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A B S T R A C T   

I evaluated three models for the representation of numbers in memory. These were integrated 
with the diffusion decision model to explain accuracy and response time (RT) data from a 
recognition memory experiment in which the stimuli were two-digit numbers. The integrated 
models accounted for distance/confusability effects: when a test number was numerically close to 
a studied number, accuracy was lower and RTs were longer than when a test number was 
numerically far from a studied number. For two of the models, the representations of numbers are 
distributed over number (with Gaussian or exponential distributions) and the overlap between the 
distributions of a studied number and a test number provides the evidence (drift rate) on which a 
decision is made. For the third, the exponential gradient model, drift rate is an exponential 
function of the numerical distance between studied and test numbers. The exponential gradient 
model fit the data slightly better than the two overlap models. Monte Carlo simulations showed 
that the variability in the important parameter estimates from fitting data collected over 30–40 
min is smaller than the variability among individuals, allowing differences among individuals to 
be studied. A second experiment compared number memory and number discrimination tasks and 
results showed different distance effects. Number memory had an exponential-like distance-effect 
and number discrimination had a linear function which shows radically different representations 
drive the two tasks.   

Memory for number is a crucial component of general mathematical ability. It is essential for learning how to perform computations 
with numbers and for performing computations in real-life situations. There has been much research on short-term (working) memory 
for numbers, often by showing subjects a short list of numbers (e.g., 1–7 numbers) followed immediately by a test number for which 
subjects are asked to decide whether or not it had appeared in the just-presented list (the Sternberg paradigm, Sternberg, 1966, 1969; 
Clifton & Gutschera, 1971; Corballis, 1967; De Rosa & Morin, 1970). In a study that called into question all of the simple scanning 
models that were developed for this task, Monsell (1978) showed that a test item contacted previous lists that occurred as much as 10 
min before the current list (in an experiment using words as stimuli). Results showed slowing in a “new” test item could be detected if it 
had been presented as a “new” test item up to 10 min previously compared with a “new” test item that had not been presented earlier. 
This suggests that long-term memory is involved in even such a simple task. Despite the interest in this short-term memory task, long- 
term memory for numbers has been rarely studied in tasks analogous to simple list-learning experiments used to examine primacy and 
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recency in the relationship between primary and secondary memory. 
Three general issues are addressed in this article. One is to examine the similarity structure of the representation of numbers in 

long-term memory. To address this, I used a recognition memory paradigm in two experiments. Subjects were shown study lists of six 
two-digit numbers (1500 ms per number), each study list followed by a list of 12 test numbers for which they were to decide if each test 
number had or had not been in the list they were just shown (the same decision as for the working-memory experiments mentioned 
above). The manipulation of most importance was the numerical distance of a test number from a number in the study list. For 
example, if 46 was a studied number, then the numerical distance from it to 47 and 45 would be one, from it to 48 and 44 would be two, 
and so on. The experiments produced two measures: the extent to which studied (“old”) numbers could be distinguished from non- 
studied (“new”) numbers and the extent to which this depended on the numerical distance between a new number and an old 
number; in other words, whether number representations encode similarity based on numerical distance. 

The second issue was whether the two measures are precise enough to provide reliable differences among individuals. If so, the 
measures could provide a broad view of the range of differences among individuals and they would allow meaningful assessment of 
correlations between these measures and practical measures such as age and scores on standard mathematical ability tests. 

The third issue was whether the representations of number obtained for number memory and those obtained for other number tasks 
exhibit the same properties. In earlier studies (Ratcliff, 2014; Ratcliff et al., 2015), number discrimination (e.g., is 78 greater or less 
than 50) showed quite different distance effects from number memory, meaning that it is essential to test hypotheses about repre
sentation with more than one task. To address this, the second experiment used the same number memory task as for the first 
experiment plus a number discrimination task, both tested on the same subjects. 

The focus of the study by Ratcliff et al. (2015) was to provide an approach that would allow an understanding of relationships 
among numeracy tasks and the different dependent variables in the tasks. The tasks used were number memory, number discrimi
nation, and nonsymbolic tasks (e.g., is the number of asterisks in an array greater or less than 50), and examined why there are 
sometimes correlations among their dependent variables and sometimes not and why there are sometimes correlations between the 
dependent variables and measures of achievement and sometimes not (e.g., Chen & Li, 2014; Inglis et al., 2011; Maloney et al., 2010; 
Price et al., 2012). The problem has arisen because of the sometimes arbitrary choices of dependent measures, with some labs using 
mean response times (RTs), others using accuracy, and others using the Weber fraction (an accuracy-based measure). Ratcliff et al. 
(2015) addressed these issues by using a model of decision processes (the diffusion model, Ratcliff, 1978; Ratcliff & McKoon, 2008; 
Ratcliff et al., 2016, described below) that gave a detailed analysis that showed how the different measures are related to each other 
and how their relations and correlations can be different for different tasks. Ratcliff et al. argued that it is essential to explain how 
accuracy and RTs jointly affect performance and that a model-based analysis is required to do this. 

Other than the experiments in Ratcliff et al., there have been very few studies that have examined the representation of numbers in 
memory from a list of numbers that had to be remembered for a short time (with longer delays between study and test than working 
memory span). Similarity (numerical distance) is one aspect of numbers that might be encoded and I have found only one study of 
numerical distance in long-term recognition memory for numbers. It was an early paper-and-pencil study by Dale and Baddeley 

Fig. 1. The three representation models. Fig. 1A-1D show the drift rates for the exponential gradient model (the circles on the functions) when the 
number 46 is studied. Fig. 1A and 1C show the case when discriminability between “old” and “new” numbers is high and Fig. 1B and 1D show the 
case when it is low. Fig. 1A and 1B show a shallow gradient (with low discrimination/high confusability) and Fig. 1C and 1D show a steep gradient. 
Fig. 1E and 1F show the Gaussian and exponential overlap models. Fig. 1G shows a sample study and test list from the experiment. 
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(1966), who used a paradigm in which subjects were shown a list of 15 two-digit numbers and then asked to recall them. They found 
systematic intrusions; for example, if 28, 58, 68, 95, and 97 were in the list, 98 might be recalled in error. Then they placed the numbers 
with high intrusion rates into a recognition memory test and found elevated false alarm rates for those numbers relative to numbers 
with low intrusion rates. 

I tested three models for the representation of numbers in the number memory task used here. The first assumes that new test 
numbers match old numbers as a function of numerical distance, with the value of the match decreasing with numerical distance as an 
exponential gradient. The exponential is the simplest function to choose and it has been used extensively in categorization research 
(Nosofsky 1986; 1987; Nosofsky & Palmeri, 1997) with results that show similarity is related to psychological distance according to an 
exponential function (Shepard, 1986, 1987). 

The other two models assume that the representations of numbers are distributed over numerical distance from an old number such 
that the representations of new numbers overlap with the representations of old numbers as a function of distance (Ratcliff 1981, 1987; 
Gomez, Ratcliff, & Perea, 2008; see also models for transposition errors in short-term recall, e.g., Lee & Estes, 1977). For one of these 
models, the distribution of an old number is assumed to be Gaussian and for the other, it is assumed to be back-to-back exponentials. 
The three models are illustrated in Fig. 1 and will be described in more detail later. 

Throughout this article, I emphasize that the information contained in memory representations cannot be determined directly; 
rather its effects can be observed only when accuracy and RT distributions are used jointly to model decision processes. I integrated the 
diffusion model with the representation models and the latter provided the degree to which a new number is similar to an old number 
which is the information given to the decision process. The decision model then translates that information into RT distributions and 
accuracy. 

1. The diffusion decision model 

The diffusion model provides explanations of behavior in two-choice tasks. There are a number of comprehensive reviews of it and 
how it has been applied in a number of domains (e.g., Forstmann et al., 2016; Ratcliff & McKoon, 2008; Ratcliff et al., 2016), including 
clinical and neuroscience applications. 

The model assumes that evidence from a stimulus or memory is noisy from moment to moment and that this noisy evidence is 
accumulated over time from a starting point (z) until one of two decision boundaries (a and 0) is reached, at which point a response is 
initiated. The model accounts for the effects of experimental manipulations on all aspects of two-choice data: accuracy, mean RTs for 
correct responses and error responses, the full distributions of RTs for correct and error responses, and the relative speeds of correct and 
error responses. One of the strongest constraints on modeling is the shape of RT distributions (Ratcliff, 2002). For simple two-choice 
decisions, empirical RT distributions for humans are almost always positively skewed and have roughly the same shape even though 
the location and spread may differ across conditions that vary in difficulty. It is the variability in the accumulation process that gives 
rise to the right-skewed RT distributions and variability also gives rise to errors when the accumulation process reaches the wrong 
boundary. 

The model provides a decomposition of data that isolates components of processing. One important component is the settings of the 
decision boundaries that represent the amount of evidence that must be accumulated for a decision to be made (boundary separation, 
a). Another is the evidence from a stimulus or memory that drives the accumulation process (drift rate, v). The third is the time taken by 
processes outside the decision process itself - the time to encode a stimulus and extract decision-relevant information from it and the 
time to make a response. These last three durations are combined into one parameter of the model, nondecision time (Ter). 

The model also assumes that these components cannot be set to exactly the same values on successive trials (starting point and 
nondecision time) or with nominally equivalent stimuli (drift rates). Therefore, the model assumes across-trial variability in drift rate 
(normally distributed with standard deviation η), in starting point (uniformly distributed with range sz), and in nondecision time 
(uniformly distributed with range st). Predictions of the model are robust to the precise form of these distributions (Ratcliff 2013). Also, 
across-trial variability in drift rate and starting point allow the model to account for the relative speeds of correct and error responses 
(Ratcliff & McKoon, 2008, Fig. 4). 

2. Integrated diffusion models 

In most past research with the diffusion model, drift rates have been estimated for each condition in an experiment separately, but 
in recent research, there has been development of models that integrate models of perception or memory with the diffusion model to 
provide a more complete model of representation and processing. In integrated models, the perceptual or memory models provide drift 
rates and the diffusion model provides the decision process, which, in turn, provides RT distributions and accuracy. Sometimes models 
provide values for each condition of an experiment and sometimes they provide values for each individual trial. In the former, the 
model can be fit with methods that group responses such as by using quantile RTs. In the latter, the choice and RT for each trial can be 
fit with maximum likelihood (see Ratcliff & Tuerlinckx, 2002). 

There are a number of examples of integrated diffusion models in the literature. Ratcliff (1981) proposed an integrated model for a 
perceptual matching task in which a letter string was studied which was followed immediately by a test string; a subject was to decide 
whether the two strings were the same or different. The model assumes distributions of letters over position and the overall degree of 
overlap between the two strings provides drift rates to the diffusion process. If a test string contains only new letters, there is little 
overlap and this produces a drift rate with a large negative value, leading to fast and accurate “different” decisions. If a test string 
contains letters transposed from the study string, overlap is larger and drift rate has a smaller negative value, which makes “different” 
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decisions slow and inaccurate. Because of limitations in computer speed, the representation and diffusion models were not fit jointly, 
rather drift rates for separate conditions were estimated and the representation model fit to those drift rates. Gomez et al. (2008) 
applied the model successfully to experiments with combinations of transpositions, replacements, and repetitions of letters but did not 
model RTs. Similar distributed representations are also assumed in models for accuracy and RT distributions for confidence judgments 
in recognition memory (Ratcliff & Starns, 2009, 2013). 

Smith and Ratcliff (2009) developed integrated models for simple two-choice perceptual tasks such as deciding whether the 
orientation of Gabor patches is horizontal or vertical. The front-ends of the models encode a representation of visual working memory 
that produces a drift rate as a function of contrast, stimulus duration, with or without masking, with or without a strong attentional cue 
to stimulus onset, and whether the stimulus is in an attended or unattended location. Smith and Ratcliff considered four models that 
crossed single- versus dual-racing diffusion processes with the effect of attention on the growth of the visual trace formation, repre
sented by either a change in drift rate or a delay in the onset of growth. The four models were fit to data for which contrast, masking, 
stimulus duration, and an attentional cue were manipulated in an experiment by Gould et al. (2007) and one by Smith et al. (2004). 
The models produced similar accounts of the data and so provided an account of attention processes and their effects on speed and 
accuracy in these perceptual tasks. 

For a recognition memory task, Ratcliff et al. (2016) assumed that drift rate was a linear function of an EEG measure. On each trial 
of the experiment, the drift rate was computed from the linear function and the likelihood of that stimulus and response (for maximum 
likelihood fitting). They found that a coefficient (the slope of the linear function) that mapped from the EEG measure to drift rate was 
reliably different from zero, indicating that the EEG signal provided a measure of the strength of items in memory on an item-by-item 
basis. 

Sewell et al. (2019) fit an integrated learning/diffusion model to accuracy and RT distributions with a simple probabilistic category 
learning task. In the task, one stimulus is presented and the probability of assigning a stimulus to one or the other category is 
manipulated for different stimuli. For this task, the model accounted for changes in performance with only drift rate changing. 

Pedersen et al. (2016) and Pedersen and Frank (2020) integrated a reinforcement learning model with a diffusion model. In a 
typical task, two alternatives were presented and the subject had to choose one of them. Feedback was provided that signaled which of 
the choices should have been made. The expected reward was updated using the delta rule. Drift rate on a trial was a drift rate co
efficient multiplied by the difference in evidence for the two choices. Because this model produced a value of drift rate for each trial, it 
was fit using a Bayesian method (using a likelihood for each trial) and provided a reasonable account of the data. Pedersen and Frank 
(2020) developed a module for the Bayesian diffusion model fitting package (HDDM, a hierarchical drift–diffusion model, Wiecki et al., 
2013) that allows fitting of a hierarchical version of the reinforcement learning model. Other integrated models can be also be fit with 
the HDDM model fitting package with simple models of drift rates, boundary settings, and nondecision time (e.g., linear models) but 
the hierarchical part of the package does not allow differences in the across-trial variability parameters across individual subjects. 
There are two other recent integrated reinforcement learning/diffusion models, one by Fontanesi et al. (2019) and one by Miletic et al. 
(2021). The former ignores the behavior of RT distributions but the latter provides a detailed analysis of distributions. In contrast to the 
Pedersen et al. model, neither model has boundaries changing with learning. But critically, neither model would account for large 
shifts in RT distributions that occur when unrewarded (low reinforced) alternatives are paired at test producing high conflict (Ratcliff 
& Frank, 2012). This is a fruitful area in which integrated models can be developed and tested. The challenge is to work with clinically- 
relevant data and to apply the models to more complicated reinforcement learning paradigms. 

3. Numerical cognition and diffusion models 

In the numerical cognition literature, numerosity discrimination tasks have been used to examine representations of nonsymbolic 
numerosity. Ratcliff and McKoon (2018; 2020a) integrated linear and logarithmic models of representations of numerosity with the 
diffusion model (linear and log models have also been applied to brightness and motion discrimination tasks, Ratcliff, Voskuilen, & 
McKoon, 2018). Ratcliff and McKoon’s study (2018; 2020a) used one task for which blue and yellow dots were mixed in a display and 
subjects decided which color was more numerous. In another task, stimuli were two side-by-side arrays and subjects decided which had 
the larger number of dots. In the linear model, drift rate was a function of the difference in the number of dots and in the log model, 
drift rate was a function of the difference in the logs of the number of dots. In the linear model, across-trial SD in drift rate was a linear 
function of the sum of the squares of the two numbers and in the log model it was constant. 

The mixed-display task produced a surprising result: for a small constant difference in the number of dots, as the total number 
increased (e.g., 10 and 15 to 20 and 25 to 35 and 40), accuracy decreased but counter-intuitively, RT also decreased. For the separate- 
display task, there was the usual finding: accuracy decreased and RT increased. As was suggested above, different models of repre
sentation are sometimes needed for different tasks: the linear model accounted for the mixed-display result and the log model 
accounted for the separate-display result. A speculation as to why this occurred is that when there is a mixed display, the only in
formation that is available is differences and so the linear model with increasing variability accounted for the data. When the two 
displays are side by side, separate representations are available and the so the log model accounted for the data. Kang and Ratcliff 
(2020) extended these models to examine non-numeric (e.g., dot area) variables as well as numeracy ones. These results reinforce the 
argument that representations used in decision-making in some cases are task dependent. 

Two tasks with symbolic (two-digit numbers) have been examined using diffusion models. In a number discrimination task from 
Ratcliff et al. (2015), subjects were to decide whether a two-digit number was greater or less than 50, one of the tasks used in 
Experiment 2 below. Drift rate functions were approximately linear with drift rates near 50 lower than those further away numerically 
(see also Experiments 3 and 4 in Ratcliff, 2014). In a number-line task, Ratcliff and McKoon (2020b) applied a spatially continuous 
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diffusion model to results from a task in which responses were made on a continuous line. In this task, a two-digit number was pre
sented and subjects had to point to the position on a line (0–100) that reflected that number. Results showed that the analog repre
sentation of the symbolic numbers was symmetrically distributed with standard deviations that were quite similar to each other across 
the range of stimulus numbers. 

4. Representation models for numbers in recognition memory 

The three models of representation that I evaluated are shown in Fig. 1. One is the exponential gradient model (Fig. 1A-1D). Drift 
rates are an exponential function of distance from an old number: 

v(xi) = vn + c × exp(− (xi − x0)/τ), (1) 

where vn is the drift rate for a test number that is far distant from all old numbers, c is the difference in drift rates between an old and 
a far-distant new number (so the drift rate for an old number, 46 in the figures, is vn + c) and τ is the decay constant. In Figures A-D, the 
drift rate falls from that for 46 to one-distant numbers, two-distant numbers, and then 3-distant numbers. The drop off is more shallow 
in A and B than in C and D (i.e., τ is larger in A and B compared with C and D) and the discriminability between old and new numbers is 
higher in A and C than in B and D. This illustrates the range of values the function can take. 

Fig. 1E and 1F show the overlap models, with only one example for each instead of the four for the exponential gradient model. The 
representation of a number is distributed over position as a Gaussian distribution, 1E, and back-to-back exponentials, 1F. (Only the 
right-hand portions of the distributions are shown; the left-hand ones would be mirror images of the right-hand ones). Drift rates are 
proportional to the areas under the functions, the black area between 45.5 and 46.5 for old numbers, the dark-gray areas between 46.5 
and 47.5 for 1-distant new numbers, the mid-gray areas between 47.5 and 48.5 for 2-distant new numbers, and so on. The expression 
for drift rate is given by. 

v(xi) = vn + c
∫ xi+0.5

xi − 0.5
fx0 (x)dx (2) 

The parameter of the overlap models that corresponds to the decay parameter in the exponential gradient model is the SD of the 
distributions. 

The parameter for the SD in the exponential overlap model is the decay constant τ. The integration in Equation (2) gives an 
exponential function that is the same as that for the exponential gradient model so the two models appear to be the same, but these 
differ in the center of the function. In the gradient model, the peak is exponential at 46 in the example, but in the overlap model the 
area is reduced from a pure exponential because it has areas from the two back-to-back exponentials. Thus it produces a lower drift rate 
for old numbers (the black area in Fig. 1F) than the exponential gradient model relative to the drift rates for the other distances. 

In applications of the model to memory tasks, the across-trial SD in drift rate has been found to be different for old and new items 
(Ratcliff et al., 1992; Starns & Ratcliff, 2014; Starns et al., 2012). Therefore, for all three models, variability in drift rate across trials 
was assumed to be normally distributed with different SDs for old numbers (ηo) and new numbers (ηn). 

5. Experiment 1 

This experiment used the number memory task described above; subjects studied a list of 6 numbers followed by a test list of 6 old 
and 6 new numbers. The data of interest were RTs and accuracy for old test numbers, new test numbers that were numerically far from 
all studied numbers (I label these remote numbers), new test numbers that were 1-, 2-, or 3 -distant from an old number, and a number 
that was new in the immediately prior test list. The three integrated models were tested with the data from this task. Another model 
was added for which the diffusion model was applied in the usual way, that is, without any representation model to determine drift 
rates and so the drift rates for each condition were different. I call this the default model. 

Designing this experiment was tricky because there are a large number of possible confounds such as repetitions of numbers, 
numbers that might be particularly memorable, test numbers that cross decades, and so on. As described below, the design of the 
experiment controlled for as many of these factors as possible. 

5.1. Method 

Thirty-eight college students, all at Ohio State University and all of whom signed a consent form approved by the IRB, participated 
in the experiment for one 55-minute session for credit in an introductory psychology class. All the data were collected before they were 
examined and subject and outlier elimination for all experiments was carried out before any data analysis and modeling was per
formed. Eight subjects produced large proportions of fast guesses; for these subjects, there were an average of 19.3 % responses with 
RTs less than 300 ms with accuracy at chance. The data from these subjects were eliminated from the analyses. This was done because 
these subjects were not following instructions and so other aspects of their data may be suspect. 

Study and test numbers were displayed on a PC monitor using local real-time software and responses were collected from the PC 
keyboard. Subjects were asked to respond to the test numbers as quickly and accurately as they could. They were tested either alone or 
in pairs. 

There were 80 study-test lists. The first was used for practice and the data were discarded. There were 64 lists that manipulated 
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distance and 16 filler lists. Each list began with an instruction to press the space bar to begin the study list. Each number was displayed 
for 1300 ms, then the screen cleared for 200 ms, and then the next number was displayed. After the last number, subjects pressed the 
space bar to begin the test list. The “/” key was used for “old” responses and the “z” key for “new” ones. If a response was shorter than 
280 ms, a message “TOO FAST” appeared for 1500 ms. If a response was longer than 1250 ms, “TOO SLOW” appeared for 300 ms. 
Correct or error feedback (the words “CORRECT” or “ERROR”) was given for 300 ms after the TOO SLOW or TOO FAST message (if 
there was one) or immediately after the response. After this, there was a 300 ms blank screen and then the next test number. 

In the 64 lists that manipulated distance, 3 of the study numbers in each list were those to be tested, each with a number that was 1- 
distant, 2-distant, or 3-distant (randomly chosen). These 3 numbers were studied only in positions 2 through 5 in the study list to avoid 
beginning or end of list effects. These 3 study numbers were selected randomly from the ranges 14–16, 24–26, …, 94–96, with the 
restriction that they were at least two decades away from each other. The other 3 study numbers were selected randomly from numbers 
that were not in the same decade as any of the other five study numbers, had not appeared in the preceding two study-test lists (with 
the exception of the number that appeared in the prior list), and were not decade numbers (10, 20, ….…90). 

The 16 filler study-test lists were used for numbers that were under-represented in the 64 experimental lists. The filler lists were 
separated from each other by between 3 and 7 of the experimental lists. Numbers in the range 11–13 occurred with (relative to the 
other numbers) frequency 5, numbers in the range 14–16 occurred with frequency 1, numbers in the ranges 17–19 and 21–23 occurred 
with frequency 5, …, numbers in the range 94–96 occurred with frequency 1, and numbers in the range 97–99 occurred with frequency 
5. 

In a test list, the first tested number could not be the last number from the study list. The 1-, 2-, and 3-distant numbers appeared in 
positions 3–9 of the test list, at least three test numbers before their studied number (the study numbers for these test numbers 
appeared in positions 6–12 in the test list but the other “old” test numbers could appear in any position in the test list). The test number 
from the previous list appeared in a random position. An example study and test list is shown in Fig. 1G. In the test list, only the 
numbers were presented; to the right of the number is a description of the condition (which was not shown to subjects). 

6. Results 

The first study-test block and the first response in the test list in each block were eliminated from the data. Of the remaining data, 
responses with RTs less than 350 ms and greater than 3000 ms, about 2.4 % of the data, were also eliminated. For responses with RTs 
between 300 and 350 ms, the accuracy of “old” items was 0.638 and new items not from the prior list was 0.603. For responses with 
RTs between 350 and 400 ms, the accuracy of “old” items was 0.642 and new items not from the prior list was 0.544. Thus, accuracy 
started to rise at around the 350 ms cutoff (Because the model was fit using quantile RTs, elimination of a few short RTs hardly affects 
the model fits, see Ratcliff & Tuerlinckx, 2002). 

Table 1 gives the means for accuracy and RTs for “old” numbers, 1-, 2-, and 3-distant numbers, remote numbers, and numbers from 
the prior list. As would be expected, the probability of a “new” response increased, by about 11 %, as the distance between a test 
number and its study number increased from 1-distant to remote. Mean correct RTs changed by 28 ms from 1-distant to remote test 
numbers. 

I performed one-way ANOVAs on accuracy values and correct mean RTs for 1-, 2-, and 3-distant numbers, and remote numbers. For 
accuracy, the effect of distance was significant, F(3,87) = 17.8, p = 4.5 × 10-9, ηp

2 = 0.38 (partial ηp
2) and for mean RTs, the effect was 

also significant, F(3,87) = 4.5, p =.0055, ηp
2 = 0.13. 

6.1. Fits of the models 

I fit the three integrated models and the default model to the data from each subject separately using the G-square method described 
in the Appendix. The means over subjects of the parameters that best fit the data and the mean over G-square values are shown in 
Table 2. The eighth and ninth columns show the values for the parameters of the representation models; the decay constant for the 
exponential model (τ) or the SD (σ or τ) of the overlap models and the drift-rate multiplying constant (c). The drift rates for remote 
(new) numbers and new numbers from the previous list are also shown in Table 2. 

Table 1 
Accuracy, mean RTs, and numbers of observations.  

Condition Experiment 1 Experiment 2  

P 
(“old”) 

Mean RT “old” 
(ms) 

Mean RT “new” 
(ms) 

Mean N per 
subject 

P 
(“old”) 

Mean RT “old” 
(ms) 

Mean RT “new” 
(ms) 

Mean N per 
subject 

Old number  0.667 642 675 420  0.716 657 715 345 
New 1- 

distant  
0.439 652 707 63  0.429 683 743 51 

New 2- 
distant  

0.403 659 688 62  0.397 674 739 52 

New 3- 
distant  

0.351 675 697 62  0.350 697 734 52 

New remote  0.328 654 679 185  0.320 678 708 154 
New prior  0.408 656 678 62  0.383 702 721 52  
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The values of the diffusion model parameters were quite close to each other for the three integrated models and the default model 
and similar to those from recognition memory experiments with words (Ratcliff et al., 2004, 2010, 2011) and the number memory 
experiment in Ratcliff et al. (2015). Table 3 shows data in the first row and the next rows show drift rates and the probabilities of 
responses that the drift rates predict: the probabilities of “old” responses, of 1-distant, 2-distant, and 3-distant “new” responses, and of 
remote “new” responses. The predicted probabilities for the default model are all within about 0.01 of the data, as might be expected. 

Of the three integrated models, the predicted probabilities of the exponential gradient model matched the data best; the largest miss 
was 0.03 for the 2-distant condition. The Gaussian overlap model’s predictions matched the data less well; it over-estimated the 
probabilities for old and 1-distant numbers (both about 0.03 higher than the data) and under-estimated them for 2-distant numbers 
(about 0.07 lower than the data). In other words, the model predicted a steeper gradient between 1- and 2-distant numbers than the 
data. The exponential overlap model over-estimated the probabilities for old and 1-distant numbers (about 0.03 and 0.05 higher than 
the data, respectively) and under-estimated them for 2-distant numbers (about 0.03 lower than the data). For new numbers from the 
previous test list, accuracy, mean RT, and drift rates were similar to those of 2-distant numbers (Tables 1 and 2), showing some leakage 
from the previous list as for similar studies with word stimuli (Ratcliff, 1978; Ratcliff, Clark, & Shiffrin, 1990, Experiment 4). 

Fig. 2 shows quantile-probability plots in which the 0.1, 0.3, 0.5, 0.7, and 0.9 quantile RTs are plotted vertically against the 
proportions of responses for each experimental condition for the exponential gradient model (the plots for the other models are quite 
similar and are not shown). The data and the model predictions are generated for each subject separately then averaged in the same 
way. Fig. 2A shows “old” responses and 2B shows “new” responses. The x’s are the data and the o’s and the lines between them are 
model predictions. Quantile-probability plots show how accuracy and the shapes of the RT distributions jointly change across the 
conditions of an experiment that differ in difficulty. The shapes of the distributions can be seen (approximately) by drawing equal-area 
rectangles between the quantile RTs, as shown in Fig. 2B. The 0.1 quantile represents the leading edges of the distributions and the 0.9 
quantile the tail of the distributions. The only systematic misses for the model are small and occur in the leading edges of the RT 
distributions (the 0.9 quantiles have high variability and so misses are not as systematic). 

Fig. 2C, again for the exponential gradient model, shows the probabilities of “old” responses for all subjects and all conditions, with 
the data and predictions from the model plotted against each other. The x’s are the points with more than 80 observations (and so less 
variability) and the o’s for those with fewer observations. Fig. 2D, 2E, and 2F show the same plots for the 0.1, 0.5, and 0.9 quantile RTs. 
All of the plots show good correspondence between theory and data, with very few large deviations for points with more than 80 
observations. The plots for the other models are quite similar to those for the exponential gradient model and are not presented here. 

Fig. 3A shows a plot of the drift rates produced from the exponential gradient model (the “o” symbols) and the drift rates produced 
from the default model (the “x” symbols), for old numbers, new numbers 1-, 2-, and 3-distant, and remote numbers (placed at distance 
6 because the function had asymptoted by distance 6). The plot shows a close match between the drift rates. Values for drift rates for all 

Table 2 
Mean model parameters from fits to data.  

Expt. Model/task a Ter ηo ηn sz st z σ/τ c vn vp G2 

1 Default  0.098  0.481  0.198  0.117  0.040  0.247  0.054    − 0.125  − 0.080  66.2  
Exp. grad.  0.098  0.476  0.194  0.115  0.031  0.244  0.054  0.977  0.220  − 0.123  − 0.080  67.8  
Gaus. overlap  0.099  0.477  0.199  0.122  0.034  0.245  0.054  0.632  0.407  − 0.118  − 0.081  69.0  
Exp. overlap  0.098  0.478  0.194  0.119  0.035  0.245  0.054  0.800  0.251  − 0.123  − 0.079  68.4 

2 Default  0.108  0.487  0.204  0.145  0.036  0.270  0.062    − 0.151  − 0.100  64.8  
Exp. grad.  0.108  0.486  0.216  0.151  0.030  0.272  0.063  0.824  0.276  − 0.141  − 0.094  67.6  
Gaus. overlap  0.108  0.487  0.218  0.158  0.029  0.273  0.063  0.763  0.621  − 0.145  − 0.101  68.0  
Exp. overlap  0.108  0.484  0.200  0.142  0.024  0.271  0.062  0.860  0.311  − 0.140  − 0.091  67.2  
Number disc.  0.124  0.338  0.088   0.034  0.115  0.062      68.0 

The model parameters are: boundary separation a, starting point z, nondecision time Ter, SD in drift rate across trials for studied items ηo and for “new” 
test items ηn, across trial range in starting point sz, across trial range in nondecision time st, decay constant τ for the exponential gradient model and 
SDs σ for the overlap models, drift rate multiplying constant c, drift rate for remote new numbers vn, and drift rate for numbers from the prior list vp. 

Table 3 
Mean drift rates and proportions of “old” responses.  

Expt. Data/model vo v1 v2 v3 vn pro pr1 pr2 pr3 prn 

1 Data       0.667  0.439  0.403  0.351  0.328  
Default 0.101 − 0.058 − 0.078 − 0.115 − 0.125  0.678  0.438  0.402  0.339  0.323  
Exp. gradient 0.097 − 0.044 − 0.095 − 0.113 − 0.123  0.676  0.461  0.369  0.338  0.321  
Gauss. overlap 0.114 − 0.034 − 0.114 − 0.118 − 0.118  0.693  0.475  0.334  0.328  0.328  
Exp. overlap 0.110 − 0.027 − 0.096 − 0.115 − 0.123  0.693  0.494  0.371  0.338  0.325 

2 Data       0.716  0.429  0.397  0.350  0.320  
Default 0.131 − 0.072 − 0.086 − 0.113 − 0.151  0.732  0.429  0.404  0.358  0.299  
Exp. gradient 0.135 − 0.059 − 0.117 − 0.134 − 0.141  0.736  0.459  0.360  0.333  0.322  
Gauss. overlap 0.158 − 0.001 − 0.130 − 0.145 − 0.145  0.761  0.560  0.342  0.319  0.319  
Exp. overlap 0.134 − 0.020 − 0.103 − 0.128 − 0.140  0.740  0.519  0.371  0.328  0.309 

Drift rates v are: vo for old numbers, vn for remote new numbers, and v1 - v3 for numbers 1 – 3 digits separated from a studied number. The pr’s are 
probabilities corresponding to those drift rates. 
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Fig. 2. The top two panels show quantile probability plots for “old” and “new” responses, with x’s for the data and o’s for the predictions of the 
exponential gradient model. The lines represent the 0.1, 0.3, 0.5, 0.7, and 0.9 quantile RTs and the horizontal location of the quantiles represents the 
proportion of those choices. The bottom four panels show the choice proportions and 0.1, 0.5, and 0.9 quantile RTs for theory (exponential gradient 
model) against data for each condition for each subject of the experiment. The “x” symbols are for conditions with more than 80 observations and 
the dots for conditions with between 10 and 80 observations. 30 data points from conditions and subjects for which there were too few observations 
to compute quantiles. 
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the models and their predicted accuracy values are shown in Table 3. 

6.2. Goodness of fit 

For each experimental condition, the RT distributions are represented by 5 quantile RTs, (the 0.1 quantile represents the leading 
edge, the 0.5 quantile is the median, and the 0.9 quantile represents the tail). This produces 6 bins between and outside the quantiles 
which produces 11 degrees of freedom for each pair of correct and error RTs (the probabilities have to add to 1 which makes the 12 bins 
produce 11 degrees of freedom). Accuracy is represented in the RT bins: For accuracy 90 %, 0.9 probability will be spread in the bins 
for correct responses and 0.1 in the bins for error responses. Thus, for the 6 conditions of Experiment 1, there are 66 independent bins 
(i.e., 66 degrees of freedom) in the RT distributions, all to be fit with an 11 parameter model. This produces 55 degrees of freedom in 
the fits of the model to data. 

The mean (over subjects) G-square statistics for the three integrated models and the default model are shown in Table 2. 
Numerically, in terms of G-squared values, the exponential gradient model fit best followed by the exponential overlap model, and then 
the Gaussian overlap model, but the differences are very small and the fits are quite similar. Numerical goodness of fit for the default 
model was slightly better than the three integrated models as would be expected because the drift rates are independent. 

The goodness of fit statistic G-square is asymptotically distributed as chi-square and for this experiment, with 55 degrees of freedom 
for the integrated models, the critical value is 73.3 (for the default model with 53 degrees of freedom, the critical value is 71.0) For all 
of the models, the mean G-square values were less than the critical chi-square value. For the exponential gradient, Gaussian overlap, 
and exponential overlap models, 8, 9, and 8 subjects, respectively (out of 37) had significant values and for the default model, 6 
subjects had significant values larger than the critical value. These show quite good fits of the models to the data like those from fits to 
other tasks (e.g., Ratcliff et al., 2010). 

Because G-square is a multinomial log likelihood, AIC and BIC can be computed and the number of subjects favoring each model 
can be compared (see the Appendix). The results are presented in Table 4. For the G-square statistic, the default model was preferred by 
the most subjects, but this is expected based on the relative freedom of the model and the larger number of parameters. For AIC and 
BIC, around half the subjects preferred the exponential gradient model, next was the Gaussian overlap model, and then the exponential 
overlap model. This shows that the exponential gradient model fits best for around half the subjects, but because the fits are similar, the 
small differences between it and the other models do not allow us to decisively discriminate among the models; all do a reasonable job 
of fitting the data. 

It is important to stress the constraints on the models in fitting data. First, as said above, they must explain why RT distributions 

Fig. 3. Fig. 3A and 3B (for Experiments 1 and 2 respectively) show drift rates plotted against numerical distance. The x’s are estimated drift rates 
from the default model with separate drift rates for each condition and o’s are those from the exponential gradient model. Distant 0 is for studied 
numbers, distances 1, 2, and 3 are for test numbers 1, 2, and 3 from a studied number (e.g., when 46 was studied the test numbers might be 47, 48, 
and 49 respectively), and 6 is for remote numbers. Fig. 3C shows a plot of drift rates as a function of the numerical distance from the referent (50) for 
the discrimination task in Experiment 2. The straight line is a linear regression line. 

Table 4 
Number of subjects best fit by the model for three goodness of fit statistics.  

Experiment Statistic Default separate drift rates Exponential gradient model Gaussian overlap model Exponential overlap model 

1 G2 22 4 1 3  
AIC 2 14 9 5  
BIC 0 16 9 5 

2 G2 26 2 1 0  
AIC 3 13 7 6  
BIC 0 16 7 6  
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have the shape that they do and why this shape is the same for all the conditions of the experiment, that is, why mean RTs change 
across conditions but the shapes of the RT distributions do not (see Ratcliff & McKoon, 2008). Second, there are 11 parameters for each 
of the integrated models and these 11 must jointly account for how accuracy and RT distributions change together across the con
ditions of an experiment. 

The third constraint for all diffusion model applications is that changes in accuracy and RT distributions have to be consistent. 
Ratcliff (2002) made up several sets of fake but plausible data with RT distribution shape changing, whether the distributions shifted or 
spread with changes in accuracy, and whether correct and error RTs were shifted relative to each other. For most of the patterns of 
results, the diffusion model could not fit the fabricated data. 

6.3. Individual differences 

At this point, I have shown that, for all four models, the values of the parameters that gave the best fit to the data produced drift 
rates that produced accuracy and RT values that match the data well (although a little better for the exponential gradient model). 
While these results can tell us how the range of the distance effect varies across individuals, they do not tell us whether drift rates (or 
other parameters), can be useful in examining individual differences. The following analysis of the variability across subjects relative 
to the variability in parameter values shows that the model parameters are estimated with enough precision for individual difference 
applications. For example, a diffusion model analysis of a item recognition task with words and simple machine learning discrimi
nation methods has given a separation of memory-disordered patients from controls with about 83 % accuracy (Ratcliff et al., 2021). 

To use the model to examine individual differences, the variability among subjects in the parameter values needs to be larger than 
random variability from fitting the model to data (as a function of the number of observations). To estimate random variability, I used 
Monte Carlo simulations. For each model, I generated 64 sets of simulated data using the mean parameter values in Tables 2 and 3 with 
the same numbers of observations per condition as in the experiment (see Ratcliff & Childers, 2015; Ratcliff & Tuerlinckx, 2002, for 
examples with differing numbers of observations). The model was then fit to the simulated data set generated from the model and the 
SD in the value of each parameter across the data sets was computed. The question is whether the variability across subjects in the real 
data reflects only this variability arising from different random samples of data or a combination of this variability and meaningful 
differences among subjects. 

The combination of two sources of variability is computed by taking the square root of the sum of the squares of the SDs from each 
source (i.e., variances add). As an example, suppose the true SD in a model parameter across subjects was 1.0 and the SD from the 
Monte Carlo was 0.8, then the combination of the two would be 1.28. In other words, even with a random component (from limited 
sample size, estimation error, etc.) that is 80 % the size of the variability across subjects, it is possible to measure individual differences 
reliably. For example, there were correlations in the range of 0.5–0.6 for IQ with drift rate in Ratcliff et al., (2010, 2011). 

The key parameters for the integrated models that produce drift rates are the baseline drift rate vn, the multiplying constant (c), and 
the decay constant for the exponential gradient model and the SDs for the overlap models. Table 5 shows the SDs in the model pa
rameters from the real data and the Monte Carlo data. The ratios of the Monte Carlos to the real data are small enough for all three 
parameters for all three models that individual differences can be reliably measured. The ratios for the exponential gradient model for 
τ, c, and vn were 0.83, 0.65, and 0.58 respectively. For the Gaussian overlap model, the ratios for σ, c, and vn were 0.38, 0.63, and 0.68 
respectively, and for the exponential overlap model, the ratios for τ, c, and vn were 0.68, 0.51, and 0.51, respectively. 

One point to note is that the SD parameter for the Gaussian overlap model is better estimated than the decay parameters for the 
exponential gradient and overlap models. This suggests that the Gaussian overlap model might provide a better measure of individual 
differences than the two exponential models. Even so, these parameters correlate highly over individuals (0.92 for the exponential 
gradient model and Gaussian overlap models, 0.90, for the exponential gradient and exponential overlap models, and 0.96 for the two 
overlap models) showing that they provide similar measures of individual differences (as would be expected because they are based on 
the same data). 

For the three diffusion model parameters nondecision time, boundary separation, and across-trial range in nondecision time, the 
ratios are small enough to measure individual differences (as in Ratcliff et al., 2010, 2011). However, the ratios for across-trial SDs in 
drift rate and the range of starting points are too large to allow anything beyond the largest differences among individuals to be 
measured. 

Fig. 4 shows correlations among pairs of model parameters, scatter plots for these pairs of parameters, and histograms of each 
model parameter for the exponential gradient model for the experimental data. The histograms show symmetric or slightly right- 

Table 5 
SDs in Model Parameters from Fits to Data and Fits to Monte Carlo Simulated ata for Experiment 1.  

Model Source a Ter ηo ηn sz st σ/τ c vn vp 

Exponential gradient data  0.010  0.058  0.090  0.068  0.024  0.069  0.639  0.077  0.057  0.060  
monte  0.006  0.011  0.074  0.084  0.023  0.018  0.530  0.050  0.033  0.047 

Gaussian overlap data  0.010  0.056  0.087  0.068  0.025  0.068  0.493  0.299  0.057  0.058  
monte  0.007  0.012  0.089  0.095  0.025  0.020  0.185  0.188  0.039  0.039 

Exponential overlap data  0.010  0.058  0.071  0.063  0.025  0.068  0.749  0.210  0.059  0.059  
monte  0.005  0.011  0.066  0.076  0.022  0.017  0.384  0.120  0.030  0.040 

The model parameters are listed in the footnote to Table 3. 
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skewed distributions except for across-trial SD in drift rate and across-trial range in starting point. A correlation to note is the negative 
correlation between the multiplying constant c and the baseline drift rate vn. This means that if discriminability increases, c goes up 
then vn goes down to make a higher hit rate and a lower false alarm rate. Two other correlations to note are that nondecision time 
correlates with across-trial range in nondecision time and across-trial SD in drift rate correlates with the drift rate parameters (c and 
vn). These suggest a scaling effect in which an increase in ηo is accompanied by an increase in variability (as in Ratcliff et al., 2001, p. 
337). 

Fig. 5 shows the same plot for the Monte Carlo simulated data for comparison with the individual differences in Fig. 4. As for Fig. 4, 
histograms show symmetric or slightly right skewed distributions except for across-trial SD in drift rate and across-trial range in 
starting point. The same negative correlation is observed between c and vn and these parameters are correlated with across-trial SD in 
drift rate. There are also correlations between boundary separation and drift rates and between nondecision time and drift rate pa
rameters. All these patterns have been observed and explained before (Ratcliff & Tuerlinckx, 2002, Figure 6 and Table 3) in terms of 

Fig. 4. Scatter plots, histograms, and correlations for model parameters for the fit of the exponential gradient model to the experimental data. Each 
dot represents the parameter from an individual subject. The identity of the comparison in each off-diagonal plot or correlation is obtained from the 
task labels in the corresponding horizontal and vertical diagonal plots. The lines in the bottom left of the plots are lowess smoothers (from the R 
package). The model parameters are: boundary separation a, nondecision time Ter, SD in drift rate across trials for studied numbers ηo and for “new” 
test numbers ηn, across-trial range in starting point sz, across-trial range in nondecision time st, decay constant τ, drift rate multiplying constant c, 
drift rate for unrelated non-studied numbers vn, and drift rate for numbers from the prior list vp. A correlation of 0.31 with 28 degrees of freedom (30 
subjects) is significant at the 0.05 level. But there are many correlations in the figure so care must be taken in interpreting correlations around 
that number. 
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how model parameters covary to accommodate random variation in data. 
Another notable result that occurs for the parameters for both the experimental data and the Monte Carlo data is that the expo

nential decay parameter is not correlated with the drift-rate parameters c and vn. This suggests that they represent different individual 
differences (Fig. 4) and do not tradeoff in estimation (Fig. 5). 

The simulated data were generated from all three integrated models and the three models can be fit to each data set to determine 
whether the models are identifiable based on the numbers of observations per subject in Experiment 1. The aim is to determine 
whether a model fits data generated from itself better than the other models fit the data. Because the goodness of fit values for the three 
models are so close to each other (Table 2), I did not expect them to be identifiable. For the simulated data from for exponential 
gradient model, the exponential gradient, the Gaussian overlap, and the exponential overlap models were best fit for 22, 22, and 20 
(respectively) of the 64 data sets. For data from the Gaussian overlap model, the corresponding numbers were 21, 24, and 19, and for 
data from the exponential overlap model, the numbers were 21, 25, and 18. These results show that the models are not identifiable 
based on the amount of data collected in one hour of testing using this paradigm. 

These model fits can also be used to see if the model parameters are correlated across fits to the data sets. For the drift rate pa
rameters, decay constant/SD in the overlap distributions, τ/σ, the baseline new drift rate vn, and the multiplying constant c, the 
correlations across the 9 comparisons (3 pairs of models by 3 simulated data sets) were between 0.71 and 0.97 for the decay constant/ 
SD, between 0.91 and 0.98 for the baseline new drift rate, and between 0.43 and 0.91 for the multiplying constant. For the multiplying 

Fig. 5. The same plot as in Fig. 4 for the fits of the exponential gradient model to the Monte Carlo simulated data from the exponential gradient 
model. There are 64 data points in the figure and a correlation of 0.21 with 62 degrees of freedom is significant at the 0.05 level. There are many 
correlations in the figure so care must be taken in interpreting correlations around that number. 
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constant, the models operate a little differently because for the overlap models, the height of the distributions is a function of both the 
SD and the multiplying factor. For the two overlap models the correlations for the multiplying constant were between 0.83 and 0.91. 
These correlations show that the models are producing estimates of decay in drift rates as a function of distance that are similar to each 
other and so are describing the data in the same way. 

7. Experiment 2 

This experiment provides a replication of the memory task used in Experiment 1 and adds a number discrimination task so that the 
distance effects in the two tasks can be compared. This experiment was conducted in response to a reviewer of a previous version of this 
article who raised the question of whether the distance effects obtained in the memory task and those obtained in number discrim
ination tasks (e.g., Moyer & Landauer, 1967; Dehaene et al., 1990) are similar. The discrimination task in Experiment 2 used two-digit 
numbers and was the same as that used by Ratcliff (2014, Experiment 5) and Ratcliff et al. (2015) and similar to that used by Dehaene 
et al. (1990). Specifically, subjects decided whether a two-digit number was greater or less than 50. 

To anticipate, in number discrimination, drift rate was linear as a function of the distance between a test number and 50. This 
contrasts sharply with the distance effect found in Experiment 1 where the function was approximately exponentially decreasing 
(Fig. 3A). 

7.1. Method 

I aimed for 30 subjects, but one did not finish the number discrimination task and results and analyses are for the data from 29 
subjects. They were recruited from The Ohio State University student body and took part in two 45-minute sessions, one for each task, 
and the order of the tests was randomized. They were paid $12 per session. 

The number memory task was the same as that in Experiment 1. For the number discrimination task, on each trial, a white number 
between 10 and 90 was displayed on a black background in the middle of a laptop screen. The number remained on the screen until a 
response key was pressed. Then the screen cleared, accuracy feedback consisting of a smiling or frowning face was displayed for 500 
ms, there was a 100 ms blank screen, and then the next trial. Subjects were instructed to respond “small” with one key if the number 
was between 10 and 49 and “large” with another key if it was between 51 and 90 and to do so as quickly and accurately as possible. 
There were a total of 17 blocks of trials, 80 trials per block, with each of the possible numbers tested once in each block in random 
order. 

For the number memory task, subjects finished an average of 59 study-test lists in the time allotted and for the number discrim
ination task, an average of 15 blocks. Unlike Experiment 1, none of the subjects performed with fast guesses (because they were paid 
and also had been tested in other experiments in our laboratory and were found to be reliable) and so none were eliminated. The 
subjects were tested individually with a research assistant monitoring them. 

7.2. Results 

For the number memory task, RTs less than 350 ms and greater than 3000 ms were eliminated which removed 2.8 % of the data (the 
same cutoffs were used as for Experiment 1). For the number discrimination task, RTs less than 250 ms and greater than 3000 ms were 
eliminated which removed 0.2 % of the data (accuracy was 0.761 for responses between 250 and 300 ms so the lower 250 ms value was 
chosen as the lower cutoff). 

The three integrated models were fit to the data from the number memory task in exactly the same way as for Experiment 1. A 
summary of the data is shown in Table 1. Accuracy was about 5 % higher for “old” responses than in Experiment 1 and accuracy for 
“new” responses was about the same. Mean RTs were between 15 and 50 ms longer than those for Experiment 1. 

I performed one-way ANOVAs on accuracy values and correct mean RTs for 1-, 2-, and 3-distant numbers and remote numbers. For 
accuracy, the effect of distance was significant, F(3,84) = 13.6, p = 2.5 × 10-7, ηp

2 = 0.33 (partial ηp
2) and for mean RTs, the effect was 

also significant, F(3,84) = 4.0, p =.011, ηp
2 = 0.12. The distance effects were significant as in Experiment 1. 

The values of the diffusion model parameters are shown in Tables 2 and 3. The values of the boundary separation, nondecision time, 
and across-trial variability parameters differ by less than 10 % from Experiment 1 except that the across-trial SD in drift rate for new 
numbers is larger by about 25 %. The drift rates in Table 3 are higher for old numbers and more negative for new numbers. 

Fig. 3B shows the same plots from Experiment 2 as in Fig. 3A for Experiment 1 with drift rates from the exponential gradient model 
plotted against those from the default model. The results show a slightly worse match between the exponential gradient model drift 
rates and the drift rates from the default model compared with Experiment 1. This slight mismatch may be due to a slight misfit 

Table 6 
Accuracy, Mean Correct and Error RTs, and Drift Rates for the Number Discrimination Task (in Experiment 2).  

Stimulus number Pr(correct) Mean correct RT (ms) Mean error RT (ms) Drift rate v 

10–19 and 81–90  0.976 491 445  0.495 
20–29 and 71–80  0.961 512 464  0.449 
30–39 and 61–70  0.936 534 501  0.400 
40–49 and 51–60  0.913 550 477  0.315  
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between accuracy values for unrelated non-studied numbers for the default model (see the first two rows for Experiment 2 in Table 3). 
Drift rates and predicted accuracy values for all the models for Experiment 2 are shown in Table 3. 

The same model comparisons using G-square, AIC, and BIC were conducted as for Experiment 1. The results are presented in Table 4 
and are similar to those for Experiment 1 with the default model selected by G-square and both AIC and BIC supporting the exponential 
gradient model. As for Experiment 1, the differences in goodness of fit for the three models are not large and they provide similar 
accounts of the experimental data. 

For the number discrimination task, accuracy and mean RTs for correct and error responses are shown in Table 6. Accuracy is high 
and decreases and RTs increase as the test number approaches the referent. Conditions with no error RTs can be fit with the diffusion 
model as long as some conditions have error RTs because the RTs for correct responses in the conditions with no errors are sufficient to 
constrain the drift rates (additional discussion is presented in Ratcliff, 2014). 

The default model was fit as for the number memory task, with a different drift rate for each of eight groups of data. There is one 
important difference in the fits compared with the number memory task. Because RTs and accuracy values were reasonably symmetric 
for “small” responses to small numbers and “large” responses to large numbers, conditions for small numbers were collapsed with 
conditions for large numbers for ranges equidistant from the referent (see Table 6). The model was then fit to correct and error re
sponses and because these were collapsed, the starting point has to be equidistant from the decision boundary (z = a/2). The 8 groups 
of data were from stimuli 10–14 combined with 86–90, 15–19 combined with 81–85, …, and 45–49 combined with 51–55. These are 
the same combinations in Ratcliff et al. (2015) and the same fitting program was used. Pairs of these 8 conditions were combined to 
produce 4 pairs for more compact display of the results in Table 6 though all 8 drift rates are plotted in Fig. 3C. 

The model parameters are shown in Table 2 and mean drift rates are shown in Table 6. The parameter values are very similar to 
those for the number discrimination task presented in Table 2 of Ratcliff et al. (2015). The drift rates are shown in Fig. 3C, plotted as for 
Fig. 3A and 3B. The plot shows roughly linear functions that closely replicate those in Ratcliff (2014) and Ratcliff et al. (2015). The 
important point is that drift rate as a function of distance shows quite different patterns for the two tasks. For the number memory task, 
the functions are decreasing with a drop to baseline when the test number is 3-distant. In contrast, the number discrimination task 
produces linear drift rate functions as a function of the difference between the test number and the referent. 

Because the same subjects were tested on both tasks, individual differences in model parameters can be examined using correla
tions. First, the correlation between boundary separation for the two tasks was 0.47 and the correlation between nondecision times was 
0.53. Correlations between the across-trial variability parameters were all small (although the two values for the memory task, ηo and 
ηn, correlated 0.42). To compute correlations for drift rates, the values of drift rates were averaged to give one number per subject for 
the number discrimination task. For the number memory task for the exponential gradient model, the difference between the 
multiplying constant and the drift rate for unrelated new numbers (i.e., the difference in drift rate between “old” and unrelated “new” 
drift rates which represents old/new discriminability) was used. These two correlated 0.37. For 29 subjects there are 27 degrees of 
freedom for the correlations and a value of 0.31 is significant at the 0.05 level. So the four correlations above are reliable. 

To compute the correlations in distance effects, the slope of drift rate as a function of distance for the number discrimination task 
was computed for each subject. The correlation between this slope and the decay constant for the exponential gradient model was -0.24 
and the correlations between the slopes of the number discrimination task and the SDs for the Gaussian and exponential overlap 
models were -0.19 and -0.16 respectively. These low negative values hint that with more power there may be a relationship between 
the range of the decay in memory as a function of numerical distance and the decrease in drift rate with distance from the referent in 
number discrimination. However, the effects might wash out with more data and higher power. 

The results from Experiment 2 show that the number discrimination task and number memory task produce quite different distance 
effects. The former is linear with distance and the latter is roughly exponential. Model parameters correlate between tasks and overall 
memory discriminability is correlated with number discriminability, which replicates results from Ratcliff et al. (2015). 

8. Discussion 

In this article, three models for the representation of numbers in memory (Fig. 1) were developed and tested against the data from a 
recognition memory task. The data show a decrease in confusability as a function of the numerical distance between a studied number 
and a test number. The representation models were combined with the diffusion model to produce integrated models of representation 
and decision-making that produce predictions for accuracy and RT distributions. The first model was an exponential gradient model in 
which drift rate decreases as a function of numerical distance. The second and third models were Gaussian and exponential overlap 
models in which numbers are represented as distributions over number and drift rate is a function of the overlap of the areas between 
the study and test numbers (Fig. 1). 

The exponential gradient model fit the data from both number memory experiments modestly better than the two overlap models. 
All three gave measures that produced good fits to the data for old/new memory discrimination, c-vn for the exponential gradient 
model and c multiplied by the overlap area minus vn for the overlap models. All three also provided estimates for the decrease in drift 
rate as a function of distance, the decay constants τ in the two exponential models and the SD σ in the Gaussian model. For the 6 
conditions of Experiments 1 and 2, there were 66 independent bins of probability mass for the correct and error RT distributions (i.e., 
66 degrees of freedom) that are fit with the 11 parameters of each model. 

The Gaussian overlap model had the best properties for measuring individual differences because it had the smallest variability in 
the estimates of the SD in the overlap distributions (σ) relative to individual differences in the SDs from the data. This is similar to 
earlier studies (Ratcliff et al. 2010, 2011) in which variability across subjects in parameter estimates were larger than variability in 
parameter estimates from the fitting process (based on the number of observations), thus allowing individual differences in, for 
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example, IQ, to be correlated with other variables such as drift rate. Of note, the correlations between old/new discriminability (e.g., c- 
vn) and the decay constant in the exponential model and between old/new discriminability and the SD in the Gaussian overlap model 
are less than 0.1. This suggests that they represent different individual differences. 

Overall, the results from fitting the three integrated models to the data do not allow us to decisively choose among these models 
although the fits of the exponential gradient model are better numerically and more subjects are best fit by it than the two overlap 
models in both experiments. However, because the decay constant parameter and the SD parameters in the models correlate highly, 
use of any one of the models in applications will likely produce conclusions similar to those from the other models. 

The exponential gradient model is related to the exponential similarity models used in categorization research. The exponential 
function championed by Shepard (1987) is used in both Nosofsky’s (1986) exemplar-based model and Nosofsky and Palmeri’s (1997) 
exemplar-based random walk model. The latter model (for a two-category task) assumes that exemplars race to be retrieved with a rate 
that is an exponential function of their similarity to a category; in the random walk, a retrieved exemplar increments a random walk by 
plus 1 for the category to which it belongs and minus 1 for the other category, until one of the two decision boundaries is reached. 
Unlike diffusion models, the exemplar-based random walk model does not have across-trial variability in the components of decision 
processes or within-trial variability; all of the variability in processing comes from the random selection of exemplars. 

In the tasks used in applications of the Nosofsky (1986) and Nosofsky and Palmeri (1997) models, similarity has two dimensions. 
Two dimensions for a number memory model that could be examined are numerical distance in the units digit and numerical distance 
in the tens digit. For example, if 48 was a test number, then it would be 1-distant on the units dimension from the study number 47 and 
it would be 1-distant on the tens dimension from the study number 58. For the exponential gradient model, a test number’s drift rate 
would be a weighted sum of a test number’s distance from a studied number in 1′s units and 10′s units (as in Equation (1)). For the 
overlap models, drift rate would be the combination of the overlap of a test number’s distribution with a studied number’s distribution 
for 1′s and the overlap for 10′s. In addition, it might also be that some numbers are more memorable, for example, 44, 55, 30, and 40, 
etc., and/or that transpositions have additional similarity to a studied number (e.g., 84 if 48 was studied). The study by Kang and 
Ratcliff (2020) mentioned in the introduction is an example of how multi-dimensional representations can be used to produce the drift 
rate for a test item as a function of multiple variables. In that study, drift rate was made a function of both numeric and non-numeric 
variables and so the relative contributions of the two (or more) sources of evidence used in making decisions could be evaluated. 

The distributed representations in the overlap models considered here are based on those used for a perceptual matching task by 
Ratcliff (1981, also Gomez, Ratcliff & Perea, 2008 and confidence judgments, Ratcliff & Starns, 2009, 2013). The overlap model for 
number memory in Experiments 1 and 2 adds to the success of these earlier models in that it used the overlap of distributed repre
sentations integrated with a model representing decision process to determine responses for number memory. 

The results from the experiments presented here and diffusion model analyses of other number and numerosity tasks show that 
there can be very different representations for different tasks. In the number memory task used here, there is an exponential-like 
decrease in drift rate as a function of the numerical distance between a test number and the corresponding study number. In the 
number discrimination task, drift rate is a linear function of the distance between a test number and the referent. This result is 
important because it shows that the representation used in the task is a function of the task and different representations are used in 
different tasks. in the number discrimination task, the task requires a judgment based on numerical distance (from 50) and so this 
makes the discrimination focus on numerical distance. But the number memory task does not require the decision to be made on the 
basis of numerical distance, but numerical distance does affect performance. Furthermore, examination of raw accuracy or mean RTs 
alone in the number discrimination and number memory tasks would not provide the insight that the evidence driving the decision 
process is different for the two tasks. 

There are two other studies in numerical cognition that use models of decision processes that find different effects for different 
paradigms. For a number-line task (Ratcliff & McKoon, 2020b), the representation of a two-digit number on a continuous scale is 
roughly normally distributed with a standard deviation that changes little as a function of the size of the number (e.g., for 10 to 90). For 
the numerosity discrimination tasks (Ratcliff & McKoon, 2018, 2020a) described in the introduction, two different representations, 
linear and logarithmic, were observed. 

The important point is that sometimes representations that are not discriminable based on accuracy measures or RTs alone can be 
discriminable when the representations are embedded in models of decision processing that account for both accuracy and RT dis
tributions for both correct and error responses (as in Ratcliff & McKoon, 2018). Although number memory and number discrimination 
have different representations in Experiments 1 and 2, it might be possible in the future to discover a small number of underlying 
representations that give rise to differences such as these. 

The distance effects presented here are not the only representational features that are used in long-term memory for numbers. 
Numbers with repeated digits and numbers at the beginning or ends of decades may be more or less memorable and transpositions of 
studied digits might be hard to call “new.” Similar experiments with designs that examine decay as a function of tens digits would likely 
show similar effects, but maybe with smaller effects. Perhaps the best way to study these possibilities would be to run an experiment 
with multiple sessions with many factors recorded, such as distances in terms of tens and unit digits between a test number and studied 
numbers (and earlier test numbers), repeated digits, whether numbers have digits that match other numbers in the study and test list, 
and so on. Then models could be developed with all these relationships included and fits would determine which factors were 
important in number memory. 

In the experiments presented here, the effects of these factors were controlled for by averaging them or excluding them from the 
conditions measuring distance effects. A complete model of the representation of numbers in memory would have to explore these 
factors and include them in the model. 

As I pointed out in the introduction, the ability to use mathematical information, in for example, learning how to do computations 
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and using them in practical situations, depends on memory for number. With model-based analyses of number memory, simple 
numerosity, and numeracy tasks, and the relations among them, we can begin to ask whether differences among individuals that are 
observed in such tasks pinpoint a numeracy ability that is linked to a single representation system (the approximate number system, for 
example) or to a larger group of skills. The individual difference measures derived from the experiments in this article (old/new 
discriminability and confusability) might in future research link to individual differences in other tasks or to other aspects of numeracy 
and memory. It is an open question whether they will map into a specific ability to use number information that depends on the task or 
simply general numerical ability. 
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Appendix. Fitting the integrated model 

The integrated diffusion models were fit to the data for each task and each subject by minimizing a G-square multinomial log 
likelihood goodness of fit statistic with a general SIMPLEX minimization routine that adjusts the parameters of the model until it finds 
the parameter estimates that give the minimum G-square value. G-square is asymptotically equivalent to the chi-square method used 
by Ratcliff and Tuerlinckx (2002) who provide a full description of that method. The data entered into the minimization for each 
experimental condition are the 0.1, 0.3, 0.5, 0.7, 0.9 quantile RTs for correct and error responses and the corresponding accuracy 
values. The quantile RTs and the diffusion model are used to generate the predicted cumulative probability of a response by that 
quantile RT. Subtracting the cumulative probabilities for each successive quantile from the next higher quantile gives the proportion of 
responses between adjacent quantiles. For the G-square computation, these are the expected values, to be compared to the observed 
proportions of responses between the quantiles (i.e., the proportions between 0, 0.1, 0.3, 0.5, 0.7, 0.9, and 1.0, which are 0.1, 0.2, 0.2, 
0.2, 0.2, and 0.1). G-square is defined as G2 = 2NΣOln(O/E), where N is the number of observations in the condition. Summing over 
this for all conditions gives the single G-square value to be minimized. 

The G-square multinomial log-likelihood statistic allows model comparisons to be carried out using AIC and BIC test statistics. 
These penalize goodness-of fit to different degrees as a function of number of parameters. AIC = G2 + 2k, where k is the number of 
parameters, and BIC = G2 + kln(M), where M is the total number of observations. The number of parameters for the integrated models 
are the same and there is one more parameter for the default model. To compute the mean relative AIC and BIC values, the values from 
Table 2 can be used. For both experiments, for AIC, 2 is added to G2. For BIC, the mean values of M are 853 and 704 for Experiments 1 
and 2 respectively, therefore, 6.75 and 6.52 are added to G2 for Experiments 1 and 2 respectively. 
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