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Diffusion models of evidence accumulation have successfully accounted for the distributions of response
times and choice probabilities from many experimental tasks, but recently their assumption that evidence is
accumulated at a constant rate to constant decision boundaries has been challenged. One model assumes that
decision-makers seek to optimize their performance by using decision boundaries that collapse over time.
Another model assumes that evidence does not accumulate and is represented by a stationary distribution
that is gated by an urgency signal to make a response. We present explicit, integral-equation expressions for
the first-passage time distributions of the urgency-gating and collapsing-bounds models and use them to
identify conditions under which the models are equivalent. We combine these expressions with a dynamic
model of stimulus encoding that allows the effects of perceptual and decisional integration to be
distinguished. We compare the resulting models to the standard diffusion model with variability in drift
rates on data from three experimental paradigms in which stimulus information was either constant or
changed over time. The standard diffusion model was the best model for tasks with constant stimulus
information; the models with time-varying urgency or decision bounds performed similarly to the standard
diffusion model on tasks with changing stimulus information. We found little support for the claim
that evidence does not accumulate and attribute the good performance of the time-varying models on
changing-stimulus tasks to their increased flexibility and not to their ability to account for systematic
experimental effects.
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During the last few decades, evidence accumulation models like
the diffusion model (Ratcliff, 1978) have successfully accounted for
the speed and accuracy of two-choice decisions in a variety of
experimental tasks, both in the laboratory and in applied and clinical
settings (Forstmann et al., 2016; Ratcliff et al., 2015). The diffusion
model assumes that noisy evidence from the stimulus is accumu-
lated until one of two response boundaries, or decision criteria, is
reached. The first boundary reached determines the decision out-
come and the time taken to reach it determines the decision time. The
evidence is assumed to be noisy either because of noise in the
stimulus itself or because of moment-to-moment noise in the process
of matching the perceptual representation of the stimulus to the
cognitive representations of the decision alternatives. Mathemati-
cally, evidence accumulation is modeled as a Wiener or Brownian
motion diffusion process, which represents a process of continu-
ously distributed evidence accumulating continuously in time. The
model predicts the shapes of response time (RT) distributions for
correct responses and errors and the associated choice probabilities
or response accuracy (Ratcliff &McKoon, 2008) as a function of the
evidence in the stimulus and the decision-maker’s speed–accuracy
tradeoff and bias settings.

Much of the success of the diffusion model is attributable to the
fact that it predicts RT distributions that closely resemble those
found empirically. In many perceptual and cognitive tasks the
empirical distributions of RT have a characteristic unimodal, posi-
tively skewed form that remains largely invariant, except for a
change in scale, as either the difficulty of the task or the speed versus
accuracy instructions are changed. If the distributions from several
experimental conditions are summarized in a quantile–quantile
(Q–Q) plot, then the resulting plot takes the form of a family of
straight, or near-straight, lines (Ratcliff &McKoon, 2008; Ratcliff &
Smith, 2010; Smith & Corbett, 2019). To construct such a plot, the
distributions are summarized using quantiles (the values of RT that
cut off specified proportions of the probability mass) and the
quantiles of each member of the family are plotted against those
of one member that serves as a reference distribution. Linear or near-
linear Q–Q families are predicted by diffusion models (Ratcliff &
McKoon, 2008; Figure 8; Ratcliff, 2018, Figure 14; Smith, 2016,
Figure 10) and, moreover, this is all they predict. Ratcliff (2002)
showed that the diffusion model was unable to predict families of
plausible-looking distributions whose locations, scales, or shapes
changed in ways not found in data. The success of diffusion models,
then, depends on their being able to predict the forms of RT
distributions that are found empirically and only to predict
those forms.

There is, however, an important exception to this characterization
that has provoked ongoing debate in psychology and neuroscience.
This involves the RT distributions that are found under speed-stress
conditions when speed is manipulated via deadlines. The issue was
first raised by Ratcliff and Smith (2004), who pointed out, in relation
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to a deadline study reported by Van Zandt et al. (2000), that
deadlines result in more symmetrical RT distributions than are
found in tasks that manipulate speed-stress via instructions, and
that such distributions are not well described by the diffusion model
in its standard form (Murphy et al., 2016; Ratcliff & Rouder, 2000).
Symmetrical RT distributions have sometimes been found in ex-
periments with awake behaving monkeys performing eye-
movement decision tasks (Roitman & Shadlen, 2002), which are
again not well predicted by the standard diffusion model (Ditterich,
2006a, 2006b). The animals in these experiments are highly prac-
ticed, water-deprived, and work for juice rewards and, in the case of
the Roitman and Shadlen study, had previously been trained on a
deadline task. A plausible interpretation of these data is that the
animals are implicitly deadlining in order to minimize the time until
the next reward. This leads to the question of how they regulate their
performance under these conditions.
Two proposals have emerged to explain performance in these

tasks. One is that decision-makers use decision boundaries that
decrease or “collapse” during the course of a trial, leading them to
make decisions on the basis of progressively less evidence with the
passage of time. Moreover, it is optimal for them to do so
(Drugowitsch et al., 2012) because it allows them to maximize
their rate of reward (Bogacz et al., 2006). The second is that the
accumulating evidence is modified by a time-dependent “urgency
signal,” which makes responses increasingly more likely with the
passage of time, irrespective of the accumulated evidence. These
ideas, which are often treated as equivalent and interchangeable
(Murphy et al., 2016; Trueblood et al., 2021), have become influ-
ential in the recent neuroscience literature on decision-making and,
increasingly, in the psychological literature as well (Evans,
Hawkins, et al., 2020; Hawkins, Forstmann, et al., 2015; Palestro
et al., 2018; Voskuilen et al., 2016; Winkel et al., 2014).
An unresolved theoretical problem is that the equivalence of

collapsing-bounds and urgency-signal models has been claimed on
the basis of heuristic arguments rather than rigorous analysis. A
rigorous demonstration of equivalence requires an explicit mathe-
matical characterization of the joint first-passage time distributions
of the diffusion process through the decision boundaries. These
distributions provide the predicted RT distributions and choice
probabilities for a model. Two models are equivalent if and only
if they predict the same joint first-passage time distributions. One of
the aims of this article is to provide an explicit representation of this
kind, using integral-equation representations of the first-passage
time distributions for collapsing-bound and urgency-gating models
(Smith, 2000; Smith & Lilburn, 2020; Voskuilen et al., 2016). This
representation allows us to provide a precise characterization of the
conditions under which urgency-signal and collapsing-bounds mod-
els are and are not equivalent.
Our second aim is to provide an explicit mathematical characteri-

zation and empirical evaluation of a more radical proposal that has
recently come out of neuroscience, which is that evidence does not
accumulate at all (Carland et al., 2015, 2016; Cisek et al., 2009;
Thura et al., 2012). The proposal is that, after an initial transient
onset period, the evidence is represented cognitively by a statisti-
cally stationary process. This process is modulated by a time-
dependent urgency signal and a response is made when the urgency
modulated, or “gated,” evidence crosses a decision boundary. The
original proposal (Cisek et al., 2009; Thura et al., 2012) used a
heuristic argument based on ordinary rather than stochastic

differential equations that was shown to be mathematically incorrect
Hawkins, Wagenmakers, et al. (2015) and led to a model whose
predictions could be reliably distinguished from those of the stan-
dard diffusion model in data (Evans, Hawkins, et al., 2020;
Hawkins, Forstmann, et al., 2015), contrary to the earlier claims.
Subsequently, however, the model was reframed in a more general
form with the more nuanced claim that it and the standard diffusion
model are practically indistinguishable under conditions in which
stimulus information does not change during the course of a trial.
Again, this argument can only be properly evaluated by formulating
the model as a rigorous stochastic model and deriving an explicit
expression for its first-passage time distributions and then compar-
ing them to those of the standard diffusion model.

In this article, we provide such a characterization and compare the
standard diffusion model and a rigorously formulated version of the
urgency-gating model in five sets of empirical data. Two of them
were from standard decision tasks in which the stimulus information
does not change during the course of a trial. The remaining data were
from the paradigm of Trueblood et al. (2021), who, like us, evalu-
ated the urgency-gating model in its general form. One of the sets of
data is from their Experiment 1, which we reanalyzed; the other two
are from replications of it with modifications, as we describe below.
Their paradigm is of interest because on some trials the stimulus
information changes during the course of a trial. Thura (2016)
claimed that the standard diffusion model and the urgency-gating
model can only be distinguished in data from tasks of this kind.
These tasks raise fundamental questions about processes of percep-
tual and decisional integration and how they should be modeled and
whether they can be distinguished empirically (Smith & Lilburn,
2020), which we return to subsequently.

Urgency, Collapsing Bounds, and Optimality

The idea that decision-makers under time pressure regulate their
performance using time-dependent decision boundaries became
popular for both empirical and theoretical reasons. Empirically,
the widely cited monkey data of Roitman and Shadlen (2002) cannot
be well fit by the standard diffusion model but are well fit by a model
with collapsing decision boundaries (Ditterich, 2006a, 2006b).
Theoretically, the idea of collapsing bounds appeared to align
well with a concept of optimality proposed by Bogacz et al.
(2006), who argued that decision-makers seek to maximize their
rate of reward over a sequence of experimental trials. They showed
that there is an optimal (fixed) boundary separation for the diffusion
model that maximizes reward rate as a function of the value of
correct responses, the cost of errors, the cost of sampling evidence,
and the intertrial delay. The idea that there is a cost to sampling
evidence was further developed by Drugowitsch et al. (2012) using
the framework of stochastic dynamic programming (Ross, 1983) to
derive an optimal decision “policy,” which prescribes whether a
decision-maker should sample more evidence or make a decision
immediately at each moment during a trial. In at least some
situations, the optimal policy is one in which the decision bound-
aries decrease (converge) during the course of a trial rather than
remain constant. Many researchers have found the idea of collapsing
bounds attractive because it is grounded in a normative theory that
prescribes how an optimal decision-maker should behave.

The idea that decision-makers seek to maximize their reward rate
and the idea that they do so by using collapsing boundaries were
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investigated by subsequent researchers with mixed results. Some
decision-makers approach reward-rate optimality under some cir-
cumstances, but uninstructed decision-makers often tend to be more
conservative in their criterion settings than the theory predicts, and
emphasize accuracy over reward rate (Evans et al., 2019; Holmes &
Cohen, 2014; Starns & Ratcliff, 2010, 2012). Formal comparisons
of fixed and collapsing-bounds models have found support for
collapsing-bounds models only under some conditions. Hawkins,
Forstmann, et al. (2015) derived predictions for collapsing-bounds
models using Monte Carlo simulation methods and compared them
to fixed-bounds models on nine different data sets from human and
animal participants and found only limited support for collapsing-
bounds models. Most of the support for collapsing bounds came
from experiments using animal participants, consistent with the idea
that highly trained animals working for juice rewards regulate their
performance via implicit deadlines. Voskuilen et al. (2016) used
integral-equation methods, similar to those described here, to com-
pare fixed and collapsing-bounds models on six different data sets
from human participants on two different experimental tasks and
again found only limited support for collapsing bounds. Evans,
Hawkins, et al. (2020) found that emphasizing decision speed
through deadlines, and to a lesser extent through speed-emphasis
instructions, led to the use of collapsing bounds, but instructions and
experimental conditions designed to encourage reward-rate opti-
mality did not. They concluded that collapsing bounds do not
provide a good general model of human behavior.
As well as having only limited empirical support, Malhotra et al.

(2018) showed that, even when there is a time cost to sampling
evidence, collapsing-bounds models are optimal only under some
circumstances, but not all. They may be optimal when experimental
blocks contain a mixture of easy decisions and very hard decisions
on which the expected performance is near chance. Collapsing
bounds can be optimal in these circumstances because they prevent
the decision-maker spending too much time on decisions that are
unlikely to be correct and not spending enough time on others for
which the probability of being correct is greater. But if the hardest
decisions are made a little easier, then fixed rather than collapsing
bounds may be optimal. Overall, then, both the empirical and
theoretical support for collapsing-bounds models is less than it
originally appeared to be.
There is, however, a more fundamental objection to the collapsing

bounds idea, which is that it appears to be inconsistent with the
neuroscience. A link between neural firing rates and evidence
accumulation in monkeys performing eye-movement decision tasks
was first made by Hanes and Schall (1996), who observed that
decisions were made when the firing rates in frontal eye fields
reached a fixed threshold level, consistent with the idea that the
associated neurons were either implementing or reading out the
results of an accumulate-to-bound decision process. The link
between evidence accumulation decision processes and the under-
lying neural firing rates is a theoretically productive one that has
been developed by a number of researchers in the intervening period
(Forstmann et al., 2016; Gold & Shadlen, 2003; Mazurek et al.,
2003; Ratcliff et al., 2003, 2007; Schall, 2002, 2003; Smith &
Ratcliff, 2004). However, the idea that decision boundaries change
over time is inconsistent with the empirical observation that deci-
sions are made when neural firing rates reach a fixed threshold value.
The urgency signal model represents a possible solution to the

collapsing-bounds dilemma. Churchland et al. (2008) identified a

stimulus-independent, time-dependent component of the neural
firing rates in the lateral interparietal area which they interpreted
as a time-dependent urgency signal, and which they argued makes a
decision increasingly likely with the passage of time, irrespective of
the quality of the evidence extracted from the stimulus. Ditterich
(2006a, 2006b) proposed an urgency model in which a time-varying
urgency signal is added to the contents of a pair of racing evidence
accumulators, each of which is modeled as a diffusion process
(Ratcliff & Smith, 2004). Additive urgency is a natural expression of
Churchland et al.’s observation that urgency is an independent
component of the neural signal, but it is inconsistent with the
idea that evidence is accumulated by a single, signed evidence total
between decision boundaries because the effects of urgency would
then vary with the identity of the stimulus. To represent urgency in
such models, Cisek and colleagues (Carland et al, 2015, 2016;
Cisek et al., 2009; Thura, et al., 2012) proposed an urgency-gating
model, in which the urgency signal is combined multiplicatively
rather than additively with the accumulating evidence to make a
decision. Unlike additive urgency, in multiplicative urgency models
the sign of the product of the evidence and the urgency signal is
automatically correct.

Stochastic Differential Equations for Evidence
Accumulation

Evidence accumulation models can be characterized mathemati-
cally in either of two complementary ways: via partial differential
equations or stochastic differential equations. In either case, the goal
is to characterize the joint first-passage time distributions of the
evidence accumulation process through the decision boundaries.
These distributions are the distributions of times for the process to
first reach one or other decision boundary and provide the model’s
predicted RT distributions and choice probabilities. The relevant
partial differential equation is the so-called Kolmogorov backward
equation (Bhattacharya & Waymire, 1990; Cox & Miller, 1965;
Karlin & Taylor, 1981; Ratcliff, 1978, 1980), which must be solved
subject to initial and boundary conditions. The initial conditions
prescribe the starting state of the process (i.e., whether it is fixed or
follows some probability distribution) and the boundary conditions
prescribe what happens when the process reaches a boundary.
Absorbing boundaries are the most common form of boundary in
decision models: On reaching an absorbing boundary, evidence
accumulation stops and a response is made. However, some authors
have also considered models with reflecting boundaries, either as
models of time-controlled processing in tasks like the response-
signal task (Zhang & Bogacz, 2010; Zhang et al., 2009) or in
combination with absorbing boundaries, to constrain the sign of
the evidence (Diederich, 1995; Smith & Ratcliff, 2009; Usher &
McClelland, 2001). When a process reaches a reflecting boundary it
is reflected back into the space and evidence accumulation continues
from that point.

In contrast to the partial differential equation approach, which
characterizes the evidence accumulation process indirectly via its
transition probability distribution, the stochastic differential equa-
tion approach characterizes the process directly, as a random process
unfolding in time. Historically, the partial differential equation
approach dates from the work of Einstein (1905) and Von
Smoluchowski (1906) and predated the stochastic differential
equation approach by several decades, which had to await the
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development of a rigorous stochastic integral by Itô (1944, 1951). In
applications, the advantages of the stochastic differential equation
approach are often conceptual as much as mathematical, as they
provide a direct and natural way to formalize a researcher’s intui-
tions about a process under study. The first use of stochastic
differential equations in the study of decision processes we are
aware of was by Pacut (1980), who used them to characterize simple
(one-choice) RT and they were subsequently considered in detail in
relation to both simple and two-choice RT by Smith (1995, 2000).
We focus here on characterizing diffusion processes by stochastic

differential equations and the solution of the associated first-passage
time problem via integral equations. Mathematically, a diffusion
process is a continuous-time, continuous-state, Markov process,
where the latter are processes whose conditional expectations at a
given point in time depend solely on their value at that time and not
on any earlier times. Although diffusion processes are not the most
general processes that can be described by stochastic differential
equations (Protter, 1990), we focus on them because of their central
role in recent theorizing about decision processes. Diffusion process
models arise in the study of decision-making from the assumption
that evidence is represented by the pooled activity of populations of
independent, noisy neurons, as proposed, for example, in the
Poisson shot-noise model of Smith (2010) or the Ising decision-
maker of Verdonck and Tuerlinckx (2014). A diffusion process
representation of accumulating evidence in these models is obtained
from the central limit theorem when the number of neurons in a
population is large. Notationally, we follow the conventions of the
applied probability literature and use subscripted upper-case Roman
letters to denote stochastic processes (i.e., random variables). We
use Greek or Roman letters to denote constants and nonrandom
functions, with the arguments of the latter written in parentheses to
distinguish them from stochastic processes.1

A diffusion process is defined mathematically by specifying two
coefficients or functions: the drift rate and the diffusion rate. These
coefficients are referred to jointly as the infinitesimal moments of the
process. The drift rate prescribes the expected rate of change in the
process and the diffusion rate prescribes the rate of change in its
variability (Bhattacharya & Waymire, 1990, Ch. 7; Cox & Miller,
1965, Ch. 5; Karlin & Taylor, 1981, Ch. 15). The square root of the
diffusion rate is called the infinitesimal standard deviation. In the
most general diffusion process, the drift and diffusion rates may
depend on both time, t, and the position of the process in the
evidence space, x. We write such a process as

dXt = AðXt , tÞdt +
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
BðXt , tÞ

p
dWt , (1)

where A(x, t) and B(x, t) are, respectively, the drift and diffusion
rates, and dWt is a zero-mean Gaussian increment whose standard
deviation in a small interval of duration Δt is of the order

ffiffiffiffiffi
Δt

p
.

Stochastic differential equations are usually written in the differen-
tial form of Equation 1 rather than in the more usual form involving
derivatives because of the difficulty in giving meaning to terms of
the form dWt/dt. In the usual interpretation of Equation 1, Wt is a
Brownian motion, or Wiener process, whose trajectories (sample
paths) are almost everywhere nondifferentiable. Articles in neuro-
science sometimes express evidence accumulation equations in the
form dXt/dt, as if they were ordinary differential equations, but it is
important to understand that, strictly, such expressions have no
meaning. Rather, the meaning of Equation 1 comes from its

corresponding expression in integrated form, which presupposes
the existence of a well-defined stochastic integral.

The two most important special cases of Equation 1 in models of
decision processes are the Wiener diffusion process and the
Ornstein–Uhlenbeck (OU) diffusion process. The former satisfies
the stochastic differential equation

dXt = μdt + σdWt (2)

and the latter satisfies the equation

dXt = ðμ − γXtÞdt + σdWt: (3)

In both equations, the infinitesimal standard deviation, σ, and the
stimulus-dependent portion of the drift rate, μ, are constant. The
equations differ by the presence or absence of the term −γx, which
represents a tendency for the accumulated evidence to decay at a rate
proportional to its current value, x. Because of this property, the
Wiener and OU processes are often characterized as being “perfect”
and “leaky” integrators, respectively. The Wiener process was
proposed by Ratcliff (1978) in his original formulation of the model
and is the diffusion process most widely used to model data. It is
also, when augmented with various sources of across-trial variability
discussed below, the process that has been implemented in third-
party software packages for fitting data (Vandekerckhove &
Tuerlinckx, 2008; Voss & Voss, 2007; Wiecki et al., 2013).

The OU process has been considered by several authors in
varying settings. Busemeyer and Townsend (1992, 1993) used it
to model evidence accumulation governed by approach-avoidance
dynamics in their decision field theory. Smith (1995) used it in his
sustained-and-transient channel model of simple RT and Diederich
(1995) used it in her model of intersensory facilitation. The compo-
nent channels in Usher and McClelland’s (2001) leaky competing
accumulator model are modeled as OU processes with mutual
inhibition and Smith and Ratcliff (2009) assumed racing OU
processes between absorbing and reflecting boundaries in their
implementation of Ratcliff and Smith’s (2004) dual diffusion model
(see also Ratcliff et al., 2007).

When the coefficients μ, σ, and γ are independent of time, as
written in Equations 2 and 3, the corresponding processes are said to
be time homogeneous. The Wiener process is also spatially homo-
geneous, which means that it can be translated in evidence space,
simply by relabeling the boundaries and starting point, without
changing any of its properties. (The OU process is not spatially
homogeneous because the decay term −γx represents a true zero
toward which evidence decays.) Time inhomogeneous versions of
these processes can be obtained by making any or all of μ, σ, and γ
functions of time. Such models have been used by Smith and
colleagues to characterize time-dependent changes in the evidence
entering the decision process (Sewell & Smith, 2012; Smith, 1995,
2000; Smith et al., 2010, 2012; Smith & Lilburn, 2020; Smith &
Ratcliff, 2009). The processes in Equations 2 and 3 can equivalently
be characterized in terms of partial differential equations that, when

1 The reason for this notation is that stochastic processes are considered to
be functions on a probability space,Ω. In this setup, a single realization of the
process (i.e., a sample path on an experimental trial) will depend on the value
of a point, ω ∈ Ω, sampled from this space. For a process Xt this relationship
is written explicitly as Xt(ω), but when the details of the probability space are
unimportant, as here, the dependence on ωmay be omitted from the notation.
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explicitly soluble, lead to infinite-series representations of the first-
passage time distributions (Bhattacharya & Waymire, 1990; Cox &
Miller, 1965; Karlin & Taylor, 1981).
Along with the accumulation process, a complete specification of

a model requires decision boundaries and a starting point for
evidence accumulation. Ratcliff (1978) followed Feller’s (1968)
“gambler’s ruin” formulation of the Wiener diffusion process and
denoted the boundaries as 0 and a and the starting point as z. This is
the way the model is usually parameterized when it is fitted to data,
but when boundaries can vary with time it is convenient to use a
different parameterization. Here we denote the upper and lower
boundaries as a1(t) and a2(t) with a2(t) < z < a1(t). Two main forms
of time-varying boundary functions have been considered in the
literature. Voskuilen et al. (2016) followed Churchland et al. (2008)
and Hanks et al. (2011) and assumed a two-parameter boundary
function of the form,

a1ðtÞ =
a

2

�
1 − κ

t

t + t0.5

�
:

a2ðtÞ = −
a

2

�
1 − κ

t

t + t0.5

�
: (4)

In these equations, a denotes the boundary separation at time
t = 0, κ denotes the rate at which the boundaries collapse (converge)
and t0.5 is a semisaturation constant that identifies the time at which
the boundaries have collapsed to 50% of their starting values.
Hawkins, Forstmann, et al. (2015) assumed a more general,
three-parameter function, which allowed them to compare “early
collapse” and ’‘late collapse” forms of the model. For those data sets
supporting a collapsing-bounds account, their analysis favored a late
collapse model.

The Urgency-Gating Model

Urgency models were first fitted to data by Ditterich (2006a,
2006b), but the most elaborated urgency model to date is the one
proposed by Cisek, Thura, and colleagues. Their model makes two
core claims: One is that evidence does not accumulate unboundedly
but grows to a stationary distribution; the other is that the stationary
distribution of evidence is modulated (gated multiplicatively) by a
time-dependent urgency function, U(t), and a response is made
when the urgency-gated stationary evidence reaches one of two
decision boundaries.
The idea that evidence does not accumulate is of course not a new

one but is one with a long history in psychology. Dating from the
work of Cartwright and Festinger (1943), a number of authors have
proposed Thurstonian or signal detection models that assume a
distribution of evidence that contains an interval of uncertainty
bounded by two decision criteria (Atkinson & Juola, 1974;
Murdock, 1983; Swets & Green, 1961). The decision-maker is
assumed to repeatedly sample from the distribution at a constant
rate until a piece of evidence is obtained that falls outside the interval
of uncertainty and to respond according to whether it falls above the
upper or below the lower criterion. Hockley and Murdock (1987)
proposed that the criteria converge with time, anticipating the
current collapsing-boundaries models in neuroscience. The addition
of converging criteria improved the properties of the model, but
several problems with its RT distribution predictions were identified

by Gronlund and Ratcliff (1991). Pike et al. (1974) proposed a
counter model driven by normal distributions of evidence strength
with an interval of uncertainty to model two-choice RT, in which
counters were incremented only by observations falling outside the
interval of uncertainty. In a similar vein, Smith and Vickers (1989)
proposed a version of the Vickers accumulator model (Smith &
Vickers, 1988; Vickers, 1970) in which the accumulators were
driven by a signal detection process with an interval of uncertainty.
Their model predicts a continuum of performance as a function of
the width of the interval of uncertainty. At one end, all of the
evidence is accumulated; at the other end, no evidence is accumu-
lated and the decision is based on a single, highly diagnostic sample.
The model provided a good account of a wide range of RT
distributions from a fast-paced expanded-judgment task, in which
the RT distributions ranged from highly skewed to highly symmet-
rical and were explained by treating the width of the interval of
uncertainty as an individual differences parameter.

The urgency-gating model of Cisek and colleagues was formu-
lated in continuous time in terms of ordinary rather than stochastic
differential equations and its assumptions about noise were ex-
pressed in an informal way. It has also changed significantly over
successive articles (cf. Cisek et al. (2009), Thura et al. (2012), and
Carland et al. (2016)), which has led to confusion in the literature
about its core properties. Winkel et al. (2014) reported evidence
against the urgency-gating model from a task in which the stimulus
information changed during a trial (see below), which was disputed
by Carland et al. (2015) because Winkel’s implementation omitted
leakage, which the authors regarded as essential. Here we follow the
presentation of the model in the later articles (Carland et al., 2015,
2016), but we express it explicitly using stochastic differential
equations. We then obtain an explicit solution of the first-passage
time problem for the associated process through absorbing bound-
aries using integral-equation methods and compare the resulting
model to data. Our results are important because they show that
very general models with urgency, collapsing bounds, and time-
varying stimulus information can be represented within a common
mathematical framework that provides explicit expressions for
response accuracy and RT distributions, comparable to those that
exist for the standard diffusion model. The existence of such explicit
expressions has been critical to the standard model’s historical
success.

A central feature of the urgency-gating model that purportedly
distinguishes it from other decision models is that the encoded
stimulus information is low-pass filtered before being accumulated.
Mathematically, a low-pass filter removes high-frequency compo-
nents of its input and transmits only low-frequency components.
The shape of the filter determines the frequency spectrum of the
output. In the urgency-gating model, the low-pass filter is imple-
mented by an equation, which, when rigorously expressed, is
identical to Equation 3. That is, the model assumes that evidence
is accumulated by an OU diffusion process. While it is true that the
OU process can be viewed as performing a low-pass filtering
operation on its input, characterizing the process as a low-pass
filter rather than an OU process has the undesirable consequence of
obscuring its relationship with a model that has been well studied in
the psychological literature.

The properties of the evidence accumulation equation in the
urgency-gating model can best be understood by considering the
process Xt that solves Equation 3, which is one of the few stochastic
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differential equations that can be solved by direct methods (Karlin &
Taylor, 1981, pp. 345–346). The solution may be expressed (Smith,
2000, Equation 23), as

Xt =
ð
t

0
e−γðt−τÞμdτ + σ

ð
t

0
e−γðt−τÞdWτ, (5)

where we assume an initial condition of X0 = 0. In this form, Xt can
be seen to be the sum of a continuous function and a stochastic
process that are obtained, respectively, by putting a constant func-
tion, μ, and a white-noise process, dWt, through an exponential
linear system with rate constant γ. Such a system is a low-pass filter.
The white-noise process is the “formal derivative” of the Wiener
process in the sense that it integrates toWt. It can be thought of as a
Gaussian process whose covariance at all pairs of nonidentical time
points, τ and t, τ ≠ t is zero.
The key properties of the process Xt can be inferred from

Equation 5. First, it may be shown (Karlin & Taylor, 1981,
pp. 345–346; Smith, 2000) that the second integral on the right-
hand side is a martingale, that is, a bounded stochastic process
whose expected value is constant, which will equal the value of the
integral at its lower bound, which is zero.2

The expected value of Xt will therefore simply be the value of the
first integral term on the right,

E½Xt� =
μ
γ
ð1 − e−γtÞ: (6)

That is, the mean of the process grows exponentially with rate γ to
an asymptote of μ/γ. It can further be shown by means of the so-
called Itô isometry (Chung & Williams, 1983, p. 27), which also
depends on the martingale proper of the stochastic integral, that the
variance of Xt is

Var½Xt � =
σ2

2γ
ð1 − e−2γtÞ, (7)

which again grows exponentially to an asymptote of σ2/(2γ).
Because the process Xt is a linear combination of independent
Gaussian increments, it is also Gaussian. Together, Equations 6
and 7 show that, asymptotically, the process Xt has a stationary
Gaussian distribution with mean μ/γ and variance σ2/(2γ). This
contrasts with the Wiener process of Equation 2, which does not
possess a stationary distribution: Its mean and variance are
E[Xt] = μt and Var[Xt] = σ2t, respectively.
Cisek and colleagues further stipulate that the approach to

stationarity is rapid. Carland et al. (2015) suggested that the time
constant of the filter is around 250 ms; Carland et al. (2016)
suggested it is in the range of 100–200 ms. When time is measured
in seconds, a time constant of 250 ms corresponds to an OU decay
of γ = 4.0, and a time constant of 125 ms corresponds to a decay
of γ = 8.0.
An OU decision model with time constants in this range was

investigated by Ratcliff and Smith (2004) using three different
decision tasks: a perceptual task, a lexical decision task, and a
recognition memory task. They found that the predictions for an OU
model with γ = 4.0 could not be distinguished from the Wiener
diffusion model in data, but an OUmodel with γ = 8.0 predicted RT
distributions that were more skewed than are found in data and could
be rejected. The increase in skewness was because, in the γ = 8.0

case, most of the probability mass in the stationary distribution falls
inside the decision boundaries, making boundary crossings rela-
tively infrequent and slow. Such a process behaves, asymptotically,
like the discrete-time models discussed earlier in which evidence
does not accumulate. In contrast, in the γ = 4.0 case, much more of
the stationary distribution falls outside of the boundaries, making
boundary crossings relatively frequent and yielding similar predic-
tions to theWiener model.When decay was allowed to vary freely in
fits of the model to data, the estimated value approached γ = 0,
which is the Wiener process.

In the urgency-gating model, the OU process is multiplied by an
urgency function, U(t), leading to an evidence accumulation func-
tion, Yt, of the form

Yt = UðtÞXt: (8)

Some authors have proposed that urgency grows nonlinearly with
time (Ditterich, 2006a, 2006b), but in the model of Cisek and
colleagues the growth is linear. In early presentations of the model,
an urgency function of the form U(t) = mt was assumed, and this is
the form of the model that has most often been evaluated in the
literature (Evans, Trueblood, et al., 2020; Hawkins, Forstmann,
et al., 2015; Winkel et al., 2014), but in later presentations a
more general function of the form U(t) = b + mt is assumed. As
pointed out by Trueblood et al. (2021), this latter formulation
endows the model with greater flexibility. The single-parameter
function can be viewed as a “pure urgency”model, in the sense that
whenm = 0 there is no evidence accumulation. In contrast, the two-
parameter function allows increasing amounts of urgency to be
added to a basic OU diffusion model. When b = 1 and m = 0 the
model reduces to a pure OU model, with increasing amounts of
urgency as m increases.

To analyze the process of Equation 8, we ask what stochastic
differential equation is satisfied by the product of functions on the
right-hand side. In general, the differential of a product of stochastic
processes does not follow the normal rules of calculus because it
contains an additional term called the “quadratic covariation” of the
two processes (Protter, 1990), but when one of the components is a
deterministic function, as here, then the normal product rule applies.
We consider a general time-inhomogeneous form of the model in
which the OU drift and diffusion rates both depend on time

dXt = ½μðtÞ − γXt�dt + σðtÞdWt: (9)

We can then write

dYt = U′ðtÞXtdt + UðtÞdXt

= U′ðtÞXtdt + UðtÞf½μðtÞ − γXt�dt + σðtÞdWtg

=
�
UðtÞμðtÞ +

�
U′ðtÞ
UðtÞ − γ

�
Yt

�
dt + UðtÞσðtÞdWt , (10)

2 There are two different kinds of stochastic integral in the literature: the
Itô integral and the Stratonovich integral (Karlin & Taylor, 1981). The
Stratonovich integral is obtained as the limit of sums taken with respect to a
band-limited Gaussian process as the bandwidth is increased, so it is often
seen as more directly expressing the properties of systems studied by
physicists and engineers, which are necessarily band-limited. Unlike the
Itô integral, however, it is not a martingale, which is why the latter is
preferred for theoretical work. For simple processes like the OU process the
two forms of the stochastic integral coincide.
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after making the substitution Xt = Yt/U(t). That is, the urgency-
gating model satisfies a stochastic differential equation with drift
rate

Aðy,tÞ =
�
UðtÞμðtÞ +

�
U′ðtÞ
UðtÞ − γ

�
y

�
(11)

and diffusion rate

BðtÞ = U2ðtÞσ2ðtÞ: (12)

Evans, Trueblood, et al. (2020) and Trueblood et al. (2021)
derived similar expressions for the infinitesimal moments of the
pure urgency model and the model with linear urgency signal,
respectively. The derivation in Equations 9 through 12 is for a time-
inhomogeneous, urgency-gated, OU process with an arbitrary
urgency function, which subsumes the models analyzed in those
articles as special cases.

Integral-Equation Predictions for Time-Varying
Diffusion Processes

The integral-equation method provides an effective way to obtain
predicted RT distributions and choice probabilities for a wide
variety of diffusion models with time-varying drift and diffusion
rates and/or with time-varying boundaries. The method was first
proposed by Durbin (1971) and later developed to study the
properties of integrate-and-fire neurons by Ricciardi and colleagues
(Buonocore et al., 1987, 1990; Giorno et al., 1989). A pioneering
article by Heath (1992) used Durbin’s method to study a diffusion
process version ofMcClelland’s (1979) cascade model and, as noted
above, the method has been used extensively by Smith and collea-
gues to study processes in which the evidence entering the decision
process changes over time because of the action of perception,
memory, and attentional processes. The method has also been used
to derive predictions for diffusion models by Ditterich (2006a,
2006b), Evans, Hawkins, et al. (2020), and Jones and Dzhafarov
(2014). A detailed tutorial account, focusing on decision models and
incorporating refinements of the method proposed by Gutiérrez
Jáimez et al. (1995), may be found in Smith (2000).
The quantities of theoretical interest are the joint first-passage

time densities for the process through the boundaries a1(t) and a2(t),
which we allow to be time varying, although in the urgency-gating
model they are assumed to be fixed. The reason for the extra
generality is to allow us to identify conditions under which
collapsing-bounds and urgency-gating models are equivalent. We
denote these densities as gA[a1(t), t|z, 0], and gB[a2(t), t|z, 0], where
the subscripts “A” and “B” denote the responses associated with the
upper and lower boundaries, respectively. The conditional notation
expresses the idea that these functions are first-passage time densi-
ties for a process Xt starting at z at time zero, which makes a first
boundary crossing at either a1(t) or a2(t) at time t. The first-passage
time densities have the integral-equation representations

gA½a1ðtÞ, tjz, 0� = −2Ψ½a1ðtÞ, tjz, 0�
þ 2

ð
t

0
gA½a1ðτÞ, τjz, 0�Ψ ½a1ðtÞ, tja1ðτÞ, τ� dτ

+ 2
ð
t

0
gB½a2ðτÞ, τjz, 0�Ψ ½a1ðtÞ, tja2ðτÞ, τ� dτ ð13Þ

and

gB½a2ðtÞ, tjz, 0� = 2Ψ½a2ðtÞ, tjz, 0�
− 2

ð
t

0
gA½a1ðτÞτjz, 0�Ψ ½a2ðtÞ, tja1ðτÞ, τ� dτ

− 2
ð
t

0
gB½a2ðτÞ, τjz, 0�Ψ ½a2ðtÞ, tja2ðτÞ, τ� dτ. ð14Þ

The first-passage time densities in Equations 13 and 14 are defined
as the integrals of the products of their values at times τ < t and of a
kernel function Ψ[ai(t), t|aj(τ), τ], i, j, = 1, 2, which depends jointly
on the boundaries and on the transition density of a diffusion process
with drift and diffusion rates given by Equations 11 and 12.

For a large class of diffusion processes, specifically, those that can
be transformed to a standard (zero mean, unit variance) Wiener
process by a change of coordinates, Buonocore et al. (1987, 1990)
showed that the kernel function has a particular form, which depends
on the functions that transform the process from the old to the new
coordinates. When this transformation exists, Ricciardi (1976),
following Cherkasov (1957), showed the old space and time co-
ordinates, x and t, are related to the new space and time coordinates,
x* and t*, by a pair of functions of the form

x� = Ψ̄ðx,tÞ: (15)

t� = ΦðtÞ: (16)

The new space coordinate is a function jointly of the old space and
time coordinates whereas the new time coordinate is a function of the
old time coordinate only. (Note carefully the overbar notation, Ψ̄ð·Þ,
that distinguishes the function mapping the space coordinate from the
kernel function itself.) The conditions for the existence of the functions
Ψ̄ð·Þ and Φ(·) for a given diffusion process are given in Appendix A.

When the pair of functions Ψ̄ð·Þ and Φ(·) exist, the kernel of the
integral equations in Equations 13 and 14 can be written (Gutiérrez
Jáimez et al., 1995; Smith, 2000, Equation 56) as

Ψ½aiðtÞ, tjajðτÞ, τ� =
f ½aiðtÞ, tjajðτÞ, τ�

2

×
�
a′iðtÞ +

Ψ̄′

tðaiðtÞ, tÞ
Ψ̄′

xðaiðtÞ, tÞ
−
½Ψ̄ðaiðtÞ, tÞ − Ψ̄ðajðτÞ, τÞ�

ΦðtÞ −ΦðτÞ
Φ′ðtÞ

Ψ̄′

xðaiðtÞ, tÞ
�
.

(17)

In this equation, Ψ̄′

xðaiðtÞ, tÞ and Ψ̄′

tðaiðtÞ, tÞ are the partial deri-
vatives of Ψ̄ð·Þ with respect to state and time, respectively, and Φ′(t)
and ai

′(t) are the derivatives ofΦ(·) and the boundary function ai(t) with
respect to time. (We use subscripts to denote partial derivatives for
functions of two variables but omit the subscript for derivatives of
functions of a single variable.) The function f[ai(t), t|aj(τ), τ] is the
transition density of the process Xt, unconstrained by boundaries,
expressed in terms of the functions that transform the process from
the old to the new coordinates (Smith, 2000, Equation 51),

f ½aiðtÞ, tjajðτÞ, τ� =
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2π½ΦðtÞ −ΦðτÞ�p

× exp

�
−
½Ψ̄ðaiðtÞ, tÞ − Ψ̄ðajðτÞ, τÞ�2

2½ΦðtÞ −ΦðτÞ�
�

× Ψ̄′

xðaiðtÞ, tÞ: (18)

MODELING EVIDENCE ACCUMULATION DECISION PROCESSES 241

T
hi
s
do
cu
m
en
t
is
co
py
ri
gh
te
d
by

th
e
A
m
er
ic
an

P
sy
ch
ol
og
ic
al

A
ss
oc
ia
tio

n
or

on
e
of

its
al
lie
d
pu
bl
is
he
rs
.

T
hi
s
ar
tic
le

is
in
te
nd
ed

so
le
ly

fo
r
th
e
pe
rs
on
al

us
e
of

th
e
in
di
vi
du
al

us
er

an
d
is
no
t
to

be
di
ss
em

in
at
ed

br
oa
dl
y.



Equivalence of Urgency-Gating and
Collapsing-Boundaries Models

We are now ready for the main theoretical result of this article. In
Appendix A it is shown that the functions that transform the
diffusion process for the urgency-gating model, with drift and
diffusion rates given by Equations 11 and 12, to a standard Wiener
process have the form (expressed in terms of the variable y of
Equations 8–10) as

y� = Ψ̄ðy,tÞ = eγty

UðtÞ −
ð
t
μðτÞeγτdτ: (19)

t� = ΦðtÞ =
ð
t
e2γτσ2ðτÞdτ: (20)

In this notation, y* represents the transformed state coordinate
of the urgency-gated process, Yt, under the transformation of
Equations 15 and 16. The notation parallels the notation x* for
the transformed state coordinate of the process, Xt, without urgency,
in Equation 15.
Equations 19 and 20 provide a rigorous and succinct characteri-

zation of the conditions under which collapsing-boundaries and
urgency-gating models are equivalent. The transformed urgency-
gating process will cross a boundary when y* = ai in Equation 19,
and this expression may equivalently be interpreted as saying that a
process without urgency crosses a boundary when it reaches the
level ai/U(t). A collapsing-boundaries model with decision bound-
aries ai(t) = ai/U(t) will therefore be equivalent to an urgency-
gating model with fixed boundaries ai and urgency function U(t).
Trueblood et al. (2021) stated this result without proof for the
urgency function U(t) = b + mt, and, while it is a natural and
intuitive one and may strike some readers as self-evident, it is
important to recognize that it is not possible to reason about
stochastic processes as if they were deterministic functions: The
processes Xt and Yt have quite different probabilistic characters
because of their different diffusion rates. Mathematics and intuition
agree in this case becauseU(t) appears only in the expression for the
state coordinate but not the time coordinate of the transformed
process. If U(t) also appeared in the transformed time coordinate
then the models would no longer be equivalent. It is not self-evident
from the expressions for the infinitesimal moments of Yt in Equa-
tions 11 and 12, both of which depend on U(t), that the process
transforms under urgency in this way. We establish this relationship
formally via the transformation equations in Appendix A. The
equivalence of the models can also be shown by a direct probabi-
listic argument but, unlike the integral-equation approach, the direct
argument only establishes that the models are equivalent but it does
not give explicit expressions for the first-passage time density
functions.3

Mathematically, the equivalence of the models requires that they
predict the same first-passage time densities, gA[a1(t), t|z, 0], and
gB[a2(t), t|z, 0], in Equations 13 and 14. They will do so if and only
if they have the same kernel function, Equation 17. When the model
is viewed as a collapsing-boundaries model, the termU(t) appears in
the expression for the boundary, so the derivative a′i(t) is nonzero,
but it does not appear in the function Ψ̄ð·Þ that maps the state
coordinate of the process (Equation A19). Conversely, when the
model is interpreted as a fixed-boundaries urgency model, the
function a′(t) is zero andU(t) instead appears in Ψ̄ð·Þ(Equation A10).

The resulting kernel function is the same under either interpretation,
making the two models equivalent. The mathematical details may be
found in Appendix A. The equivalence of collapsing-boundaries and
urgency-gating models holds for any boundary/urgency function, not
just the function U(t) = b + mt in the extended urgency-gating
model. Although Equations 19 and 20 characterize the transformation
of the state and time variables for an OU diffusion process, they
include the Wiener process as a special case, obtained by set-
ting γ = 0.

Explicit Predictions for Collapsing-Boundaries and
Urgency-Gating Models

As well as identifying conditions under which collapsing-
boundaries and urgency-gating models are mathematically equiva-
lent to each another, the integral-equation method provides explicit
expressions for the first-passage time density functions for the
model(s) which can be used to fit them to data. In applications,
the solutions in Equations 13 and 14 are evaluated numerically by
defining the process on a discrete-time mesh, ti = iΔ, i = 1, 2, : : : ,
and approximating the integrals with discrete sums. The discretized
form of the equations can be found in several places, including
Smith (2000), Smith and Lilburn (2020), and Voskuilen et al.
(2016), and are reproduced in Appendix B here. Figure 1 shows
some example first-passage time density functions for the urgency-
gating model, for different values of the urgency parameters, b and
m, and compares them to the results of Monte Carlo simulations of
the model. The simulations were carried out using the Euler method
(Brown et al., 2006), which approximates the diffusion process with
a discrete-time, Gaussian random walk, using a time-step of 1 ms
with a correction for the excess over the boundary on the terminating
step (Smith, 1990)4. Each of the simulations in the figure was based
on 100,000 trials. The figure shows the integral-equation method is
an effective way to evaluate models of this kind.

The predicted RT distributions in Figure 1 highlight a feature of
the urgency-gating model that was implicit in the preceding

3 A direct probabilistic approach to establishing the equivalence of the
models would use the relationship Yt = U(t)Xt to show equality of the finite-
dimensional distributions of the processes on a discrete set of time points, {ti}.
Because the Wiener process is of unbounded variation on any finite interval
(Protter, 1990, p. 19), equality of finite-dimensional distributions does not
suffice to show the models predict the same first-passage time distributions,
which requires equality for all t ∈ ℝ+, the set of positive real numbers. The
kinds of sequential-limiting arguments needed to establish the equivalence of
two continuous-time stochastic processes from the equality of their finite-
dimensional distributions are often arduous (e.g., Smith, 2010), but, in the case
of the urgency-gating model, the argument is relatively straightforward
because the process Yt is a continuous, one-to-one transformation (i.e., a
homeomorphism) of a continuous process, Xt. We omit the details.

4 A diffusion process terminates as soon as a boundary is reached but a
random walk simulated with the Euler method terminates only once a
boundary has been exceeded. On average, the walk travels further before
terminating than does the corresponding diffusion process. The random-walk
approximation to a diffusion process is improved if the boundaries of the
diffusion are adjusted for the excess of the walk over the boundary on its
terminating step. For the simulations in Figure 1, the boundary separation
was increased by

ffiffiffi
h

p
σ, where h = 0.001 s was the time step used in the

simulation and σ = 0.1 was the infinitesimal standard deviation of the
diffusion process. Further discussion of corrections for two-boundary diffu-
sion processes may be found in Smith (1990). Discussion of an analogous
correction for the circular diffusion model may be found in Footnote 4 of
Smith (2016).
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discussion, namely, that its theoretical content involves a trade-off
between two processes: An OU evidence accumulation process,
which tends to lengthen RTs and increase the skewness of RT
distributions as decay increases, and an urgency function, which
tends to shorten RTs and decrease skewness as urgency increases.
The model has two parameters, γ and m, which allows these two
processes to be traded off against one another in a flexible way.
Thura (2016) responded to criticism by Hawkins, Wagenmakers, et
al. (2015) of an earlier form of the model by Cisek et al. (2009) by
arguing that the revised urgency-gating model and the standard
diffusionmodel were unlikely to be distinguishable in tasks in which
stimulus information does not change during a trial but can be
distinguished in tasks in which the information changes. Trueblood
et al. (2021) reported parameter recovery simulations that appear to
provide some support for Thura’s claim, although the recovered
parameters were highly variable for both constant and changing-
stimulus conditions. We also report data from such a task, using the
paradigm of Trueblood et al., although our treatment differs from
theirs in two ways. First, unlike them, we compared the urgency-
gating model to the standard diffusion model with across-trial
variability. Variability in drift rate in the latter model is important
because it leads to an ordering of correct and error RTs that is like the
one predicted by models with urgency or collapsing bounds.
Consequently, any unbiased comparison of models needs to include
variability in drift rate in the fixed-boundary models. Second, we
model the encoding of stimuli in time-varying tasks using a version

of the perceptual encoding model of Smith and Lilburn (2020). This
allowed us to distinguish the effects of perceptual and decisional
integration and to characterize how each of these processes is
affected by changes in stimulus information.

Method

Experimental Studies

We compared the standard diffusion model and the urgency-
gating model on the data from three different experimental para-
digms. Two of them were standard RT tasks, in which the stimulus
information did not change during the course of a trial and the third
was a task in which stimulus information could change. The two
standard tasks were a numerosity discrimination study by Ratcliff
(2008), in which participants made judgments about the number of
stimulus elements in a display, and an attentional cuing study by
Smith et al. (2004), in which participants discriminated the orienta-
tions of grating patches presented at cued or uncued locations. The
third was the paradigm of Trueblood et al. (2021) in which parti-
cipants made decisions about the dominant hues of flashing grids of
blue and orange squares. We report data and model fits from three
experiments using this paradigm. In their version of the task, trials
timed out after 2 s if participants did not respond and the experi-
mental program went on to the next trial. This procedure effectively
imposes a deadline on responding—albeit a comparatively long one.
Our first set of fits is from a reanalysis of their Experiment 1. The
second is from a replication of their Experiment 1 that was run
without the deadline. The third is from a version of the task that used
luminance rather than color stimuli, again run without a deadline.
One of our aims was to compare models in which perceptual and
decisional integration could vary with time, in which perceptual
integration was represented mathematically by a time-varying stim-
ulus information function, μ(t), in Equation 11. The comparison
between luminance and color is of theoretical interest when evalu-
ating these models because color is processed more slowly than
luminance (Ingling &Martinez, 1983), so wemight expect to see the
difference reflected in the estimated model parameters. All of the
experiments collected large samples of data from individual parti-
cipants at different levels of stimulus discriminability, permitting a
detailed analysis of the RT distributions.

The participants in Ratcliff’s (2008) study were asked to decide
whether the number of randomly placed dots in a 10 × 10 grid was
greater or less than 50. There were eight nominal discriminability
conditions, in which the numbers of dots were: 31–35, 36–40, 41–
45, 46–40, 41–45, 46–50, 61–65, and 66–70, crossed with speed
versus accuracy instructions. On half the trials participants were
instructed to respond rapidly and on the other half they were told to
respond accurately and they were given feedback to encourage
them to perform as instructed. Data were collected from 19 college-
aged participants and 19 older participants who performed both a
standard RT task, in which they responded as soon as they had
sufficient evidence, and a response-signal task, in which they
responded to a random external deadline. We restrict our analysis
to the younger participants and the standard RT task. After
eliminating fast and slow outliers, there were about 850 valid trials
in each cell of the design, yielding around 13,600 valid trials per
participant.

Figure 1
Simulated and Predicted Joint Distributions of Correct Responses
and Errors

Note. Left to right and top to bottom the distributions are for: (a) A pure
Wiener process; (b) A pure OU process; (c) A pure Wiener process with
urgency-gating, and (d) An OU process with urgency-gating. For all models,
μ = 0.12, a1 = 0.07, a2 = −0.07, z = 0, and σ = 0.1. For the Wiener
process models γ = 0 and for the OU Models γ = 8. For the Wiener plus
urgency model b = 1.0 and m = 1.5 and for the OU plus urgency model
b = 1.3 and m = 0.35.
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Participants in the study of Smith et al. (2004) performed an
attentional cuing task in which low contrast Gabor patches were
presented for 60 ms at either a cued location or at one of two uncued
locations. On each trial, participants decided whether the orientation
of the patch was vertical or horizontal. The cue consisted of four
corners of a square marking a stimulus location that were flashed for
60 ms, 140 prior to stimulus onset. In one condition of the experi-
ment, the stimuli were backwardly masked with high-contrast
checkerboards and in the other condition they were briefly flashed
and then extinguished. Data were collected from six participants,
who performed the task at five different levels of contrast, which
were chosen for each participant individually during practice to span
a range of performance from just above chance (≈55% correct) to
near-perfect (≈95%correct). Theywere encouraged to be as accurate as
possible but not to deliberate for too long and were given auditory
accuracy feedback on each trial. There were 400 valid trials for each
participant in each cell of the Cue × Mask × Discriminability design,
yielding 8000 trials per participant.
The third set of experiments used the flashing-grid task of

Trueblood et al. (2021). The task resembles the dynamic noise
tasks of Ratcliff and Smith (2010), but uses different stimulus
elements, as discussed subsequently. We report a reanalysis of
Trueblood et al.’s Experiment 1 and data from two new experiments
using versions of their task. In Trueblood’s task, participants made
judgments about the dominant hues of flashing 20 × 20 grids of
random blue and orange squares that changed every 50 ms (20 Hz).
We replicated this experiment (see below) and also carried out a
brightness discrimination of a version of it that used black and white
instead of colored squares, in which participants made judgments
about whether black or white squares predominated. In both the
color and the luminance versions of the task, on half the trials, the
stimulus information, represented by the proportion of squares of
the dominant attribute in each frame, stayed constant during the trial
and on the other half it changed. In addition, the discriminability of
the stimuli was manipulated by varying the proportion of squares
of the dominant attribute in each frame. Following the procedure of
their Experiment 1, on half of the constant information trials, 0.53 of
the squares were of the same color or lightness and on the other half
0.57 were of the same color or lightness. On the changing informa-
tion trials, on half the trials the stimulus information changed from
low to high discriminability (0.47–0.57) after 350 ms and on the
other half it changed from high to low (0.43–0.53) after 350 ms. On
changing information trials, responses consistent with the dominant
attribute after the switch were deemed to be correct and participants
were given average RT and accuracy feedback at the end of each
block of 72 trials.
In Trueblood et al.’s experiments, trials timed out after 2000 ms

and a nonresponse was recorded.We followed their procedure in our
replication except we removed the requirement that responses had to
be made within 2000 ms, for both psychological and statistical
reasons. Psychologically, limiting the time for which the display can
be viewed may incline participants to use collapsing boundaries or
urgency-based decision strategies or to guess as the deadline
approaches. Statistically, terminating trials at 2000 ms is a data-
censoring process that can bias estimation if its effects are not
modeled explicitly. To investigate the effects of censoring, we
carried out a parametric bootstrap cross-validation study
(Voskuilen et al., 2016; Wagenmakers et al., 2004), in which we
cross-fit the standard diffusion model and the urgency-gating model

to simulated data from the other model. Using parameters derived
from fits of the two models to Trueblood et al.’s published data, we
found that there was a bias toward the urgency-gating model that
was increased by censoring the data at 2000 ms, so we ran our
replication without a deadline to minimize the bias.

Initially, we reanalyzed the data from Trueblood et al.’s (2021)
Experiment 1, which are publicly available from the Open Science
Foundation, but features of the data made it difficult to undertake the
detailed analysis of RT distributions we wished. One feature was an
unusually high proportion of fast guesses; the other was that many
participants showed poor across-trial stability, manifested as
extended runs of fast or slow responses. Of the 34 participants in
Trueblood et al.’s Experiment 1, the average fast-guess rate for 22 of
them was 25.5%, which we defined as responses with RTs of less
than 350 ms and chance-level (0.491) accuracy. Figures C1 and C2
in Appendix C show trial-by-trial plots of the RTs on the experi-
mental trials for the 34 participants. The horizontal dashed line at
350 ms shows the fast-guess threshold and RTs on timed-out trials
are plotted as 2000 ms. This representation provides a graphical way
to identify those participants whose performance was dominated by
fast guesses and those whose performance was unstable over time.
Trueblood et al. reported data from four experiments using this task,
all of which showed similar features to those reproduced here. The
overall fast-guess rates for their four experiments were 16.8%, 5.6%,
12.3%, and 19.7%, respectively. In our reanalysis of their data we
restricted the analysis to the 12 participants from their Experiment 1
who did not show high fast-guessing rates and who showed stable
performance across trials.

In our replication of the task we included a time-out penalty for
very fast responses, which was effective in controlling fast guesses.
We collected data from 19 participants, each of whom provided
around 350 trials in each of the four experimental conditions after
fast guesses were excluded. Of those 19 participants, 3 of them
showed similar across-trial instability to that observed in the data of
Trueblood et al., so we restricted our analysis to the 16 remaining
participants. In our luminance version of the task we collected data
from 16 participants, each of whom provided a similar number of
trials after fast guesses were excluded.

Modeling Drift Rates in the Flashing-Grid Task

The flashing-grid task raises theoretical questions not raised by
either the numerosity or spatial cuing experiments about how to
model the evidence entering the decision process, represented in
the model by the drift and diffusion rates. In the standard diffusion
model, the drift and diffusion rates are modeled as random step
functions: After a random time, which occupies some part of the
nondecision time, Ter, the drift and diffusion rates change from zero
to nonzero values and remain constant for the duration of the trial.
This abrupt-onset assumption suffices to model the data from many
decision tasks, including our numerosity and spatial cuing tasks
(Ratcliff, 2008; Smith et al., 2004), especially if the nondecision
time is allowed to vary randomly across trials (Ratcliff, 2002)
because it can accommodate nonabruptness in the stimulus onset
providing the time scale is not too long. The same abrupt-onset
assumption has been made in theoretical and empirical treatments of
changing-information paradigms (Carland et al., 2015; Thura,
2016; Zhang & Bogacz, 2010) and was made by Trueblood et al.
(2021) in modeling the flashing-grid task, although they did not
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include nondecision variability. However, it is not self-evident that
the abrupt-onset assumption is an appropriate one for tasks of
this kind.
Stimulus information in the flashing-grid task is carried by the

proportion of blue and orange squares in grids presented at a rate of
20 Hz. The decision tasks this task most resembles are dynamic
noise tasks, in which stimulus information is perturbed by dynamic,
external noise (Ratcliff & Smith, 2010; Smith et al., 2012). Perfor-
mance in these tasks is often not well described by the diffusion
model in its standard form (Ratcliff & Smith, 2010). Instead, it is
better characterized by a model in which the drift and diffusion rates
grow smoothly to an asymptote over several hundred milliseconds
(Smith et al., 2012). The modeling results agree with the perceptual
experience of doing the task, in which the stimuli (letters, bars,
gratings, etc.) appear to emerge progressively from the noise over a
period of around half a second or so.
The most widely studied dynamic noise task is the random dot

motion (RDM) task, in which participants identify the direction of
coherent motion in clouds of randomly moving dots. Psychophysi-
cal studies using classical temporal-integration paradigms suggest
that these kinds of tasks may have much longer perceptual integra-
tion times than simple stimuli like spots of light or gratings.
Watamaniuk and Sekuler (1992) obtained threshold-versus-duration
functions for the RDM task, in which they measured the level of
motion coherence needed to achieve a criterion level of accuracy for
different exposure durations, and obtained an integration time of
400–450 ms. The integration time was the same for high and low
coherence stimuli, suggesting it reflected perceptual rather than
decisional integration. Smith and Lilburn (2020) fit the choice
probabilities and RT distributions from an RDM task reported by
Dutilh et al. (2019) with a time-varying diffusion model, in which
drift and diffusion rates grow smoothly to an asymptote, which they
estimated to be at around 400 ms after stimulus onset, in agreement
with the temporal integration times estimated by Watamaniuk and
Sekuler. They found that a gradual-onset model provided a better
overall fit than an abrupt-onset one and showed fewer violations of
assumptions about how model parameters should vary with experi-
mental conditions.
It is not the case, however, that all dynamic noise tasks have long

perceptual integration times. Ratcliff and Smith (2010) reported data
from a brightness discrimination task in which participants made
judgments about the proportions of black and white pixels in 60 Hz
dynamic noise arrays. The data from this task were well described by
the standard diffusion model with abrupt-onset drift and diffusion
rates. Ratcliff, Voskuilen, and Teodorescu (2018) studied a version
of the task that used larger stimulus elements, which required
comparison of the brightness of pairs of 15 × 15 grids of four-
pixel black and white squares presented at 60 Hz, which was also
well described by the standard diffusion model. Although the
brightness discrimination tasks resemble the flashing-grid task in
that the discriminative information in both tasks is carried by global
rather than local features of the display, the spatial, temporal, and
chromatic properties of the stimuli in the tasks make them very
different perceptually. Specifically, they differ in the size of the
individual stimulus elements, the presentation rate (60 Hz vs.
20 Hz), and in whether the stimulus information is encoded per-
ceptually by luminance or color channels. The latter distinction is
relevant because the color system is slower than the luminance
system. (The stimuli in the flashing-grid task are not constrained to

be isoluminant and show pronounced 20 Hz luminance flicker as a
result, but it is unlikely that the presence of correlated color and
luminance changes contributes to the way in which the task is
performed because color and luminance are processed at different
rates.) It is not clear from viewing the stimuli whether the informa-
tion in them is integrated perceptually over successive frames or not,
so it is hard to determine a priori what the time scale of drift rate
computations should be. If there is no perceptual, as distinct from
decisional, integration across successive frames, then the abrupt-
onset assumption should suffice, but if there is perceptual integration
across frames, then a gradual-onset model, like the one of Smith
et al. (2012) and Smith and Lilburn (2020) may be more
appropriate.

One of our aims was to compare the extended urgency-gating
model of Trueblood et al. (2021) to a version of the diffusion model
with time-varying drift and diffusion rates. To this end, we used a
variant of the model of Smith and Lilburn (2020), which represents
the evidence entering the decision process as the output of a linear
filter, composed of a cascade of exponential stages (Watson, 1986).
The model is loosely based on the sustained-plus-transient channel
diffusion model of Smith (1995) and the integrated system model of
Smith and Ratcliff (2009), which were both motivated by the
classical literature on visual temporal sensitivity (de Lange, 1952,
1954, 1958; Kelly, 1961, 1969; Roufs, 1972, 1974; Sperling &
Sondhi, 1968; Watson & Nachmias, 1977). Linear filter models of
perceptual processing are commonly used in the temporal sensitivity
literature to model temporal integration, pulse-pair summation,
flicker-fusion perception, and related perceptual phenomena. Like
the filter in the model of Cisek et al., the exponential filter cascade in
Smith and Lilburn’s model endows the system with low-pass filter
characteristics whose effect is to remove sharp transients from the
input. Unlike Cisek’s model, however, the low-pass filter is associ-
ated with perceptual rather than decision processes: It affects the
way in which stimuli are perceived rather than the way in which
perceptual information is integrated. The main effect of identifying
the low-pass filtering operation with perceptual rather than deci-
sional processes is that, unlike Cisek’s model, the evidence in the
decision process does not grow to a stationary distribution. In his
model, the low-pass filtering operation is identified with the decay
term in an OU process; in the model, we consider here it is instead
identified with time-varying drift and diffusion rates in a Wiener
process.

Mathematically, we assumed that the drift and diffusion rates of
a stimulus whose amplitude changes at time t0 from v1 to v2 (where
the signs of the amplitudes encode the stimulus identity before and
after the change) can be represented by a function of the form

ΘðtÞ = ν1θðtÞ + ðν2 − ν1Þθðt − t0Þ, (21)

where

θðtÞ = 1
ΓðnÞ

ð
βt

0
e−ssn−1ds; t ≥ 0. (22)

is the incomplete gamma function (Abramowitz & Stegun, 1965,
p. 260, Equation 6.5.1). Equation 21 describes the output of a
linear system with impulse response function dθ/dt to a step-
change stimulus whose identity changes from v1 to v2 at time
t0. In these equations, β specifies the encoding rate and has units of
encoding strength per unit time. An example of the encoding
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function is shown in Figure 2. Larger values of β lead to sharper
encoding functions that more closely resemble the step-change
profile of the stimulus.
When implementing a time-inhomogeneous diffusion model

based on Equation 21, there are two possible scaling relationships
for the infinitesimal moments of the process. Assuming a process in
which A(x, t) = μ(t) and B(x, t) = σ2(t) in Equation 1 (i.e., a time-
inhomogeneous Wiener process), both scalings assume that drift
rate grows in proportion to the output of the perceptual encoding
process, μ(t) ∝ Θ(t), but they differ in their assumptions about the
diffusion rate. One scaling assumes that the diffusion rate grows in
proportion to the underlying temporal encoding function σ2(t) ∝
θ(t); the other assumes that the infinitesimal standard deviation
grows in proportion to it, σ(t) ∝ θ(t). In either case we assume that,
asymptotically, σ(t) → 0.1, in order to obtain an identifiable model
whose scaling is compatible with the standard diffusion model.
Smith and Lilburn (2020) followed Smith and Ratcliff (2009) and

Smith et al. (2012) and assumed the first form, which they aug-
mented with an additional source of constant-diffusion noise to
capture the tendency to make fast errors, while Ditterich (2006a,
2006b) assumed the second form. In the second form, the variance of
the evidence entering the decision process grows more rapidly than
does its mean (as, indeed, is also the case for the OU process), which
again leads to a tendency to make fast errors. This kind of scaling
relationship is plausible if the diffusion process reflects the mass-
action properties of underlying neural processes. An example is the
Poisson shot-noise model of Smith (2010), in which the drift rate
depends on the difference between pairs of excitatory and inhibitory
shot-noise processes and the diffusion rate depends on their sum.
The diffusion rate grows more rapidly than the drift rate as a result.
We assumed the second scaling relation on pragmatic grounds, to
capture any tendency to make fast errors without the need for an

additional constant-diffusion parameter like the one in Smith and
Lilburn’s model. In our implementation, we assumed that

μðtÞ = ΘðtÞ: (23)

σðtÞ = σasyθðtÞ, (24)

with σasy = 0.1, where the parameters v1 and v2 ofΘ(t) vary with the
stimulus condition. Equations 23 and 24 state that the diffusion rate
grows smoothly to a constant asymptote while the drift rate grows to
an asymptote that changes if the identity of the stimulus changes.

Results

In the standard diffusion model, within-trial noise in evidence
accumulation is augmented with three sources of across-trial noise
or variability: in drift rate, in starting point, and in nondecision time
(Ratcliff & McKoon, 2008). Drift rate is normally distributed with
mean v and standard deviation η; the starting point is uniformly
distributed with range sz, and the nondecision time, Ter, is uniformly
distributed with range st. Variability in drift rate and starting point
allows the model to predict the ordering of RTs for correct responses
and errors, while variability in nondecision time allows it to better
capture the shapes of RT distributions when accuracy is high and
responses are fast. In general, RTs for errors tend to be longer than
RTs for correct responses when stimulus discriminability is low and
accuracy is stressed and shorter when discriminability is high and
speed is stressed (Luce, 1986). Variability in drift rate and starting
point allows the model to predict slow errors and fast errors,
respectively.

The inclusion of across-trial variability in the diffusion model
has sometimes been criticized, especially in neuroscience, where it
has been argued that mechanisms like collapsing decision bound-
aries provide an alternative way to predict slow errors, although
none of the proposed alternatives has been shown to predict the full
pattern of RT orderings that are found experimentally (Ratcliff &
McKoon, 2008; Ratcliff & Smith, 2004). In our model evaluation,
we compared three versions of the urgency-gating model, the pure
urgency model with U(t) = mt (Thura et al., 2012), the extended
urgency-gating model with U(t) = b + mt (Carland et al., 2015,
2016), and an extended model in which the urgency rate, m, was
allowed to vary with speed versus accuracy instructions. This last
model tested a natural prediction from the theory that urgency
should increase under speed instructions. For the flashing-grid
task, we also considered a time-varying diffusion model, with drift
and diffusion rates as described in the preceding section. The
parameters of the models and their interpretation are listed in
Table 1. We included drift-rate variability in the diffusion model
for all three tasks and starting-point variability for the numerosity
task, in which there was a speed–accuracy manipulation. We
included variability in nondecision time in both diffusion and
urgency-gating models. Nondecision time variability is not a
feature of published urgency-gating models but we included it
in our model comparisons in order to make them as fair as possible.
Trueblood et al. (2021), did not include across-trial variability in
their models.

Figure 2
Perceptual Encoding Function, Θ(t)

Note. The drift rate is proportional to the output of a linear filter composed
of a cascade of exponential stages. The dashed line shows a stimulus
waveform that changes 0 from 0.5 to −0.75 at time t = 0.35 s and the
continuous line shows the output of a three-stage exponential filter cascade
with stage rate constant β = 35 u·s−1, where “u” is the unit of encoding
strength that maps stimulus discriminability (proportion of blue vs. orange
squares) to drift rate.
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Fitting Method

There are differences in opinion among modelers about how best
to fit models to RT data, particularly in relation to classical versus
Bayesian estimation and hierarchical versus nonhierarchical fitting
methods. (See the diversity of methods used in the blinded validity
study of Dutilh et al., 2019 for example.) We chose to use methods
that were similar to those used in the original studies of Ratcliff
(2008) and Smith et al. (2004). We minimized the likelihood-ratio
chi-square statistic (G2) for the response proportions in the bins
formed by the .1, .3, .5, .7, and .9 RT quantiles for the distributions
of correct responses and errors. When bins are formed in this way,
there are a total of 12 bins (11 degrees of freedom) in each pair of
joint distributions of correct responses and errors. The resulting G2

statistic can be written as

G2 = 2
XM
i=1

ni
X12
j=1

pij log

�
pij
πij

�
:

In this equation, pij and πij are, respectively, the observed and
predicted proportions in the bins bounded by the quantiles and “log”
is the natural logarithm. The inner summation over j extends over the
12 bins formed by each pair of joint distributions of correct responses
and errors. The outer summation over i extends over the M experi-
mental conditions. For the numerosity study, M = 16 (2 Instruction
conditions × 8 Dot proportions). For the cuing study, M = 20
(Masked/Unmasked × Cued/Uncued × 5 Contrasts). The quantity
ni is the number of experimental trials in each condition. For the
numerosity study, ni ≈ 850 and for the cuing study, ni = 400. We fit
the models to the individual participants’ data by minimizing G2

using the Nelder–Mead simplex algorithm (Nelder &Mead, 1965) as
implemented in Matlab (fminsearch). The fit statistics we report are
the minimum G2 values obtained from six runs of simplex using
randomly perturbed estimates from the preceding run as the starting
point for the next run. Ratcliff and Childers (2015) showed that
minimum chi-square fits to individual participant data yielded good
parameter recovery in large samples like those we fit here.
To compare models with different numbers of parameters, we

used standard model-selection methods based on the Akaike

information criterion (AIC; Akaike, 1974) and the Bayesian infor-
mation criterion (BIC; Schwarz, 1978). The first of these statistics is
derived from classical principles whereas the second is Bayesian,
but we use them in the spirit in which they are typically used in the
modeling literature, as penalized likelihood statistics that impose
more or less severe penalties on the number of free parameters in a
model. As is well known, the AIC tends to gravitate toward more
complex models with increasing sample sizes more quickly than
does the BIC (Kass & Raftery, 1995), although for the large samples
we used here they were in close agreement. For binned data, the AIC
and BIC may be written as

AIC = G2 + 2p

BIC = G2 + p logN,

where p is the number of free parameters in the model and N =P
i ni is the total number of observations on which the fit statistic

was based.

Numerosity Study (Ratcliff, 2008)

Table 2 lists the four models we compared using the data from the
Ratcliff (2008) numerosity study, together with their identifying
parameters. These are the parameters that distinguished a model
from the other models under comparison. All of the models had a
common set of mean drift rates, decision boundaries, starting points,
and nondecision times, as shown at the bottom of the table. We
treated the diffusion model, with across-trial in variability in drift
rate, η, starting point, sz, and nondecision time, st, as the reference
model, and compared three versions of the urgency-gating model to
it. All of the urgency-gating models had OU decay, γ, and, to make
them comparable to the diffusion model in their assumptions about
nondecision processes, we included nondecision time variability, st,
in all models. (Although all models had nondecision time variabil-
ity, we include it in the notation to better reflect the model seman-
tics.) In the model in which the urgency rate was permitted to vary
with instructions, the rate parameters in the speed and accuracy
conditions are denoted ms and ma.

With both forms of urgency function, the number of identifiable
parameters in the model is one fewer than the number of parameters
in the function U(t). It is common practice to treat the infinitesimal
standard deviation as a scaling parameter in diffusion models and to
fix it to an arbitrary value because the parameters of the model are
identified only to the level of a ratio. We set σ = 0.1, which is the
most common scaling convention in the literature. For the urgency
models, the infinitesimal standard deviation is either

ffiffiffiffiffiffiffiffiffi
BðtÞp

= mtσ
or

ffiffiffiffiffiffiffiffiffi
BðtÞp

= ðb + mtÞσ (Equation 12) and in either case one of the

Table 1
Parameters of the Decision Models

Parameter Symbol

Boundary separation speed as
Boundary separation accuracy aa
Starting-point speed zs
Starting-point accuracy za
Mean drift rate vi
Drift criterion ca

Nondecision time Ter
Drift-rate variability η
Starting-point variability sz
Nondecision time variability st
Infinitesimal standard deviation σ
OU decay rate γ
Urgency offset b
Urgency growth rate m
Drift-rate growth βa

Note. a = Flashing-grid task only.

Table 2
Models for the Ratcliff (2008) Numerosity Study

Model p Properties

1 12 Standard diffusion, DIFF(η, sz, st)
2 11 Pure urgency-gating, UG(γ, m, st); m = 1
3 12 Extended urgency-gating, UG(γ, b, m, st); b = 1
4 13 Instruction-dependent urgency, UG(γ, b, ms, ma, st); b = 1

Common parameters
as, aa, zs, za, ν1, ν2, ν3, ν4, Ter; σ = 0.1

Note. p = number of free parameters.
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parameters may be eliminated by redefining (rescaling) σ (cf. Evans,
Trueblood, et al., 2020). For the pure urgency model, we set m = 1
and for the extended urgency model we set b = 1.
Otherwise, with one exception, we parameterized the models in

the same way as in Ratcliff’s (2008) study. There were separate
boundary separations and starting-point parameters for speed and
accuracy conditions, as, aa, zs, za. There was a single parameter for
each of drift-rate variability, η, starting-point variability, sz, nonde-
cision time, Ter, and nondecision time variability, st. Ratcliff allowed
mean drift rate to vary freely for the eight dot-numerosity conditions
and fit the data from the standard RT task and the response-signal
task simultaneously using the same mean drift rates. We found that
the standard RT task could be well fit with a symmetrical drift-rate
model, νi = − ν9−i, in which the drift rates for conditions with less
than 50 dots were mirror images of those for conditions with more
than 50 dots. This reduced the number of mean drift rates from 8 to
4. The estimates in Ratcliff’s Table 4 when mean drift rates were
free to vary across conditions show a similar symmetry.
Table 3 shows the fit statistics and Table 4 shows the parameter

estimates for the four models, averaged across the fits to the
individual participants. The columns #AIC and #BIC in Table 3
are the numbers of participants for whom the given row model was
preferred to the diffusion model according to either the AIC or BIC.
The fits to the diffusion model are similar to those reported by
Ratcliff (2008). (Ratcliff used Pearson χ2, which, like G2, is
distributed asymptotically as a chi-square random variable under
independent, multinomial sampling assumptions. The averaged
individual participant fits in his Table 2 are combined χ2 fits for
the RT task and the response-signal task.) A quantile-probability
plot of the fit of the diffusion model is shown in Figure 3. These
plots show the quantiles of the RT distributions for correct and
errors, plotted against the choice probabilities, for a range of
stimulus discriminabilities. Readers who are unfamiliar with this
way of representing model fits are referred to Ratcliff and Smith
(2004) or Ratcliff and McKoon (2008), among other sources. The
data in Figure 3 are quantile-averaged group data and the fitted
values are quantile-averaged individual fits. Although there were
some minor procedural differences between our treatment of the
data and Ratcliff’s, the two sets of fits are in close agreement.
The second model in Table 3 is the pure urgency-gating model,

UG(γ, m, st) with m = 1. The bottom panels of Figure 3 show a
quantile-probability plot of the fit of this model. Qualitatively and
quantitatively, the pure urgency-gating model fares badly. The
average G2 is more than double that for the diffusion model and
the fitted model fails to capture the shape of the quantile-probability
functions. In general, a quantile-probability function that is canted
upwards toward the left indicates a slow-error pattern, while one that
is canted downwards toward the left indicates a fast-error pattern.

Sometimes both can be present in the same data set (see Ratcliff &
Smith, 2004, Figure 7, for an example). The quantile-probability
plot for a data set in which correct and error RTs are the same will be
symmetrical across its vertical midline. The plot for the urgency-
gating model shows that it predicts a strong slow-error pattern, but
the quantile-probability functions it predicts are insufficiently
bowed to match the data, and, unlike the diffusion model, it has
no mechanism to predict the fast errors in the speed-instructions
condition (see below). The failure of the model confirms the
conclusions of Winkel et al. (2014), who used a task in which
stimulus information changed over time. As noted above, Winkel’s
analysis was criticized by Carland et al. (2015) for not including
low-pass filtering (OU decay), but we came to the same conclusions
as Winkel et al. with OU decay in the model. Indeed, the estimate in
Table 3, γ = 0.012, shows that when decay was allowed to vary
freely, on average it approached zero, which is a pure Wiener
process, in agreement with the earlier comparison of the OU and
Wiener models by Ratcliff and Smith (2004).

In comparison, the extended urgency-gating model UG(γ, b, m, st)
with b = 1 fared much better. Although it was preferred to the
diffusion model for only five of the 19 participants by either the
AIC or the BIC, quantitatively and qualitatively its fit was fairly similar
to the diffusion model. Again, however, the estimate of γ = 0.780 in
Table 4 suggests that OU decay made a negligible contribution to the
fit. We have not shown a full quantile-probability plot of the fitted
model because the differences between it and the diffusion model are
not easy to discern in the plot. Instead, in Figure 4a we have shown the
empirical and predicted 0.1 RT quantiles for the diffusion model and
the urgency-gating models. The 0.1 RT quantile characterizes the
fastest responses (the leading edge) in the distribution, and is of
theoretical interest when speed versus accuracy is manipulated
because the fast-error pattern under speed stress is often evident in
the leading edge. The figure shows that the 0.1 quantile function under
accuracy instructions is bowed, but relatively symmetrical, whereas
the 0.1 quantile function under speed instructions is bowed downward
to the left, which is the fast-error pattern.

The figure makes clear that the three models make qualitatively
different predictions for the 0.1 quantile function. The diffusion
model, which has a mechanism for predicting both fast and slow
errors fares the best: It predicts both the symmetrical, bowed function
under accuracy instructions and the downward bow on the left under
speed instructions. The pure urgency-gating model fares the worst: It
predicts a monotonic 0.1 quantile function that does not correspond
to the pattern in the data. The performance of the extended urgency-
gating model was better. Under accuracy conditions, it predicts a
symmetrical function that is almost indistinguishable from the one
predicted by the diffusion model, but under speed instructions it also
predicts a symmetrical function that again does not correspond to the

Table 3
Fit Statistics for the Ratcliff (2008) Numerosity Study

Model Properties G2 df AIC BIC #AIC #BIC

1 DIFF(η, sz, st) 820.5 164 844.5 934.7 — —

2 UG(γ, m, st) 1,972.0 165 1,994.0 2,076.7 1 1
3 UG(γ, b, m, st) 828.6 164 852.6 942.6 5 5
4 UG(γ, b, ms, ma, st) 766.8 163 792.8 890.5 6 6

Note. #AIC and #BIC are numbers favoring the indicated model to Model 1 out of 19.
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pattern in the data. This error in prediction is unsurprising because,
unlike the diffusion model, neither urgency-gating model has a
mechanism for predicting fast errors.
The final model in the table is an extended urgency-gating model,

UG(γ, b, ms, ma, st), in which the urgency rate varies with experi-
mental instructions. The average G2, AIC, and BIC for this model
are the smallest of the four models, although it was preferred to the
diffusion model for only six of the 19 participants. (The data for two
of the participants were poorly fit by both models and for them the
G2 for the diffusion model was around 65% worse than for the
urgency-gating model, inflating the model average.) Like the other
versions of the urgency-gating model, the averaged OU decay,
γ = 0.861, suggests that decay contributed to the fits in only a
minor way. Although both versions of the extended urgency-gating
model performed well numerically, the estimated parameters of the
model suggest that much of its success derives from the trading-off
of parameters discussed earlier. Evans, Trueblood, et al. (2020)
investigated the identifiability of parameters in the urgency-gating
model in a simulation study and found its parameters could be
recovered accurately, but they considered only the simpler pure
urgency model. The extended form of the model is much more
flexible and, we suspect, for the reasons given below, its parameters
are less well identified.
Figure 4b shows histograms of the estimates of γ and m for the

individual participants for the extended urgency-gating model,
UG(γ, b, m, st), Although the most common estimate of γ was
close to zero, individual estimates varied on a range from zero to
almost 5.0, which, according to the model, implies that the time
constant in the low-pass filter for individual participants varied from
200 ms to infinity (no decay). (All of the time parameters in our
models are expressed in seconds, so γ = 5.0 implies that the average
evidence strength is equal to 63% of the mean of the stationary
distribution by 0.2 s.) It is hard to know how to interpret this
variability if low-pass filtering is viewed as a hard-wired property of
the cognitive system. In addition, the distribution of m was strongly
bimodal across participants. We imposed a penalized upper bound
of 2.0 onm to improve convergence and, as can be seen in the figure,
the estimates tended to cluster toward either the upper or lower
bounds. The scatterplot shows that virtually all participants had
either near-zero urgency and nonzero decay or vice versa. These
estimates suggest that urgency and decay are being traded off
significantly in the fits, as would be expected if the parameters
are not well identified and the model were overfitting the data.

Overfitting is a likely consequence of the greater flexibility of the
urgency-gating model. The diffusion model predicts RT distribu-
tions that resemble those found in the majority of experimental tasks
and predicts only those distributions, but the urgency-gating model
predicts distributions that are both more skewed and less skewed
than these, as Figure 1 shows.

A second reason for thinking that the model is overfitting comes
from the estimates of the rate parameters in the model UG(γ, b, ms,
ma, st) under speed and accuracy instructions, which were
ms = 0.182 and ma = 0.923, respectively. At a group level, the
difference in these estimates is significant by a (classical) t-test:
t(18) = −3.31, p = .004, but the ordering is the opposite of what
would be expected from the model semantics, which would predict
increased urgency under speed-stress conditions. These differences
reinforce the impression that some part of the fit of the urgency-
gating models is due to parameter tradeoffs rather than to them
capturing a unique structure in the data.

Spatial Cuing Study (Smith et al., 2004)

Although the Smith et al. (2004) task did not include a speed
versus accuracy manipulation, the effects of decay and urgency
should nevertheless be identifiable in the data from this task if the
urgency-gating model is true. A core claim of the urgency model is
that the evidence entering the decision process quickly becomes
statistically stationary, implying it is subject to large OU decay. The
decay should therefore be a hard-wired property of the cognitive
system and be independent of speed versus accuracy instructions.
Urgency should similarly be present under both forms of instruction
because large decay without urgency leads to RT distributions that
do not resemble those found in data, as Ratcliff and Smith (2004)
showed and Figure 1 makes clear.

Because there was no speed versus accuracy manipulation in the
Smith et al. (2004) study, the models are simpler than those for the
Ratcliff et al. (2008) study because the starting-point variability
parameter could be omitted without worsening the fit. Also, the
speed and accuracy of decisions to vertical and horizontal grating
stimuli were sufficiently similar that they could be pooled to obtain a
single distribution of correct responses and a single distribution of
errors for each stimulus condition. This symmetry implies a sym-
metry constraint on the starting point, z = a/2. Smith et al. compared
an unconstrained model, with a separate submodel for each cell of
the Cue × Mask design, to an attention orienting model, which

Table 4
Parameters for the Ratcliff (2008) Numerosity Study

Model Properties as aa v1 v2 v3 v4 zs za

1 DIFF(η, sz, st) 0.076 0.132 0.516 0.423 0.287 0.097 0.040 0.068
2 UG(γ, m, st) 0.026 0.049 0.267 0.224 0.155 0.053 0.014 0.025
3 UG(γ, b, m, st) 0.076 0.134 0.370 0.303 0.202 0.066 0.040 0.068
4 UG(γ, b, ms, ma, st) 0.073 0.135 0.372 0.304 0.203 0.067 0.038 0.069

γ ms ma η sz Ter st

1 DIFF(η, sz, st) — — — 0.137 0.046 0.340 0.133
2 UG(γ, m, st) 0.012 — — — — 0.188 0.096
3 UG(γ, b, m, st) 0.780 0.794 — — — 0.318 0.124
4 UG(γ, b, ms, ma, st) 0.861 0.182 0.923 — — 0.319 0.122

Note. ms = m for urgency models with a single rate parameter.
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prescribed a relationship between the nondecision times, Ter, and the
mean drift rates, vi, across conditions. The theoretical substance of
the orienting model was that cuing shortens nondecision times
because it allows attention to be focused on the target location prior

to its presentation. For masked stimuli, cuing also leads to higher drift
rates because it allowsmore stimulus information to be extracted from
the display before the perceptual representation is suppressed by the
mask. Cuing has no effect on the drift rates for unmasked stimuli
because of their greater visual persistence. As a result, the quality of
information that can be extracted from the display is unaffected by
whether or not attention is focused on the target location prior to
stimulus onset. Because we are interested in the task as a decision task
rather than an attention task, we refit the unconstrained model, with a
separate submodel for each cell of the Cue × Mask design for each of
the six participants. We fit the same models as for the Ratcliff (2008)
study other than the model with instruction-dependent urgency, as
summarized in Table 5. The fit statistics we report are the sums of
the G2, AIC, and BIC values and the degrees of freedom for the
submodels for the four cells of the design.

One feature of the results of the Smith et al. (2004) study should
be highlighted here. They found, as Ratcliff and Rouder (2000)
found in an earlier study, that the RT distributions and choice
probabilities were well fit by a diffusion model in which the drift
and diffusion rates remained constant throughout a trial, even
though the stimuli were physically present for only 60 ms. Like
Ratcliff and Rouder, nothing in their data suggested that the evi-
dence entering the decision process decays after stimulus offset, as a
simple OU model would predict. Smith et al. interpreted their
findings as showing that the decision process is driven by stable
stimulus representations in visual short-term memory (VSTM) that
preserve stimulus information without degradation for the second or
so needed to make a decision about it. Smith and Ratcliff (2009)
subsequently incorporated a linear-system model of VSTM encod-
ing into their integrated system model of decision-making to
account for the time course of VSTM formation. The model assumes
that people form a time-dependent perceptual representation of the
stimulus, as described by Equation 21, which drives the formation
of the VSTM trace while the stimulus is physically present and
which stops changing once the stimulus is extinguished. As well as
casting doubt on the need for decay, their findings highlight the
importance of theorizing about perceptual and VSTM processes if
we wish to understand decision-making in tasks of this kind.

Table 6 shows the average fit statistics for the individual parti-
cipants for the models and Table 7 shows the estimated model
parameters averaged across the four conditions in the Cue × Mask
design and across participants. As in Table 3, the columns #AIC and
#BIC are the numbers of participants for whom one of the urgency-
gating models was preferred to the diffusion model according to
each of the two criteria. The upper panels of Figure 5 show a
quantile-probability plot for performance in the task and the pre-
dictions of the diffusion model. The lower panels show the predic-
tions for the best-fitting urgency model, UG(γ, b, m, st).

The fit statistics in Table 6 and the plot in Figure 5 show that the
diffusion model, DIFF(η, st), with across-trial variability in drift rate
and nondecision time, provides a good account of the choice
probabilities and RT distributions in the task. Differences in the
shapes of the quantile-probability functions and the range of accu-
racy values in the four conditions, i, are accounted for by differences
in the mean drift rates, νji, j = 1, : : : , 5, nondecision times, Ter, and
drift-rate standard deviations, ηi. The parameter estimates in Table 7
are averages across the four cells of the design. Readers who are
interested in how the parameters vary across cue and mask condi-
tions are referred to Table 2 of the original article.

Figure 3
Quantile-Probability Functions for “Large” and “Small” Re-
sponses for Speed and Accuracy Conditions for the Diffusion Model
DIFF(η, sz, st) and the Urgency-Gating Model UG(γ, m, st) for the
Numerosity Study

Note. The quantile RTs in order from the bottom to top are the .1, .3, .5, .7,
and .9 quantiles (circles, squares, diamonds, inverted triangles, upright
triangles, respectively). The dark gray symbols are the quantiles for correct
responses and the light gray symbols are the quantiles for errors. The
continuous curves and x’s are the predictions from the model. For the data
and models, the quantile RTs are plotted on the y-axis against the observed
and predicted response proportions on the x-axis.
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As in the numerosity study, the pure urgency-gating model, UG(γ,
m, st), fared badly, for similar reasons as there. Like the fit to those
data, the model was unable to capture the shapes of the RT distribu-
tions across the four conditions, and was not preferred to the diffusion
model for any of the participants by either the AIC or BIC. As in
Table 4, the estimate of decay, γ = 0.02, suggests that OU decay
contributed almost nothing to these fits. These results confirm the
findings ofWinkel et al. (2014) and themajority of the fits reported by
Hawkins, Forstmann, et al. (2015) in showing that the pure urgency-
gating is in general not an appropriate model for these kinds of data.
The extended urgency-gating model, UG(γ, b, m, st), performed

better, although again, the estimated decay of γ = 2.307 implies that
it contributed to the fit in only a minor way. A decay of 2.5

corresponds to a low-pass filter time constant of 400 ms, which
is materially longer than the a priori range of values stipulated by
Carland et al. (2015, 2016). The average G2 was around 34% worse
than that for the diffusion model and the model was preferred to the
diffusion model for only two of the six participants according to the
AIC and the BIC. Although urgency-gating provides the model with
a mechanism for predicting slow errors, the quantile-probability plot
suggests that it does not predict the slow-error pattern in the data as
well as does the diffusion model with across-trial variability in drift
rate. As in the numerosity study, there was evidence of substantial
variation and tradeoffs in the estimates of γ and m. Figure 6 shows
histograms and a scatterplot of γ and m for the 24 estimates (four
cells of the design for the six participants). As in Figure 4, most of

Figure 4
Empirical and Fitted 0.1 Distribution Quantiles for the Numerosity Study

Note. (a) 0.1 RT quantiles for data (filled circles), diffusion model DIFF(η, sz, st) (dots), urgency-gating
model UG(γ, m, st) (continuous line), and urgency-gating model UG(γ, b, m, st) (dashed line) for the
numerosity study. (b) Frequency distributions and scatterplot of parameter estimates for the urgency-gating
model UG(γ, b, m, st).
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the estimates of γ clustered around the lower bound of zero (i.e., the
Wiener process). Although there was not the same bimodality in the
distribution of m as in Figure 4b, many of the estimates clustered
around the upper bound of 2.0. Across the 24 estimates, the correla-
tion in γ andmwas r = −0.435, t(22) = −2.266, p = .033. As in the
numerosity task, this significant correlation appears to be a reflection
of the greater flexibility of the urgency-gating model, which allows it
to predict similar patterns of performance using different combina-
tions of urgency and decay parameters.

Flashing-Grid Task

Table 8 summarizes the models for the flashing-grid task. For this
task, we compared two versions of the diffusion model and two
versions of the urgency-gating model. For both models, we com-
pared more and less restricted versions of them. For the standard
diffusion model, the models were DIFF(η, st) and DIFF(β, η, st). The
first model assumes abrupt-onset drift and diffusion rates; the second
assumes rates that increase according to Equations 23 and 24. For
the urgency-gating model, the two models were UG(γ, b, m, st) and
UG(b,m, st). These models compare the effects of urgency, with and
without decay. To ensure the models were comparable, we im-
plemented the abrupt-onset models using the same code as used for
the time-varying diffusion model with a large, fixed-rate constant,
β = 100. This value of β represents a perceptual integration time that
is within the 100 ms Bloch’s law critical duration that characterizes
the majority of perceptual tasks (Bloch, 1885; Gorea, 2015; Smith,
1998; Smith & Lilburn, 2020; Watson, 1986).
Like Trueblood et al. (2021), we allowed the drift rates to differ

for constant and changing stimulus conditions and, for the changing
conditions, to differ for the early (t ≤ .35 s) and later (t > .35 s)
portions of the stimulus presentation interval (i.e., four drift rates in
all). To characterize the differences in the speed and accuracy of the
two responses shown by some participants, we allowed the starting
point for evidence accumulation, z, to vary and the drift rates for the
two stimuli (orange vs. blue or black vs. white) to differ in
magnitude. Instead of assuming that the drift rates were equal in
magnitude and opposite in sign, we allowed them to depend on a
drift criterion, c, such that νA,i = −νB,i −c, i = 1, : : : 4 (Ratcliff,
1985; Ratcliff & Smith, 2004).
Table 9 summarizes the fit statistics for the four models. Instead

of comparing all of the other models to the standard diffusion
model, as we did for the previous experiments, we compared the
more and the less restrictive versions of the diffusion and urgency-
gating models to each other (DIFF(η, st) vs. DIFF(β, η, st) and
UG(γ, b, m, st) vs. UG(b, m, st)) and compared the most general
diffusion and urgency-gating models to each other (DIFF(β, η, st)

vs. UG(γ, b, m, st)). The number of participants favored by these
model comparisons are tabulated as #AIC and #BIC. As well as
comparing models via the AIC and the BIC, we compared the most
general models using a parameteric bootstrap cross-validation proce-
dure (Voskuilen et al., 2016; Wagenmakers et al., 2004) in which we
cross-fit the models DIFF(β, η, st) and UG(γ, b, m, st) to 50 sets of
simulated data generated by each of the twomodels, using the average
of the estimated parameters from the fits to the individual participants
to generate the simulations. Figure 7 shows kernel density estimates
of the distribution of G2[DIFF(β, η, st)] − G2[UG(γ, b, m, st)], the
difference in the G2 (or AIC or BIC) statistics for the two models
when the model generating the data was the diffusion model or the
urgency-gating model. Using the point at which the two density
functions cross each other to classify the models maximizes classifi-
cation accuracy. For all three data sets the crossover point was positive,
indicating that the urgency-gating model is somewhat more flexible
than the diffusion model (i.e., produces smaller G2 values). For the
three data sets, the crossover points were: Trueblood et al., 5.35;
Color, 5.14; Luminance, 4.03. The column labeled #BOOT shows the
number of participants for whom the model DIFF(β, η, st) or UG(γ, b,
m, st) was preferred, using the crossover point as the classification
criterion. According to the BIC, 24 of the 44 participants for the three
experiments favored the urgency-gating model, but according to the
parametric bootstrap, 26 of the 44 favored the diffusion model.

Figure 8 shows histograms and a scatterplot of the γ and m
parameters for the model UG(γ, b, m, st) for the three experiments.
Both γ and m have bimodal frequency distributions with estimates
that cluster at the extreme ends of their ranges. The joint distribution
of (m, γ) in the scatterplot is fairly uniform across the range and lacks
an identifiable mode of the kind that would be expected if the
urgency-gating model were true and the individual parameter
estimates were sampled from a joint distribution with nonzero
marginal means. The distributions in Figure 8 reinforce the impres-
sion from the earlier experiments that the good fit of the urgency-
gating model is more a reflection of its flexibility than of essential
structure in the data that the model is capturing. Contrary to the
claims of Thura (2016), changing-stimulus conditions do not seem
to provide a reliable way to distinguish between the urgency-gating
model and the diffusion model. Indeed, our fits suggest the converse:
The models were better distinguished in tasks with fixed stimuli.

Like Trueblood et al. (2021), we found the drift-rate parameters, νi,
varied as a function of whether the stimulus information was constant
or changed during a trial. As shown in Table 10, in most cases the
magnitudes of the estimated drift rates were reduced if they were
preceded by 350 ms of the other stimulus, that is, |ν3| < |ν2| and
|ν4| < |ν1|, consistent with integration or averaging across stimulus-
change boundaries. This was so for both the diffusion model with
time-varying perceptual integration, DIFF(β, η, st), and the

Table 5
Models for the Smith et al. (2004) Spatial Cuing Study

Model p Properties

1 36 Standard diffusion, DIFF(η, st)
2 36 Pure urgency-gating, UG(γ, m, st); m = 1
3 40 Extended urgency-gating, UG(γ, b, m, st); b = 1

Common parameters
ai, v1i, v2i, v3i, v4i, v5i, Ter, zi = ai/2, i = 1, : : : 4, σ = 0.1

Note. p = number of free parameters summed across four conditions, i
denotes conditions in the Cue × Mask design.

Table 6
Fit Statistics for the Smith et al. (2004) Spatial Cuing Study

Model Properties G2 df AIC BIC #AIC #BIC

1 DIFF(η, st) 449.0 184 561.0 704.6 — —

2 UG(γ, m, st) 790.1 184 862.1 1,005.8 0 0
3 UG(γ, b, m, st) 604.2 180 684.2 843.8 2 2

Note. #AIC and #BIC are numbers favoring the indicatedmodel toModel 1
out of 6.
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remaining three models that assumed rapid changes in drift rate after
a stimulus change.
Figure 9 shows quantile-probability plots for the fits of the

models DIFF(β, η, st) and UG(γ, b, m, st) for the three experiments.
The plots show that the diffusionmodel and the urgency-gatingmodel
both capture the fairly challenging pattern of RT distributions in these
experiments, which show substantial changes in the leading edges
(the 0.1 quantiles) as a function of the stimulus condition, as well as in
the distribution tails (the 0.7 and 0.9 quantiles). There is also a
consistent slow-error pattern, although its effects are somewhat
masked by the large differences between stimulus conditions.
Trueblood et al. (2021) evaluated the qualitative performance of
the models at the level of mean RT and conditional and unconditional
response accuracy only, but the recent psychological literature has
emphasized that models should be able to account for entire distribu-
tions of correct responses and errors. Our model fits show that the
diffusion model and urgency-gating model provide satisfactory ac-
counts of the RT distributions in data that has been screened for fast
guesses. Although we fit the data for only 12 of the 34 participants in
Trueblood et al.’s Experiment 1, the main patterns in their data were
replicated in our color task, which had a manipulation to discourage
fast guessing.
The other fits in Table 9 compare diffusion models with and

without time-varying encoding and urgency models with and
without OU decay. There was only equivocal support for time-
varying stimulus encoding in the diffusion model, unlike the
findings for the RDM task reported by Smith and Lilburn
(2020). There were a similar numbers of participants for whom
the time-varying and abrupt-onset diffusion models were preferred
for all three experiments, although the numbers depend on whether
the AIC or BIC is used because the models have different numbers
of parameters. The estimated β parameters in Table 10 correspond
to perceptual integration times between 100 ms and 200 ms,
which is shorter than the 400 ms estimate for the RDM task
reported by Smith and Lilburn (2020) and, at its lower bound,
is consistent with a perceptual integration process governed by
Bloch’s law. We conjectured that the perceptual integration times
in the color task might be longer than in the luminance task
because of the slower perceptual response of the color system
and, while the ordering of the β parameters is consistent with this
idea, the difference in the estimates from the two experiments
using the color task is greater than the difference between the color
and luminance tasks.
The comparison of the two versions of the urgency-gating model

in Table 9 is much clearer: For all three data sets, the model without

decay was preferred. This is especially so if the BIC is used. Using
the BIC, the number of participants for whom UG(b, m, st) was
preferred to UG(γ, b, m, st) were: Trueblood et al., 8/12; Color, 14/
16; Luminance 13/16. Like the numerosity and spatial cuing
experiments, then, there is no strong evidence of decay during
the evidence accumulation period. Rather, the estimated average
decay parameters of γ = 3.94, 2.56, and 4.71 suggest that any decay
that is present is at most moderate in magnitude, consistent with the
results of the comparison of the OU and Wiener diffusion models
reported by Ratcliff and Smith (2004).

Figure 5
Quantile-Probability Functions for Correct Responses and Errors in
the Cue × Mask Design for the Diffusion Model DIFF(η, st) and the
Urgency-Gating Model UG(γ, b, m, st) for the Spatial Cuing Study

Note. The meaning of the symbols in the plot is the same as in Figure 3.

Table 7
Parameters for the Smith et al. (2004) Spatial Cuing Study

Model Properties ai v1i v2i v3i v4i v5i

1 DIFF(η, st) 0.113 0.067 0.206 0.337 0.429 0.504
2 UG(γ, m, st) 0.046 0.034 0.102 0.172 0.217 0.251
3 UG(γ, b, m, st) 0.123 0.042 0.124 0.216 0.282 0.336

γ m η Ter st

1 DIFF(η, st) — — 0.184 0.380 0.136
2 UG(γ, m, st) 0.027 — — 0.195 0.062
3 UG(γ, b, m, st) 2.307 1.236 — 0.344 0.083
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Discussion

Our use of the integral-equation method allowed us to derive
explicit expressions for the first-passage time densities for urgency-
gating and collapsing-boundary models and to show precisely how
and when the two kinds of models are equivalent. We have shown,
in an explicit, formal way, that the conditions under which the
models appear intuitively to be equivalent hold rigorously. Specifi-
cally, an urgency-gating model with urgency function U(t) is
equivalent to a model without urgency in which the decision
boundaries converge in inverse proportion to U(t). Although our
results show that the mathematics and intuition agree with one
another, the formal justification is essential and cannot be omitted.
The recent literature on decision processes has shown the hazards of
trying to reason in an intuitive way about the first-passage time
distributions of stochastic processes as if they were deterministic
functions. The results we have presented apply both to the Wiener
process, which is used to model accumulation in the diffusion
model, and the OU process, which can be interpreted either as a
leaky accumulator or as a low-pass filtered evidence process. As
well providing a characterization of the equivalence of the two kinds
of models, the integral-equation method provides a method for
fitting the models to data that avoids the need for recourse to Monte
Carlo simulation.

Fixed-Stimulus Experiments

Our model fits using fixed stimuli clarify and extend the results of
previous studies. We found the pure urgency-gating model, with
U(t) = mt, performed worse than the diffusion model. This confirms

the results of studies using both constant (Voskuilen et al., 2016)
and changing stimulus information (Winkel et al., 2014). Winkel’s
results were criticized by Carland et al. (2015) because his models
did not include OU decay (low-pass filtering), but our estimates of γ
show that the contributions of decay to the fit of the model were
negligible. Other researchers, such as Hawkins, Forstmann, et al.
(2015) and Evans, Hawkins, et al. (2020) have investigated similar
models and found support for them only under speed-stress condi-
tions, in which it is likely that participants were deadlining.

In comparison, the extended urgency-gating model, with U(t) =
b + mt, performed better. This model can be interpreted as adding
variable amounts of urgency to an OU evidence process, which
allows it to predict a larger range of distribution shapes than does the
model in its pure form, which more closely correspond to what is
found in data. Although the model in its extended form captures
many of the features of the RT distributions and choice probabilities,
for the constant-stimulus experiments it did not do so as well as the
diffusion model with across-trial variability. In the numerosity data
of Ratcliff (2008) the model lacks a mechanism for predicting fast
errors and in the spatial cuing study of Smith et al. (2004) it did not
capture the empirical pattern of slow errors as well as did the
diffusion model with drift-rate variability. In addition, the variability
in the estimates of urgency and decay and the correlations between
them suggests that these parameters are not well identified in data.
Changes in these parameters change the shapes of the predicted RT
distributions and, as shown in Figure 1, these changes can be traded
off against other. We would therefore expect identification of the
associated parameters to be challenging. Moreover, when we al-
lowed the level of urgency to vary with experimental instructions in

Figure 6
Frequency Distributions and Scatterplot of Parameter Estimates for the Urgency-Gating Model
UG(γ, b, m, st) in the Spatial Cuing Study

Table 8
Models for the Flashing-Grid Task

Model p Properties

1 11 Standard diffusion, DIFF(η, st)
2 12 Inhomogeneous diffusion, DIFF(β, η, st)
3 12 Urgency-gating, decay, UG(γ, b, m, st); b = 1
4 11 Urgency-gating, no decay, UG(b, m, st); b = 1

Common parameters
a, z, v1, : : : v4, c, Ter, σ = 0.1
v1 = high; v2 = low; (v1, v3) = high → low; (v2, v4) = low → high

Note. p = number of free parameters.
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our fits to speed versus accuracy data, the fit of the model was
improved but the ordering of the estimated urgency parameters was
the opposite to the predicted one. This reinforces the impression that
the parameters are not well identified and that much of the model’s
ability to fit data relies on parameter trade-offs.
One of the core claims made by the urgency-gating model is that

evidence does not accumulate. Rather, it grows rapidly to a stationary
distribution that is gated multiplicatively by an urgency signal to
make a response. We emphasized that the low-pass filtering assump-
tions of the urgency-gating model are tantamount to representing
evidence accumulation by an OU diffusion process—an identifica-
tion that has not always been made explicit in previous discussions of
the models. When we fit an urgency-gated OU process, most of the
estimates of OU decay were small, consistent with the findings of
Ratcliff and Smith (2004). We did not find any consistent evidence
for the proposition that evidence does not accumulate.

Changing-Stimulus Experiments

The model fits from the experiments in which stimulus informa-
tion changed during a trial presented a somewhat more complex
picture, with greater evidence for urgency. Unlike previous studies
of changing-stimulus tasks, we considered a diffusion model in
which the drift and diffusion rates depended on the outputs of a time-
varying perceptual encoding process. Previous theoretical and
empirical treatments of these kinds of tasks have assumed that drift
rates change abruptly when the stimulus changes. In contrast, we
used an explicit model of perceptual encoding that allowed us to
distinguish temporal integration in perceptual encoding from evi-
dence accumulation in the decision process. Under these circum-
stances, we found that the diffusion and urgency-gating models
performed similarly and that the preferred model depended on the
model-selection criterion. When we used the AIC or BIC, the
urgency-gating model was the preferred model for the majority
of participants by a small margin, but when we used the parametric
bootstrap, which takes account of model flexibility, the ordering was
reversed and the diffusion model was preferred. The nonzero value

of the optimal classification point in Figure 7 is a reflection of the
comparatively greater flexibility of the urgency-gating model when
decay and urgency are both allowed to vary, which was highlighted
in Figure 2.

Although the fits to the changing-stimulus experiments did not
clearly distinguish between the urgency-gating and diffusion mod-
els, they agreed with the results from the fixed-stimulus experiments
in finding no strong support for decay. The core claim of the
urgency-gating model is that evidence grows rapidly to a stationary
distribution, determined by the OU decay parameter, and decisions

Table 9
Fit Statistics for the Flashing-Grid Task

Model Properties G2 df AIC BIC #AIC #BIC #BOOT

Trueblood et al., Experiment 1
1 DIFF(η, st) 135.9 77 155.9 205.1 — —

2 DIFF(β, η, st) 127.7 76 149.6 203.7 6 5
3 UG(γ, b, m, st) 119.8 76 141.8 195.9 7 7 5
4 UG(b, m, st) 124.6 77 144.6 193.8 6 8

Flashing Grid, Color
1 DIFF(η, st) 169.9 77 189.9 241.8 — —

2 DIFF(β, η, st) 143.5 76 165.5 222.6 11 10
3 UG(γ, b, m, st) 113.5 76 135.5 192.6 10 10 9
4 UG(b, m, st) 135.4 77 155.4 207.3 11 14

Flashing Grid, Luminance
1 DIFF(η, st) 152.9 77 172.9 224.6 — —

2 DIFF(β, η, st) 138.9 76 160.9 217.8 9 5
3 UG(γ, b, m, st) 137.5 76 159.5 216.4 7 7 4
4 UG(b, m, st) 142.1 77 162.1 213.8 8 13

Note. Comparisons are 2 versus 1; 3 versus 2; 4 versus 3; table entries are numbers out of 12, 16, and 16,
respectively, for the three experiments favoring the second model of a pair. The column #BOOT is the number of
participants for whom UG(γ, b, m, st) was better than DIFF(β, η, st) by the parametric bootstrap.

Figure 7
Distributions of G2 Differences, G2[DIFF(β, η, st)] − G2[UG(γ, b,
m, st)], for Models DIFF(β, η, st) and UG(γ, b, m, st) Cross-Fit to
Simulated Data for the Color Experiment, Generated Using the
Means of the Estimated Parameters From Fits to the Empirical Data
in Table 10

Note. Classification accuracy is maximized by setting the classification
criterion equal to theG2 difference at the intersection of the two distributions,
at G2 = 5.14.
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are made, not by evidence accumulation, but by an urgency function
acting on the stationary distribution. The rationale for using
changing-stimulus tasks is to identify decay in the accumulation
process, which should be expressed as a recency weighting of the
evidence. Our model comparisons showed that the best urgency-
gating model for the majority of participants was the model UG(b,
m, st), in which variable amounts of urgency are added to a Wiener
diffusion process, without decay. As we have shown in an explicit,
formal way, this model can be interpreted as a collapsing-bounds
model. The comparatively better performance of the urgency model
on the changing-stimulus tasks may be because participants implic-
itly deadline on these tasks because they use extended sequences of
stimulus information rather than single stimuli. We discuss differ-
ences among tasks in the following section.
Our conclusions in relation to decay diverge from those of

Trueblood et al. (2021) who argued for a model with both urgency
and decay. Their estimate of the OU time constant from their
Experiment 1 was around 250 ms which agrees with the mean
estimate of γ ≈ 4 in Table 10, but they did not compare models with
and without decay. Rather, their conclusions were based on esti-
mates of the mode of the posterior density from a Bayesian
hierarchical model fitted to the entire set of data (including the
22 participants who showed high fast-guessing rates). These esti-
mates are population estimates and do not distinguish variations in
performance at the individual participant level. At the individual
level, the estimates of γ were bimodal, with some participants
showing little or no decay and some participants showing large
decay, and there was evidence of trade-offs in urgency and decay in
all three experiments. (The correlations between γ and m for the
three experiments were: Trueblood et al., r = −.366; color,
r = −.347; luminance r = −.291.) The presence of these kinds
of trade-offs, in which there are large estimates of decay for
some participants and small estimates for others, likely underlies
the nonzero posterior modes in Trueblood et al.’s hierarchical fits.
One of the stated advantages of hierarchical Bayesian models, which
prescribe population distributions for the parameters a priori, is that
they can help stabilize estimation under conditions in which the
individual participant data are sparse or noisy. However, they cannot
overcome the problem of underidentified parameters at the individ-
ual participant level. When parameters are underidentified, and the

likelihood surface of the model is locally flat or near-flat for the
parameters in question, Bayesian models will prefer those values
from a set of equally likely parameter values that are assigned the
highest prior probabilities. This can lead to estimates that are better
behaved statistically but does not aid in establishing the scientific
ground truth unless the ground truth and the researcher’s prior
beliefs happen to coincide.

The other consistent finding from the changing-stimulus experi-
ments is that we found no strong evidence for extended perceptual
integration, as expressed by time-varying changes in drift rate. The
estimates of perceptual integration from the β parameter in the
model DIFF(β, η, st) were in the range of 100–200 ms, the lower
bound of which falls in the Bloch’s law regime that characterizes
the majority of perceptual tasks. These estimates suggest that
the flashing-grid task is similar to the dynamic brightness tasks
of Ratcliff and Smith (2010) and Ratcliff, Voskuilen, and
Teodorescu (2018), which also require decisions about dynamic
random arrays and which can be modeled by an abrupt-onset
evidence process. These kinds of tasks are markedly different
from the dynamic form-discrimination tasks studied by Ratcliff
and Smith (2010) and Smith et al. (2012), which are not well
described by abrupt-onset models and are better characterized by
models in which the evidence entering the decision process in-
creases progressively over time. Smith and Lilburn (2020) found
that the widely studied RDM task was also better characterized by a
model of this kind. A reasonable conjecture, based on the available
evidence, is that whether the decision process is better characterized
as an abrupt-onset or a gradual-onset process will depend on the way
in which evidence is encoded perceptually. When the evidence is
carried by the statistics of the noise itself, the data appear to favor an
abrupt-onset process, but when it is carried by a signal—whether
static form or coherent motion—embedded in the noise, then the
data appear to favor a gradual-onset process. Unlike Smith and
Lilburn (2020, Figure 7), we found appreciable individual differ-
ences in the estimates of the β parameter in the flashing-grid
experiments, suggesting it may not be well identified under condi-
tions in which encoding is fast, but the fact that we have obtained
fairly consistent evidence for a near-abrupt-onset model implies this
is a meaningful distinction to make theoretically and is one that can
be tested in data using the methods we have presented here.

Figure 8
Frequency Distributions and Scatterplot of Parameter Estimates for the Urgency-Gating Model
UG(γ, b, m, st) in the Flashing-Grid Experiments

Note. White = Trueblood et al; Gray = Color; Black = Luminance.
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Varieties of Decision Tasks

The three tasks we considered here, as well as differing in whether
stimulus information remained fixed or changed over time, differed
in the way in which noise enters the decision process. Like many of
the perceptual, language, and memory tasks to which diffusion
models have been applied, the noise in the numerosity and atten-
tional cuing tasks is unobserved and internal. Theoretically, it arises
from moment-to-moment variability in the process of matching the
encoded stimulus to the cognitive representations of the decision
alternatives. In contrast, the noise in the flashing-grid task is
external: Information is carried by the statistics of a noisy sequence
of stimulus elements. There is a long tradition in psychophysics of
treating external and internal sources of noise as if they are the same
(Ratcliff, Voskuilen, & McKoon, 2018) and, in the study of evi-
dence accumulation models, the same mathematical models have
been used to characterize decisions about single stimuli and se-
quences of stimulus elements (Edwards, 1965; Stone, 1960). Tasks
that require decisions about sequences of stimulus elements are
known as expanded-judgment tasks and the literature on them
dates back several decades (Cisek et al., 2009; de Gardelle &
Summerfield, 2011; Edwards, 1965; Pietsch & Vickers, 1997;
Summerfield & Tsetsos, 2015; Vickers et al., 1971).
Despite the formal resemblance between expanded-judgment and

other kinds of decision tasks, in a recent review of diffusion models

Ratcliff et al. (2016) cautioned against assuming they are psycho-
logically equivalent. They pointed out that there are phenomena
found in expanded-judgment tasks that do not appear to have any
direct counterparts in decision tasks using single stimuli. These
include differential weighting of stimulus elements near to and
far from a category boundary (Summerfield & Tsetsos, 2015),
increased engagement of visual working memory (Pietsch &
Vickers, 1997), and a greater variety in the shapes of RT distribu-
tions for individual participants than is found in single-stimulus
tasks (Smith & Vickers, 1989). If decision tasks are viewed as lying
on a continuum with single-stimulus tasks at one end and expanded-
judgment tasks at the other, then the flashing-grid task can be viewed
as an “edge of expanded judgment” task: The presentation rate is
sufficiently high that the stimuli form a continuously changing grid
of contrasting elements rather than a discrete sequence and the
temporal changes are experienced perceptually as random spatial
displacements.

It is an open question whether these kinds of tasks are best viewed
as limiting cases of expanded-judgment tasks, in which the noise
driving the decision process is external, or whether they should be
viewed as versions of single-stimulus decision tasks, in which a drift
rate is computed from the aggregated perceptual properties of the
stimulus and the noise arises internally from a cognitive matching
process, as in the dynamic brightness discrimination task. The
substantial individual differences in our estimates of urgency for

Table 10
Parameters for Flashing-Grid Task

Model Properties a z v1 v2 v3 v4 c

Trueblood et al., Experiment 1
1 DIFF(η, st) 0.158 0.084 0.176 0.075 −0.043 −0.129 0.012
2 DIFF(β, η, st) 0.150 0.080 0.166 0.073 −0.044 −0.125 0.011
3 UG(γ, b, m, st) 0.153 0.080 0.144 0.062 −0.038 −0.089 0.004
4 UG(b, m, st) 0.187 0.098 0.134 0.058 −0.043 −0.091 0.007

Flashing Grid, Color
1 DIFF(η, st) 0.127 0.072 0.251 0.102 −0.061 −0.277 0.054
2 DIFF(β, η, st) 0.112 0.063 0.210 0.089 −0.126 −0.260 0.047
3 UG(γ, b, m, st) 0.167 0.093 0.191 0.082 −0.050 −0.133 0.044
4 UG(b, m, st) 0.187 0.103 0.182 0.078 −0.059 −0.146 0.037

Flashing Grid, Luminance
1 DIFF(η, st) 0.129 0.065 0.261 0.118 −0.018 −0.210 −0.034
2 DIFF(β, η, st) 0.122 0.062 0.241 0.112 −0.040 −0.212 −0.027
3 UG(γ, b, m, st) 0.133 0.067 0.225 0.103 −0.030 −0.165 −0.022
4 UG(b, m, st) 0.164 0.083 0.210 0.097 −0.032 −0.171 −0.025

β γ m η Ter st

Trueblood et al., Experiment 1
1 DIFF(η, st) — — — 0.095 0.438 0.271
2 DIFF(β, η, st) 67.97 — — 0.082 0.359 0.244
3 UG(γ, b, m, st) — 3.94 0.471 — 0.399 0.167
4 UG(b, m, st) — — 0.482 — 0.384 0.163
Flashing Grid, Color
1 DIFF(η, st) — — — 0.130 0.477 0.294
2 DIFF(β, η, st) 38.92 — — 0.070 0.354 0.270
3 UG(γ, b, m, st) — 2.56 1.209 — 0.394 0.169
4 UG(b, m, st) — — 1.188 — 0.398 0.203
Flashing Grid, Luminance
1 DIFF(η, st) — — — 0.090 0.369 0.205
2 DIFF(β, η, st) 76.72 — — 0.073 0.318 0.205
3 UG(γ, b, m, st) — 4.71 0.685 — 0.340 0.155
4 UG(b, m, st) — — 0.759 — 0.327 0.163
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the flashing-grid task, which reflect variations in the shapes of the
RT distributions, are reminiscent of the large range of individual
variations in the shapes of the RT distributions reported by Smith
and Vickers (1989) for an expanded-judgment task using sequences

of normally distributed line segments. In either case, the variability
in the RT distributions suggests that tasks involving sequences of
stimulus elements may engage strategic processes that control the
way evidence is sampled to a greater extent than do tasks involving

Figure 9
Quantile-Probability Plots of the Diffusion Model DIFF(β, η, st) and Urgency-Gating Model to Experiment 1 of
Trueblood et al. (2021) and the Color and Luminance Replications

Note. The data are conditioned on the response (“less than 0.5” and “greater than 0.5”). The pure low-discriminability and high-
discriminability conditions are denoted LL and HH; the high-to-low and low-to-high stimulus-change conditions are denoted HL
and LH, respectively. The top six panels are for the model DIFF(β, η, st); the bottom six are for the model UG(γ, b, m, st).
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single stimuli. If so, then we should be cautious about generalizing
from these kinds of decision tasks to others.

Conclusion

In this article, we have shown that the integral-equation method
provides a natural theoretical framework for representing dynamic
decision models in which decision boundaries change over time or
in which the accumulating evidence is gated by an urgency signal.
Unlike previous treatments of these models in the literature, we
obtained explicit mathematical representations of the RT distribu-
tions and choice probabilities for models of both kinds and provided
a precise characterization of the conditions under which they are
equivalent. We compared the diffusion model and versions of the
urgency-gating model on five sets of data from three decision tasks
that provided large samples of data from individual participants.
One of the tasks used response-terminated stimuli; the second used
stimuli that were briefly flashed and then masked or extinguished,
and the third used stimuli whose identity remained fixed or changed
after 350 ms. For the two single-stimulus tasks, the simplest, pure
urgency model performed poorly, as found by previous investiga-
tors, but an extended urgency model, in which varying amounts of
urgency were added to an underlying OU process, performed better.
It did not, however, perform as well as the diffusion model. Unlike
the diffusion model, the urgency-gating model lacks a mechanism to
predict fast errors and, while it can predict slow errors, the account of
the slow-error pattern in the data was not as good as that provided by
the diffusion model. For the changing-stimulus task, both the
diffusion model and the urgency-gating model provided comparably
good accounts of the RT distributions and choice probabilities.
Critically, we found little evidence for the core claim of the urgency-
gating model that evidence does not accumulate. Under these
circumstances, the urgency-gating model can alternatively be
viewed as a Wiener process with collapsing boundaries. Our
theoretical results provide the first mathematically explicit charac-
terization of the relationship between these two kinds of models.
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Appendix A

The Kernel of the Integral Equation for Time-Inhomogeneous Diffusion Processes

Urgency-Gating Model

This appendix provides a derivation of the kernel of the integral
equation in Equation 17 and shows the equivalence of an urgency-
gating model with fixed boundaries, ai, i = 1, 2, and urgency
function U(t) and a model with time-varying boundaries ai/U(t).
The expression for the kernel relies on the existence of a pair of
functions, Ψ̄ðx, tÞ and Φ(t), that transform an arbitrary diffusion
process, Xt, with drift rate A(x, t) and diffusion rate B(x, t) to a
standard Wiener process. When this transformation exists, the
kernel, Ψ[ai(t), t|aj(τ), τ], goes to zero as τ → t, which guarantees
that the integral equations in Equations 13 and 14 will be numeri-
cally stable. Ricciardi (1976), following Cherkasov (1957), showed
that this transformation exists if there exists a pair of functions, c1(t)
and c2(t), of time only, which relate the drift and diffusion rates in a
prescribed way. The relationship is most simply expressed in the
form in which it was given by Ricciardi and Sato (1983).
An arbitrary diffusion process, with drift and diffusion rates both

depending on state, x, and time, t, can be transformed to a standard
Wiener process if functions c1(t) and c2(t) can be found that satisfy
the following relationship

Aðx; tÞ = B′xðx; tÞ
4

+

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi½Bðx; tÞ�p
2

�
c1ðtÞ

+
ð
x c2ðtÞBðy; tÞ + B′tðy; tÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

B3ðy; tÞ
p dy

�
, (A1)

where B′x(x, t) and B′t(x, t) are, respectively, the partial derivatives
of the diffusion rate with respect to its state and time coordinates.
When the drift rate may depend on both time and state, but the
diffusion rate depends only on time, as in Equations 11 and 12, this
relationship has the simpler form (Smith & Lilburn, 2020;
Voskuilen et al., 2016),

Aðx,tÞ =
ffiffiffiffiffiffiffiffiffiffiffi½BðtÞ�p
2

c1ðtÞ +
x

2

�
c2ðtÞ +

B′ðtÞ
BðtÞ

�
: (A2)

If functions c1(t) and c2(t) can be found that satisfy this equation,
then the functions transforming the process Xt into a zero-drift, unit
variance, Wiener process have the form

x� = Ψ̄ðx, tÞ = exp

�
−
1
2

ð
t
c2ðsÞds

� ð
x dyffiffiffiffiffiffiffiffiffi

BðtÞp
−
1
2

ð
t
c1ðsÞ exp

�
−
1
2

ð
s
c2ðzÞdz

�
ds:

(A3)

t� = ΦðtÞ =
ð
t
exp

�
−
ð
s
c2ðzÞdz

�
ds, (A4)

where x* and t* are the new state and time coordinates, respectively.
The drift and diffusion rates of the urgency-gating model of

Equation 8 are given by Equations 11 and 12,

Aðy,tÞ =
�
UðtÞμðtÞ +

�
U′ðtÞ
UðtÞ − γ

�
y

�
: (A5)

BðtÞ = U2ðtÞσ2ðtÞ, (A6)

where we are allowing the drift rate, μ(t), and the diffusion rate, σ2(t),
of the underlying Wiener process to be time-varying for the sake of
maximum generality. Substituting the drift rate and the infinitesimal
standard deviation of Equations A5 and A6 into Equation A2 shows
that the functions c1(t) and c2(t) must satisfy the following equation

UðtÞμðtÞ +
�
U′ðtÞ
UðtÞ − γ

�
y

=
UðtÞσðtÞ

2
c1ðtÞ +

y

2

�
c2ðtÞ +

½U2ðtÞσ2ðtÞ�′
U2ðtÞσ2ðtÞ

�
, (A7)

where primes denote derivatives with respect to time. Equating
coefficients on the left and right-hand sides of this equation yields
the functions

c1ðtÞ =
2μðtÞ
σðtÞ : (A8)

c2ðtÞ = 2

�
U′ðtÞ
UðtÞ − γ

�
−
½U2ðtÞσ2ðtÞ�′
U2ðtÞσ2ðtÞ : (A9)

Substituting these functions into Equations A3 and A4 and evaluat-
ing them yields, after some algebra,

Ψ̄ðy,tÞ = eγty

UðtÞ −
ð
t

0
μðsÞds: (A10)

and

ΦðtÞ =
ð
t

0
e2γsσ2ðsÞds: (A11)

The kernel of the integral equation,Ψ[ai(t), t|aj(τ), τ], in Equation 17
and the transition density of the unconstrained process, f[ai(t), t|aj(τ),
τ)], in Equation 18, depend on the partial derivatives of Ψ̄ð·Þ, with
respect to its state and time coordinates, evaluated at the boundaries,
and the derivative of Φ(·), with respect to time. These functions are

Ψ̄′

t = eγt
�½γUðtÞ − U′ðtÞ�

U2ðtÞ y − μðtÞ
�
; Ψ̄′

x =
eγt

UðtÞ ;

Φ′ðtÞ = e2γtσ2ðtÞ:

Equation 17 states that the kernel function is

Ψ½aiðtÞ, tjajðτÞ, τ� =
f ½aiðtÞ, tjajðτÞ, τ�

2

×
�
a
0
iðtÞ +

Ψ̄0
tðaiðtÞ, tÞ

Ψ̄0
xðaiðtÞ, tÞ

−
½Ψ̄ðaiðtÞ, tÞ − Ψ̄ðajðτÞ, τÞ�

ΦðtÞ −ΦðτÞ
Φ0 ðtÞ

Ψ̄0
xðaiðtÞ, tÞ

�
,

(A12)
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with transition density

f ½aiðtÞ, tjajðτÞ, τ� =
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2π½ΦðtÞ −ΦðτÞ�p

× exp

�
−
½Ψ̄ðaiðtÞ, tÞ − Ψ̄ðajðτÞ, τÞ�2

2½ΦðtÞ −ΦðτÞ�
�

× Ψ̄′

xðaiðtÞ, tÞ: (A13)

For the urgency-gating model, the boundaries are constant, so the
a′i(t) term in Equation A12 is zero and the expression in braces on the
right-hand side evaluates to

�
ai

�
γ −

U′ðtÞ
UðtÞ

�
− UðtÞμðtÞ

−
½eγtðai − ajÞ − UðtÞ Ð tτ μðsÞeγsds�Ð

t
τ e

2γsσ2ðsÞds eγtσ2ðtÞ
�
: (A14)

The rest of the kernel function is obtained by substituting terms into
the expression for f [ai(t), t|aj(τ), τ] as indicated. In the time-
homogeneous case, μ(t) ≡ μ and σ(t) ≡ σ, and the integral terms
in Equation A14 reduce to the expressions for the mean and variance
of the time-homogeneous OU process in Equations 6 and 7.

Collapsing-Boundaries Model

Evidence accumulation in the collapsing-boundaries model is
described by an OU process through time-varying boundaries, ai(t),
i = 1, 2. In the time-inhomogeneous case, the drift and diffusion
rates for this model are

Aðx, tÞ = μðtÞ − γx: (A15)

BðtÞ = σ2ðtÞ, (A16)

from which we obtain, via Equation A2,

c1ðtÞ =
2μðtÞ
σðtÞ : (A17)

c2ðtÞ = −2γ −
σ2′ðtÞ
σ2ðtÞ , (A18)

and after substituting in Equations A3 and A4,

Ψ̄ðx, tÞ = eγtx −
ð
t

0
eγsμðsÞds: (A19)

and

ΦðtÞ =
ð
t

0
e2γsσ2ðsÞds: (A20)

When Ψ̄ðx,tÞ is evaluated at a boundary, x = ai(t). If ai(t) = ai/U(t),
then Equations A10 and A19 are identical, as are Equations A11
and A20. In other words, when the boundaries are inversely
proportional to the urgency function, the transformations that
map the urgency gated OU process with constant boundaries and
the ungated process with time-varying boundaries to a standard
Wiener process are the same. To show that first-passage time
densities for the two models are also the same, we need to show
that when the transformations mapping the process to a Wiener
process are the same, then the kernels of the integral equations are
also the same. This is not completely self-evident because the
expression for the kernel contains a term a′i(t), for the derivative
of the boundary, which will be zero for the urgency-gating model
but not for the collapsing-boundaries model.

For the collapsing-boundaries model a′i(t) = −aiU′i(t)/U2(t) and
the derivatives of Ψ̄ð·Þ and Φ(·) are

Ψ̄′

t = γeγt
ai

UðtÞ − μðtÞeγt; Ψ̄′

x = eγt; Φ′ðtÞ = e2γtσ2ðtÞ,

where we have evaluated Ψ̄′

tðx, tÞ at x = ai(t). Substituting these
expressions into the expression for the kernel, Equation A12, yields
for the term in braces

�
ai

�
γ

UðtÞ −
U′ðtÞ
U2ðtÞ

�
− μðtÞ

−
½eγtðai − ajÞ=UðtÞ − Ð

t
τ μðsÞeγsds�Ð

t
τ e

2γsσ2ðsÞds eγtσ2ðtÞ
�
: (A21)

This is equal to the corresponding expression for the urgency-
gating model, Equation A14, up to a scale factor,U(t). The kernel in
Equation A12 is obtained by multiplying the term in braces by the
transition density, f[ai(t), t|aj(τ), τ)], in Equation A13. The last term
in the transition density is the partial derivative, Ψ̄′

xðtÞ, which is eγt

for the OU process and eγt/U(t) for the urgency-gating model. In the
kernel, the term in braces for the urgency-gating model will
therefore be divided by U(t), making the terms for the two models
identical. The other terms in the kernel depend on the values of
Ψ̄ðx, tÞ, evaluated at ai, or ai(t), respectively, andΦ(t), which are the
same for the twomodels. This result shows that the first passage time
densities for an urgency-gating model with boundaries ai and
urgency function U(t) and a collapsing-boundary model with
boundaries ai(t) = ai/U(t) are the same. We have shown this equiv-
alence for an OU diffusion process, which was interpreted by
Carland et al. (2015, 2016) as the output of a low-pass filter, but
it also holds for the Wiener process, which is obtained from the OU
process with γ = 0 as a special case.
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Appendix B

Numerical Solution of the Integral Equations

To evaluate Equations 13 and 14 numerically, we discretize them
and evaluate them on the mesh kΔ, k = 1, 2, : : : . The discretized
forms of the equations (Buonocore et al., 1990; Smith, 2000,
pp. 440–441) are

gAða1, kΔjz, 0Þ = −2Ψða1, kΔjz, 0Þ

þ 2Δ
Xk−1
j=1

gAða1, jΔjz, 0ÞΨða1, kΔja1, jΔÞ

þ 2Δ
Xk−1
j=1

gBða2, jΔjz, 0ÞΨða1, kΔja2, jΔÞ, (B1)

and

gBða2, kΔjz, 0Þ = 2Ψða2, kΔjz, 0Þ

− 2Δ
Xk−1
j=1

gAða1, jΔjz, 0ÞΨða2, kΔja1, jΔÞ

− 2Δ
Xk−1
j=1

gBða2, jΔjz, 0ÞΨða2, kΔja2, jΔÞ, (B2)

for k = 2, 3, : : : . For k = 1, the equations reduce to

gAða1,Δjz, 0Þ = −2Ψða1,Δjz, 0Þ: (B3)

and
gBða2,Δjz, 0Þ = 2Ψða2,Δjz, 0Þ: (B4)

Equations B1 and B2 represent the first-passage time densities at
time kΔ as functions of their values at preceding times jΔ, j < k, and
of the kernel function Equation A12. Buonocore et al. (1990)
proved that if the kernel is chosen according to Equation A12,
then the discrete approximations converge to the true first-passage
densities as Δ → 0. Equations B1–B4 provide a computationally
efficient and numerically stable way to obtain predictions for models
with time-varying drift and diffusion rates or time-varying bound-
aries. Voskuilen et al. (2016, Appendix B) gave versions of the
equations for a Wiener diffusion process with constant drift and
diffusion rates through time-varying boundaries, which they used to
evaluate collapsing-boundary models.

(Appendices continue)
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Appendix C

Data From Trueblood et al. (2021)

(Appendices continue)

Figure C1
RTs for Participants 1–17 of Experiment 1 of Trueblood et al. (2021)

Note. RTs for individual trials are plotted on the y-axis against the trial number on the x-axis. Row numbers identify the participants. RTs on timed-out trials
are shown as 2000 ms. The horizontal dashed line is the 350 ms fast-guess threshold.
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Figure C2
Trial-to-Trial RTs for Participants 18–34 of Experiment 1 of Trueblood et al. (2021)

Note. The participants used in the analyses in this article were 2, 5, 7, 8, 10, 11, 12, 13, 14, 19, 28, 30.
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