

Boundary separation and nondecision time correlated across
tasks for all three groups of subjects, with lower correlations for
the young adults. Within each task, the correlations between sub-
jects’ drift-rate coefficients for the proportional-area and equal-
area conditions were high, with means over the three subject
groups of 0.79 and 0.84 for the B/Y and L/R tasks, respectively. In
other words, if someone has a high drift rate for the equal-area
condition, they also had a high drift rate for the proportional-area
condition. The drift-rate coefficients were significantly correlated
across the two tasks for the young adults and 60–69-year-olds, but
for 70–90-year-olds, they were not significant. Generally, the
results are similar to those in Ratcliff and McKoon (2018), Rat-
cliff, Thompson, and McKoon (2015), and Thompson et al. (2016).

Convex-Hull Analyses

Norris, Clayton, Gilmore, Inglis, and Castronovo (2019) pointed
out that when stimuli are constructed in the usual way (outlined in
Halberda et al., 2008), including the two experiments reported
here, placing dots in random positions will result in differences in
the sizes of convex hulls among stimuli. The way to think about
convex hull is to view it as the circumference around or area
enclosed by a rubber band stretched around the outer dots of a
stimulus. Norris et al. tested the effects of convex-hull area with a
task like our L/R task. They divided the stimuli into those for
which area and numerosity were congruent, that is, the larger
numerosity had the larger area, and those for which they were
incongruent, that is, the smaller numerosity had the larger area. For
the young adults, accuracy was 0.83 for congruent stimuli and 0.73
for incongruent stimuli, and for the older adults, accuracy values
were 0.83 and 0.71, showing a significant effect of convex-hull
area, which was about the same size for the young and older adults.

We examined the effect of convex-hull area in our L/R and B/Y
experiments. We used the matlab routine “convhull” to compute
convex-hull areas for the left and right displays for the L/R task
and the yellow and blue dots for the B/Y task separately. For both
tasks, a larger numerosity was almost always associated with a
larger convex-hull area for the conditions in which the differences
in numerosity were 10 and 20 (89% of trials with many subjects
producing less than 10 and often no responses for the larger hull
and smaller numerosity conditions). Therefore, we restricted our
analyses to the subset of the data for conditions with differences of
five. In our experiments, 26% and 38% of the trials were incon-
gruent for the L/R task and B/Y task, respectively.

For ease of understanding the results, we computed the radius of
a circle with the same area as that of a convex hull, which allowed
us to compare the areas for the congruent and incongruent trials.
This also provided measures of the sizes of the squares within
which the dots were presented. Note that a line of 100 pixels was
1.88 cm long. For the B/Y task the mean radius was 173 pixels for
congruent trials and 162 pixels for incongruent and for the L/R
task, 112 and 107 pixels for congruent and incongruent trials,
respectively. For the B/Y task, the length of the side of the square
in which the dots were placed was 392 pixels, and the length of the
side of each of the squares for the L/R task was 262 pixels.

Table 6 shows the results for the two experiments. First, for the
L/R task, accuracy for congruent stimuli was higher than for
incongruent ones for all three groups of subjects, about an 8%
difference averaged across subjects. RTs varied little between
congruent and incongruent stimuli; differences were only about 10
ms. These results replicated those of Norris et al. described above.

The results for the B/Y task were unexpected. Accuracy over
subjects for each of the age groups was higher for the incongruent
condition, by about 4%, and RT was shorter, by about 20 ms. This
is the opposite direction from the L/R task. The question is this:
What does it mean to be incongruent in the B/Y task? One
possibility is that subjects are responding to density, not the area of
the convex hull. With incongruent stimuli, if the convex-hull area
is smaller, then the dots are packed together in the smaller area.
This suggests that the perceptual cue being used is not convex-hull
area but instead density. (To reiterate, there was little effect of age
on the results of either experiment).

We did not fit the data from the convex-hull analyses with the
models because the numbers of observations in some of the con-
ditions were too small to provide quantiles, especially in the
conditions with larger numerosity differences (some with zero
observations). However, we did generate predictions using the
parameters in Table 3 and assuming that the convex-hull effect
was in drift rate. For the B/Y task (fit by the linear model), with
numerosity differences of five, a change of about 0.006 in the
drift-rate coefficient gave about the 4% difference in accuracy
shown in Table 6, but there was only about a 10 ms change in
mean RTs. For the L/R task (fit by the log model) with numerosity
differences of five, a change of about 0.25 in the drift-rate coef-
ficient gave about the 8% difference in accuracy shown in Table 6
and less than a 10 ms change in mean RT. These results show that
drift-rate differences can account for most of the effects of convex
hull on accuracy and RT in the same way that drift-rate differences
account for the effects of area.

Table 5
Correlations Between Model Parameters for the Linear Model
for the B/Y Task and the Log Model for the L/R Task

Parameter Young adults 60–69-year-olds 70–90-year-olds

a 0.39 0.64 0.53
Ter 0.37 0.62 0.73
vp 0.36 0.64 0.21
ve 0.41 0.52 0.21

Note. The parameters were boundary separation a, starting point z � a/2,
and mean nondecision component of response time Ter. vp is the drift-rate
coefficient for the proportional-area condition, and ve is the drift-rate
coefficient for the equal-area condition.

T
hi

s
do

cu
m

en
t

is
co

py
ri

gh
te

d
by

th
e

A
m

er
ic

an
Ps

yc
ho

lo
gi

ca
l

A
ss

oc
ia

tio
n

or
on

e
of

its
al

lie
d

pu
bl

is
he

rs
.

T
hi

s
ar

tic
le

is
in

te
nd

ed
so

le
ly

fo
r

th
e

pe
rs

on
al

us
e

of
th

e
in

di
vi

du
al

us
er

an
d

is
no

t
to

be
di

ss
em

in
at

ed
br

oa
dl

y.

2141AGING AND NUMERACY



Discussion

The two experiments in this article examined the effects of age
and perceptual variables (area and convex hull) on two numerosity
discrimination tasks with integrated ANS-diffusion models. The
linear model fit data from the B/Y task better than the log model
and the log model fit data from the L/R task about the same as the
linear model, except for the 70–90-year-old adults, for whom the
linear model fit a little better. For both models, older adults had
wider boundaries and longer nondecision times than young adults,
results that have been obtained in many other experiments (e.g.,
Ratcliff, Thapar, Gomez et al., 2004; Ratcliff, Thapar, & McKoon,
2001, 2003, 2004, 2010, 2011; Reike & Schwarz, 2019; Spaniol,
Madden, & Voss, 2006). Wider boundaries mean that older adults
required more information before making decisions than young
adults. Boundary settings are assumed to be under the control of
subjects, which means that it may be possible to change the
settings. In earlier research with other tasks, we have manipulated
speed-accuracy instructions and found that older adults can in-
crease their speed, but sometimes it took one or even two sessions
of training to accomplish this (Ratcliff et al., 2001, 2003; Ratcliff,
Thapar, & McKoon, 2004; Thapar, Ratcliff, & McKoon, 2003).
The longer nondecision times mean that the processes of encoding
a stimulus, extracting decision-relevant information from the stim-
ulus, and making a response took longer for the older adults than
for young adults.

To determine drift rates, the ANS models use a coefficient that
multiplies the difference between two numerosities for the linear
model and the difference between the logs of two numerosities for
the log model. The linear and log models set the means of the
Gaussian distributions around each numerosity (Figure 1C). Equal-
area stimuli were more difficult than proportional ones and this
was reflected in a smaller coefficient for equal-area than
proportional-area stimuli, which made the differences between the
means of the distributions smaller for equal-area than proportional-
area stimuli. For example, the difference between 30 and 40 dots
on the x-axis in Figure 1C was smaller for equal-area compared to
proportional-area stimuli.

Age had a modest effect on drift-rate coefficients, indicating that
the evidence on which decisions were made was lower, but only
modestly, for the older adults than the young adults. The size of
this difference is a little larger than that seen in item recognition,
lexical decision, and other numerosity and perceptual tasks (Rat-
cliff, Thapar, Gomez et al., 2004; Ratcliff et al., 2001, 2003;
Ratcliff, Thapar, & McKoon, 2004; Ratcliff, Thapar, & McKoon,
2007, 2010, 2011), but smaller than for letter discrimination and
associative recognition (Ratcliff et al., 2011; Thapar et al., 2003).
The differences between the equal-area and proportional-area co-
efficients differed with age. For young adults, the equal-area
drift-rate coefficient was about half the size of the proportional-
area coefficient for the B/Y task and about 80% of the size for the
L/R task (replicating Ratcliff & McKoon, 2018). For both groups
of older adults, this ratio fell to about 33% and 66% for the B/Y
and L/R tasks, respectively, which suggests that the older adults
relied on nonnumerosity variables to a greater degree than the
young adults in these tasks.

Cappelletti et al. (2014) found that accuracy for proportional-
area stimuli in an experiment similar to our B/Y task did not differ
with age, but accuracy for equal-area stimuli did. In contrast, our
experiments found that accuracy for proportional-area stimuli de-
creased with age. They also found a difference in mean RTs for
proportional-area versus equal-area stimuli for older adults (617
ms vs. 649 ms), but not for young adults (415 ms vs. 427 ms). Our
results in Table 2 show a similar interaction. The size of these
differences could be the result of scaling: Because older adults
were overall slower than young adults, RT differences are magni-
fied because differences become smaller as RT approaches floor.
In the diffusion model, this is because boundaries are lower for
young adults and this produces smaller differences in RTs among
conditions (a scaling effect; Ratcliff, Spieler, & McKoon, 2000,
2004).

The SDs in the drift rates across trials are produced by a
coefficient that multiplies the square root of the sum of squares of
the two numerosity values (Figure 1C) plus a constant. As dis-
cussed below, the SD coefficient for the linear model must increase

Table 6
The Effect of Convex Hull on Accuracy and Mean RT for Numerosity Differences of Five

Task
Convex

hull

Proport.-area young
adults

Equal-area young
adults

Proport.-area 60–
69-year-olds

Equal-area 60–69-
year-olds

Proport.-area 70–90-
year-olds

Equal-area 70–90-
year-olds

Accuracy Mean RT Accuracy Mean RT Accuracy Mean RT Accuracy Mean RT Accuracy Mean RT Accuracy Mean RT

B/Y Congruent 0.728 629 0.611 657 0.705 763 0.557 800 0.636 728 0.527 748
Incongruent 0.766 617 0.665 637 0.730 741 0.624 783 0.679 705 0.573 717

L/R Congruent 0.864 473 0.817 485 0.845 563 0.761 592 0.819 577 0.719 600
Incongruent 0.782 480 0.738 487 0.769 576 0.688 605 0.724 586 0.645 604

Note. RT � response time. The B/Y task is Experiment 1, and the L/R task is Experiment 2. For the B/Y task, analysis of variance on accuracy with two
factors, the two area conditions and age, showed a significant effect of age, F(2, 87) � 18.8, p � 1.6 � 10�7, �p

2 � .130; area, F(1, 87) � 442.7, p �
2 � 10�16, �p

2 � .342; and convex hull, F(1, 87) � 90.4, p � 4.0 � 10�15, �p
2 � .054, and a significant interaction between convex hull and area, F(2,

87) � 4.6, p � .034, �p
2 � .002. The other interactions were not significant, with Fs � 1.9. The L/R task showed similar effects on accuracy with significant

effects of age, F(2, 87) � 11.5, p � 3.7 � 10�5, �p
2 � .098; area, F(1, 87) � 188.0 p � 2 � 10�16, �p

2 � .145; and convex hull, F(1, 87) � 153.4, p �
2 � 10�16, �p

2 � .175, and a significant interaction between age and area, F(2, 87) � 7.3, p � .0011, �p
2 � .011. The other interactions were not significant,

with Fs � 1.8. Similar results were obtained for mean RTs. For the B/Y task, analysis of variance with the two area conditions and age showed a significant
effect of age, F(2, 87) � 7.0, p � .0016, �p

2 � .134; area, F(1, 87) � 73.4, p � 3.5 � 10�13, �p
2 � .008; and convex hull, F(1, 87) � 47.8, p � 7.5 �

10�10, �p
2 � .004, and a significant interaction between age and area, F(2, 87) � 4.1, p � .020, �p

2 � .001. The other interactions were not significant,
with Fs � 2.7. The L/R task showed similar effects on mean RT with significant effects of age, F(2, 87) � 14.4, p � 3.9 � 10�6, �p

2 � .239; area, F(1,
87) � 34.9, p � 2 � 10�16, �p

2 � .013; and convex hull, F(1, 87) � 22.4, p � 8.4 � 10�6, �p
2 � .002, and a significant interaction between age and area,

F(2, 87) � 7.4, p � .0011, �p
2 � .002. None of the other interactions were significant, with Fs � 2.6.
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with numerosity in order for the model to explain why both
accuracy and RT decrease as numerosity increases (for a small
constant difference between two numerosities, e.g., five). The
assumption for the log model is that the SD is constant, but in
fitting the data, we allowed it to change with numerosity in the
same way as for the linear model in order to give it the same
flexibility as the linear model. As we discussed above, results
showed that the model best able to account for the data depended
on the task: The linear model fit the data from the B/Y task a little
better than the log model, but the log model fit data from the L/R
task about the same as the linear model except for the 70–90-year-
old group. In the B/Y task, the SD coefficient produced large
changes in across-trial SD in drift rate, and there was no significant
effect of age on the SD coefficient. In the L/R task, the coefficient
was small and produced little difference in across-trial SD in drift
rate (which is consistent with the assumption of a constant SD for
the log model).

There is one deviation between theory and data that we can
speculate about. This is the somewhat U-shaped functions for
differences of five that are shown in Figures 3D–3F for the L/R
task. For the 60–69-year-old adults, the functions for differences
of five show RTs decreasing as accuracy increases, except for the
15–10 numerosity conditions for both proportional-area and equal-
area conditions (labeled in Figure 3E). The same deviation may
occur for young adults, but it is very small. For 70–90-year-olds
(Figure 3F), for equal-area conditions (Xs), RT decreases as ac-
curacy decreases, which suggests that this group is performing the
task in a way more consistent with the linear model. This suggests
that the pattern of results might represent a probability mixture of
processes consistent with the log model and of processes consis-
tent with the linear model, with the log model dominating for
young adults and the linear model dominating for 70–90-year-
olds.

In a more comprehensive study of the effects of perceptual and
numerosity variables, Kang and Ratcliff (2020) modeled the joint
effects of multiple combinations of perceptual and numerosity
variables on accuracy and RT. In two experiments using the B/Y
task, they collected data from combinations of area and numeros-
ity, and in another experiment, they collected data from an exper-
iment with combinations of area, convex hull, and numerosity
from the L/R task. In that L/R task, they found that convex hull had
a large effect on accuracy and RT, whereas area had only a small
effect (as in Ratcliff & McKoon, 2018). Models of drift rate were
examined that included numerosity and perceptual components,
and the models that were most successful had more components
than the two components used in the models presented in this
article (i.e., more than just the drift-rate coefficients for
proportional-area and equal-area conditions). Kang and Ratcliff
found that when the perceptual variables were in conflict with
numerosity, a new conflict effect was obtained, with accuracy less
than chance and a delay in the leading edge of the RT distributions
that was too large to be accounted for by only changes in drift rate
(cf., Ratcliff & Frank, 2012). In order to model below-chance
accuracy, Kang and Ratcliff had to include interaction terms be-
tween numerosity and perceptual variables and terms representing
the ratio of the difference in numerosities over the sum. This
approach, like the models described here, allows the effects of
numerosity and one or more perceptual variables to be separately
estimated. DeWind, Adams, Platt, and Brannon (2015) performed

a similar study but only modeled the effects of perceptual variables
on accuracy (Kang and Ratcliff compared the two approaches).

The manipulation of the numbers of dots in our B/Y task is
similar to manipulations of magnitude in perceptual tasks. Mag-
nitude effects in brightness and motion discrimination tasks have
received attention because they have been thought to be inconsis-
tent with the usual assumptions in evidence-accumulation models,
including the standard diffusion model. The problem is that as the
overall magnitude of two stimuli to be discriminated increases (for
a constant difference between the stimuli), accuracy and RT both
decrease (Niwa & Ditterich, 2008; Teodorescu, Moran, & Usher,
2016; Teodorescu & Usher, 2013). This pattern cannot be accom-
modated by the usual explanation in which drift rate changes as a
function of difficulty because accuracy decreases as drift rate
decreases but RT increases. However, this is the pattern of results
that the linear model used here predicts; thus, in order to produce
data for modeling, Ratcliff et al. (2018) replicated these results
with experiments with brightness and motion discrimination tasks.
They found that the linear model, in which drift rate was a function
of the difference in magnitude and across-trial SD in drift rate was
a function of the sum of squares of the two magnitudes, produced
reasonable fits to the experimental data. (The log model was not
considered because it failed to fit the qualitative patterns of re-
sults.)

An alternative hypothesis for decreasing RT with decreasing
accuracy in the brightness, motion, and B/Y tasks is one in which
within-trial variability (noise in the accumulation process) in-
creases with stimulus strength (e.g., Donkin, Brown, & Heathcote,
2009; Niwa & Ditterich, 2008; Smith & Ratcliff, 2009; Teodor-
escu et al., 2016; Teodorescu & Usher, 2013). If within-trial
variability increased, the evidence accumulation process will hit a
decision boundary earlier, resulting in less accuracy and, impor-
tantly, in shorter RTs. The intuition for this can be seen in Figure
1D: If the jagged lines had larger steps up and down vertically,
then they would hit a boundary earlier and may hit the wrong
boundary by mistake. Ratcliff et al. (2018) fit this model to their
data and found similar fits as the linear model.

In most applications of the diffusion model, it is assumed that
within-trial variability is constant across levels of difficulty. If
within-trial variability were to increase with numerosity or stim-
ulus magnitude, then it would be expected to be a property of
numerosity or perceptual magnitude, and it should increase in all
numerosity and perceptual tasks with similar stimuli. However,
model-based analyses showed that this does not occur in the L/R
task for numerosity and Ratcliff and McKoon (2018) and Ratcliff
et al. (2018) showed that within-trial variability was almost con-
stant in single-item perceptual and numerosity tasks. Thus, we
believe that changes in across-trial variability in drift rate should
be preferred over within-trial variability changing with stimulus
magnitude or overall numerosity.

The results of this study and that of Ratcliff and McKoon (2018)
show that the joint behavior of RTs and accuracy depends on the
task, the cognitive representations of numerosities on which per-
formance is based depend on the task, and how much perceptual
variables affect performance depends on the task. This illustrates
the remarkably different ways that the cognitive system deals with
numerosity information. Depending on the task, it encodes numer-
osities on a linear scale or a log scale; it encodes them with
variability in their representations changing with numerosity when
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a linear scale is used but not when a log scale is used; and it
includes information other than number (e.g., area) to a great deal
in some tasks (B/Y) but much less in other tasks (L/R and single
array tasks).

As discussed above, research on numeracy has been concerned
with whether experimental results can be explained by numerosity
alone, without some confounding variable such as area, convex
hull, or density (e.g., DeWind et al., 2015; DeWind & Brannon,
2012; Feigenson, Carey, & Hauser, 2002; Gebuis, Cohen Kadosh,
& Gevers, 2016; Gebuis & Gevers, 2011; Gebuis & Reynvoet,
2012a, 2012b, 2013; Leibovich, Katzin, Harel, & Henik, 2017;
Mix, Huttenlocher, & Levine, 2002). Efforts to control for such
variables face the problem that controlling for one leaves another
confounded. Our results show, first, that we can estimate the
contributions of perceptual variables and numerosity separately;
second, that the effect of the perceptual variable, area, is task
dependent (there is a larger effect of area in the B/Y task than the
L/R task), and the difference increases with age; and third, that the
effect of convex hull is task dependent. Perhaps the most important
of the effects we discussed above is that encoded representations
of numeracy differ as a function of the task.

Considerable controversy has arisen about the presence or ab-
sence of correlations among dependent variables in numerosity
discrimination tasks and between them and individual differences
such as IQ and math ability (see the comprehensive analyses and
meta-analyses in Chen & Li, 2014; Gilmore, Attridge, & Inglis,
2011; Halberda et al., 2012; Price, Palmer, Battista, & Ansari,
2012). Sometimes RTs are used, sometimes accuracy, and some-
times the slope of a function that relates accuracy or RTs to the
difficulty of a test item, and this inconsistency in the empirical
measures used has led to inconsistent findings about how differ-
ences among individuals affect performance. For example, some-
times correlations are found between symbolic tasks and nonsym-
bolic tasks and sometimes not (e.g., De Smedt, Verschaffel, &
Ghesquière, 2009; Holloway & Ansari, 2009; Maloney, Risko,
Preston, Ansari, & Fugelsang, 2010; Price et al., 2012; Sasanguie,
Defever, Van den Bussche, & Reynvoet, 2011). Sometimes cor-
relations are found between nonsymbolic number tasks and math
ability, and sometimes not (e.g., Gilmore, McCarthy, & Spelke,
2010; Halberda et al., 2012, 2008; Holloway & Ansari, 2009;
Inglis, Attridge, Batchelor, & Gilmore, 2011; Libertus, Feigenson,
& Halberda, 2011; Lyons & Beilock, 2011; Mundy & Gilmore,
2009; Price et al., 2012). We believe that model-based analyses
such as the ANS-diffusion model approach can provide a coherent
view of all the dependent variables including how accuracy and
RT relate to each other and so provide a unification of the mea-
sures. This approach provides tools with which to examine the
effects of development, aging, and dysfunction on numeracy abil-
ities and the relationships among numeracy measures as well
individual difference measures—for example, achievement scores.
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Appendix A

Description of the Diffusion Model

In the diffusion model (and other sequential sampling models;
Ratcliff & Smith, 2004), an individual must decide whether to
respond more accurately, sacrificing speed, or faster, sacrificing
accuracy. The model separates this component of the decision
process that sets speed-accuracy criteria from the other main
components, namely, the quality of the information upon which
decisions are based and from nondecision time, which is the sum
of the time taken to encode a stimulus, convert it to decision-
relevant information, and the time to execute a response. In this
model, accuracy and RTs are explained by a single mechanism
(Ratcliff, 1978; Ratcliff & McKoon, 2008) that is the noisy accu-
mulation of information from a stimulus representation over time
(Figure 1D). A response is made when the amount of accumulated
information reaches one or the other of two criteria, or boundaries,
one for each of the two choices. The rate of accumulation, called
drift rate, is determined by the quality of the information from the
stimulus or memory, depending on the task. The distance between
the two boundaries is determined by an individual’s speed/accu-
racy setting—faster, less accurate responses if the distance is small
and slower, more accurate responses if the distance is large. The
model is required to account for the locations of RT distributions
and their characteristic right-skewed shape of the distributions and
the effects of experimental variables on RTs and accuracy (e.g.,
Ratcliff, Smith, & McKoon, 2015).

The model has been applied in a wide range of domains, including
aging, aphasia, sleep deprivation, child development, hypoglycemia,
anxiety, depression, language, ADHD, dyslexia, Parkinson’s disease,
and in research fields such as neuroeconomics and neuroscience in
humans, monkeys, rodents, and even insect swarms (see reviews in
Forstmann, Ratcliff, & Wagenmakers, 2016; Ratcliff, Smith, Brown,
& McKoon, 2016). For aging research, Ratcliff, Thapar, and McKoon
(e.g., Ratcliff et al., 2001, 2003; Ratcliff, Thapar, & McKoon, 2004,
2010, 2011) showed that in many tasks, older adults’ long RTs
relative to young adults’ do not come from the information they
encode from stimuli being of poorer quality than young adults’ or
from a general slowing of all (or most) cognitive processes but instead
from their concern, much more than young adults, not to make errors
(Starns & Ratcliff, 2010).

Figure 1D illustrates the model. The accumulation of informa-
tion begins from a starting point, z, toward one or the other of the
two boundaries, a or 0. The zig-zag lines illustrate noise in the
accumulation process. For the example in the figure, the mean rate

of accumulation, drift rate (v), is positive, with some processes
finishing quickly, some slowly, and some hitting the wrong bound-
ary by mistake. Total RT is the sum of the time to reach a boundary
and nondecision time (Ter).

The values of the components of processing in the diffusion
model are assumed to vary from trial to trial, under the assumption
that subjects cannot accurately set the same parameter values from
one trial to another (e.g., Laming, 1968; Ratcliff, 1978). Across-
trial variability in drift rate is normally distributed with SD �,
across-trial variability in starting point (equivalent to across-trial
variability in the boundaries) is uniformly distributed with range
sz, and across-trial variability in the nondecision component is
uniformly distributed with range st. In signal detection theory,
which deals only with accuracy, all sources of across-trial vari-
ability are collapsed into one parameter, the variability in infor-
mation across trials. In contrast, with the diffusion model, there are
separate sources of across-trial variability. In the integrated diffu-
sion models for numerosity presented here, across-trial variability
in drift rate is explicitly represented as in Figure 1C.

Boundary settings, nondecision time, starting point, drift rates
for each condition in an experiment that varies in difficulty, and
the across-trial variabilities in drift rate, nondecision time, and
starting point are all identifiable with enough observations (Rat-
cliff & Tuerlinckx, 2002). If exact predictions are entered into
fitting programs, the generating parameter values are recovered.
When data are simulated from the model (with numbers of obser-
vations approximately equal to those that would be obtained in real
experiments) and the model is fit to the simulated data, the pa-
rameters used to generate the data are recovered with variability
that is usually several times smaller than individual differences in
the model parameters for drift rate, nondecision time, and bound-
ary separation, but not for the variability parameters (Ratcliff &
Childers, 2015; Ratcliff & Tuerlinckx, 2002). This is examined for
these integrated models in Appendix D below. Also, Kang and
Ratcliff (2020) presented a parameter recovery study for the inte-
grated model and showed that with enough observations, there
were few biases. The success of parameter identifiability comes in
part from the strong constraint that the model must account for the
full distributions of RTs for correct and error responses over all the
conditions of the experiment (for a study on model freedom, see
Ratcliff, 2002).

(Appendices continue)
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Appendix B

Fitting the Integrated Diffusion Models to Data

The values of all eight parameters of the model are estimated
together by fitting the model to the data from all the conditions in
an experiment simultaneously. The method computes a multino-
mial likelihood G2 statistic, and parameters of the model are
adjusted using a standard SIMPLEX method to maximize the
value of G2. The data for each subject is fit individually, and the
model parameters reported are the means across subjects.

For RTs, the models must explain the shapes of the RT distri-
butions. To represent distributions, we divide the empirical RTs
into five quantiles, the .1, .3, .5, .7, and .9 quantiles. The quantile
RTs and the proportions of responses in each quantile for each
condition in the experiment are entered into a minimization rou-
tine, and the diffusion model is used to generate the predicted
cumulative probability of a response occurring by each quantile
RT. Subtracting the cumulative probabilities for each successive
quantile from the next higher quantile gives the proportion of
responses between adjacent quantiles. For our G2 computation,
these are the expected proportions, to be compared to the observed
proportions of responses between the quantiles (i.e., the propor-
tions between 0, .1, .3, .5, .7, .9, and 1.0, which are .1, .2, .2, .2, .2,
and .1). The proportions for the observed (po) and expected (pe)
frequencies and summing over 2Npolog(po/pe) for all conditions
gives a single G2 (a log multinomial likelihood) value to be
minimized (where N is the number of observations for the condi-
tion).

The number of degrees of freedom in the data is computed as
follows: There are six proportions (bins) between the quantiles and
outside the .1 and .9 quantiles. These proportions are multiplied by
the proportion of responses for that condition and across correct
and error responses; these 12 proportions must add to 1, so there
are 11 degrees of freedom in the data for each condition of the
experiment. For example, for 10 numerosity conditions crossed
with an area variable that has two levels, there are 220 degrees of
freedom in the data. When the models are fit to data, the number
of degrees of freedom is the number in the data minus the number
of the model’s free parameters (eight for these experiments).

The model was fit to the data using the G2 statistic in the same
way as fitting the chi-square method described by Ratcliff and

Tuerlinckx (2002; see also Ratcliff & Childers, 2015; Ratcliff &
Smith, 2004). G2 statistics are asymptotically chi-square, so crit-
ical chi-square values can be used to assess goodness of fit. In
many applications, we have found that if the value of the chi-
square (or G2) is below 2 times the critical value, the fit is good
(Ratcliff, Thapar, Gomez et al., 2004; Ratcliff et al., 2010). This
rule of thumb has been found in the less constrained case than the
ANS-diffusion model; in the less constrained case, the diffusion
model is applied without a representation model, so each condition
has its own drift rate.

It is worth reiterating that the fits of the ANS-diffusion models
to data are rather good given the small number of degrees of
freedom in the model and large number in the data. Any of a
number of aspects of the data could have been different and
produced poor fits of the model to data. For example, if any groups
of quantile RTs for one condition (e.g., a difference in numerosity
of 10) were moved to the left or right, changing accuracy, or up or
down, changing RT quantiles, the model would fail to fit the data
because it is constrained to produce exactly the changes in RT and
accuracy shown in the fits. With a model with this few free
parameters, there is little room for overfitting data.

There are several alternative fitting methods and packages for
fitting the diffusion model to data. First, standard maximum like-
lihood is a good alternative in the absence of outliers and produces
fits with lower SDs in parameter estimates than the chi-square
method. The limitation is that in the presence of outliers, it can
produce estimates a long way off the true values. Comparisons of
the chi-square and maximum likelihood methods in Kang and
Ratcliff (2020) showed that they produced very similar results
when there were no obvious outliers. There are also Bayesian
methods, and the HDDM package can produce fits with low SDs
in parameter estimates, but it can occasionally produce spurious
values (Ratcliff & Childers, 2015). The problem with this and the
other packages is that they do not allow models of across-trial SD
in drift rates to be implemented. The hierarchical Bayesian model
in HDDM requires across-trial variability in drift rate to be con-
stant across conditions and across subjects.

(Appendices continue)
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Appendix C

Model Selection

In the article, the two models we implemented have equal
numbers of parameters. However, the log model could be argued
to have a constant across-trial variability in drift rate across con-
ditions and so have one less parameter than the linear model. In
this case model-selection methods need to be used. Here, we
examine what happens to the number of subjects that are best fit by
the linear and log models using the AIC and BIC. This is plausible
because in the fits of the log model to data, there are very modest
contributions from the nonconstant component of across-trial vari-
ability in drift rate. However, for some subjects, this is not negli-
gible; to address this, we refit the model with �1 � 0, and these
additional G2 goodness-of-fit values are shown in Table 3. The
mean model parameters changed by less than 5%, most less than
1%, and the interpretations are the same.

The difference in G2 values between the log and linear models
provides a numerical goodness-of-fit measure from which the
models can be compared. As noted above, because the number of
parameters for the two models was the same, the G2 values provide
the same results for comparisons of models as do AIC and BIC
values (because these are the multinomial likelihood G2 plus a
penalty term based on the number of parameters, which is the same
for the two models). In our view, small numerical differences are
not enough to be sure that one model better accounts for the data
than the other, especially because some subjects will be better fit
by each model, which, strictly speaking, means that some subjects
use one representation, and some the other. (This provides a
problem in interpretation because if all the data were generated
from one model, variability in the data would sometimes produce
better fits of the other model if the two models were similar.)
Ratcliff, Thompson, and McKoon (2015) used G2, AIC, and BIC
to compare models and found that the patterns of model selection
changed quite dramatically depending on the statistic used. We
strongly prefer to see qualitative differences in predictions be-
tween the models as well as numerical differences that are not too
small. For each experiment presented here, we report the number
of subjects that favors each model using the G2, AIC, and BIC
values. By a binomial test, if 20 (or more) out of 30 subjects favor
one model over the other, then the result is significant.

The number of subjects out of 30 that fit the linear model better
than the log model is as follows. The first number is for G2, the second
for AIC, and the third for BIC: for the B/Y task, for young adults, 24,
23, and 19; for 60–69-year-old adults, 22, 21, and 19; and for
70–90-year-old adults, 23, 22, and 19. For the L/R task, for young
adults, 14, 13, and 11; for 60–69-year-old adults, 17, 17, and 16; and
for 70–90-year-old adults, 20, 20, and 19. For the linear model and
the log model with across-trial variability in drift rate allowed to vary
over conditions (the model in the body of the text), the number of
subjects that fit the linear model better than the log model in G2 is as
follows: for the B/Y task, for young adults, 24, for 60–69-year-old
adults, 21, and for 70–90-year-old adults, 26; for the L/R task, for

young adults, 14, for 60–69-year-old adults, 18, and for 70–90-year-
old adults, 21. Because the number of parameters is the same for each
model, the penalty terms are the same for the two models and AIC and
BIC results are the same as G2 results.

These results show that for the B/Y task, more of the subjects
prefer the linear model by all the measures (less for BIC, of course,
because of the larger penalty). For the L/R task, the results are
mixed. About half of the subjects prefer the linear model for the
young adult and 60–69-year-old groups on all the measures, while
for the 70–90-year-old group, more than half the subjects prefer
the linear model by all the measures.

A second way of assessing model selection is to examine the
qualitative signature in the data that separates the linear and log
models. For a numerosity difference of five, we can examine the
plots of mean RT versus accuracy (as in Figure 3) as a function of
which model was preferred, the linear or log. The argument would
be that a preference for the log model might lead to RT increasing
as accuracy decreases, but a preference for the linear model would
lead to RT decreasing as accuracy decreases.

Figure C1 shows plots of mean RT versus accuracy for the
two experiments and three age groups with data divided into
groups that favored the linear model and those that favored the
linear model (by G2). Note that the data were collapsed over the
equal-area and proportional-area conditions. Results show little
difference for the B/Y task for the different groups of subjects,
with the functions for subjects with data that preferred the log
model being quite similar to the functions for subjects with data
that preferred the linear model. For the L/R task, there was a
small but consistent separation in which subjects with data that
preferred the log model had functions in which RT increased as
accuracy decreased, whereas subjects with data that preferred
the linear model had functions in which RT decreased or was
flat as accuracy decreased.

The strongest conclusion from this is that for the B/Y task, it can
be argued that all subjects use differences between the numbers of
dots to drive the decision process whether or not the linear or log
model is the best-fitting model (which model is preferred could be
argued to depend on random variability in the data). In contrast, for
the L/R task, some subjects use separate representations of the two
arrays, and hence the log model applies, while others seem to rely
on differences in numbers (as in the B/Y task), and hence the linear
model applies. There is an increasing tendency with age for the
linear model to apply, which suggests an age-related change from
using separate representations to differences.

These conclusions are an oversimplification and are not strongly
supported by the data, but the results hint at different modes of
processing for the L/R task. However, we believe that the results
support the view that the linear model applies in the B/Y task, as in
Ratcliff and McKoon (2018), but there is not strong evidence for the
superiority of either model for the L/R task, in contrast to the results

(Appendices continue)
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in Ratcliff and McKoon. Results presented in Ratcliff et al. (2018)
provide support for the linear model in tasks with two arrays of
patches of bright or dark pixels of grayscale arrays. This suggests that
because subjects cannot form separate representations of the two

arrays for use in comparison (cf. absolute identification), they use
differences between the two arrays. Thus, the argument is that for
older adults, there is a greater tendency to rely on differences between
the two arrays in the L/R task relative to young adults.

Appendix D

Variability in Recovered Parameter Values Versus Individual Differences

In other studies using the diffusion model, it has been found that for
an experiment taking 30–45 min with 1,000–2,000 total observa-
tions, SDs in parameters from variability in data are typically 3–5
times smaller than individual differences (Ratcliff & Childers, 2015;
Ratcliff, Huang-Pollock, & McKoon, 2018; Ratcliff & Tuerlinckx,
2002). This means that individual differences in parameters and
differences among groups in parameters can be safely interpreted.
This is because the added variability to individual differences is small;
for example, if the SD in the estimation of a parameter was x and the
SD across individuals was 3x, then the combined SD would be

(x2	9x2) � 3.16x, which is a 5% increase in SD.

The integrated models are a little different from the standard
diffusion model because in the standard model, there is usually one
parameter representing across-trial variability in drift rate and separate
drift rates for each condition of the experiment. In the integrated
models, single coefficients produce drift rate and across-trial SDs in
drift rates.

To examine the accuracy of parameter recovery both in size and
bias, as well as correlations in parameter values, we performed a
Monte Carlo parameter recovery study (e.g., Lerche, Voss, & Nagler,
2017; Ratcliff & Childers, 2015; Ratcliff & Tuerlinckx, 2002). Mean

parameter values for the young adults and 70–90-year-olds for Ex-
periment 1 were used to generate 64 sets of simulated data, and the
model was fit to each of these simulated data sets in the same way as
the data were fit. To generate the simulated data, the number of
observations per condition (for the 20 conditions of the experiment)
was 73 for the data from parameters from young adults and 67 for the
data from parameters from the 70–90-year-olds. The simulated data
were generated using the random walk method (Tuerlinckx, Maris,
Ratcliff, & De Boeck, 2001).

Table D1 shows parameters from fits to data (from Tables 3 and 4),
the SDs in those parameters across subjects, the mean parameter
values from the 64 fits to simulated data, and the SDs in those
parameter values. There are two main results to examine. First, there
are small biases in some of the parameters. Boundary separation (a),
the range in the starting point (sz), and the two drift-rate coefficients
are estimated to be a little higher for the Monte Carlo fits than for the
data used to generate the simulated data (similar biases were obtained
in Ratcliff & Tuerlinckx, 2002). The SD coefficient (�1) was a little
biased for the 70–90-year-old parameter set but not for the young
adults. The other parameters showed almost no bias (apart from the
small constant SD in drift rate across trials, �0).

(Appendices continue)

Figure C1. Plots of mean response time (RT) against accuracy for Experiments 1 (B/Y) and 2 (L/R) for groups
of subjects in which the linear model fit better than the log model, and vice versa. The plots are only for
differences in numerosity of five. See the online article for the color version of this figure.

T
hi

s
do

cu
m

en
t

is
co

py
ri

gh
te

d
by

th
e

A
m

er
ic

an
Ps

yc
ho

lo
gi

ca
l

A
ss

oc
ia

tio
n

or
on

e
of

its
al

lie
d

pu
bl

is
he

rs
.

T
hi

s
ar

tic
le

is
in

te
nd

ed
so

le
ly

fo
r

th
e

pe
rs

on
al

us
e

of
th

e
in

di
vi

du
al

us
er

an
d

is
no

t
to

be
di

ss
em

in
at

ed
br

oa
dl

y.

2150 RATCLIFF AND MCKOON



The size of the SDs in parameter values from the Monte Carlo
fits were smaller than those from individual differences in data in
almost all cases by a factor of over 2.5 (with exceptions: the
constant SD in drift rate across trials, �0, and the SD coefficient
�1). This means that differences among individuals dominate
variability in the parameter values in these studies.

There are also strong relationships among model parameters in
the Monte Carlo data sets, and these are shown in Figures D1A and
D1B. (Note that there is a ceiling effect in the sz parameter because
its range is restricted in model fitting so it does not exceed the
decision process boundaries). Ratcliff and Tuerlinckx (2002)

showed similar patterns of correlations and provided an interpre-
tation in terms of perturbations in data. Suppose one quantile RT
for an error response was higher on average than its true value.
Then, to compensate, boundary separation and the across-trial SD
in drift rate would be a little higher to produce the higher RT, and
drift rate would also be higher to increase accuracy, which would
be needed in across-trial SD if drift rate increased. To fully
understand and explain these effects, the effects of random
changes in data and how the model compensates for these needs to
be understood.

(Appendices continue)

Table D1
Integrated Diffusion Model Parameter Means and Standard Deviations for Data and for Monte Carlo Simulations for the Linear
Model for the B/Y Task

Age group Source and measure a Ter �1 sz st vp ve �0 G2

Young adults Data mean 0.100 0.466 0.00540 0.046 0.260 0.0319 0.0169 0.023 261.4
Data SD 0.015 0.074 0.00237 0.029 0.088 0.0102 0.0062 0.043 24.1
MC mean 0.104 0.466 0.00534 0.061 0.260 0.0345 0.0184 0.053 103.0
MC SD 0.004 0.007 0.00147 0.009 0.011 0.0038 0.0021 0.040 10.3

70–90-year-olds Data mean 0.117 0.518 0.00715 0.052 0.277 0.0233 0.0070 0.022 263.6
Data SD 0.024 0.118 0.00505 0.038 0.103 0.0162 0.0055 0.044 39.6
MC mean 0.127 0.520 0.00792 0.072 0.279 0.0278 0.0086 0.071 108.0
MC SD 0.007 0.008 0.00244 0.015 0.018 0.0056 0.0022 0.066 12.2

Note. SD � standard deviation; MC � Monte Carlo simulation. The parameters were boundary separation a, starting point z � a/2, and mean nondecision
component of response time Ter. The constant coefficient of SD in drift rate across trials is �0, and the coefficient that multiplies the square root of the sum
of the squared numerosities is �1. Range of the distribution of starting point is sz, and range of the distribution of nondecision times is st. vp is the drift-rate
coefficient for the proportional-area condition, and ve is the drift-rate coefficient for the equal-area condition. G2 is the multinomial likelihood statistic.
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Figure D1. Scatter plots and correlations for ANS-diffusion model parameters for Monte Carlo simulations. In
each panel, a single set of parameters (from Table 3, young adult and 70–90-year-old values) was used to
generate simulated data, and the model was fit back to the data. The physical size of the correlations (the
numbers) represents the size of the correlations. The parameters were boundary separation a, mean nondecision
component of response time Ter, the constant coefficient of standard deviation in drift across trials is �0, and the
coefficient that multiplies the square root of the sum of the squared numerosities is �1. Range of the distribution
of starting point is sz, and range of the distribution of nondecision times is st. vp is the drift-rate coefficient for
the proportional-area condition, and ve is the drift-rate coefficient for the equal-area condition. See the online
article for the color version of this figure.
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