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One hundred and five memory disordered (MD) patients and 57 controls were tested on item recognition
memory and lexical decision tasks, and diffusion model analyses were conducted on accuracy and
response time distributions for correct and error responses. The diffusion model fit the data well for the
MD patients and control subjects, the results replicated earlier studies with young and older adults, and
individual differences were consistent between the item recognition and lexical decision tasks. In the
diffusion model analysis, MD patients had lower drift rates (with mild Alzheimer’s [AD] patients lower
than mild cognitive impairment [MCI] patients) as well as wider boundaries and longer nondecision
times. These data and results were used in a series of studies to examine how well MD patients could
be discriminated from controls using machine-learning techniques, linear discriminant analysis, logistic
regression, and support vector machines (all of which produced similar results). There was about 83%
accuracy in separating MD from controls, and within the MD group, AD patients had about 90% accu-
racy and MCI patients had about 68% accuracy (controls had about 90% accuracy). These methods
might offer an adjunct to traditional clinical diagnosis. Limitations are noted including difficulties in
obtaining a matched group of control subjects as well as the possibility of misdiagnosis of MD patients.

Keywords: Alzheimer’s and mild cognitive impairment, diffusion decision model, response time and ac-
curacy, discriminant analysis, item recognition and lexical decision

In this article, we examine the difference between controls and
Alzheimer’s disease (AD) and mild cognitive impairment (MCI)
patients (collectively memory-disordered (MD) patients) on per-
formance on an item recognition task (“was this test word in the
study list or not”) and on a lexical-decision task (“was this letter
string a word or not”). The experimental data are fit by the diffu-
sion decision model (Ratcliff, 1978; Ratcliff & McKoon, 2008),
and the model parameters are used to discriminate between MD
patients and controls. The item recognition and lexical decision
tasks were chosen for several reasons. First, accuracy is reasonably
preserved under normal healthy aging and so decrements from
moderately high performance levels can be detected. Second, both
tasks have been well fit by the diffusion model, which separates
performance into components, providing an integrated view of ac-
curacy and correct and error response time (RT) measures. Third,

these and similar tasks have been used to examine both normal
aging and memory disorders.

Memory is one of the hallmark abilities that is affected by AD
and is impacted in many of the causes of those with MCI. Dec-
rements in the speed of motor processing are also commonly
present in AD and MCI. Both these components are extracted
from behavioral data by diffusion model-based analyses. The
diffusion model represents the cognitive processes involved in
making simple two-choice decisions. Decisions are made by a
noisy process that accumulates information over time from a
starting point toward one of two decision criteria and the model
separates the quality of evidence entering a decision from the
decision criteria and from nondecision processes. Specifically,
diffusion model analyses have separated the evidence (drift rate)
used to drive the decision process from components represent-
ing the amount of evidence needed to make a decision (bound-
ary separation) and the duration of processes other than the
decision process (nondecision time). Ratcliff et al. (2010, 2011;
we label these articles, RTM AQ: 3) found that drift rate in these item
recognition and lexical decision tasks was almost unaffected by
aging but differed with IQ. In contrast, the components repre-
senting the amount of evidence needed to make a decision and
the duration of processes other than the decision process were
affected by aging but not IQ. Ratcliff et al. (2011) also exam-
ined associative recognition (“was this test pair of words studied
in the same pair or in different pairs”). However, they found that
performance is severely degraded in older adults (Naveh-
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Benjamin, 2000; Ratcliff et al. 2011) and so the better-preserved
item recognition paradigm was used in this study.
We use the diffusion model parameters in analyses to examine

whether the model-based approach might be useful in discriminat-
ing between MD patients and normal older adults. We examine a
number of different groups of subjects, different discrimination
methods, and different combinations of model parameters and
data. There have been a large number of studies to discriminate
between MD patients and normal older adults, but fewer using
model-based analyses. Tse et al. (2010) examined the differences
between healthy older adults and mild AD patients in RT distribu-
tions in three tasks: Stroop, Simon, and switching tasks. Results
showed that the main difference between the AD patients and
healthy older adults was a spreading of the tail of the RT distribu-
tions operationalized as an increase in the tau parameter of the ex-
Gaussian distribution (see also Spieler et al., 1996).
Two studies used discrimination methods to separate groups

based on experimental measures (see also Wiecki et al., 2015).
Hutchison et al. (2010) examined the use of a Stroop task switch-
ing paradigm to discriminate between patients with mild AD and
healthy older adults. The task involved presenting a word in color
as the target, and 1400 ms before the test word, a cue that indicates
the task to be performed was presented (“word” or “color”). The
task switched predictably every two trials from word to color then
color to word. The subjects were 32 mild AD patients and 64
healthy controls, and they received 144 trials of the task preceded
by 8 practice trials (the task was embedded in a larger psychomet-
ric task battery). They used the incongruent error rate (from trials
in which the color word and the color in which it was presented
were not the same) in a logistic regression analysis and found 81%
correct classification of the patients. They also found that only one
of the 18 psychometric tasks used in the battery provided higher
discriminability than the Stroop measure.
Houmani et al. (2018) presented results from a study to examine

whether EEG markers were capable of separating groups of
patients. They used EEG data collected with patients resting with
their eyes closed. There were 169 patients with various disorders,
namely subjective cognitive impairment (SCI), MCI, AD, and
other pathologies, and they used features from measures of signal
complexity and synchrony with a support vector machineAQ: 4 (SVM)
classifier. Results showed a high separation accuracy of 91.6% for
AD (N = 49) versus SCI (N = 22) patients but lower separation ac-
curacy (81%–88% correct) for three-way classification of AD ver-
sus SCI, versus others. In a four-way analysis, MCI patients were
classified correctly about 60% of the time, which is similar to the
result from our analysis for classification of MCI patients.
There have been a number of reviews of diagnostic tests and

methods. Here we briefly discuss three, one that used all methods,
one that used computerized tests, and one that used neuropsycho-
logical tests to screen for dementia.
Gaugler et al. (2013) presented results from an analysis and

review of 41 meta-analyses and reviews selected from 507 abstracts
in order to examine the accuracy of a range of diagnostic
approaches. They examined results from studies that used clinical
measures, cerebrospinal fluid-tau measures, positron emission to-
mography (PET), single-photon emission computed tomography
(which uses photon emitting isotopes instead of radioisotopes used
in PET), and structural MRI. These different methods produced

accuracy in the range of 70–90% relative to neuropsychological di-
agnosis. However, Gaugler et al. questioned the quality of the stud-
ies they reviewed and concluded by suggesting that no firm
conclusions could be drawn about the various methods they
examined.

Aslam et al. (2018) examined the accuracy of tests that are auto-
mated and not subject to subjective interpretation. These were
mainly cognitive/neuropsychological tests including tasks that
involved testing various cognitive domains such as memory, lan-
guage, visuospatial processing, executive functioning, and so on.
Accuracy was in the range of 60%–90%. But one limitation of
many of the studies reviewed was the small number of subjects
and lack of replicability. The article concludes that it is hard to
make recommendations on the clinical use of such computerized
tests, at this time.

Hwang et al. (2019) examined various standard neuropsycho-
logical tests for detection of dementia and MCI in hospital
patients. These were Mini-Mental Status Exam (MMSE), cogni-
tive performance scale, time and change task, clock-drawing task,
and cognitive impairment test. Results were varied, with accuracy
in the range of 70%–90%. However, the authors were unable to
recommend for or against the use of a specific instrument for
screening for dementia or MCI in older hospital inpatients because
single tests used in isolation were not reliable enough.

There were five main aims for the research in this article. First, we
wanted to examine the performance of MD patients on lexical deci-
sion and item recognition tasks relative to control subjects. Second,
we examined whether the diffusion model can fit data from these
patients. Third, we compared diffusion model parameters between
patients and controls to see what components of processing differ
between the two groups. Fourth, we wanted to see if the MD patients
(and controls) produced reliable individual differences by examining
correlations between model parameters for the two tasks. In the
RTM studies, diffusion model parameters (drift rate, boundary sepa-
ration, and nondecision time) correlated between tasks. Fifth, we
used discriminant methods to determine the accuracy with which the
data or the model parameters allow the MD patients to be discrimi-
nated from controls. We used three different statistical/machine
learning methods along with cross-validation in these studies.

Experiment AQ: 5

Item recognition and lexical decision are tasks that engage cen-
tral cognitive processes, especially memory and knowledge of
words. In the tasks in our experiment, the independent variables
were manipulated to produce a range of moderate to high accuracy
values. Sweeping out RTs over a range of accuracy values pro-
vides maximal constraints on fitting the diffusion model to data
(Ratcliff & Tuerlinckx, 2002).

One important feature of this experiment was the lack of error
feedback. We had found in pilot work that with this population of
MD patients, as well as the general population of older adults,
feedback that told them they were wrong was dispiriting and
caused some of them to terminate participation. This was true
even in experiments designed to be easy and even if we told them
college students were no more accurate than they were. Thus, we
did not use explicit feedback and had the experimenter monitor
their performance, providing them with encouraging feedback and
guidance if they needed to be recalibrated to the task.
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Method

Subjects

For the MD patient group, 29 adults diagnosed with mild/early-
stage AD and 76 adults diagnosed with MCI participated in the
experiment. They ranged in age from 53 to 89 years with a mean
of 72.9 and a SD of 8.4 years. All subjects were recruited from and
diagnosed by a neurologist at the Memory Disorders Clinic at The
Ohio State University Wexner Medical Center and were paid for
their participation. Patient characteristics are presented inT1 Table 1.
Subjects with mild AD met the following inclusion criteria: a

diagnosis of mild-stage AD based on the presence of dementia
with two or more cognitive domains impaired including memory;
a gradual onset with progressive deterioration; loss of independ-
ence in some activities of daily living; onset between the ages of
40 and 90; and absence of other disorders that could account for
the cognitive deficits. Subjects with MCI met the following inclu-
sion criteria: a diagnosis of MCI based on subjective complaint of
memory problems by the patient, preferably corroborated by an in-
formant; greater-than-normal memory impairment detected with
standard memory assessment tests; normal general cognitive func-
tion; generally normal activities of daily living; and absence of de-
mentia. Inclusion in the MCI group was limited to those
individuals who received a diagnosis of MCI and at the time of
testing had not progressed to AD. Diagnostic cognitive evaluations
included the following neuropsychological and other rating scales
given to the patients: MMSE (Folstein et al., 1975), Self-Adminis-
tered Gerocognitive Examination (SAGE; Scharre et al., 2010),
Consortium to Establish a Registry for Alzheimer’s Disease, Clini-
cal Dementia Rating Scale (Morris, 1993), and the Global Deterio-
ration Scale (Reisberg et al. 1982).
To recruit patients, Dr. Scharre, or one of his associates under

his direction, described the study to them. After discussion and if
they agreed to participate and signed the informed consent docu-
ments approved by the Ohio State University’s Social and Behav-
ioral Sciences Institutional Review Board, the research assistant
from Ratcliff and McKoon’s laboratory conducted the experiment
at the Memory Disorders Clinic using a laptop computer. To
ensure that patients were able to provide consent, we asked them
to recite a reasonable summary of what the study was about (they
were given two tries to do this), and to answer correctly five ques-
tions about the content of the consent form. All of the AD and
MCI patients were able to pass this test.
We use the MMSE and SAGE tests in later analyses. The mean

of the MMSE was 25.6 with an SD of 3.3, and the mean of the
SAGE was 16.2 with an SD of 4.0. The scale of the MMSE is 0 to

30 with a score of 20 or above indicating inclusion in our study.
The scale of the SAGE is from 0 to 22, with 17–22 considered nor-
mal, 15–16 indicating likely mild cognitive impairment, and 14
and below indicating likely dementia.

Each subject participated in one 60-minute session that began with
the lexical-decision task. After 15 minutes of data collection, this
task was terminated and the item recognition task was performed.
This resulted in an average of 459 responses in lexical decision per
subject and 471 responses in item recognition. For both tasks, sub-
jects were instructed to respond quickly but not at the expense of
making avoidable errors. For each task, an experimenter sat next to
the subject and monitored their performance.

We used two control groups for the MD patient group. In the
first, 52 older adults were recruited as part of a larger study using
flyers in community centers, libraries, and senior centers, from
word of mouth, and from the memory disorders clinic. We will
call this the MD control group. The lexical decision and item rec-
ognition tasks were the first experiments in which the subjects par-
ticipated, so the amount of training was the same. Fifteen
additional older adults were excluded after testing, because either
they had participated in other experiments, had cognitive scores
below our standard cutoffs (MMSE 25, IQ 80), had a major head/
brain injury in the past, were not a native speaker of English, or
had a medical condition that could affect performance. We also
recruited five caregivers of the MD patients who matched the age
ranges for the MD patient group and met the criteria above, and
these were included in the MD control group.

We had an additional control group for item recognition from
data from 60–90-year-old subjects from Ratcliff et al. (2011) who
participated in three sessions with item and associative recognition
and cued and free recall. The item recognition task was tested first
in the sequence of tests without prior practice. We will call this the
RTM control group. Although the MD patients were tested on lex-
ical decision before item recognition, most of the changes in
model parameters take place between sessions rather than within
sessions. Thus, if the MD patients improved performance because
of lexical decision practice, this would reduce discriminability
between the MD patient groups and this group rather than improve
it. There was one major difference between this group and the MD
patients and MD control group: The RTM group was given RT
feedback if a response had an RT greater than 900 ms. This was
done to reduce the possibility of slower recollective processes in
that experiment and produce responses based on the first informa-
tion available. This may explain why drift rates are lower for this
group than for the MD control group, because the subjects were
being driven to respond quickly and so they may not have

Table 1
Subject Characteristics

Subjects Mean age SD age Sex female Race White Race Black Ethnicity Hispanic Mean MMSE SD MMSE Mean SAGE SD SAGE

AD 74.8 7.0 44.8% 100% 0 0 22.9 2.9 13.5 4.2
MCI 72.0 8.6 44.7% 100% 0 1.3% 27.3 2.6 18.1 3.6
MD controls 68.9 6.6 68.4% 80.7% 15.8% 3.5% 28.9 1.4
RTMold 68.3 4.4 86.7% 88.9% 11.1% 4.4% 28.3 1.5
RTMvold 82.0 4.1 81.4% 90.7% 9.3% 2.3% 28.0 1.1

Note. Age in years. The percentage of Asian and Pacific Islanders is (100% – % White – %Black). AD = Alzheimer’s group; MCI = mild cognitive
impairment group; RTM = the older adults from Ratcliff et al. (2011); MD = memory disordered; MMSE = Mini-Mental Status Exam; SAGE = Self-
Administered Gerocognitive Examination.
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processed the test item as completely as they would if they had
more time (see Starns et al., 2012). We perform analyses with and
without this RTM group.
Stimuli. For both the item recognition and lexical decision

tasks, the stimuli were high, low, and very low frequency words.
There were 800 high frequency words with frequencies from 78 to
10,600 per million (M = 325, SD = 645, Ku�cera & Francis, 1967);
800 low frequency words, with frequencies of 4 and 5 per million
(M = 4.41, SD = .19); and 741 very low frequency words, with fre-
quencies of 1 per million or no occurrence in the Ku�cera and Fran-
cis corpus (M = .36; SD = .48). All of the very low frequency
words occurred inMerriam-Webster’s Ninth Collegiate Dictionary
(Merriam-Webster, 1990), and they were screened by three under-
graduate students; any words that they did not know were elimi-
nated. For all three tasks, stimuli were chosen randomly without
replacement from these pools. The stimuli were presented on the
screen of a PC and responses were collected on the PC’s
keyboard.
Lexical Decision. Words were selected from the high, low,

and very low frequency pools, and nonwords were selected from a
pool of 2,341 pseudowords that were generated from words by
randomly replacing all the vowels with other vowels (except for
“u” after “q”). There were 30 blocks of trials with each block con-
taining 30 letter strings: 5 high frequency words, 5 low frequency
words, 5 very low frequency words, and 15 pseudo words. Sub-
jects were asked to press the “/” key if the letter string was a word
and the “z” key if it was not. There was no error feedback. On av-
erage, about 15 blocks were completed in the 15 minutes allocated
to this task.
Item Recognition. There were 42 study-test blocks. For each

block, the study list consisted of 6 high and 6 low frequency words
displayed for 1 s each. One additional filler word, a very low fre-
quency word, was placed at the end of the study list to serve as a
buffer item. The test list immediately followed the study list and
consisted of the 12 studied words plus 12 new words, 6 of them
high frequency and 6 low frequency. The first two test words in
the test list were fillers, either two new very low frequency words
or one new very low frequency word and the last item of the study
list (which was a filler item). Subjects were asked to press the “/”
key if the test word had been presented in the immediately preced-
ing study list and the “z” key if not. There was no error feedback.
On average, about 16 study-test blocks were completed in the 30
minutes allocated to this task.

Diffusion Model

The diffusion model is designed to explain the cognitive proc-
esses involved in making simple two-choice decisions. Expres-
sions for predicted values of accuracy and RT distributions can be
found in Ratcliff (1978) and Ratcliff and Tuerlinckx (2002). The
model separates the quality of evidence entering a decision from
the decision criteria and from nondecision processes. Decisions
are made by a noisy process that accumulates information over
time from a starting point z toward one of two response criteria, or
boundaries, a and 0. The boundary setting represents how much
evidence the subject requires in order to make a decision. When a
boundary is reached, a response is initiated. The rate of accumula-
tion of information is called the drift rate (v), and it is determined
by the quality of the information extracted from the stimulus in

perceptual tasks and the quality of match between the test item
and memory in memory and lexical decision tasks. The mean of
the distribution of times taken up by the nondecision component is
labeled Ter. Nondecision time represents the time taken for encod-
ing the stimulus, extracting the decision relevant information to
produce drift rate, and response output. Within-trial variability
(noise) in the accumulation of information from the starting point
toward the boundaries results in processes with the same mean
drift rate terminating at different times, thus producing RT distri-
butions, and sometimes at the wrong boundary (producing errors).
For detailed descriptions of the diffusion model and applications,
see Forstmann et al. (2016), Ratcliff and McKoon (2008), and
Ratcliff, Smith, et al. (2016).

The values of the components of processing vary from trial to
trial, under the assumption that subjects cannot accurately set the
exact same parameter values from one trial to another (e.g., Lam-
ing, 1968; Ratcliff, 1978). Across-trial variability in drift rate is
normally distributed with SD h, across-trial variability in starting
point is uniformly distributed with range sz, and across-trial vari-
ability in the nondecision component is uniformly distributed with
range st. Also, there are “contaminant” responses—slow outlier
response times as well as responses that are spurious in that they
do not come from the decision process of interest (e.g., distraction,
lack of attention). To accommodate these responses, we assume
that, on some proportion of trials (po), a uniform distributed ran-
dom RT between the minimum and maximum RT for the condi-
tion is the contaminant RT assumption (see Ratcliff & Tuerlinckx,
2002). The assumption of a uniform distribution is not critical; re-
covery of diffusion model parameters is robust to the form of the
distribution and also to the form of the across-trial variability com-
ponents (Ratcliff, 2008, 2013).

The values of all the parameters, including the variability pa-
rameters, are estimated simultaneously from data by fitting the
model to all the data from all the conditions of each experiment.
The model can successfully fit data from single subjects producing
well-estimated drift rate, boundary separation, and nondecision
time values if there are around 400–1000 total observations per
subject (see Ratcliff & Childers, 2015 for a detailed analysis). Var-
iability in these parameter estimates is much less than differences
in the parameters across subjects (individual differences in these
parameters) so that correlations are meaningful. The ability of the
model to fit data from individual subjects and produce meaningful
individual differences analyses is an important feature of the
model because many models in cognitive psychology may fit
group data adequately, but they have not been shown to provide
information about individual differences. The model fit the data
well and it did so with the assumption that only drift rate, not the
nondecision component or the criteria, varied with the difficulty of
experimental conditions. For instance, the slower and less accurate
responses for low compared to high frequency words in lexical de-
cision were explained by a difference only in their drift rates.

The diffusion model was fit to the data for each task and each
subject by minimizing a chi-square value with a general SIMPLEX
minimization routine that adjusts the parameters of the model until
it finds the parameter estimates that give the minimum chi-square
value (see Ratcliff & Tuerlinckx, 2002 for a full description of the
method). The data entered into the minimization routine for each
experimental condition were the .1, .3, .5, .7, .9 quantile RTs for
correct and error responses and the corresponding accuracy values.
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The quantile RTs and the diffusion model were used to generate the
predicted cumulative probability of a response by that quantile
response time. Subtracting the cumulative probabilities for each
successive quantile from the next higher quantile gives the propor-
tion of responses between adjacent quantiles. For the chi-square
computation, these are the expected values, to be compared to the
observed proportions of responses between the quantiles (i.e., the
proportions between 0, .1, .3, .5, .7, .9, and 1.0, which are .1, .2, .2,
.2, .2, and .1) multiplied by the number of observations. Summing
over (Observed-Expected)2/Expected for all conditions gives a sin-
gle chi-square value to be minimized.
The diffusion model must explain accuracy, the shapes of the

RT distributions for correct and error responses, and the relative
speeds of correct and error responses, and the model can be under-
stood as decomposing these accuracy and RT data for correct and
error responses into components of processing. In some models in
psychology (signal detection theory, some kinds of dual process
models), the model parameters are a simple transformation of the
data from two data values to two parameters which results in an
untestable theory. In contrast, the diffusion model must fit experi-
mental data (RT distributions and how they change with accuracy)
in order for the model parameters to be valid. Thus, the model has
to pass a quality-of-fit test before it can be used to interpret
processing.

Results: RTs and Accuracy

RTs less than 300 ms and greater than 5000 ms were eliminated
from analyses. This excluded 1.1% and 1.5% of the data for the
item recognition and lexical decision tasks respectively.

T2 Table 2 shows accuracy and median RTs for item recognition as
a function of the experimental variables. We present the results for
the AD and MCI groups separately and then combined into an MD
patient group (to help with comparisons). To perform statistical
analyses for both tasks, we combined the conditions to provide
single values of accuracy and mean correct RT for each subject
and performed an analysis of variance on each variable with the
three subject groups (AD, MCI, and controls) as the independent
variable. We used Tukey’s HSD post hoc test to examine differen-
ces between pairs of subject groups.
For item recognition, for all the groups, there was a mirror

effect with responses to low frequency words more accurate and
faster than responses to high frequency words for both “old” and
“new” items. The AD patients were slower and less accurate than
the MCI patients, and both groups were slower and less accurate
than the MD control group. For the following analyses, mean

accuracy values and mean RTs were combined over correct
responses for old and new items (and word and nonword items for
lexical decision). This produced a single value of accuracy and a
single value of mean RT for each subject.

Using one-way analyses of variance (ANOVAS), there was a
main effect of group on accuracy (F(2, 159) = 47.0, p , 2 3
10�16, ƞp2 = .371). The AD and MCI groups differed from each
other (HSD p = .0002), and the MD control group differed from
both AD and MCI groups (ps , 10�6). There was a main effect on
RT (F(2, 159) = 27.6, p = 5.2 3 10�11, ƞp2 = .258). The difference
between the AD and MCI groups did not quite reach significance
(HSD p = .054), but the MD control group differed from both AD
and MCI groups (ps, 10�6).

The RTM control group was less accurate than the MD control
group and only a little more accurate than the MD patient group.
However, the RTM control group had responses that were much
faster than the other two groups. The RTM and MD control groups
also had a bias toward “new” responses that the MD patient group
did not. We use this bias in our discrimination tests.

T3Table 3 shows results for the lexical-decision task. Accuracy was
very high for high frequency words, lower for low frequency and
nonwords, and about 85% correct for very low frequency words. M
RTs were close to a second or longer for all responses (except for
high frequency words for the MD control group), and error RTs were
typically 200–400 ms longer than correct RTs. The AD and MCI
groups had quite similar accuracy values and RTs, but the MD con-
trol group had shorter RTs. There was a main effect of subject group
on accuracy (F(2, 159) = 5.1, p = .0072; ƞp2 = .060). The AD and
MCI groups did not differ from each other (HSD p = .23), the MCI
and MD control group did not differ from each other (HSD p = .11),
but the MD control group differed from the AD group (p = .006).
There was a main effect on RT (F(2, 159) = 18.4, p = 6.5 3 10�8,
ƞp2 =.188), the difference between the AD and MCI groups was not
significant (HSD p = .70), but the MD control group differed from
both AD and MCI groups (ps, 10�5).

Diffusion Model Analyses

The diffusion model was applied to the data for each task for
each subject individually. Mean parameter values for the two
patient groups and control groups for both experiments are pre-
sented in T4Table 4. As would be expected from the accuracy and
RT data for both experiments, boundary separation and nondeci-
sion times were smaller for the MD control group than for MD
patients. For item recognition, the values from the RTM control
group were lower than those for the MD control group. For item

Table 2
Item Recognition Data: Probability Correct and Correct and Error Mean RTs

High word freq. “old” Low word freq. “old” High word freq. “new” Low word freq. “new”

Subjects Prc Crt Ert Prc Crt Ert Prc Crt Ert Prc Crt Ert

AD 0.691 1,165 1,298 0.688 1,155 1,276 0.501 1,260 1,262 0.652 1,256 1,340
MCI 0.637 1,085 1,266 0.721 1,061 1,294 0.711 1,148 1,275 0.804 1,135 1,368
MD 0.650 1,105 1,273 0.713 1,082 1,289 0.661 1,168 1,270 0.768 1,159 1,358
MD controls 0.682 886 1,117 0.816 860 1,138 0.851 946 1,010 0.902 914 1,070
RTM11 0.592 782 812 0.725 770 838 0.820 783 851 0.872 779 887

Note. PrC = probability correct; CRT and ERT = correct and error mean RT; freq. = frequency; AD = Alzheimer’s group; MCI = mild cognitive impair-
ment group; MD = memory disordered; RTM = the older adults from Ratcliff et al. (2011). Subject groups as in Table 1.
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recognition, drift rates were lower for the MD patient groups. In the
same way as for accuracy and mean RT, a single value of drift rate
was produced in lexical decision by adding the drift rates for
“word” responses and subtracting the drift rate for “nonword”
responses (and taking the mean) and for item recognition by taking
the average of the drift rates for “old” words and minus the (usually
negative) drift rates for “new” words (and taking the mean). A drift
rate bias was also computed for item recognition for the discrimi-
nant analyses presented later; this was the sum of the four drift rates
for both tasks. This bias can be seen using the values in Table 4; for
the MD control group and the RTM data, there is a bias toward
“new” responses while there is little bias for the MD patients.
For item recognition, there was a main effect of subject group

on boundary separation (F(2, 159) = 6.5, p = .0020; ƞp2 = .75).
The AD and MCI groups did not differ from each other (HSD p =
.92) but the MD control group differed from both AD and MCI
groups (ps , .01). There was a main effect on nondecision time
(F(2, 159) = 8.6, p = .00029, ƞp2 = .098). The difference between
the AD and MCI groups was not significant (HSD p = .65), but the
MD control group differed from both AD and MCI groups (ps ,
.002). There was a main effect of group on drift rate (F(2, 159) =
58.2, p , 2 3 10�16, ƞp2 = .423), and the differences between
each pair of the three groups was significant (HSD ps, .0008).

For lexical decision, there was a main effect on boundary separa-
tion (F(2, 159) = 5.7, p = .0040; ƞp2 = .067). The AD and MCI
groups did not differ from each other (HSD p = .997), but the MD
control group differed from both AD and MCI groups (ps , .04).
There was a main effect on nondecision time (F(2, 159) = 7.7, p =
.00060, ƞp2=.089). The difference between the AD and MCI groups
was not significant (HSD p = .95), but the MD control group dif-
fered from both AD and MCI groups (ps , .007). There was a
main effect on drift rate (F(2, 159) = 8.7, p = .00026, ƞp2 = .099).
The difference between the AD and MCI groups was not significant
(HSD p = .33), but the MD control group differed from both AD
and MCI groups (ps, .005).

From the model parameters for each subject, predicted values of
accuracy and correct and error RT quantiles were generated for
each experimental condition, and these were averaged in the same
way over subjects. F1Figure 1 plots the .1, .3, .5, .7, and .9 RT quan-
tiles vertically against their response proportions with the x’s the
data and the o’s and lines the predictions. This provides informa-
tion about how accuracy changes across conditions and how distri-
bution shape changes as accuracy changes. The shapes of the RT
distributions can be visualized by drawing equal area rectangles
between the quantile RTs as shown in the second down left panel
of Figure 1. The .1 quantile represents the leading edge of the

Table 3
Lexical Decision: Probability Correct and Correct and Error Mean RTs

High word freq. Low word freq. Very low word freq. Nonword

Subjects PrC CRT ERT PrC CRT ERT PrC CRT ERT PrC CRT ERT

AD 0.978 989 1,248 0.930 1,179 1,463 0.833 1,271 1,508 0.913 1,385 1,576
MCI 0.985 963 1,338 0.947 1,140 1,513 0.862 1,235 1,573 0.913 1,342 1,527
MD 0.983 970 1,308 0.942 1,150 1,497 0.855 1,243 1,554 0.913 1,352 1,359
MD controls 0.991 792 856 0.959 935 1,178 0.878 1,022 1,266 0.942 1,071 1,223

Note. Abbreviations as in Table 2.

Table 4
Diffusion Model Parameters for Item Recognition and Lexical Decision

Group, task, and statisticAQ: 11 a Ter h sz p0 st z v1 v2 v3 v4 v2
AQ: 12

AD Rn mean 0.217 0.734 0.208 0.121 0.002 0.318 0.124 0.106 0.097 �0.024 �0.127 48.5
MCI Rn mean 0.212 0.712 0.237 0.120 0.003 0.249 0.119 0.106 0.169 �0.157 �0.227 49.5
MD Rn mean 0.214 0.719 0.229 0.120 0.003 0.268 0.120 0.106 0.149 �0.120 �0.199 49.3
MD control Rn mean 0.179 0.647 0.311 0.099 0.004 0.192 0.107 0.130 0.276 �0.355 �0.436 51.5
RTM11 mean 0.123 0.598 0.191 0.043 0.001 0.204 0.060 0.081 0.191 �0.253 �0.309 68.6
AD Lex mean 0.250 0.629 0.133 0.035 0.023 0.245 0.147 0.413 0.217 0.135 �0.200 38.6
MCI Lex mean 0.261 0.651 0.127 0.071 0.012 0.246 0.151 0.391 0.227 0.143 �0.209 39.3
MD Lex mean 0.258 0.645 0.129 0.061 0.015 0.245 0.150 0.397 0.224 0.141 �0.207 39.1
MD control Lex mean 0.221 0.570 0.141 0.062 0.010 0.185 0.127 0.512 0.283 0.179 �0.279 37.8
AD Rn SD 0.054 0.148 0.098 0.057 0.003 0.151 0.038 0.104 0.086 0.114 0.116 13.0
MCI Rn SD 0.065 0.114 0.104 0.065 0.010 0.149 0.045 0.142 0.153 0.148 0.140 15.3
MD Rn SD 0.062 0.124 0.102 0.063 0.009 0.152 0.043 0.132 0.141 0.151 0.140 14.6
MD control Rn SD 0.050 0.068 0.056 0.054 0.012 0.096 0.034 0.135 0.134 0.135 0.143 17.9
RTM11 SD 0.032 0.087 0.099 0.031 0.010 0.100 0.027 0.145 0.145 0.136 0.157 23.3
AD Lex SD 0.072 0.141 0.073 0.079 0.038 0.174 0.053 0.153 0.086 0.063 0.107 18.8
MCI Lex SD 0.066 0.127 0.081 0.076 0.028 0.171 0.048 0.166 0.114 0.101 0.121 15.7
MD Lex SD 0.068 0.130 0.079 0.076 0.031 0.171 0.049 0.165 0.108 0.093 0.117 16.5
MD control Lex SD 0.067 0.082 0.074 0.078 0.024 0.124 0.042 0.142 0.110 0.096 0.138 17.3

Note. Boundary separation is aAQ: 12 ; starting point is z; mean nondecision time is Ter; the SD in drift across trials is h; range of the distribution of starting point is sz;
range of the distribution of nondecision times is st ; and po is the proportion of contaminants. The subject groups are as in Table 1. Rn = item recognition; Lex =
lexical decision. For item recognition, v1 = high frequency old words; v2 = low frequency old words; v3 = high frequency new words; and v4 = low frequency
new words. For lexical decision, v1 = high frequency words; v2 = low frequency words; v3 = very low frequency words; and v4 = pseudowords; AD =
Alzheimer’s group; MCI = mild cognitive impairment group; MD = memory disordered; RTM = the older adults from Ratcliff et al. (2011)
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Figure 1
Quantile Probability Plots for Item Recognition and Lexical Decision Tasks for
Data and Model Predictions for MD Patients and the MD Control Group
Averaged Over Subjects in the Same Way

O C
N O
L L
I O
N R
E

Note. The x’s are the data and the o’s are the predictions joined by the lines. The five lines
stacked vertically above each other are the values predicted by the diffusion model for the 0.1,
0.3, 0.5, 0.7, and 0.9 quantile RTs as a function of response proportion for the conditions of the
experiments. The quantiles are labeled on the left-hand side of the second left plot, and equal-area
rectangles drawn between the quantiles are shown on the right side of that plot (which represent
RT distributions). The M’s in the plots show the median RT because some subjects did not have
enough error responses to compute quantiles. MD = memory disordered; LFn = low frequency
new words; HFn = high frequency new words; HFo = high frequency old words; LFo = low fre-
quency old words; PW = psuedowords; VLF = very low frequency words; LF = low frequency
words; HF = high frequency words. See the online article for the color version of this figure.
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distribution, the .5 quantile is the median, and the .9 quantile rep-
resents the tail of the distribution. Results show as in Ratcliff et al.
(2010) that the change in mean RT across conditions is mainly a
spread in the distribution for both tasks.
The top four panels are for the item recognition task, with the

left two for the MD patients and the right two for the MD control
group. In the top two panels, “old” responses are shown with the
far-right column of quantile RTs (in each plot) for studied (“old”)
low frequency words and the next left for high frequency words.
Errors to low frequency new words are to the far left (represented
by a median RT), and errors to high frequency new words are the
next to the left. The bottom two plots are a mirror image of the top
right plot for correct responses to “new” words and errors to “old”
words. For several of the plots, quantiles are not shown for some
of the error conditions, and in some cases, a single “M” is pre-
sented for the median RT (when there is at least a single RT for
each subject in that condition). This is because there are fewer
than five (or zero) responses for some of the subjects in those con-
ditions so that quantiles cannot be computed. As discussed earlier,
accuracy is lower for MD patients as shown by the columns of
quantiles being closer to the center than for the MD control group.
Also, the RTs are on different scales, with the MD patients with
longer RTs than the MD control group.
The bottom four panels show the same plots for the lexical-deci-

sion task. The third row shows “word” responses in lexical deci-
sion; in these panels, the far-right column of RT quantiles is for
high frequency words, the next left, low frequency words, and the
column nearest the middle, very low frequency words. The column
on the far left represents error responses to nonwords, and as for
item recognition, only “M” is shown because some subjects have
too few observations to compute quantiles. The bottom row shows
nonword responses with correct responses to nonwords to the right
and error responses to the word to the left. Empirical values for
the two far left conditions, errors to high and low frequency words,
are not plotted because some subjects had no error responses so
even median RTs could not be computed.

Chi-Square Goodness of Fit

We calculated chi-square goodness of fit values for each task for
each subject, and the means of the chi-square values are shown in
Table 4. The degrees of freedom for the chi-square values were cal-
culated as follows: For the five quantile RTs, there are six bins: two
outside the .1 and .9 quantiles and four between the pairs of quan-
tiles. This gives 12 degrees of freedom, minus 1 because the total
probability adds to 1. Thus, for both tasks with four conditions, the
number of degrees of freedom with four conditions and 11 parame-
ters is 33 (44–11). The .95 critical value is 47.4 for a two-tailed test
and 50.7 for a one-tailed test. The mean chi-square values are
mainly below the one-tailed critical value for both tasks.
The chi-square statistic has the property that as the number of

observations increases, the power of the test increases so that even
the smallest deviation can lead to significance. To illustrate this: The
chi-square value is the sum over all frequency classes of (O-E)2/E
where O and E are the observed and expected frequencies. Suppose
in our computations, the observed and expected proportions between
two adjacent bins systematically miss by .1 (e.g., instead of the pro-
portions being .2, one is .1 and the next is .3). Then the additional
contribution from this miss to the chi- square is (N(.1–.2)2/.3þN

(.3–.2)2/.1), where N is the number of observations in the condition.
For the item recognition task with about N = 114 observations per
condition, the contribution to the chi-square from this systematic
deviation would be 15.2. This helps explain why the mean chi-
square value is larger for the RTM control group because it had a
larger number of observations per condition than the experiment pre-
sented here. For example, for the MD control group, there were
about 140 observations per condition, and for the RTM control
group, there were about 260 observations per condition (as opposed
to the 114 for the MD patients). Therefore, the lower values of chi-
square in this article than Ratcliff et al. (2010, 2011) are the result of
fewer observations rather than substantially better fits.

Evaluating the Control Group Based onModel Parameters

The subjects in the RTM studies have a range of IQs documented
in those articles, which may or may not match our group of memory
disordered patients, but they have an age range that matches. Given
that in those prior studies, both lexical decision and item recognition
drift rates varied as a function of IQ, without IQ measures we cannot
be certain that differences are not due to IQ differences, and there is
no way to measure their preclinical IQs. However, there is a strong
correlation of IQ with drift rates in lexical decision and item recogni-
tion, so we can examine whether the decrease in performance for the
MD patients in the two groups relative to the MD controls is the
same for lexical decision and item recognition or whether lexical de-
cision performance would be relatively unimpaired in these patients,
but recognition would be more impaired. In fact, lexical decision drift
rates in the MD control group are about 1.3 times those of the two
MD patient groups, which were not different. But for item recogni-
tion, drift rates for the MD control group were almost twice as large
as those of the MCI group, which were almost twice as large as those
of the AD group. Thus, evidence used to drive the decision process
was more preserved for memory disordered patients in the lexical-de-
cision task than in the item recognition task. Thus, the large decline
in memory performance cannot be attributed solely to preclinical dif-
ferences between the MD patients and MD controls.

Correlations Among Model Parameters, Data, Age, and
Diagnostic Tests

In prior research (Ratcliff et al., 2010, 2011, 2015), diffusion
model parameters and data (accuracy and mean RT) correlated
between tasks. F2Figures 2 and F33 show scatter plots of age, model pa-
rameters, and data for the item recognition and lexical decision
tasks. With 105 MD patients and 57 MD controls in an individual
differences analysis, even moderate values of the correlation coeffi-
cient will be significant because the critical values are .19 and .26,
respectively. Note that the correlations are also sensitive to outliers
so correlations near the critical value should be viewed with suspi-
cion if the scatter plots show any evidence of outliers.

The correlations between diffusion model parameters in lexi-
cal decision and item recognition for boundaries (a) were .38
and .59 (for the MD patient and the MD control groups, respec-
tively—this same order is used for the following comparisons),
nondecision time (Ter) .52 and .67, drift rates (v) .62 and .33,
and across-trial SD in drift (h) .27 and .19 (across-trial SD in
drift rate is not plotted in Figures 2 and 3). Thus, the main
model parameters were reliably correlated across the two tasks
for both the MD patient and MD control groups. For the data,
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for the MD patient and MD control groups respectively, mean
RT was correlated .66 and .66 between the two tasks and accu-
racy was correlated .48 and .43.
As in the earlier research, drift rates were correlated with accu-

racy, and nondecision time and boundary separation were correlated
with mean RT. There were also negative correlations between drift

rate and RT, suggesting that longer RTs were related to poorer evi-
dence used in the decision process. These were the main correla-
tions, but all are shown in Figures 2 and 3. For the diagnostic tests
for MD patients, SAGE and MMSE were correlated .67. We do not
have the SAGE measure for the MD control group, and the MMSE
had a mean of 28.9 with a top score of 30, so the range of the

Figure 2
Scatter Plots, Histograms, and Correlations for Age, Accuracy, and Mean RT, and Diffusion Model Parameters, Nondecision Time,
Boundary Separation, and Drift Rate Averaged Over Conditions for the MD Patients

O C
N O
L L
I O
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E

Note. acc = accuracy; R = item recognition; L = lexical decision; a = boundary separation; Ter = nondecision time; and v = mean drift rate averaged
over conditions; MD = memory disordered. See the online article for the color version of this figure.
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MMSE was severely limited. This correlation between the MMSE
and SAGE tasks showed a strong relationship suggesting that they
measure similar aspects of performance. The MMSE and SAGE
tasks correlated with drift rates for item recognition .52 and .52 and
for lexical decision .40 and .46, respectively, which shows that the
MMSE and SAGE scores measure similar abilities to those that
produce evidence driving the decision process in these two tasks.
The correlations between the MMSE and SAGE tasks for boundary
separation were small, but for nondecision time the correlation was

–.28 averaged over the four combinations of tasks and measures.
This latter result suggests a weak relationship between ability in
these tasks and nondecision time, with higher ability related to
shorter nondecision time.

These results show that for the patients and controls, we obtain
similar patterns of individual differences as in earlier studies. This
shows that the modeling and analysis produce interpretable indi-
vidual differences because the main model parameters correlate
across the two tasks and so appear to be measuring similar

Figure 3
The Same Plot as in Figure 2 for the MD Control Group
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Note. MD = memory disordered. See the online article for the color version of this figure.
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processes as in the earlier studies. Also, the MMSE and SAGE
tests appear to measure the same cognitive abilities that evidence
driving the two fast cognitive tasks (lexical decision and recogni-
tion) measures.

Discriminating Between Groups Based on Model Parameters
or Data

The gold standard to which neuropsychological testing should
aspire is to produce tests that separate patients into those that have
a disorder and those that do not. It seems to be universally agreed
that in many domains, the neuropsychological tests currently being
used are not highly diagnostic at an individual level. Therefore, a
high priority has to be to examine any task that shows differences
between groups to determine if it is diagnostic at an individual
level. As discussed earlier, the diffusion model is one of the few
quantitative models in psychology that has been used to produce
meaningful individual differences and has been applied to data
from patients with a number of disorders, as well as aging and de-
velopmental research.
Here we use three statistical/machine learning methods to exam-

ine the accuracy with which the MD patients can be discriminated
from controls. These methods are linear discriminant analysis
(LDA), logistic regression (LR), and SVM. These methods use
data or model parameters and a variable that specifies to which
group the subject belongs. The algorithm then finds weights on
model parameters or data that best separates the groups. LDA
gives a categorical classification output for the two groups that we
use here to represent accuracy of performance with this classifier.
It also provides a score that allows us to change the hit rate and
correct rejection rate (sensitivity and specificity scores). This score
also tells us the degree to which subjects are more or less strongly
classified in the two groups. LR and SVM give scores (rather than
the categorical assignment that is available from the LDA method)
that are used in the same way as the scores for LDA. Therefore, in
order to determine the accuracy of these methods, it is necessary
to find the criterion that gives the best classification accuracy. This
is done by adjusting the criterion value to find a value that best
separates the groups.
Linear discriminant analysis attempts to find a linear combina-

tion of variables with a linear decision boundary that finds the
largest separation of the different groups. LDA assumes normal
distributions of the independent variables and this is a reasonable
assumption for the data and model parameters we use in the analy-
sis (see the histograms in the diagonals of Figures 2 and 3). We
use the linear discriminant analysis function (lda) in the MASS
package in R (Venables & Ripley, 1994). We also tried quadratic
discriminant analysis which produces a quadratic boundary
between groups, but this only differs from LDA when there are
more than two groups and the method produced similar results in
the analyses with three or four groups. We also examined whether
a second discrimination helped discrimination when we were
examining three or four groups, and results showed no improve-
ment over the single discriminator.
For all these methods, we use cross-validation to evaluate the

method, by training on a sample of about two thirds of the data/pa-
rameters and then testing the result on the other one third of the
data (there are many possible choices of what sample sizes to use;
we felt this two-thirds versus one-third was a good compromise in

comparison to accuracy when the whole data set was used). This
avoids the problem of overfitting that might occur if all the values
were used in classification. In our applications, this process is per-
formed 1,000 times and accuracy of the separation between groups
and SDs in these values are presented. For the LR and SVM meth-
ods, a single criterion was used for all 1,000 cross-validation stud-
ies. We present results from the cross-validation study as well as
results for application to the full data set in T5Table 5.

These methods are applied to the following data sets (described
earlier). First, there are the 105 MD patients tested on both item rec-
ognition and lexical decision (29 diagnosed as AD, 76 diagnosed as
MCI). Second, there are the 57 subjects from the MD control group
who were tested on both item recognition and lexical decision in the
same way as the MD patients. We also used a control group from
Ratcliff et al. (2011) as described above. The model parameters for
the RTM group are presented in Table 4 (we combined two older
age groups in the analyses but present them separately in Table 4)
along with those from the patient and the MD control groups. It
turns out that using this RTM set of data in the discriminant analysis
improved discrimination between the AD, MCI, and MD control
groups. Results are presented in Table 5.

Diffusion Model Parameters. The first nine rows of Table 5 AQ: 6

use diffusion model parameters for the item recognition task:
boundary separation, nondecision time, the mean drift rate, and the
bias in drift rate. The first row shows accuracy for the most impor-
tant analysis, the separation of MD patients from all older adults.
There is about 83% successful separation of the groups. F4Figure 4
top panel shows the separation for individual subjects. The top
row plots each subject on the x-axis and the categorization on the
y-axis. Although some of the dots merge, the ones that are misclas-
sified are easy to see. For the 29 AD patients, only 3 out of 29 of
them are misclassified (90% accuracy); for the 57 MD control
group, 7 out of 57 are misclassified (88% accuracy); and 7 out of
the 88 older adults from the RTM control group are misclassified
(92% accuracy). The MCI patients were classified less accurately
with 52 out of 76 correctly classified (68% accuracy). These
results show that subjects that are clearly impaired or clearly
unimpaired are accurately classified, but those that are less
impaired are less accurately classified.

The first row also shows the results from the LR and SVM clas-
sifiers, which give very similar results to the LDA results. This
occurs probably because distributions of the classifier values ( F5Fig-
ure 5 bottom right) are symmetrically distributed and there seems
to be no way to classify the groups in a more complicated way.
The second through the eighth rows show comparisons between
subgroups in which only the groups listed are trained and tested.
The results generally support the analyses from the first row. The
AD and MCI groups are relatively poorly separated from each
other with about 70% accuracy. The MD patient group was sepa-
rated from the MD control group with about 80% accuracy, which
shows that the addition of the RTM control group improved classi-
fication of these two groups. The MD patient group and RTM con-
trol group were more accurately classified with about 86% correct
classification, but this is likely due to the speed feedback given to
the older adults in the RTM group that was discussed earlier.

LDA is the method preferred for multigroup classification when
the assumption of normally distributed variables is met, and so we use
this method for the following multigroup classifications. The eighth
row shows classification with training and testing for three groups: the
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MD patient group, the MD control group, and the RTM control
group. Accuracy is about 71% mainly because of misclassification of
the MCI group as above. The ninth row shows the classification into
four groups: AD, MCI, MD control group and RTM control group.AQ: 7

Accuracy of this classification is quite low, about 60%. The results
are plotted in the second panel of Figure 4. The four rows show the
classification, and the numbers in the panels show the number classi-
fied into the AD/MCI group versus MD control/RTM control groups.
The results from collapsing the four groups into two groups are very
similar to the two-category classification shown in the top line of Ta-
ble 5; only 1 out of the 250 subjects was better classified. (Three-way
classification for AD, MCI, and MD control groups was also about
60% accurate with values within 1% of those in row 9.)
Rows 10 through 13 of Table 5 show the effects of using only

some of the diffusion model predictor variables. Bias was taken out
of the analyses, and row 10 shows results from the three model pa-
rameters. Rows 11–13 show the results from pairs of variables. The
results show that boundary separation is the best predictor (in terms
of accuracy) followed by drift rate, and then nondecision time.
Adding Lexical Decision Parameters. Row 14 shows the

result from adding boundary separation and nondecision time
from the lexical-decision task to boundary separation, nondeci-
sion time, drift rate, and bias from item recognition. The RTM
experiment did not have lexical decision data and so there was
no RTM group for this analysis. Accuracy was increased over
that from row 5 by less than 1%. The slight improvement could
be because the values of boundary separation and nondecision
time from lexical decision reduced the variability in those quan-
tities relative to the values from item recognition alone (bound-
ary separation and nondecision time were each correlated across
the item recognition and lexical decision tasks; see Figures 2
and 3).

Using Raw Data in Discrimination. Row 15 shows results
from classifying MD versus the MD control group plus the RTM
control group. The results show that classification accuracy using
RT and accuracy data is only 2% lower than for classification
using diffusion model parameters (row 1). With more observations
per experiment, we believe that the item recognition model param-
eters would be better estimated, and performance would increase
over that for the raw data. We also ran LR and SVM on these data,
and results in row 15 show results that are quite similar to those
presented in row 1, namely, the three methods give very similar
results. Row 16 shows the results from classification of two
groups, MD versus MD controls. and the results also show about a
2% drop in classification accuracy (compared with row 5).

Row 17 shows the analysis (from row 5) discriminating MD
patients from the MD control group using lexical decision data. As
can be seen, discrimination accuracy drops considerably, which
shows that lexical decision is not as good of a task for discriminat-
ing MD patients from controls as item recognition.

Reducing the Number of Observations. Our experiment
used a lexical-decision task followed by an item recognition task.
This resulted in about a one-hour session. If the item recognition
task and the methods presented here were to be used in diagnosis,
then a smaller amount of time spent on data collection would
make this approach more appealing. In the initial design, the lexi-
cal-decision task provided data that might have helped in discrimi-
nation, but it also provided practice at using the computer system.
If this were a clinical trial, then we could not draw conclusions
about eliminating the lexical-decision task because it would
change the protocol. However, we can examine the effect of
reducing the number of trials in the item recognition task and
guess at what would happen if item recognition were run without
the lexical-decision task.

Table 5
Classification Accuracy

LDA LR SVM

N Groups FD-acc CV-acc CV-SD CV-acc CV-SD CV-acc CV-SD
AQ: 13

1 MD/MDCþRTM 0.836 0.832 0.035 0.829 0.033 0.826 0.037
2 AD/MCI 0.733 0.697 0.065
3 AD/MDC 0.942 0.909 0.047
4 MCI/MDC 0.789 0.754 0.056
5 MD/MDC 0.815 0.796 0.048
6 MD/RTM 0.860 0.851 0.037
7 MDC/RTM 0.786 0.763 0.054
8 MD/MDC/RTM 0.744 0.708 0.042
9 AD/MCI/MDC/RTM 0.636 0.591 0.049
10 MD/MDCþRTM, a, Ter, v 0.828 0.817 0.036
11 MD/MDCþRTM, Ter, v 0.732 0.725 0.041
12 MD/MDCþRTM, a, v 0.816 0.807 0.035
13 MD/MDCþRTM, a, Ter 0.788 0.781 0.039
14 MD/MDCþLexical 0.833 0.802 0.047
15 MD/MDCþRTM, Data Rn 0.812 0.810 0.036 0.817 0.035 0.806 0.037
16 MC/MDC data Rn 0.772 0.766 0.045
17 MD/MDC, Lex data 0.728 0.708 0.040
18 MD/MDC 10 blocks 0.796 0.775 0.047
19 MD/MDC HDDM 0.809 0.791 0.047
20 MD/MDC Word Frequency 0.815 0.786 0.047

Note. LDA = linear discriminant analysis; LR = logistic regression; SVM = support vector machine; FD = full data; CV = cross-validation; acc = accuracy;
SD = standard deviation; AD = Alzheimer’s group; MCI = mild cognitive impairment group; MDC = MD caregiver group; RTM = the older adults from
Ratcliff et al. (2011); a = boundary separation; Ter = nondecision time; and v = mean drift rate averaged over conditions.AQ: 13
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We generated quantiles and accuracy values for 10 study/test blocks,
blocks 2–11. The average number of observations for each MD patient
was 229 out of 240 (a few subjects completed less than 10 blocks, and
some responses were trimmed out), which was 49% of the data for this
group. The average number of observations for each control subject
was 238 out of 240, which was 43% of the data for this group. We fit
the diffusion model in the same way as for the other fits and produced
parameter values. These values were then used in the LDA analysis,
and results are presented in row 18 of Table 5 (to be compared with
row 5). These results show a drop of about 2% in discrimination of
MD versus MD control groups. If there is any effect of practice pro-
vided by the lexical-decision task on the following item recognition
task, it would be to improve performance on the item recognition task
for the patients. Thus, we believe that eliminating the lexical-decision
task would only help discriminate MD patients from controls.
Hierarchical Bayesian Parameter Estimation. Two reviewers

suggested that modern hierarchical modeling might have an
advantage over nonhierarchical methods, or at least serve as a
check on the model fitting approach used to this point. It does not
make sense to fit the MD and control groups separately with hier-
archical methods because of possible shrinkage that might artifi-
cially compress the groups, produce artificially larger differences
between them, and so produce artificially better discrimination
between the groups. To examine whether the hierarchical Bayesian

method would benefit discrimination, we fit the MD group and
MD control group for the item recognition task in one hierarchical
model. We then conducted a LDA analysis exactly in the same
way as above as in row 5 of Table 5 with point estimates for the
MD patients versus controls. The results are shown in row 19 and
show a decrease in accuracy of about 1% for the hierarchical
model versus the G-square fitting method. Individual differences
in model parameters are much smaller than variability in parame-
ters that result from model fitting, which means that individual dif-
ferences dominate, and as long as good fitting methods are used,
results are likely to be similar, as is observed here (see Ratcliff &
Childers, 2015 for a brief investigation of hierarchical fits imple-
mented in HDDM).

In the hierarchical Bayesian model fits done in HDDM, we
found indeed that the SDs in the model parameters were lower rel-
ative to the SDs in the G-square values. The SDs for boundary sep-
aration for HDDM and the G-square methods were .060 and .052
(in the scaling with r = .1), the SDs for mean drift rate for HDDM
and the G-square methods were .122 and .074, respectively, and
the SDs for nondecision time for HDDM and the G-square methods
were .081 and .112, respectively. Even though the variability is
lower, there was no benefit to discrimination. The correlations in the
G-square and HDDM model parameters were .75, .66, and .94 for
boundary separation, drift rate, and nondecision time respectively.

Figure 4
Classification Scores for the LDA Method for Two-Way Classification (Top Figure) and Four-Way
Classification (Bottom Figure)

Note. Each small circle represents a single subject. The vertical lines divide the subject groups (with labels at
the top), and the horizontal labels represent the classification (top: MD patients versus controls; bottom: AD,
MCI, the MD control group, and the RTM control groupAQ: 9 ). The numbers in the plots represent correct classifica-
tion, and in the bottom plot, the classification is for AD and MCI groups combined for classification into either
of those two groups, and for controls, the classification is for classification into one of those two groups. LDA =
linear discriminant analysis; MD = memory disordered; MCI = mild cognitive impairment; AD = Alzheimer’s
group; RTM = the older adults from Ratcliff et al. (2011); MDC = MD caregiver group.
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There is a problem in using this hierarchical method, that if a
new patient was to be discriminated, the whole hierarchical Bayes-
ian analysis would have to be run again with that additional data
set included. This is because fitting data from a new patient indi-
vidually would likely produce biases in parameter estimates rela-
tive to the parameters obtained from that subject run in a
hierarchical fit. Rerunning the analysis with HDDM with the new
data included has a practical problem, fitting time. It took about
2.5 days to run the analyses with 250 data sets on a high-speed
desktop machine. If this method was to be used in practice, 2.5
days (or more if more data were added) is too long to wait for a
result. In contrast, the G-square method provides fits in a minute
or so, and the fits for each data set are independent so that refitting
the whole data set is not needed.
Using Word Frequency Drift Rates. Potentially, there is

extra information in the experimental conditions, namely word fre-
quency. We used boundary separation, nondecision time, and the
four drift rates (high and low frequency words crossed with old
and new test items, i.e., presented vs. nonpresented). Results for a

LDA analysis using all these parameters are shown in row 20 in
Table 5. Results are very similar to the results in row 5 and there-
fore using the drift rates for each individual word frequency condi-
tion did not improve discrimination.

Discussion

This article provides a number of results for performance of mem-
ory disordered patients and control subjects on two simple cognitive
tasks, item recognition and lexical decision. First, data show standard
patterns of results for the effects of word frequency on accuracy and
RT. The RT distributions are right skewed, and changes in accuracy
are accompanied by a spreading of RT distributions. Error RTs are
longer than correct RTs, which is typical of data from these tasks.

Second, the diffusion model was fit to the experimental data, and
the fits were about the same quality as fits to other data sets in the lit-
erature. Results for item recognition showed that the AD and MCI
groups had similar parameter values with the major exception of
drift rate. Mean drift rate for the AD group was slightly more than

Figure 5
The Top Figure Shows the Values of the Output of Classifier for Each Subject From the Top Plot
in Figure 4

Note. The five horizontal lines show different criteria for classification corresponding to the hit rate (HR) and
correct rejection rate (CR) shown on the right for the four subject groups. The bottom left plot shows histo-
grams for the regressor valuesAQ: 10 of the MD patients (solid lines) and controls (dashed lines). The three heavy ver-
tical lines correspond to the top and bottom horizontal lines and the middle line in the top panel. The bottom
right shows a standard signal detection representation and a table of terms from signal detection, statistical de-
cision theory, and sensitivity and specificity. MD = memory disordered; MCI = mild cognitive impairment;
AD = Alzheimer’s group; RTM = the older adults from Ratcliff et al. (2011).
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half the size of the drift rates for the MCI group (.089 vs. .164). The
MCI group had mean drift rates that were half as large as the MD
control group (.299). The MD control group also had lower bound-
ary separation and shorter nondecision time than the MD patient
group. The SD in drift rate across trials was also a little larger for the
MD control group than the MD patient group. For the lexical-deci-
sion task, similar results were obtained for boundary separation,
nondecision time, and the SD in drift rate across trials, but drift rates
were nearly the same for the AD and MCI groups (.241 and .241)
and only a little higher for the MD control group (.313).
Third, there were strong correlations for each of the MD patient

and MD control groups between the same model parameters on
each task (drift rates, nondecision time, and boundary separation).
Also, RT correlated with boundary separation and nondecision
time, accuracy correlated with drift rate, and drift rate correlated
with mean RT.
Fourth, we performed a series of discriminant analyses using

diffusion model parameters for item recognition, lexical decision,
and accuracy and mean RT data. The most important result was
that item recognition parameters separated AD patients from the
MD control group with about 90% accuracy. However, accuracy
for MCI patients was worse, with about 68% correct classification.
This shows that the extremes are well classified, but the MCI
group is less well classified. Some of these MCI patients will pro-
gress to AD, but others will not. We aim to follow as many of
these individuals as we can to examine whether the scores from
the discriminant analysis are predictive.
Discrimination methods allow two (or more) groups to be sepa-

rated on some dimension, in our examples here, a linear combina-
tion of diffusion model parameters. The usual terms to represent
accuracy in discrimination in neuropsychological testing are speci-
ficity and sensitivity, and here we show how they are related to
statistical decision theory and signal detection theory in the con-
text of our discrimination results (many people will already under-
stand the relationship, of course, e.g., Scharre et al. 2010).
The top of Figure 5 shows the discrimination scores for the 250

subjects that correspond to the top analysis in Figure 4. The hori-
zontal lines represent possible criteria for separating MD patients
from controls, and the middle horizontal line is the cutoff that pro-
duced the classification in Figure 4 top. On the right-hand side of
the plot are the discrimination scores for the four different groups
as a function of the five criterion settings. The middle one with a
hit rate of .90 and .68 for the AD and MCI groups, respectively,
and correct rejection rates of .88 and .92 for the MD control group
and RTM control group, respectively, corresponds to the propor-
tions on the top of Figure 4. If the criterion were moved upward,
fewer controls are classified as memory disordered (with correct
rejection rates of 96%), but also fewer MD patients are classified
as disordered (hit rate a little above 50%). On the other hand, if
the criterion is moved down, MD patients are classified as disor-
dered with greater probability, but controls are also classified as
disordered with greater probability.
The left bottom side of Figure 5 shows histograms of the values

in the top panel with the solid histogram for scores from patients
and the dotted histogram for controls (this is a more traditional
way of representing data like these). The three thick vertical lines
correspond to the top, middle, and lowest horizontal lines in the
top panel. As the thick line moves from left to right, fewer individ-
uals are classified as memory disordered. The bottom right of

Figure 5 shows standard signal detection distributions to represent
histograms (the distributions are plotted with equal areas, unlike
the discrimination histograms) showing the hit rate, false alarm
rate, miss rate, and correct rejection rate. Below the distributions
is the decision table with type I and type II errors corresponding to
false alarm and miss rates and sensitivity and specificity corre-
sponding to hit and correct rejection rates.

The signal detection example makes the point that sensitivity
and specificity can trade off with the criterion setting just as do hit
and correct rejection rates. It is important to note that this example
(and applications like it) applies to cases in which the variable
upon which the decision is made is continuous. In other cases, for
example, pregnancy tests and antibody tests for the coronavirus,
the output is or might be categorical with only a discrete output
produced. Then hit rate/sensitivity and correct rejection rate/speci-
ficity cannot be traded against each other.

One issue that is important to consider with the evaluation of
any of these methods is how accurate is the clinical diagnosis. It is
recognized that clinical diagnosis itself has a degree of variability
that is not small. Results from post mortem studies suggest that an
accuracy of 85%–90% is about the best that can be expected from
a clinical diagnosis of AD, especially when the patient has AD
mixed with other dementias (e.g., 67% when mixed; Khan &
Alkon, 2010). Furthermore, pathology studies show that there are
older adults that have AD but show no symptoms (Beach et al.,
2012). This means that we might expect a ceiling of around 90%
on diagnosis, except for the most extreme cases (e.g., our AD vs.
control results in Table 5).

The other issue that is important in evaluating methods of diagno-
sis is how to select control subjects (which is glossed over in many
publications). There are several issues. First, they must be treated in a
very similar way to patients. They must not have been in other
experiments because we know accuracy, RT, and model parameters
change with practice (Dutilh et al., 2009; Ratcliff et al., 2006).
Boundary separation and nondecision time are both reduced and drift
rate can increase with practice, depending on the task. This means
that by selecting subjects who had taken part in other tasks, we might
obtain artificially better separation between impaired and control sub-
jects. The second issue concerns how to equate characteristics of
patients and controls. For example, if patients were high functioning
adults and the controls were lower functioning adults, then ability
might covary with the groups and discrimination might be inflated or
deflated. Third, controls with problems that might impair perform-
ance, such as concussions, traumatic brain injuries, strokes, low
MMSE, or non-native speakers, may lead to reduced performance of
the control group, leading to reduced discrimination. Also, there is
always the possibility that a control subject may have an undiagnosed
memory disorder. All these issues suggest that great care be taken in
selecting control subjects.

Conclusions and Implications AQ: 8

The analysis presented here involves several features that might
improve understanding of the effects of MCI and AD on cognition
and might help improve diagnostic testing. First, cognitive tasks
were used that have well-understood models of the processes
involved in decision-making. The models extract components of
processing that can be separately examined for how they change
under disease. Second, by using several parameters that represent
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the components of processing, we were able to separate patients
from controls with reasonable accuracy using statistical and
machine learning methods. For data of this kind, the specific
method did not matter much, with differences in accuracy less
than 1%. Third, using simple correlational measures, we were able
to determine which parameters and measures were measuring sim-
ilar factors and which were more independent. For example, the
MMSE and SAGE tests were correlated with each other and with
drift rate in the memory task. However, drift rate was only the sec-
ond most important model component that determined how well
the groups were discriminated.
One important issue is that data of high quality are needed for

use in methods such as the modeling approach taken in this
research. The data should be collected with a research assistant
observing the subject, monitoring performance, and giving feed-
back to guide how the task is to be done. In addition, it is impor-
tant to collect enough data to reliably estimate accuracy and RT or
model parameters on experimental tasks such as the simple mem-
ory task used here.
One important direction for future work is to determine whether

additional measures, such as EEG measures, are independent (to a
large degree) of behavioral measures. If they are, then they may
provide a separate source of evidence and so behavioral and EEG
(or multiple) measures collected while performing a memory task
(as in Ratcliff, Sederberg, et al., 2016) might improve discrimina-
tion. Multiple measures could be studied with different machine
learning techniques, for example, those presented in Table 5.
At this point the main behavioral diagnostic tools are standard

simple neuropsychological ones, including many paper and pencil
ones. Reviews (e.g., Hwang et al., 2019) have found that these
have limited accuracy, but are quite good at discriminating
between extreme cases. We believe that model-based analyses and
more advanced methods of using multiple sources of evidence are
worth significant investigation because we can hope that they will
improve diagnosis, subject to the limitations of accurate clinical
diagnosis.
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