
The Effect of Aging on Decision-Making While Driving:
A Diffusion Model Analysis

Roger Ratcliff and Yonatan Vanunu
Department of Psychology, The Ohio State University

We present a diffusion model analysis of the effect of aging on decision processes during driving. Our goal
was to examine the changes in the underlying components as a function of age and both task and
environment difficulty. Younger and older adults performed each of three decision-making tasks while
operating a computer-based driving simulator in which the task required a driving action. The first task was a
one-choice task in which the response to brake lights turning on was to drive around a lead car. The second
and third tasks were two-choice brightness-discrimination tasks in which participants were asked to drive
the car to the left/right if there were more black/white pixels in an array of black and white pixels. Results
showed that older adults were slower in the one-choice task and made more errors in the two-choice tasks
than younger adults. The behavioral data were fitted well by one- and two-choice diffusion models, showing
lower evidence accumulation rates (drift rates) in older than younger adults. Moreover, in the two-choice
tasks under higher environmental demands, older adults showed a lower decision criterion (boundary
separation) to compensate for a slower decision process. Together, the differences we found in the decision
components between age groups provided an example of a subtle interaction between speed and accuracy in
older versus younger adults, and this demonstrates the utility of this modeling approach in studying age
effects in driving.

Public Significance Statement
While driving in a screen-based simulator, older and younger adults performed three decision-making
tasks. Findings showed that older adults were slower to respond and made more errors than younger
adults. A diffusion modeling analysis identified which components of the decision process change with
age, showing lower rates of evidence accumulation and lower decision criteria for older than younger
drivers under higher environmental demands. This information can inform the design of driver aids,
warning systems, driver assessment, and training for older adults.
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With an increase in life expectancies, the number of licensed
elderly drivers has significantly increased in the past few decades.
According to the U.S. Department of Health and Human Services,
between 2001 and 2018, there was a 60% increase in the number of
older drivers on the road (Centers for Disease Control and
Prevention, n.d.). Although older drivers do not necessarily expe-
rience more car accidents than younger drivers, they are more
likely to suffer fatalities due to increased fragility (Li et al., 2003).
In fact, 20 older drivers are killed and 700 are injured every day
due to traffic accidents (Centers for Disease Control and
Prevention, n.d.). Consequently, a substantial amount of research
has been performed to identify the effect of aging on various
perceptual and cognitive functions that are components of the skill
of driving.

Previous studies have demonstrated that older drivers show a
decline in lower level visual processing and in the deployment of
attention across the visual field. Declines in such processes served as
good predictors in a regression analysis of performance in a driving
simulator (Hoffman et al., 2005; see also Madden, 2007;
Parasuraman & Nestor, 1991). Similarly, Perryman and Fitten
(1996) found that performance in a driving simulator—measured
by speed, braking activity, lane position, eye movements, and so
forth—was worse for older than younger adults. They argued that
this was because the older adults performed less visual scanning and
search than the younger adults while driving. Another study sug-
gested that responses to unexpected events on the road for older
adults are slower because of a decline in executive control and the
ability to multitask (Gaspar et al., 2013). In making decisions on the
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road such as route selection, results have shown that while choice for
the optimal route (i.e., accuracy) was not affected by age, decision
time was longer for older than younger adults (Walker et al., 1997).
In this article, we examined two main issues in driving

behavior: (a) how decision processes during driving change with
age and (b) how decision processes during driving change as the
driving environment becomes more difficult. It is unlikely that
driving itself slows by a great deal with aging (e.g., by no more
than say 20% or 30%), because traffic demands require the driver
to keep pace with traffic. That is, response time for decisions being
made on the road should have upper limits—set by traffic
demands—possibly forcing older drivers to make faster decisions
at the expense of accuracy. Therefore, we expected there to be an
interaction between difficulty and age in response time (RT) and
accuracy. To examine these interactions, we compared the perfor-
mance of younger and older adults in a PC-based driving simulator
using tasks that require participants to make driving-related
decisions and responses. The decision tasks were a one-choice
task in which participants maneuvered the car based on a signal
from the car in front of them (Cooper & Strayer, 2008; Ratcliff &
Strayer, 2014), or two-choice in which participants maneuvered the
car in one of two different directions, depending on the brightness
of a stimulus presented on the back of a lead car (Ratcliff, 2015). The
brightness of the stimulus and the complexity of the driving
landscape were manipulated in the two-choice tasks to vary the
difficulty of the task (see details in the Method section).
Similar driving simulator tasks, such as the lane changing task

(LCT; ISO/DIS 26022, 2010;Mattes, 2003), measure the effects of a
secondary task on the quality of driving (e.g., lane keeping; see
Burns et al., 2005; Engström & Markkula, 2007; Petzoldt et al.,
2011, 2014). Unlike this commonly used task, the driving tasks
used here examine RT and accuracy of decisions made while
driving. This mirrors real driving behavior in which some driving
responses are made based on decisions about routes, changing lanes,
slowing or stopping, and so on. These decisions can be based on
information from the driving environment or even from navigation
devices or passengers.
The main aim of the research presented in this article was to

perform model-based analyses of the decision processes in the
one-choice and two-choice driving tasks. The models used are
the one-choice diffusion model (Ratcliff & Van Dongen, 2011)
and the two-choice diffusion model (Ratcliff, 1978; Ratcliff &
McKoon, 2008; Wagenmakers, 2009). In both models, it is assumed
that evidence for the decision is noisy (cf. neural noise) and this
noisy evidence has to be summed or accumulated over time until
enough is accumulated to make a decision. Three representative
example paths showing the accumulation of this noisy evidence in
the two-choice model and one example in the one-choice model are
shown in Figure 1. For the two-choice model, one path leads to a fast
correct decision, one to a slow correct decision, and one to an error.
Within-trial variability (noise) in the decision process gives rise to
both right-skewed RT distributions and also error responses when
the process hits the wrong boundary by mistake. The rate at which
evidence is accumulated toward one or the other choice is called drift
rate (v). There is one decision criterion for the one-choice model and
two for the two-choice model (Figure 1). For the one-choice model,
evidence begins at zero and the process terminates when the
decision criterion set at a is reached. In the two-choice model,
evidence begins at a starting point z and the process terminates when

the process reaches one of two boundaries set at a or 0. For both
models, the total time for a response to be made is the sum of the
decision time and nondecision time. Nondecision time represents
processes other than the decision process, which include stimulus
encoding, motor planning, response output, and so forth. These are
collected into a single parameter with a mean duration Ter (in the
model analysis, these different components of nondecision time
cannot be separated).

In order for the model to fit the relative speeds of correct and error
RTs and the leading edges of RT distributions (see Ratcliff &
McKoon, 2008), the components of processing are assumed to
vary from trial to trial. Drift rate is assumed to be normally distributed
with standard deviation (SD) η, nondecision time is assumed to be
uniformly distributed with range st, and in the two-choice model,
starting point is assumed to be uniformly distributed with range sz.
Also, in the two-choice model, a contaminant process representing
random delays in processing was included in the modeling with a
parameter representing the proportion of contaminants. There is a
problem in identifiability in the one-choice model in that one of the
model parameters needs to be fixed and then the others are identified
(see Ratcliff & Van Dongen, 2011); therefore, the between-trial SD in
drift rate parameter was fixed in the one-choice model.

The one-choice diffusion model was initially used in examining
one of the principal tasks used to assess sleep deprivation, namely,
the psychomotor vigilance task (PVT; e.g., Chavali et al., 2017;
Dinges & Kribbs, 1991; Dinges & Powell, 1985, Ratcliff & Van
Dongen, 2011). Ratcliff and Strayer (2014) used the model to
examine drivers’ vigilance by comparing the decision process in
the PVT to the one-choice driving task. The results showed consis-
tent individual differences in parameter values across tasks (i.e.,
significant positive correlations), suggesting that the two tasks tap
into similar decision processes. Ratcliff and Strayer (2014) also
used the one-choice diffusion model to examine the effect of
distraction (i.e., talking on a cellphone) on the decision process
during driving. The parameter values produced from fitting the
model to data showed that longer mean RTs that occurred with
distraction were mainly accounted by lower drift rates (i.e., the
quality of evidence driving the decision process), whereas the other
model parameters were similar for the distracted and nondistracted
conditions (see also Castro et al., 2019; Tillman et al., 2017). Ratcliff
(2015) extended the diffusion model analysis to examine the
relationship between the one-choice driving task and the two-
choice brightness-discrimination driving tasks. The data were fit
with the two-choice diffusion model and positive correlations were
found for mean RTs, drift rates, and nondecision time between
the two driving tasks, suggesting that the two tasks and models were
tapping into similar processes.

Diffusion models have been also used to examine the effect of
aging on the decision process in a range of cognitive tasks (Ratcliff
et al., 2000, 2001, 2003, 2004, 2006, 2010; Starns & Ratcliff, 2010).
In most of these studies, results showed that older adults have a
longer nondecision time and a more conservative boundary
separation than younger adults. In many of these cases, older adults
also had similar or slightly smaller drift rates compared to younger
adults, but in other tasks, differences in drift rates between age
groups were quite large (e.g., associative recognition, Ratcliff et al.,
2011; letter discrimination, Thapar et al., 2003). However, in the
application to driving, the external constraints on the timing of
behavior from traffic demands suggest that model components in
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driving tasks might behave differently relative to model components
from the earlier laboratory studies. For example, (nonimpaired)
older drivers do not drive at half the speed or follow cars ahead
of them at twice the distance of younger drivers. Furthermore, the
older adults had been driving at least since their 20s for over 40
years, and so their driving skills were highly overlearned relative to
the experience that they had with laboratory decision-making tasks.
To foreshadow our results, we found that older adults made more

errors than younger adults in the two-choice tasks, whereas differ-
ences in RT between age groups attenuated as the environment
became more difficult. The models fitted the data well and showed
consistent individual differences in parameter values across tasks.
Results from the modeling analysis showed lower drift rates in older
than younger adults, which accounted for the decreased perfor-
mance we found with age. However, it also appears that increased
environmental difficulty, which produced lower drift rates for older
adults, encouraged them to adjust the duration of the decision
process by lowering their decision criteria to a greater extent
than younger adults.

Method

Transparency and Openness

This research was performed in accordance with the Declaration
of Helsinki and was approved by The Ohio State University
Institutional Review Board (protocol #2003B0201). Informed con-
sent was provided by all participants. The data that support the
findings and the R code used to analyze these data are available
(https://osf.io/exz4d/). Fitting packages for the diffusion model are
available from Voss and Voss (2007). The power of the current
design to find significant effects was estimated using the simr
package in R (Green & MacLeod, 2016). This study was not
preregistered.

Participants

Thirty-one younger adults (age range 19–29, 16 of them were
females) and 45 older adults (age range 58–82, 30 of them were
females) were recruited through fliers posted on The Ohio State
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Figure 1
An Illustration of the One-Choice and Two-Choice Diffusion Models

Note. For the one-choice model, evidence is accumulated at a drift rate v with normally
distributed between-trial variability with standard deviation (SD) η, until it reaches a decision
criterion a after time Td. Additional processing time is represented by the nondecision time Ter,
which includes stimulus encoding time Ta and response output time Tb. Nondecision time is
assumed to be uniformly distributed across trials with range st. For the two-choice model, three
simulated paths are shown with starting point z and boundary separation a. Drift rate is assumed
to be distributed normally with mean v and SD η. Starting point is assumed to be distributed
uniformly with mean z and range sz. Nondecision time is composed of encoding processes,
processes that turn the stimulus representation into a decision-related representation, and
response output processes, and is assumed to be uniformly distributed with mean Ter and
range st. RT = response time.
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University campus and at Columbus-area senior recreation centers.
The racial distribution across participants was not recorded. In
exchange for participating in four experimental sessions, younger
adults and older adults were paid $12 and $15 per session, respec-
tively. Prior to testing, all subjects completed the mini-mental state
examination (MMSE; Folstein et al., 1975) to evaluate cognitive
impairments, the Center for Epidemiological Studies-Depression
Scale (CES-D) to evaluate mood (Radloff, 1977), and the Vocabu-
lary and Matrix Reasoning subtests of the Wechsler Adult
Intelligence Scale—3rd Edition (WAIS-III) to measure the intelli-
gence quotient (IQ; Wechsler, 1997). Table 1 presents mean and SD
values for these background measures (except for one older adult
whose demographics and test scores are missing). The p values in
the table indicate significant differences between age groups for
each characteristic. All subjects met test score requirements for
participation (26 or above on the MMSE and 6 or lower on the CES-
D depression score). One younger adult and 16 older adults were
excluded from the analysis (one younger and six older adults were
unable to perform the tasks, and 10 older female adults suffered
“simulator sickness,” which made them nauseous and prevented
them from performing the tasks). Participants in both age groups all
had driving experience and were still regularly driving (the older
adults had been driving since their 20s).

Apparatus

The tasks were presented on a 15.6-in. Dell XPS L502SX laptop,
with events sampled at a 16.67 ms rate. STISIM Drive software
Versions 2 and 3 were used to present the driving simulations in the
two different landscapes. A Logitech Driving Force GT steering
wheel with force feedback (http://www.logitech.com) and two
pedals (accelerator and brake) were used to allow the participants
to simulate driving.

Design and Materials

In the one-choice task, the simulated driving environment
included two lanes in a “clear” landscape. Driving was simulated

during the daytime in an open-space highway with gentle curves and
only minor distractions on the side of the road. The simulator
display included speed and revolutions per minute (RPM) meters
and a rear-view mirror (see Figure 2, top-left panel). Both the
driver’s car and the lead car were placed in the right lane. When
the brake lights of the lead car turned on, the driver was required to
steer the car as quickly as possible into the left lane to avoid a
collision with the decelerating car and to pass it. When the lead car
receded to the rear (as could be seen in the rear-view mirror), the
driver was required to steer the car back to the right lane and a new
lead car appeared. The time interval between the trial’s onset and the
brake lights’ display varied across trials from 2 s to 10 s with 2 s
steps (Ratcliff, 2015).

Three driving tasks were tested. Across tasks, participants were
required to approach a “lead” car on each trial. When the driver was
approximately 95 ft. away from the lead car (for the one-choice and
two-choice clear tasks), the lead car wobbled left and right to
indicate the trial’s onset. To simulate traffic demands, the driver
was required to keep a constant distance from the lead car until the
stimulus was displayed (about 65 mph in the one-choice and two-
choice clear tasks and about 25 mph in the city task). The speed was
controlled by the foot pedals.

In the two-choice clear task, the simulated driving environment
included three lanes in a clear landscape (Figure 2, top-right panel).
Both the driver’s car and the lead car were placed in the middle lane.
Instead of brake lights, a stimulus of a 64 × 64 array of black and
white pixels (2.1 × 2.1 cm2) was presented, and the task was to drive
into the right lane if the patch was bright (had more than 50% white
pixels) and into the left lane if it was dark. The stimulus patch was
displayed for 2 s between the two meters on the driver’s console and
at the base of the lead car, between 0 s and 8 s (M= 4 s) after the lead
car wobbled to signal the trial’s onset. The probability of a pixel
being white in the stimulus array was either .57, .53, .47, or .43 (the
brightness conditions). To illustrate what is considered as a bright/
dark patch, two example patches from each brightness condition
were shown to the driver at the beginning of the task. Unlike the one-
choice task, the driver was not asked to drive around the lead car,
but to drive the car into the appropriate lane. After completing this
maneuver, the drivers were instructed to drive the car back to the
middle lane behind the lead car. The main purpose of the lead car
in the two-choice clear driving task was to help the driver to
maintain a fixed pace across trials.

The two-choice city task was similar to the two-choice clear task
with the following exception: Driving was simulated in a “city”
landscape at night (i.e., restricted visibility ahead), on a single wide-
lane (36 ft.) urban road with two lines that indicated the
road’s margins (i.e., “shoulders”; Figure 1, bottom panels). The
road also included intersections and buildings on the side of the
road. Unlike the clear version, the driver’s console included one
speedometer and no rear-view mirror. To impose additional de-
mands on the driving task, participants were required to make turns
in the intersections in response to a displayed message (i.e., “turn
right/left”: an example of this message is shown in Figure 1, bottom
right). Either the turn message or brightness-discrimination patch
appeared 90 ft. before the center of the next intersection, and the
distance between intersections was 350 ft. After making a turn, the
driver approached a new lead car. In cases, in which the driver
turned in an intersection without a preceding turn message, the
following trial would present a patch without a lead car (90 ft. before
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Table 1
Subject Characteristics and p Values From t Tests Comparisons
Between Age Groups

Measures

Young Older
p

valueM SD M SD

Age 22.56 2.53 68.45 13.79 <.001
Years of education 14.38 2.24 15.46 2.77 .093
MMSE 29.3 0.75 28.21 1.50 .001
WAIS-III vocabulary (raw) 51.07 6.88 47.46 13.57 .215
WAIS-III vocabulary (scaled) 13.90 2.11 12.00 3.40 .015
WAIS-III matrix (raw) 21.23 3.23 14.54 5.84 <.001
WAIS-III matrix (scaled) 13.33 2.59 12.29 3.07 .164
WAIS-III IQ 120.70 10.30 111.86 15.08 .011
CES-D depression 1.73 1.78 1.63 2.36 .851
CES-D total 10.30 5.47 9.70 8.46 .756

Note. MMSE = mini-mental state examination; WAIS-III = Wechsler
Adult Intelligence Scale—Third edition; CES-D = Center for
Epidemiological Studies-Depression Scale; IQ = Intelligence quotient.
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the intersection center) and the experimenter would point out the
error to the participant. The lead car pace was slower in the city
version (25 mph) to allow driving in the city streets, including turns
in the intersections. Finally, there was no wobble in the city version
to indicate the trial’s onset.

Procedure

Participants completed four sessions that occurred, on average,
once a week for younger adults and twice a week for older adults. In
the first three sessions, participants participated in all three tasks for
approximately 15 min each (i.e., 45 min per session). The two-
choice clear task had about 30% more observations per session
than the other two tasks, so after three sessions, a fourth was added
in which the participants were tested on the one-choice task and
the two-choice city task for 25 min each. Task order within each of
the first three sessions was counterbalanced.
Participants were instructed that they were about to perform a

driving simulation task, in which they were required to drive in a
simulated environment. In the one-choice and two-choice clear
tasks, they were asked to approach a lead car on the road until it
wobbled, and to maintain this distance until the stimulus was
displayed. In the city landscape, there was no wobble, and if the
driver’s car steered off the road and crashed into a building (e.g.,
when making a turn in the intersection), the driver was instructed
to wait 15 s until the car was back on the road and then speed up to
catch up to the next car (this occurred very infrequently). Finally, the
driver was informed that using the brake pedal was unnecessary, as
one could slow down by simply taking their foot off the gas pedal.

To minimize potential dizziness or nausea during the driving tasks,
we dimmed the lights in the testing room and encouraged partici-
pants to take breaks when needed.

Each task started with three practice trials. The number of experi-
mental trials ended up differing between younger and older adults,
and so we eliminated trials from some of the tasks to equate the
average number of trials for younger and older adults for each task.
On average, the younger and older adults had 173.0 and 172.6 trials in
the one-choice task, 356.0 and 355.5 trials in the two-choice clear
task, and 205.8 and 205.0 trials in the two-choice city task, respec-
tively. For each trial, response times (in all tasks) and the correspond-
ing response choices (in two-choice tasks) were recorded. A linear
interpolation of the sideways velocity was used to estimate the time at
which the car started to move sideways. The sideways velocity first
increased and then became approximately constant for a short period
of time as the car steered to the right or left. Linear interpolation from
this relatively constant velocity provided an estimate of when the car
began to turn, an estimate that was consistent across responses by the
participant. In trials, in which no action was recorded (e.g., the driver
remained in themiddle lane and did not swerve), the trial was not used
in data analyses. Other details of the methods can be found in
Ratcliff (2015).

Power Analyses

Because there is no agreed-upon analytic solution for calculating
effect sizes and power in mixed-effects models, we used the simr
simulation package in R (Green & MacLeod, 2016) to estimate the
power of the current design and statistical models to find significant
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Figure 2
Example Screen Shots of Driving Views From the Three Driving Tasks

Note. The top-left panel shows the one-choice task when the brake lights of the lead car turned on. The top-right panel shows
the two-choice clear task when a brightness-discrimination patch is displayed. The bottom panels show the two-choice city task
with limited visibility with a brightness-discrimination patch (left panel) and a turn message (right panel). See the online article
for the color version of this figure.
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effects between age groups (i.e., p < .05). Across 100 simulations,
we found 83% power to find an effect of age group on RT in the one-
choice task, 36% power to find an effect of age group on RT in the
two-choice tasks, and 96% power to find an effect of age group on
accuracy in the two-choice tasks. Also, we found 90% and 88%
power to find the anticipated interaction effect between age group
and landscape on RT and accuracy, respectively; and 96% and 100%
power to find a contrast effect (i.e., Landscape × Brightness
interaction) on RT and accuracy, respectively.
For model parameters, Ratcliff and Childers (2015) performed a

detailed analysis of the SDs in diffusion model parameters as a
function of the number of observations from 80 to 1,200 (dividing
the experimental trials into different sized blocks). Results showed
little change in model parameters within a session. So, for example,
for 160 observations (Ratcliff & Childers, 2015; Table 1), the SD
across participants in boundary separation was about 0.03, in
nondecision time about 43 ms, and in drift rate about 0.045 for
difficult conditions. For 29 or 30 participants, standard errors (SEs)
would then be divided by the square root of the sample size minus 1,
which would give values of 0.006, 8 ms, and 0.009, respectively.
This means that for two groups, 2 SE (combined) differences (which
are detectable based on other published experiments) would be
0.009, 11 ms, and 0.012. These are smaller than differences we
obtained in this experiment.

Results

Behavioral Results

We analyzed the data from the one-choice task and the two-choice
tasks, separately, because the two tasks have different dependent
variables (i.e., only RT in the one-choice task, but RTs for correct
and error responses and probability correct in the two-choice tasks).
For the one-choice data, we used a linear mixed-effects model with
RTs as the dependent variable, age group (i.e., younger vs. older) as
a fixed factor and participants as a random intercept effect. For the
two-choice data, we used a similar model but with landscape (i.e.,
clear vs. city), age group, and brightness as fixed factors. To
simplify the statistical analysis, we collapsed the four conditions
of brightness into darker (.43 and .47) and brighter (.53 and .57)
conditions. All the statistical tests were two sided. The mean correct
RT values for the collapsed brightness conditions between age
groups and landscapes are presented in Figure 3A. Low RT cutoffs
were set to 150 ms in the one-choice task and 400 ms in the two-
choice tasks, and upper RT cutoffs were set to 4,000 ms across tasks.
On average, 0.6%, 1.5%, and 0.4% of the younger adult responses
and 4.1%, 4.3%, and 1.3% of the older adult responses were
excluded from the one-choice, two-choice clear, and two-choice
city tasks, respectively.
A main effect for age group in the one-choice task, χ2(1) = 8.2,

p = .004, showed that mean RT values (in milliseconds; SD
represents the standard deviation of the mean RT values across
participants) were significantly longer for older (M = 711, SD =
129) than younger adults (M = 639 SD = 69). In the two-choice
driving tasks (Figure 3A), we found null differences in RTs between
age groups across tasks, χ2(1) = 2.0, p = .160, and a main effect for
landscape across age groups, χ2(1) = 558.8, p< .001—showing that
on average, RTs were longer under the more demanding city
landscape (Mclear = 986, SD = 148; Mcity = 1,063, SD = 182).

Importantly, we found a significant interaction between age group
and landscape, χ2(1) = 11.1, p < .001, which showed that differ-
ences in RTs between age groups attenuated as the environment
became more difficult. Thus, the age difference in RT was larger in
the easier landscape, but in neither condition did the age difference
reach significance. In particular, the difference in mean RTs between
younger and older adults was marginally significant in the two-
choice clear task, Myoung = 954, SD = 130 versus Molder = 1,018,
SD = 160; χ2(1) = 3.0, p = .084, and nonsignificant in the two-
choice city task, Myoung = 1,043, SD = 188 versus Molder = 1,083,
SD = 176; χ2(1) = 0.8, p = .385. This is likely because older adults
cannot slow down as much as they do in more standard laboratory
tasks because driving imposes external constraints from traffic
demands. Finally, we found a main effect for brightness, χ2(1) =
36.9, p < .001, and an interaction effect between landscape and
brightness, χ2(1) = 47.7, p < .001. The interaction shows a contrast
effect, in which participants responded faster to darker than brighter
patches in the bright clear landscape, Mbrighter = 1,004, SD = 160
versus Mdarker = 967, SD = 143; χ2(1) = 80.8, p < .001, whereas
small (and nonsignificant) differences in the opposite direction were
obtained in the dark city landscape, Mbrighter = 1,059, SD = 183
versus Mdarker = 1,066, SD = 190; χ2(1) = 2.5, p = .113.
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Figure 3
The Mean RTs for Age Groups and Landscape Condition in the
Two-Choice Driving Tasks (Panel A), and the Proportions of
Correct Responses for the Same Conditions (Panel B)

Note. RT = response time. Correct RTs for “bright” responses to bright
stimuli are collapsed with correct “dark” responses to dark stimuli. The same
combinations are used for probability correct. Error bars correspond to the
within-subjects standard error. Within-subjects standard errors were calcu-
lated by using the normalization method (Cousineau, 2005), in which the raw
data are normalized by subtracting the difference between the subjects’mean
score across the within-subject conditions and the grand mean (i.e., the mean
score across all data). See the online article for the color version of this figure.
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To test the effect of age on accuracy as a function of brightness
and landscape, we tested a probit mixed-effects model with the
proportion of correct responses (p[correct]) as the dependent vari-
able (Figure 3B). We found a main effect for age group, χ2(1) =
11.2, p < .001, suggesting that on average, younger adults (M = .82,
SD = .07) were more accurate than older adults (M = .76, SD = .07)
across the two-choice driving tasks. Moreover, a main effect for
landscape, χ2(1) = 243.6, p < .001, indicated that p(correct)
decreased as the environment became more difficult (Mclear =
.83, SD = .08 vs. Mcity = .76, SD = .09). We also found a main
effect for brightness, χ2(1) = 73.6, p < .001, but more importantly, a
two-way interaction between landscape and brightness, χ2(1) =
232.6, p < .001, showed that p(correct) was higher for darker than
brighter patches in the two-choice clear task, Mbrighter = .78, SD =
.10 versusMdarker = .87, SD = .12; χ2(1) = 265.6, p < .001, whereas
the opposite trend was obtained in the two-choice city task,
Mbrighter = .78, SD = .13 versus Mdarker = .73 SD = 18; χ2(1) =
38.0, p < .001. This pattern of results shows that the simulated
landscape (i.e., clear or city) produced a contrast effect on the
perception of brightness (as for mean RT), so that a bright patch on a
dark background was perceived as brighter than a bright patch on a
bright background (see Figure 1).
Finally, a two-way interaction effect between age group and

landscape, χ2(1) = 7.0, p = .008, along with a three-way interaction
among all factors, χ2(1) = 46.9, p < .001, suggested that environ-
ment difficulty reduced accuracy to a greater extent for older than
younger adults. In particular, older adults performed worse in the
city landscape than in the clear landscape across brightness condi-
tions, whereas the opposite trend was obtained for younger adults
when the stimulus was brighter. This is because the contrast
between the brighter stimulus and the darker city landscape (i.e.,
the contrast effect) made the discrimination task easier, despite the
difficulties imposed by the city landscape. However, for older
adults, the contrast effect only attenuated the decrease in accuracy
with environment difficulty, illustrating the greater challenges older
adults might experience in dividing attention between the decision
task and driving in the demanding city landscape (Figure 3B).

Model-Based Results

Overall, four parameters were estimated from fitting the one-
choice model: v, Ter, st, and a (the SD of within trial variability was
fixed to .1 and η was fixed to .2). In the two-choice model, 11
parameters were estimated, including four drift rates, one for each
brightness condition (v1–v4). An overall value of drift rate (V) was
computed by (v1 + v2 − v3 − v4)/4. The models were fitted to the
data from the one- and two-choice driving tasks for each participant
separately to allow individual differences to be examined. Correla-
tions between the drift rate, boundary setting, and nondecision time
parameter values across tasks were examined to determine whether
it is plausible that the tasks tapped into a common decision
mechanism. The goodness-of-fit of each model was estimated
from χ2 values from the observed and the predicted quantile
data. See the Fitting Method section in the Appendix for more
details about the fitting method.
The quantile RTs averaged over participants and the models’

predictions averaged over participants are displayed in Figure 4,
showing a good fit to data. The mean parameter values and estimates
for the goodness-of-fit at the group level (mean χ2 values) and at the

individual level (the number of participants with χ2 less than the
critical value, χ2c ) are presented in Tables 2 and 3. The critical χ2

values were 23.7 with 14 degrees of freedom for the one-choice
model and 47.4 with 33 degrees of freedom for the two-choice
model. Across tasks and age groups, the mean chi-square
values were below the critical values. At the individual level, the
majority of participants across age groups and tasks had χ2 values
that were below the respective critical value (see Table 2).

Parameter Values

We used independent sample t tests to examine the differences
between age groups in parameter values (Tables 2 and 3) in the one-
choice driving task, and a repeated measure multivariate analysis
of variance (MANOVA) test for differences in parameter values
between age groups and landscape conditions in the two-choice
tasks. The mean values of the main parameters (a, Ter, and V) among
age groups and tasks are presented in Figure 5, and the t and F
statistics from the respective tests are presented in Table 4. Findings
show that across tasks, average drift rates were significantly
lower for older than younger adults, which largely accounts for
longer RTs (one-choice task) and lower accuracy (two-choice tasks)
found in the older group. Drift rates were also significantly lower
in the city condition than in the clear condition across age groups,
accounting for the decreasing accuracy and longer RTs found in
the more difficult city environment. We also found lower boundary
separation in the city than clear condition, and an interaction effect
for boundary separation between landscape and age group. This
interaction showed that differences in boundary separation between
the clear and city landscapes were larger for older than younger
adults. In addition, we found a significantly longer nondecision
time in the city condition than the clear condition, a lower across
trial range in nondecision time (st) in the city condition than the
clear condition, This should be a larger value of st in older adults
than young adults. Finally, there was no difference in the relative
bias in starting point (i.e., z/a) between the city and clear conditions,
nor an interaction with age group.

Together, these results show the challenges that older adults
might have experienced in dividing attention between the decision
tasks and driving while following traffic demands. Lower drift rates
accounted for the decreasing accuracy and longer RTs we found in
older adults and in the more difficult city environment. Importantly,
low drift rates would produce long RTs that might exceed the
constraints of traffic demands. Consequently, results showed that
older adults were induced to lower their boundary separation to a
greater degree than younger adults in order to compensate for a
slower decision process. In other words, when the environment
difficulty increased (i.e., city vs. two-choice clear), greater adjust-
ments were required to speed the decision process and larger
differences in boundary separation between younger and older
adults emerged. Finally, longer nondecision time in the city than
clear landscape accounted for additional delays in response time as
the task became more difficult.

The contrast effect found in the behavioral data between the
simulated landscape and the brightness level of the patch was also
captured in the model by a drift rate bias. A repeated measures
analysis for differences in drift rates revealed a significant interac-
tion between landscape and brightness, collapsed across age
groups and the two levels of brighter and darker patches;
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F(1, 58) = 7.5, p = .008; showing that the absolute drift rate value in
the clear condition was higher for darker than brighter stimuli
(Mbrighter = 0.19, SD = .11 vs. Mdarker = −0.27, SD = .13), whereas
the opposite trend was obtained in the city condition (Mbrighter =
0.20, SD = .11 vs. Mdarker = −.19, SD = .17).

Individual Differences

If the one- and two-choice models tapped a common decision
mechanism across driving tasks, then there should be positive
correlations between the corresponding parameters for the two
models. The Pearson correlation coefficients for mean RTs,

p(correct) and the mean parameter values between three comparison
pairs of the one- and two-choice driving tasks for each age group are
presented in Table 5. For more detailed correlation matrix, see
Figure A1 in the Appendix (note that neither age nor the MMSE
scores correlate with any diffusion model parameters). There are
numerous correlations that can be tested, but we decided to focus on
the ones that were large and/or of theoretical interest. Between the
two-choice driving tasks, we found positive and significant correla-
tions for mean RTs, p(correct), drift rate, nondecision time, and
boundary separation, suggesting that the two-choice diffusion
model successfully captured common mechanisms across tasks.
Moreover, we found positive correlations for nondecision time

T
hi
s
do
cu
m
en
t
is
co
py
ri
gh
te
d
by

th
e
A
m
er
ic
an

P
sy
ch
ol
og
ic
al

A
ss
oc
ia
tio

n
or

on
e
of

its
al
lie
d
pu
bl
is
he
rs
.

T
hi
s
ar
tic
le

is
in
te
nd
ed

so
le
ly

fo
r
th
e
pe
rs
on
al

us
e
of

th
e
in
di
vi
du
al

us
er

an
d
is
no
t
to

be
di
ss
em

in
at
ed

br
oa
dl
y.

Figure 4
Fits of the Models to Data

Note. (A) Cumulative RT distributions averaged over participants for younger and older adults in the one-choice driving task. The “o”s are the data and the
“x”s are the model predictions. (B) Quantile-probability functions averaged over participants for younger and older adults in the two-choice clear and city
driving tasks. The values on the x-axis represent the proportion of responses for the brightness conditions. In the top plots, the brightness conditions from right to
left are .43, .47, .53, and .57 white pixels, and for the bottom plots the order is reversed. The quantile response times are marked on the y-axis by different colors.
In order from the bottom to the top, the quantiles are .1, .3, .5, .7, and .9 (colored in black, red, green, blue, and cyan, respectively). In both panels, x’s represent
the behavioral data and lines and o’s represent the theoretical fits of the diffusion models. In some of the conditions representing errors on the left sides of the
plots, only a median (green x) is plotted when there are less than 5 observations for some of the participants, and nothing is plotted when some have no errors in
that condition. RT = response time. See the online article for the color version of this figure.
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between the one- and two-choice tasks across age groups, showing
that encoding and response requirements account for a significant
portion of individual differences in RTs. In contrast to findings in
Ratcliff (2015), we did not find significant correlations for mean
RTs and drift rates between the one- and two-choice tasks, except for
a positive and significant correlation for drift rates between the one-
choice task and the two-choice clear tasks in older adults, which
shows consistency between the two tasks. Note that the number of
observations in the one-choice task in the present study was almost
half of the number of observations in the one-choice task in Ratcliff
(2015), which reduced the statistical power for the correlation
analysis. Moreover, although the mean RTs were not significantly
correlated between the one- and two-choice tasks, all correlation
values were moderate and positive, which is unlikely if all the true
correlations were zero. This is because the probability of getting all
four values above zero is .0625 (0.5 raised to the fourth power), and
the probability of obtaining four values above .18 (the lowest of
the four correlations shown in Table 5) is 8.9 × 10−4. This is also
true for the nonsignificant but moderate correlations we found for
drift rate for older adults. Consequently, we argue that the diffusion
model framework was able to identify common features of the
decision process across tasks.

Discussion

This experiment addresses two issues in driving behavior using a
diffusion model analysis of the components of decision-making to
explain response time and the accuracy rates in simulated driving

tasks. The issues are: how does the decision-making behavior of
older versus younger adults compare in a simulated driving task and
what happens if the driving task becomes more difficult due to
higher demands on the driving, decision, and response processes?
As noted in the introduction, driving in older adults is of great
concern, and here we present the first study that uses one-choice and
two-choice driving tasks and models that begin to examine the
components of decision processes while driving in older relative to
younger adults under increasing environmental difficulty. The one-
choice driving task provided a way of examining a single response
to a single event during driving, and the two-choice tasks provided
measures of both RT and accuracy when the decision involved one
of two possible driving responses.

Results from the two-choice tasks showed that older drivers
were more prone to make mistakes in the decision task than younger
drivers, and this trend was larger with higher demands imposed by
the (city vs. the clear) environment. Differences in RT between
older and younger participants were not as large as in similar aging
studies that tested cognitive tasks in the laboratory (e.g., Ratcliff
et al., 2000, 2001, 2003, 2006; Starns & Ratcliff, 2010). We argue
that this is because response time on the road is mostly determined
by traffic demands, that is, driving behavior is usually aligned with
the behavior of other drivers on the road in order to maintain a
cohesive traffic stream. Hence, older drivers (that are not seriously
impaired) have to slow down and speed up with other drivers and
could not, for example, take twice the time to perform such tasks.
This forces older adults to conform to traffic demands, stressing
speed at the expense of accuracy. Consistent with this notion, the
increase in RT with environment difficulty (i.e., city vs. clear) was
larger for younger adults, whereas the decrease in accuracy was
larger for older adults. Furthermore, our older drivers were
extremely experienced, and most had been driving for over 40
years, hence the task was highly overlearned. In contrast, in
laboratory studies, the tasks and response requirements are not
overlearned, leading to greater differences between older and
younger adults.

The behavioral results were well fitted by the diffusion model
with straightforward interpretations of the effects of age and envi-
ronment difficulty on model components. Furthermore, many of the
model parameters were correlated across tasks. This finding is
important because the tasks differ in the response requirements
and in the dependent variables (the one-choice task has only RT,
whereas the two-choice tasks have correct and error RTs and
accuracy). This means that the diffusion model framework
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Table 2
Mean Parameter Values Across Participants From the One-Choice and Two-Choice Diffusion Models

Task-version Age a z Ter η sz st p0 χ2 N(<χ2c )

One-choice clear Young 0.220 0.352 0.200 0.205 12.2 29/30
Older 0.200 0.339 0.200 0.238 8.6 27/29

Two-choice clear Young 0.137 0.071 0.701 0.167 0.041 0.368 0.002 33.4 28/30
Older 0.145 0.070 0.714 0.149 0.044 0.479 0.002 43.3 19/29

Two-choice city Young 0.129 0.068 0.804 0.170 0.035 0.309 0.005 31.6 29/30
Older 0.122 0.058 0.845 0.135 0.057 0.410 0.001 41.9 19/29

Note. a = decision boundary separation; z = starting point; Ter = nondecision time; η = standard deviation in drift rate across trials; sz = range of the
distribution of starting points (z); st= range of the distribution of nondecision times; p0= proportion of contaminants; χ2= average goodness-of-fit (group level);
and N(<χ2c ) = number of participants with χ2 value below the critical value (out of N = 30 for younger adults and N = 29 for older adults). The critical χ2 values
were 23.7 with 14 degrees of freedom for the one-choice model and 47.4 with 33 degrees of freedom for the two-choice model.

Table 3
Mean Drift Rate Values Across Participants From the One-Choice
and Two-Choice Diffusion Models

Task-version Age v1 v2 v3 v4 V

One-choice clear Young 0.866
Older 0.691

Two-choice clear Young 0.296 0.117 −0.212 −0.383 0.252
Older 0.244 0.083 −0.143 −0.325 0.199

Two-choice city Young 0.323 0.139 −0.128 −0.353 0.236
Older 0.245 0.084 −0.067 −0.198 0.148

Note. v1 are v2 are for bright stimuli (.57 and .53 white pixels, respectively)
and v3 and v4 are for dark stimuli (.47 and .43 white pixels, respectively);
V represents the overall drift rate. For the two-choice driving task, it is
(v1 + v2 − v3 − v4)/4.
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successfully identified common processes across the two tasks,
which supports the conclusions drawn from the parameter-value
analysis.
A comparison of parameter values between age groups and tasks

showed that differences in the decision-making tasks between older
and younger drivers were mostly explained by lower drift rates for
older than younger adults, which accounted for lower accuracy rates
found in the older group. This is different from previous results
that showed similar drift rates across age groups in the brightness-
discrimination task (e.g., Ratcliff et al., 2003). One plausible
explanation for this is that older adults often show difficulties in
dividing attention between tasks (e.g., Ging-Jehli & Ratcliff, 2020;
Kramer & Kray, 2006; Parasuraman &Nestor, 1991; Verhaeghen &
Cerella, 2002). Consequently, they might experience difficulties in
dividing attention between the decision task and driving, especially
when the demands imposed by the environment are high, thus
reducing the rate of evidence accumulation (i.e., a result similar
to the effect of using a cell phone during driving in Ratcliff &
Strayer, 2014). Another possibility is that the implicit stress of
speed, imposed by environment difficulty and traffic demands,
might have been responsible for the reduced drift rates. This is
because motor processes are often slower in older age (Falkenstein
et al., 2006; Gaspar et al., 2013; Ward, 2006), and so to compensate,
stimulus encoding might be abbreviated in the effort to speed
nondecision processes and make responses consistent with traffic
demands, resulting in lower drift rates (see Starns & Ratcliff, 2012,
for results that demonstrate this reduction in drift rate with high

speed–stress). A third possibility is that the brightness patch in the
two-choice driving tasks was smaller than in previous nondriving
experiments, hence reducing acuity and so possibly reducing the
quality of the encoded stimulus.

We also found that nondecision time was longer in the city
landscape than the clear landscape, probably because the pace of
the lead car was slower in city (25 mph) than clear (65 mph)
conditions, allowing for slower responses in the former. However,
unlike common findings from similar aging studies (e.g., Ratcliff
et al., 2003, 2006), we did not find evidence for slower nondeci-
sion processes in older than younger adults. This is because RTs
had an upper limit set by traffic demands, resulting in small or no
differences in RTs between age groups and, consequently, null
differences in nondecision time as well (and the older adults were
highly practiced at driving). Consistent with this observation, we
found lower boundary separation for older than younger adults
as the environmental difficulty increased. That is, the rate of
evidence accumulation in older drivers was lower when the
demands from the environment increased (e.g., clear vs. city),
which induced them to make adjustments to the duration of the
decision process in order to fit traffic demands. This was achieved
by lowering the decision criteria to a greater degree than younger
drivers, leading to slightly more errors. Note that the adjusting
boundary separation in response to a speed–stress manipulation is
a common effect found in cognitive tasks in the laboratory
(Ratcliff et al., 2001, 2003, 2004; Thapar et al., 2003); therefore,
it is often attributed to be under the control of the decision maker.
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Figure 5
The Mean Values of Boundary Separation, Nondecision Time, and Drift Rate Among Age Groups and Tasks

Note. Error bars correspond to standard errors. See the online article for the color version of this figure.

Table 4
Statistical Differences in Parameter Values Between Age-Groups in the One- and Two-Choice Driving Tasks

Task Factors a z Ter η sz st V p0 z/a

One-choice Age group 1.87 — 1.19 — — −1.47 3.00 — —

Two-choice Age group 0.00 1.69 1.22 2.80 3.0 13.91 11.15 1.97 3.54
Landscape 24.07 8.13 59.39 0.10 0.20 10.82 7.74 0.62 0.36
Landscape × Age group 5.46 3.79 0.90 0.27 1.50 0.06 2.06 1.75 0.74

Note. The t statistics with 57 degrees of freedom from the independent sample t tests for differences in parameter values among age groups in the one-choice
task; and the F statistics with the (1,58) degrees of freedom from the two-way repeatedmeasuresMANOVA test for differences in the parameters’ values among
landscape and age groups. Significant effects are marked in bold (p < .05). MANOVA = multivariate analysis of variance.
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We argue that older adults made similar adjustments to the
decision criteria in response to an implicit speed–stress imposed
by environment difficulty and traffic demands (see also Vanunu &
Ratcliff, 2022).
Nevertheless, one advantage of a model-based analysis is to allow

us to make predictions for what would happen if one or more
model components changed. Older adults reduced their boundary
separation from the clear to the city landscape to compensate, we
assume, for increased difficulty. To illustrate the effect of this
compensation, we generated predicted values of accuracy and
mean correct RT (averaged over the four brightness conditions)
for the parameter values for the city landscape for older adults from
Table 2 (with boundary separation 0.122). We then asked what
would have happened if boundary separation was set at the value for
the clear landscape (0.145) with all other parameters held at the
values for the city landscape. If boundary separation increased from
0.122 to 0.145, accuracy would increase slightly by 1% (from 0.725
to 0.735) and mean correct RT would increase by 80 ms (from 1,089
to 1,167 ms). For comparison, using the parameters for the clear
environment, accuracy was 0.819 and mean correct RT was 1,038
ms. Thus, reducing boundary separation instead of leaving it at the
value used for the clear landscape compensated for 78 ms of the 129
ms increase in mean correct RT relative to the clear environment that
would have occurred if boundary separation was not changed (at the
cost of about 1% in accuracy). Consequently, we conclude that
lower drift rates (in response to difficulties in switching attention or
to speed–stress by traffic demands) were the primary factor for the
reduced accuracy found in older adults.
It is important to note that across studies we measured the

behavior in decision tasks that require a driving response while
operating a PC-based driving simulator, rather than measuring real
driving behavior on a road (e.g., lane keeping, speeding, and
slowing in response to traffic demands). However, drivers make
behavioral responses to factors external to the mechanics of driving
all the time, and our modeling addresses this behavior. Recent
studies have extended the use of the diffusion model framework to
capture the underlying mechanism of various driving actions such
as making a left turn across traffic in the opposite direction
(Zgonnikov et al., 2020); steering and gear shift paddle behavior
in response to a decelerating car (Markkula, 2014; Markkula et al.,
2016; Xue et al., 2018); and estimating the time to collision (Daneshi
et al., 2019, 2020). For instance, Xue et al. (2018) proposed a model

of driving behavior to explain the response of drivers to a deceler-
ating lead car. The model assumes a diffusion process of evidence
accumulation towards a threshold—collected from multiple cues
such as visual looming metrics (i.e., the angular expansion rate of a
lead car on the driver’s retina) and braking lights. Findings from a
model-comparison analysis revealed that the diffusion model pro-
duced a better fit to data than a common earlier model of driving
behavior, which considered visual looming metrics alone (e.g.,
Maddox & Kiefer, 2012). Such studies along with the results
presented here show the utility of applying diffusion model analyses
to driving tasks.

Conclusions

Response time in real-world driving is determined to a large
degree by traffic demands, and so if some components of decision-
making processes slow with age, drivers must try to compensate by
speeding up other components. In our experiments, we found that
in a more difficult driving environment, even though older adults
were more likely to make more errors than younger adults in the
decision task, differences in RTs were relatively small between age
groups. A diffusion model analyses showed a good fit to data and
consistent individual differences in parameter values across tasks,
suggesting common components of decision processes during the
driving tasks. Results from the model-based analysis suggested
that difficulties in dividing attention between driving and perform-
ing the decision tasks for older adults might have interfered with
evidence accumulation, explaining the reduced accuracy and
slower responses found in this group. Results also showed that
to compensate for lower evidence accumulation as the driving task
environment became more difficult, older adults reduced the
duration of the decision process by reducing decision boundary
separation. This boundary-decrease did not affect accuracy by
much (1%), which shows that this type of adjustment is relatively
“safe.” However, it is possible that older drivers made additional
adjustments to stimulus encoding in the effort to speed nondecision
processes, producing lower-quality evidence (lower drift rates) and
hence lower accuracy.

These results show subtle patterns of behavior and compensa-
tory behavior in our driving tasks. Generally, the data from these
tasks are well fitted by the diffusion models, provide interpretable
effects within each task and interpretable difference between
tasks. Thus, these results validate the use of the models and
experimental methods in understanding the effects of age on
driving. We argue that it is important to map out how the
components of decision-making processes in driving tasks change
with traffic and driving environment demand, task difficulty, and
all kinds of other factors such as distraction and attention.
Identifying how these factors change with age and driving con-
ditions will inform policymakers or engineers in designing assess-
ments and driving aids that can be used to improve safety for older
drivers. Specifically, if information about how a specific device or
driving aid affects performance in driving, it could be added to
driving tasks like those studied here in easy and difficult driving
environments. The diffusion model analyses could be used to
see the effects on caution and evidence used in the decision
process. What our analyses provide is a method for examining
decision-making processes in driving.
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Table 5
The Pearson Correlation Statistics for Mean RTs, p(Correct) and
the Parameter Values Among Pairs of Tasks for the Different Age
Groups

Pairs of
driving tasks

Age
group Mean RTs Ter V p(correct) a

Two-choice clear
and city

Young .87 .58 .51 .53 .63
Older .78 .38 .55 .67 .62

One-choice and
two-choice
clear

Young .18 .44 .02
Older .32 .49 .42

One-choice and
two-choice city

Young .28 .59 .11
Older .23 .64 .25

Note. Significant correlations are marked in bold (p < .05). RT = response
time.

DIFFUSION MODELING OF DRIVING IN OLDER ADULTS 451



References

Burns, P. C., Trbovich, P. L., McCurdie, T., & Harbluk, J. L. (2005).
Measuring distraction: Task duration and the lane-change test (LCT).
Proceedings of the Human Factors and Ergonomics Society Annual
Meeting, 49(22), 1980–1983. https://doi.org/10.1177/154193120504902220

Castro, S. C., Strayer, D. L., Matzke, D., & Heathcote, A. (2019). Cognitive
workload measurement and modeling under divided attention. Journal of
Experimental Psychology: Human Perception and Performance, 45(6),
826–839. https://doi.org/10.1037/xhp0000638

Centers for Disease Control and Prevention. (n.d.). Older adult drivers.
https://www.cdc.gov/transportationsafety/older_adult_drivers/index.html

Chavali, V. P., Riedy, S. M., & Van Dongen, H. P. (2017). Signal-to-noise
ratio in PVT performance as a cognitive measure of the effect of sleep
deprivation on the fidelity of information processing. Sleep (Basel), 40(3),
Article zsx016. https://doi.org/10.1093/sleep/zsx016

Cooper, J. M., & Strayer, D. L. (2008). Effects of simulator practice and real-
world experience on cell-phone-related driver distraction.Human Factors,
50(6), 893–902. https://doi.org/10.1518/001872008X374983

Cousineau, D. (2005). Confidence intervals in within-subject designs: A
simpler solution to Loftus andMasson’s method. Tutorials in Quantitative
Methods for Psychology, 1(1), 42–45. https://doi.org/10.20982/tqmp.01
.1.p042

Daneshi, A., Azarnoush, H., & Towhidkhah, F. (2020). A one-boundary
drift-diffusion model for time to collision estimation in a simple driving
task. Journal of Cognitive Psychology, 32(1), 67–81. https://doi.org/10
.1080/20445911.2019.1688336

Daneshi, A., Azarnoush, H., Towhidkhah, F., Gohari, A., & Ghazizadeh, A.
(2019). Drift-diffusion explains response variability and capacity for
tracking objects. Scientific Reports, 9(1), Article 11224. https://doi.org/
10.1038/s41598-019-47624-4

Dinges, D. F., & Kribbs, N. B. (1991). Performing while sleepy: Effects of
experimentally-induced sleepiness. In T. H. Monk (Ed.), Sleep, sleepiness
and performance (pp. 97–128). Wiley.

Dinges, D. F., & Powell, J. W. (1985). Microcomputer analyses of perfor-
mance on a portable, simple visual RT task during sustained operations.
Behavior Research Methods, Instruments, & Computers, 17(6), 652–655.
https://doi.org/10.3758/BF03200977

Engström, J., & Markkula, G. (2007). Effects of visual and cognitive
distraction on lane change test performance. Proceedings of the third
international driving symposium on human factors in driver assessment,
training and vehicle design (pp. 199–205). University of Iowa.

Falkenstein, M., Yordanova, J., & Kolev, V. (2006). Effects of aging on
slowing of motor-response generation. International Journal of Psycho-
physiology, 59(1), 22–29. https://doi.org/10.1016/j.ijpsycho.2005.08.004

Folstein, M. F., Folstein, S. E., & McHugh, P. R. (1975). “Mini-mental
state”. A practical method for grading the cognitive state of patients for the
clinician. Journal of Psychiatric Research, 12(3), 189–198. https://
doi.org/10.1016/0022-3956(75)90026-6

Gaspar, J. G., Neider,M. B., &Kramer, A. F. (2013). Falls risk and simulated
driving performance in older adults. Journal of Aging Research, 2013,
Article 356948. https://doi.org/10.1155/2013/356948

Ging-Jehli, N. R., & Ratcliff, R. (2020). Effects of aging in a task-switch
paradigmwith the diffusion decisionmodel. Psychology and Aging, 35(6),
850–865. https://doi.org/10.1037/pag0000562

Green, P., &MacLeod, C. J. (2016). SIMR: An R package for power analysis
of generalized linear mixedmodels by simulation.Methods in Ecology and
Evolution, 7(4), 493–498. https://doi.org/10.1111/2041-210X.12504

Hoffman, L., McDowd, J. M., Atchley, P., & Dubinsky, R. (2005). The role
of visual attention in predicting driving impairment in older adults.
Psychology and Aging, 20(4), 610–622. https://doi.org/10.1037/0882-
7974.20.4.610

ISO/DIS 26022. (2010). Road vehicles—Ergonomic aspects of transport
information and control systems—Simulated lane change test to assess in-
vehicle secondary task demand. ISO.

Kramer, A. F., & Kray, J. (2006). Aging and attention. In E. Bialystok
& F. I. M. Craik (Eds.), Lifespan cognition: Mechanisms of change
(p. 57–69). Oxford University Press. https://doi.org/10.1093/acprof:oso/
9780195169539.003.0005

Li, G., Braver, E. R., & Chen, L. H. (2003). Fragility versus excessive crash
involvement as determinants of high death rates per vehicle-mile of travel
among older drivers. Accident Analysis & Prevention, 35(2), 227–235.
https://doi.org/10.1016/S0001-4575(01)00107-5

Madden, D. J. (2007). Aging and visual attention. Current Directions in
Psychological Science, 16(2), 70–74. https://doi.org/10.1111/j.1467-8721
.2007.00478.x

Maddox, M. E., & Kiefer, A. (2012). Looming threshold limits and their use
in forensic practice. Proceedings of the Human Factors and Ergonomics
Society Annual Meeting, 56(1), 700–704. https://doi.org/10.1177/107
1181312561146

Markkula, G. (2014). Modeling driver control behavior in both routine and
near-accident driving.Proceedings of the Human Factors and Ergonomics
Society Annual Meeting, 58(1), 879–883. https://doi.org/10.1177/154
1931214581185

Markkula, G., Engström, J., Lodin, J., Bärgman, J., & Victor, T. (2016). A
farewell to brake reaction times? Kinematics-dependent brake response in
naturalistic rear-end emergencies. Accident Analysis & Prevention, 95(A),
209–226. https://doi.org/10.1016/j.aap.2016.07.007

Mattes, S. (2003). The lane-change-task as a tool for driver distraction
evaluation. In H. Strasser, K. Kluth, H. Rausch, & H. Bubb (Eds.),
Quality of work and products in enterprises of the future (pp. 57–60).
Erognomia Verlag.

Parasuraman, R., & Nestor, P. G. (1991). Attention and driving skills in
aging and Alzheimer’s disease. Human Factors, 33(5), 539–557. https://
doi.org/10.1177/001872089103300506

Perryman, K. M., & Fitten, L. J. (1996). Effects of normal aging on the
performance of motor-vehicle operational skills. Journal of Geriatric
Psychiatry and Neurology, 9(3), 136–141. https://doi.org/10.1177/
089198879600900306

Petzoldt, T., Bär, N., Ihle, C., & Krems, J. F. (2011). Learning effects in the
lane change task (LCT)—Evidence from two experimental studies.
Transportation Research Part F: Traffic Psychology and Behaviour,
14(1), 1–12. https://doi.org/10.1016/j.trf.2010.09.001

Petzoldt, T., Brüggemann, S., & Krems, J. F. (2014). Learning effects in the
lane change task (LCT)—Realistic secondary tasks and transfer of learn-
ing. Applied Ergonomics, 45(3), 639–646. https://doi.org/10.1016/j.ape
rgo.2013.09.003

Radloff, L. S. (1977). The CES-D scale: A self-report depression scale for
research in the general population. Applied Psychological Measurement,
1(3), 385–401. https://doi.org/10.1177/014662167700100306

Ratcliff, R. (1978). A theory of memory retrieval. Psychological Review,
85(2), 59–108. https://doi.org/10.1037/0033-295X.85.2.59

Ratcliff, R. (2015). Modeling one-choice and two-choice driving tasks.
Attention, Perception & Psychophysics, 77(6), 2134–2144. https://
doi.org/10.3758/s13414-015-0911-8

Ratcliff, R., &Childers, R. (2015). Individual differences and fitting methods
for the two-choice diffusion model. Decision, 2(4), 237–279. https://
doi.org/10.1037/dec0000030

Ratcliff, R., & McKoon, G. (2008). The diffusion decision model: Theory
and data for two-choice decision tasks. Neural Computation, 20(4), 873–
922. https://doi.org/10.1162/neco.2008.12-06-420

Ratcliff, R., Spieler, D., & McKoon, G. (2000). Explicitly modeling the
effects of aging on response time. Psychonomic Bulletin & Review, 7(1),
1–25. https://doi.org/10.3758/BF03210723

Ratcliff, R., & Strayer, D. (2014). Modeling simple driving tasks with a one-
boundary diffusion model. Psychonomic Bulletin & Review, 21(3), 577–
589. https://doi.org/10.3758/s13423-013-0541-x

Ratcliff, R., Thapar, A., Gomez, P., & McKoon, G. (2004). A diffusion
model analysis of the effects of aging in the lexical-decision task.

T
hi
s
do
cu
m
en
t
is
co
py
ri
gh
te
d
by

th
e
A
m
er
ic
an

P
sy
ch
ol
og
ic
al

A
ss
oc
ia
tio

n
or

on
e
of

its
al
lie
d
pu
bl
is
he
rs
.

T
hi
s
ar
tic
le

is
in
te
nd
ed

so
le
ly

fo
r
th
e
pe
rs
on
al

us
e
of

th
e
in
di
vi
du
al

us
er

an
d
is
no
t
to

be
di
ss
em

in
at
ed

br
oa
dl
y.

452 RATCLIFF AND VANUNU

https://doi.org/10.1177/154193120504902220
https://doi.org/10.1177/154193120504902220
https://doi.org/10.1037/xhp0000638
https://doi.org/10.1037/xhp0000638
https://www.cdc.gov/transportationsafety/older_adult_drivers/index.html
https://www.cdc.gov/transportationsafety/older_adult_drivers/index.html
https://www.cdc.gov/transportationsafety/older_adult_drivers/index.html
https://www.cdc.gov/transportationsafety/older_adult_drivers/index.html
https://doi.org/10.1093/sleep/zsx016
https://doi.org/10.1093/sleep/zsx016
https://doi.org/10.1518/001872008X374983
https://doi.org/10.1518/001872008X374983
https://doi.org/10.20982/tqmp.01.1.p042
https://doi.org/10.20982/tqmp.01.1.p042
https://doi.org/10.20982/tqmp.01.1.p042
https://doi.org/10.20982/tqmp.01.1.p042
https://doi.org/10.20982/tqmp.01.1.p042
https://doi.org/10.1080/20445911.2019.1688336
https://doi.org/10.1080/20445911.2019.1688336
https://doi.org/10.1080/20445911.2019.1688336
https://doi.org/10.1080/20445911.2019.1688336
https://doi.org/10.1038/s41598-019-47624-4
https://doi.org/10.1038/s41598-019-47624-4
https://doi.org/10.1038/s41598-019-47624-4
https://doi.org/10.3758/BF03200977
https://doi.org/10.3758/BF03200977
https://doi.org/10.1016/j.ijpsycho.2005.08.004
https://doi.org/10.1016/j.ijpsycho.2005.08.004
https://doi.org/10.1016/j.ijpsycho.2005.08.004
https://doi.org/10.1016/j.ijpsycho.2005.08.004
https://doi.org/10.1016/j.ijpsycho.2005.08.004
https://doi.org/10.1016/j.ijpsycho.2005.08.004
https://doi.org/10.1016/0022-3956(75)90026-6
https://doi.org/10.1016/0022-3956(75)90026-6
https://doi.org/10.1016/0022-3956(75)90026-6
https://doi.org/10.1155/2013/356948
https://doi.org/10.1155/2013/356948
https://doi.org/10.1037/pag0000562
https://doi.org/10.1037/pag0000562
https://doi.org/10.1111/2041-210X.12504
https://doi.org/10.1111/2041-210X.12504
https://doi.org/10.1111/2041-210X.12504
https://doi.org/10.1037/0882-7974.20.4.610
https://doi.org/10.1037/0882-7974.20.4.610
https://doi.org/10.1037/0882-7974.20.4.610
https://doi.org/10.1037/0882-7974.20.4.610
https://doi.org/10.1037/0882-7974.20.4.610
https://doi.org/10.1037/0882-7974.20.4.610
https://doi.org/10.1093/acprof:oso/9780195169539.003.0005
https://doi.org/10.1093/acprof:oso/9780195169539.003.0005
https://doi.org/10.1093/acprof:oso/9780195169539.003.0005
https://doi.org/10.1093/acprof:oso/9780195169539.003.0005
https://doi.org/10.1093/acprof:oso/9780195169539.003.0005
https://doi.org/10.1016/S0001-4575(01)00107-5
https://doi.org/10.1016/S0001-4575(01)00107-5
https://doi.org/10.1111/j.1467-8721.2007.00478.x
https://doi.org/10.1111/j.1467-8721.2007.00478.x
https://doi.org/10.1111/j.1467-8721.2007.00478.x
https://doi.org/10.1111/j.1467-8721.2007.00478.x
https://doi.org/10.1111/j.1467-8721.2007.00478.x
https://doi.org/10.1111/j.1467-8721.2007.00478.x
https://doi.org/10.1177/1071181312561146
https://doi.org/10.1177/1071181312561146
https://doi.org/10.1177/1071181312561146
https://doi.org/10.1177/1541931214581185
https://doi.org/10.1177/1541931214581185
https://doi.org/10.1177/1541931214581185
https://doi.org/10.1016/j.aap.2016.07.007
https://doi.org/10.1016/j.aap.2016.07.007
https://doi.org/10.1016/j.aap.2016.07.007
https://doi.org/10.1016/j.aap.2016.07.007
https://doi.org/10.1016/j.aap.2016.07.007
https://doi.org/10.1016/j.aap.2016.07.007
https://doi.org/10.1177/001872089103300506
https://doi.org/10.1177/001872089103300506
https://doi.org/10.1177/001872089103300506
https://doi.org/10.1177/089198879600900306
https://doi.org/10.1177/089198879600900306
https://doi.org/10.1177/089198879600900306
https://doi.org/10.1016/j.trf.2010.09.001
https://doi.org/10.1016/j.trf.2010.09.001
https://doi.org/10.1016/j.trf.2010.09.001
https://doi.org/10.1016/j.trf.2010.09.001
https://doi.org/10.1016/j.trf.2010.09.001
https://doi.org/10.1016/j.trf.2010.09.001
https://doi.org/10.1016/j.apergo.2013.09.003
https://doi.org/10.1016/j.apergo.2013.09.003
https://doi.org/10.1016/j.apergo.2013.09.003
https://doi.org/10.1016/j.apergo.2013.09.003
https://doi.org/10.1016/j.apergo.2013.09.003
https://doi.org/10.1016/j.apergo.2013.09.003
https://doi.org/10.1016/j.apergo.2013.09.003
https://doi.org/10.1177/014662167700100306
https://doi.org/10.1177/014662167700100306
https://doi.org/10.1037/0033-295X.85.2.59
https://doi.org/10.1037/0033-295X.85.2.59
https://doi.org/10.1037/0033-295X.85.2.59
https://doi.org/10.1037/0033-295X.85.2.59
https://doi.org/10.1037/0033-295X.85.2.59
https://doi.org/10.3758/s13414-015-0911-8
https://doi.org/10.3758/s13414-015-0911-8
https://doi.org/10.3758/s13414-015-0911-8
https://doi.org/10.1037/dec0000030
https://doi.org/10.1037/dec0000030
https://doi.org/10.1037/dec0000030
https://doi.org/10.1162/neco.2008.12-06-420
https://doi.org/10.1162/neco.2008.12-06-420
https://doi.org/10.1162/neco.2008.12-06-420
https://doi.org/10.1162/neco.2008.12-06-420
https://doi.org/10.3758/BF03210723
https://doi.org/10.3758/BF03210723
https://doi.org/10.3758/s13423-013-0541-x
https://doi.org/10.3758/s13423-013-0541-x


Psychology and Aging, 19(2), 278–289. https://doi.org/10.1037/0882-
7974.19.2.278

Ratcliff, R., Thapar, A., & McKoon, G. (2001). The effects of aging on
reaction time in a signal detection task. Psychology and Aging, 16(2), 323–
341. https://doi.org/10.1037/0882-7974.16.2.323

Ratcliff, R., Thapar, A., &McKoon, G. (2003). A diffusionmodel analysis of
the effects of aging on brightness discrimination. Perception & Psycho-
physics, 65(4), 523–535. https://doi.org/10.3758/BF03194580

Ratcliff, R., Thapar, A., & McKoon, G. (2006). Aging and individual
differences in rapid two-choice decisions. Psychonomic Bulletin &
Review, 13(4), 626–635. https://doi.org/10.3758/BF03193973

Ratcliff, R., Thapar, A., &McKoon, G. (2010). Individual differences, aging,
and IQ in two-choice tasks.Cognitive Psychology, 60(3), 127–157. https://
doi.org/10.1016/j.cogpsych.2009.09.001

Ratcliff, R., Thapar, A., & McKoon, G. (2011). Effects of aging and IQ on
item and associative memory. Journal of Experimental Psychology:
General, 140(3), 464–487. https://doi.org/10.1037/a0023810

Ratcliff, R., & Tuerlinckx, F. (2002). Estimating parameters of the diffusion
model: Approaches to dealing with contaminant reaction times and
parameter variability. Psychonomic Bulletin & Review, 9(3), 438–481.
https://doi.org/10.3758/BF03196302

Ratcliff, R., & Van Dongen, H. P. (2011). Diffusion model for one-choice
reaction-time tasks and the cognitive effects of sleep deprivation. Pro-
ceedings of the National Academy of Sciences of the United States of
America, 108(27), 11285–11290. https://doi.org/10.1073/pnas.11004
83108

Starns, J. J., & Ratcliff, R. (2010). The effects of aging on the speed–accuracy
compromise: Boundary optimality in the diffusion model. Psychology and
Aging, 25(2), 377–390. https://doi.org/10.1037/a0018022

Starns, J. J., & Ratcliff, R. (2012). Age-Related differences in diffusion
model boundary optimality with both trial-limited and time-limited tasks.
Psychonomic Bulletin and Review, 19, 139–145. https://doi.org/10.3758/
s13423-011-0189-3

Thapar, A., Ratcliff, R., &McKoon, G. (2003). A diffusionmodel analysis of
the effects of aging on letter discrimination. Psychology and Aging, 18(3),
415–429. https://doi.org/10.1037/0882-7974.18.3.415

Tillman, G., Strayer, D., Eidels, A., & Heathcote, A. (2017). Modeling
cognitive load effects of conversation between a passenger and driver.
Attention, Perception &Psychophysics, 79(6), 1795–1803. https://doi.org/
10.3758/s13414-017-1337-2

Tuerlinckx, F., Maris, E., Ratcliff, R., & De Boeck, P. (2001). A comparison
of four methods for simulating the diffusion process. Behavior Research
Methods, Instruments, & Computers, 33(4), 443–456. https://doi.org/10
.3758/BF03195402

Vanunu, Y. & Ratcliff, R. (2022). Speed–accuracy tradeoffs in decision
making while driving: A diffusion model analysis [Manuscript submitted
for publication].

Verhaeghen, P., &Cerella, J. (2002). Aging, executive control, and attention:
A review of meta-analyses. Neuroscience and Biobehavioral Reviews,
26(7), 849–857. https://doi.org/10.1016/S0149-7634(02)00071-4

Voss, A., & Voss, J. (2007). Fast-dm: A free program for efficient diffusion
model analysis. Behavior Research Methods, 39(4), 767–775. https://
doi.org/10.3758/BF03192967

Wagenmakers, E. J. (2009). Methodological and empirical developments for
the Ratcliff diffusionmodel of response times and accuracy. The European
Journal of Cognitive Psychology, 21(5), 641–671. https://doi.org/10
.1080/09541440802205067

Walker, N., Fain, W. B., Fisk, A. D., & McGuire, C. L. (1997). Aging and
decision making: Driving-related problem solving.Human Factors, 39(3),
438–444. https://doi.org/10.1518/001872097778827188

Ward, N. S. (2006). Compensatory mechanisms in the aging motor system.
Ageing Research Reviews, 5(3), 239–254. https://doi.org/10.1016/j.arr
.2006.04.003

Wechsler, D. (1997). The Wechsler Adult Intelligence Scale III.
Psychological Corporation, Harcourt Brace.

Xue, Q., Markkula, G., Yan, X., & Merat, N. (2018). Using perceptual cues
for brake response to a lead vehicle: Comparing threshold and accumulator
models of visual looming. Accident Analysis & Prevention, 118, 114–124.
https://doi.org/10.1016/j.aap.2018.06.006

Zgonnikov, A., Abbink, D., &Markkula, G. (2020). Should I stay or should I
go? Evidence accumulation drives decision making in human drivers.
PsyArXiv. https://doi.org/10.31234/osf.io/p8dxn

(Appendix follows)

T
hi
s
do
cu
m
en
t
is
co
py
ri
gh
te
d
by

th
e
A
m
er
ic
an

P
sy
ch
ol
og
ic
al

A
ss
oc
ia
tio

n
or

on
e
of

its
al
lie
d
pu
bl
is
he
rs
.

T
hi
s
ar
tic
le

is
in
te
nd
ed

so
le
ly

fo
r
th
e
pe
rs
on
al

us
e
of

th
e
in
di
vi
du
al

us
er

an
d
is
no
t
to

be
di
ss
em

in
at
ed

br
oa
dl
y.

DIFFUSION MODELING OF DRIVING IN OLDER ADULTS 453

https://doi.org/10.1037/0882-7974.19.2.278
https://doi.org/10.1037/0882-7974.19.2.278
https://doi.org/10.1037/0882-7974.19.2.278
https://doi.org/10.1037/0882-7974.19.2.278
https://doi.org/10.1037/0882-7974.19.2.278
https://doi.org/10.1037/0882-7974.19.2.278
https://doi.org/10.1037/0882-7974.16.2.323
https://doi.org/10.1037/0882-7974.16.2.323
https://doi.org/10.1037/0882-7974.16.2.323
https://doi.org/10.1037/0882-7974.16.2.323
https://doi.org/10.1037/0882-7974.16.2.323
https://doi.org/10.3758/BF03194580
https://doi.org/10.3758/BF03194580
https://doi.org/10.3758/BF03193973
https://doi.org/10.3758/BF03193973
https://doi.org/10.1016/j.cogpsych.2009.09.001
https://doi.org/10.1016/j.cogpsych.2009.09.001
https://doi.org/10.1016/j.cogpsych.2009.09.001
https://doi.org/10.1016/j.cogpsych.2009.09.001
https://doi.org/10.1016/j.cogpsych.2009.09.001
https://doi.org/10.1016/j.cogpsych.2009.09.001
https://doi.org/10.1016/j.cogpsych.2009.09.001
https://doi.org/10.1037/a0023810
https://doi.org/10.1037/a0023810
https://doi.org/10.3758/BF03196302
https://doi.org/10.3758/BF03196302
https://doi.org/10.1073/pnas.1100483108
https://doi.org/10.1073/pnas.1100483108
https://doi.org/10.1073/pnas.1100483108
https://doi.org/10.1073/pnas.1100483108
https://doi.org/10.1037/a0018022
https://doi.org/10.1037/a0018022
https://doi.org/10.3758/s13423-011-0189-3
https://doi.org/10.3758/s13423-011-0189-3
https://doi.org/10.3758/s13423-011-0189-3
https://doi.org/10.1037/0882-7974.18.3.415
https://doi.org/10.1037/0882-7974.18.3.415
https://doi.org/10.1037/0882-7974.18.3.415
https://doi.org/10.1037/0882-7974.18.3.415
https://doi.org/10.1037/0882-7974.18.3.415
https://doi.org/10.3758/s13414-017-1337-2
https://doi.org/10.3758/s13414-017-1337-2
https://doi.org/10.3758/s13414-017-1337-2
https://doi.org/10.3758/BF03195402
https://doi.org/10.3758/BF03195402
https://doi.org/10.1016/S0149-7634(02)00071-4
https://doi.org/10.1016/S0149-7634(02)00071-4
https://doi.org/10.3758/BF03192967
https://doi.org/10.3758/BF03192967
https://doi.org/10.3758/BF03192967
https://doi.org/10.1080/09541440802205067
https://doi.org/10.1080/09541440802205067
https://doi.org/10.1518/001872097778827188
https://doi.org/10.1518/001872097778827188
https://doi.org/10.1016/j.arr.2006.04.003
https://doi.org/10.1016/j.arr.2006.04.003
https://doi.org/10.1016/j.arr.2006.04.003
https://doi.org/10.1016/j.arr.2006.04.003
https://doi.org/10.1016/j.arr.2006.04.003
https://doi.org/10.1016/j.arr.2006.04.003
https://doi.org/10.1016/j.aap.2018.06.006
https://doi.org/10.1016/j.aap.2018.06.006
https://doi.org/10.1016/j.aap.2018.06.006
https://doi.org/10.1016/j.aap.2018.06.006
https://doi.org/10.1016/j.aap.2018.06.006
https://doi.org/10.1016/j.aap.2018.06.006
https://doi.org/10.31234/osf.io/p8dxn
https://doi.org/10.31234/osf.io/p8dxn
https://doi.org/10.31234/osf.io/p8dxn


T
hi
s
do
cu
m
en
t
is
co
py
ri
gh
te
d
by

th
e
A
m
er
ic
an

P
sy
ch
ol
og
ic
al

A
ss
oc
ia
tio

n
or

on
e
of

its
al
lie
d
pu
bl
is
he
rs
.

T
hi
s
ar
tic
le

is
in
te
nd
ed

so
le
ly

fo
r
th
e
pe
rs
on
al

us
e
of

th
e
in
di
vi
du
al

us
er

an
d
is
no
t
to

be
di
ss
em

in
at
ed

br
oa
dl
y.

Appendix

Fitting Method

The decision in response to the stimulus in each case involved
changing direction by either driving around the car ahead or driving
to the side and back. For each trial, the response was recorded from
the change in direction initiated by moving the steering wheel.
For the two-choice model, we used the standard explicit solution to
fit the model to data (see Ratcliff & Tuerlinckx, 2002). However,
although there is an explicit solution for the distribution of RTs for a
positive drift rate in the one-choice model (the Wald or inverse
Gaussian distribution), there is no explicit solution for a RT
distribution generated by a negative drift rate (produced from the
left tail of the between-trial distribution of drift rate; see Figure 1).
Therefore, we fitted the one-choice model by simulating the process,
using a random walk approximation to the diffusion process as in
Ratcliff and Van Dongen (2011). Each simulated condition used
20,000 iterations with a 0.5-ms step size (Tuerlinckx et al., 2001).
We set the maximum response time in the simulation to 3,000 ms for
younger adults and 6,000 ms for older adults, and any RT that
exceeded this boundary was set to this maximum value (this
occurred 0.2% and 1.1% of the time for younger and older adults,
respectively). We used 5 quantiles of the two RT distributions for
correct and error responses (i.e., .1, .3, .5, .7, and .9) to fit the two-
choice model. For the one-choice model, there is only one RT
distribution, which makes it important to use as much distributional
information as possible. Therefore, we used 19 quantiles of the RT
distribution to fit the one-choice model, with a step of .05 between
quantiles (i.e., .05, .1, .15, etc.). Importantly, we grouped the first
and second quantiles in the one-choice model to producemore stable
estimates of the leading edge of the RT distribution (by minimizing
the effects of a few anticipations that produced extremely short RTs;
see Ratcliff & Strayer, 2014). The fit for an individual participant
took about 20 s on a 64-core workstation.

We optimized the parameters of the model by using a simplex
minimization routine to minimize the chi-square value—calculated
as Σ(O − E)2/E. The observed values (O) were calculated by
multiplying the total number of observations by the proportions
of responses between the data quantiles (e.g., .05 in the one-choice
model). The expected values (E) were calculated by multiplying the
total number of observations with the proportion of responses in the
predicted RT distribution that laid between the data quantiles
(predicted from the explicit solution for the two-choice model or
the simulation routine for the one-choice model). Contributions
were computed separately for correct responses and error responses.
The simplex minimization routine was restarted 18 times with a
wide simplex around the parameters estimated from the prior fit
(though usually only 4 or 5 restarts were needed). Because of the
issue of parameter identifiability in the one-choice model, we fixed η
to 0.2 when fitting this model to data, as we felt it is the most
appropriate value for the current data set. In both models, we fixed
the within trial SD to 0.1.

Both models were fitted to each individual participant separately to
allow individual difference analyses. To estimate the goodness-of-fit
of the models, the average chi-square value across participants in each
age group and driving task was compared to a respective critical value
(χ2c ). To represent the goodness-of-fit at the individual level, we
counted the number of participants in each group and task with χ2

smaller than the critical value, that is, N<χ2c . Finally, we analyzed the
relationships and differences between parameter values across age
groups and tasks. We assumed that significant correlations among
parameter values would serve as evidence for a common decision
process across tasks, whereas significant differences among the mean
parameter values would show the influence of aging and environment
difficulty on the decision process in driving.

(Appendix continues)
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Scatter Plots and Correlation Matrices
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Figure A1
Scatter Plots, Histograms, and Correlations for Boundary Separation, Nondecision Time, and Drift
Rate in Each Age Group and Task, and for Age and MMSE Scores

Note. MMSE = mini-mental state examination. See the online article for the color version of this figure.
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