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In this paper, we propose a model-based method to study conditional dependence between response
accuracy and response time (RT) with the diffusion IRTmodel (Tuerlinckx andDe Boeck in Psychometrika
70(4):629–650, 2005, https://doi.org/10.1007/s11336-000-0810-3; van der Maas et al. in Psychol Rev
118(2):339–356, 2011, https://doi.org/10.1080/20445911.2011.454498). We extend the earlier diffusion
IRT model by introducing variability across persons and items in cognitive capacity (drift rate in the
evidence accumulation process) and variability in the starting point of the decision processes. We show
that the extendedmodel can explain the behavioral patterns of conditional dependency found in the previous
studies in psychometrics. Variability in cognitive capacity can predict positive and negative conditional
dependency and their interaction with the item difficulty. Variability in starting point can account for
the early changes in the response accuracy as a function of RT given the person and item effects. By the
combination of the two variability components, the extendedmodel can produce the curvilinear conditional
accuracy functions that have been observed in psychometric data. We also provide a simulation study to
validate the parameter recovery of the proposed model and present two empirical applications to show how
to implement the model to study conditional dependency underlying data response accuracy and RTs.

Key words: diffusion IRT model, response time, psychological process, conditional dependency, process
modeling.

In this article, we present amodel-based analysis of conditional dependence between response
accuracy and response time (RT) using a psychological decision-making process model. The
process model describes the psychological processes that give rise to the measurement outcomes.
Understanding psychological processes underlying cognitive tests and psychometric inventories
is important because it provides a different view of intra-individual differences and how they
bring about inter-individual differences than do descriptive models of response accuracy and RT.
Therefore, process-based modeling can help to properly conceptualize latent variables and their
existence, facilitate improvement in their measurement and study of validity, and, ultimately,
bridge the gap between inter-individual-level processes and intra-individual causal inferences
(Borsboom,Mellenbergh, & van Heerden, 2003, 2004). Furthermore, modeling based on a theory
of psychological processes provides a coherent account of the complicated behavioral patterns
of responses and RTs and allows identification of cognitive sources of important aspects of data
such as residual dependency between response accuracy and RT, controlling for the confounded
person and item effects.

Although psychometric inventories and tests measure latent traits and abilities, they rarely
shed light on psychological processes when they are based only on outcome performance such
as response accuracy. This is because different models, with or without theories relevant to the
underlying processes, can produce very similar model predictions, and thus, it is difficult to dis-
criminate between models with different theories of response processes. Extending the modeling
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to account for the joint behavior of different variables is necessary to gain insight into how we
process information and give item responses.

Among the outcomes, RT is a straightforward and easily accessible outcome along with
response accuracy. Accuracy and RT have different measurement properties and scales; response
accuracy is a binomial random variable divided by the total number of responses, while RT is a
random variable with continuous and right-skewed distributions. Thus, jointly modeling accuracy
and RT more strongly constrains mathematical models of psychological processes and provides
a finer measurement of latent traits and abilities (Bolsinova & Tijmstra, 2018).

There has been an increasing interest in RTmodeling in psychometrics, and one of the seminal
works is the hierarchical framework (van der Linden, 2007). In this approach, response accuracy
is modeled by the three-parameter normal ogive model and RT is modeled by a log-normal model.
As a link between these two model parts, it is assumed that latent variables in both models follow
a multivariate normal distribution (population model), and item parameters in both models follow
another multivariate normal distribution (item domain model). Given the latent variables and
item parameters, the framework assumes that there is no further dependency between response
accuracy and RT. In other words, all the associations between the two outcome variables can be
captured by the latent variables and item parameters.

Although the assumption of conditional independence has facilitated joint modeling of
response accuracy and RT, this has often not been justified by psychometric data. In fact, viola-
tions of this assumption have become a robust finding across various test types in psychometrics
(Bolsinova, De Boeck, & Tijmstra, 2017; Bolsinova &Maris, 2016; Bolsinova &Molenaar, 2018;
Bolsinova, Tijmstra, & Molenaar, 2017; Chen, De Boeck, Grady, Yang, & Waldschmidt, 2018a;
De Boeck, Chen, & Davison, 2017; Goldhammer et al., 2014; Goldhammer, Naumann, & Greiff,
2015; Meng, Tao, & Chang, 2015; Partchev & De Boeck, 2012; van Rijn & Ali, 2017; van der
Linden & Glas, 2010; Wang & Xu, 2015). Such violations show that RTs provide information
about the corresponding response over and above what is captured by latent variables and item
effects. Therefore, it could be that models with the conditional independence assumption fail to
appropriately measure latent traits and abilities and to represent the latent structure underlying
response behavior.

There have been a number of relatively recent studies examining condition dependency
between accuracy and RT (Bolsinova, De Boeck, & Tijmstra, 2017; Bolsinova &Molenaar, 2018;
Chen et al., 2018a; Goldhammer et al., 2014, 2015). Results have shown negative, positive, and
curvilinear dependency. Negative conditional dependency is shown by accuracy decreasing as a
function ofRTwhen the person and itemeffects are controlled for. Positive conditional dependency
occurs when accuracy increases as a function of RT given latent variables and item parameters.
It has been found that different items have different patterns of conditional dependency and
these inter-item differences are associated with item difficulty (Bolsinova, De Boeck, & Tijmstra,
2017; Goldhammer et al., 2014, 2015). Typically, responses and RTs for easy items show negative
conditional dependency, but this trend tends to get weaker for more difficult items and can even
flip to positive dependency for highly difficult items.

A recent study by Chen et al. (2018a) provides evidence for curvilinear conditional depen-
dency in which accuracy first increases relatively steeply until it asymptotes and then decreases
over RTs. Chen et al. divided RTs into several bins and plotted response accuracy against bins
of log-transformed RTs that were double-centered based on person-wise and item-wise means to
eliminate person and item effects. For all five tasks that were examined (three achievement tests
and two cognitive ability tests), the plots of accuracy showed the curvilinear pattern. From the
same datasets, a follow-up study by Chen, De Boeck, Grady, Yang, &Waldschmidt (2018b) found
that the curvilinear dependency can differ by item difficulty because easy items showed the first-
increasing and later-decreasing curvilinear pattern, while difficult items showed the mirror image,
the first-decreasing and later-increasing curvilinear pattern with much lower accuracy. Bolsinova
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and Molenaar (2018) also found a similar relationship between response accuracy and RT. They
modeled the intercept of the item characteristic curve (ICC; a curve of response probability as a
function of latent ability/trait) of the IRT model as a function of log-transformed RTs that were
centered by the mean RT predicted by the log-normal RT model and scaled by the item-wise
residual standard deviation. They examined different nonlinear models and found a curvilinear
relationship between the intercept and the standardized residual log-transformed RT. Because
the intercept parameter is positively related to response accuracy, this result implies curvilinear
conditional dependency of response accuracy and RT. The generalized speed–accuracy response
model for dichotomous itemswhich van Rijn andAli (2017, 2018) developed based on the scoring
rule by Maris and van der Maas (2012) also implies a curvilinear relationship between response
probability and response time.

For the various conditional dependency patterns found in the literature, it is important to find
their potential sources (Bolsinova, Tijmstra, Molenaar, & DeBoeck, 2017). Negative dependency
has been interpreted as a consequence of within-person variability in cognitive capacity (Chen
et al., 2018a; De Boeck et al., 2017; DeBoeck & Jeon, 2019), heterogeneity in item difficulty
across persons (i.e., the same item can be more or less difficult to different persons), etc. Positive
dependency has been associated with a total time limit of a test, within-person variability in
response caution, etc. Fast aberrant responses such as fast guessing and cheating (Wang & Xu,
2015;Wang,Xu,&Shang, 2018) canproduce positive residual dependencyparticularly at the early
RTperiod because these responses usually have fast RTswith lower accuracy (Bolsinova, Tijmstra,
Molenaar, &De Boeck, 2017). Some factors such as ability-based guessing (SanMartín, del Pino,
& De Boeck, 2006), attractive distractors in multi-choice items, and different types of processing
(e.g., fast vs slow processes; DiTrapani, Jeon, De Boeck, & Partchev, 2016; Goldhammer et al.,
2014; Molenaar, Bolsinova, Rozsa, & De Boeck, 2016; Partchev & De Boeck, 2012) can produce
either negative or positive dependency. Curvilinear dependency can probably be explained by
the sources for negative and positive dependency listed above because a combination of positive
and negative dependency produces a curvilinear trend. However, this explanation requires that,
for easy items, positive dependency appears only when RT is shorter than expected (i.e., short
residual RT) and negative dependency appears only when RT is longer than expected (i.e., long
residual RT). As there is no evidence for this relationship between positive/negative dependency
and residual RTs, probable sources of curvilinear dependency require further investigation. We
will present and test a more general and integrated explanation.

Although the explanations above are promising, it is hard to corroborate these explanations
using data exploration and descriptive models. These methods are useful to discover and describe
unrevealed relationships, but they cannot throw light on why the relationships occur. This is
where we bring our attention back to process-based models because these are explanatory models
that aim to explain psychological processes through theories represented by the model structure
and components. For a study of conditional dependency, we mainly focus on a process model
called the diffusion item response theory (diffusion IRT) model (Molenaar et al., 2016; Ranger
& Kuhn, 2018; Ranger, Kuhn, & Szardenings, 2016, 2017, 2020; Tuerlinckx & De Boeck, 2005;
Tuerlinckx,Molenaar, & van derMaas, 2016; van derMaas et al., 2011) that explains the response
process using the sequential sampling framework. The sequential sampling framework assumes
that, when an item is presented, a respondent accumulates information/evidence until the accrued
information becomes sufficient to make a response. The model parameters represent different
cognitive aspects of the response processes, and we aim to study the sources of conditional
dependency of response accuracy and RT by identifying cognitive components associated with
the dependency. To this end, we extend the diffusion IRT model so that the model can account
for overall conditional dependency and heterogeneity in dependency across persons and items.

The paper is organized as follows. We first introduce the diffusion IRT model, which serves
as our modeling framework (Sect. 1). We extend this model with random variability in cognitive



728 PSYCHOMETRIKA

Decision Time for Trial j

v: Drift Rate

Time

z

α

0

Correct RT Distribution

Error RT Distribution

Upper Boundary

Lower Boundary

Trial i: Correct Trial j: Correct

Trial k: Error

Figure 1.
Illustration of the evidence accumulation in the Wiener/Ratcliff diffusion model.

components to account for conditional dependency (Sect. 2). Next, we provide a simulation study
to validate the extended model by examining its parameter recovery (Sect. 3) and illustrate how
one can use the model to study conditional dependency between response accuracy and RT with
empirical data (Sect. 4). We conclude with a discussion on further modeling issues of conditional
dependency (Sect. 5).

1. Diffusion Item Response Theory Model

Process models take into account the cognitive processes that simultaneously produce
responses and RTs during response procedures. This modeling approach has been dominant in
perceptual and cognitive psychology, but little attention has been paid to this approach in psy-
chometrics. A notable example of a process model in psychometrics is the diffusion IRT model
proposed by Tuerlinckx andDeBoeck (2005). Themodel is a combination of theWiener diffusion
model from cognitive psychology and the IRT model from psychometrics. The Wiener diffusion
model is one of the sequential sampling models (SSMs) assuming that when a stimulus for a psy-
chological task is presented, information or evidence extracted from the stimulus is accumulated
over time to determine which response option is appropriate for the trial (Fig. 1). In the Wiener
diffusion model for a binary-response task, evidence accumulation begins at a starting point z
toward one of the two (upper and lower) boundaries at a mean rate (drift rate) of ν. The distance
between the two boundaries is called the boundary separation α and typically the upper boundary
is mapped to α and the lower boundary is mapped to 0. These two boundaries represent two
response options. The boundary at which the process terminates determines a response made and
the time that the process takes to reach a boundary determines a decision time (DT). There also
are processes unrelated to evidence accumulation, and the time for these processes is collectively
modeled as nondecision time t0. The model predicts an RT as the sum of decision and nondecision
times (RT = t0 + DT). Evidence accumulation is noisy within each trial, and thus, the same set
of model parameter values (α, z, t0, and ν) can give rise to different responses and RTs (trials
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i , j , and k in Fig. 1), producing bivariate RT distributions for two response options. One of the
important features of the diffusion IRT model (in fact, of most of the SSMs) is that the model
parameters correspond to components of the cognitive processes assumed by the model. Drift rate
ν represents the mean rate (quality and efficiency) of evidence accumulation, boundary separation
α represents the amount (quantity) of information required to make a response, starting point z
represents an initial bias between the two response options, and nondecision time t0 represents
time consumed for nondecision processes such as stimulus encoding and response production.

The diffusion IRT model is an extension of the unbiased Wiener diffusion model and can be
used for psychometric measurement data in which person p (p = 1, . . . , P) responds to item i
(i = 1, . . . , I ) once, resulting in two (P × I ) matrices of responses and RTs. The unbiasedness
of the model means that there is no initial bias assumed (z = α/2). Furthermore, for person p’s
response to item i , the following decompositions of the drift rate (Molenaar, Tuerlinckx, & van der
Maas, 2015; Tuerlinckx & De Boeck, 2005; Tuerlinckx et al., 2016) and the boundary separation
(Molenaar et al., 2015; Tuerlinckx et al., 2016; van der Maas et al., 2011)1 were implemented to
account for both person and item effects:

νpi = θp − bi
αpi = γp/ai

(1)

where γp and θp represent person-wise decision criterion (or cautiousness) and person-wise
drift rate, respectively, and ai and bi represent item time-pressure (or the inverse of item dis-
crimination) parameter and item difficulty parameter, respectively. In perceptual and cognitive
psychology, experimental conditions defined by stimulus manipulations typically affect the dif-
ficulty of tasks (e.g., Brown & Steyvers, 2005; Kang & Ratcliff, 2020; McKoon & Ratcliff,
2016; Ratcliff, 2002; Ratcliff, Gomez, & McKoon, 2003; Ratcliff & Rouder, 1998; Ratcliff &
McKoon, 2018) but not the amount of information required to make a choice. Accordingly,
for a single person, drift rate is allowed to vary by condition, but boundary separation is fixed
across conditions unless the experimental conditions are defined by the experimenter’s instruc-
tion on the speed–accuracy trade-off (stressing either speed or accuracy; Ratcliff & McKoon,
2008). In contrast, in psychometrics, items have different characteristics such as difficulty and
discrimination. Therefore, both drift rate and boundary separation are modeled to vary by per-
sons and items (Molenaar et al., 2015; Tuerlinckx et al., 2016; van der Maas et al., 2011).
Changes in boundary separations across items can be attributed to the factors related to the
amount of time required by the item (van der Linden, 2007), item time-intensity (Bolsinova, De
Boeck, & Tijmstra, 2017), item-wise time pressure due to the item context (e.g., test instruc-
tions, item positions, etc.; Molenaar et al., 2015; Tuerlinckx et al., 2016), time pressure for
the whole test (van der Maas et al., 2011), and item discrimination (Tuerlinckx & De Boeck,
2005).

Further assuming person-wise nondecision time τp (i.e., t0 = τp), the first passage time
density function of the diffusion IRT model is given as (Cox & Miller, 1970; Tuerlinckx & De
Boeck, 2005):

1van der Maas et al. (2011) used a different parameterization for the drift rate, and the difference will be explained
in the Discussion section.
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where ‘*’ denotes all themodel parameters, X pi and Tpi (with Tpi > τp ) are the random variables
of binary response and RT for person p and item i , respectively, and s is the diffusion coefficient
which is the standard deviation of the within-trial noise of the evidence accumulation process.
The parameter s is typically fixed to a constant (for example, 1, as we do in this article hereafter)
as a scaling coefficient. Letting X pi = 1, Eq. 2 gives the first passage time density function of
the process hitting the upper boundary first (before it reaches the lower boundary). Analogously,
the first passage time density function corresponding to the lower boundary can be obtained by
letting X pi = 0. Note that the density function given in Eq. 2 is bivariate and defective: Neither
f1,Tpi (1, t) nor f0,Tpi (0, t) integrates to 1. Instead, the sum of the two integrals is 1 as f1,Tpi (1, t)
integrates to Pr(X pi = 1), the probability of the process terminating at the upper boundary, while
f0,Tpi (0, t) integrates to Pr(X pi = 0), the probability of the process terminating at the lower
boundary. The probability of choosing the response option corresponding to the upper boundary
Pr(X pi = 1) is derived as (Cox & Miller, 1970; Luce, 1986; Tuerlinckx & De Boeck, 2005):

Pr(hitting the upper boundary) = Pr(X pi = 1) = exp( γp
ai

(θp − bi ))

1 + exp( γp
ai

(θp − bi ))
. (3)

Equation 3 is equal to the response probability of the two-parameter logistic IRT model
(2PLM; Birnbaum, 1969) with αpi = γp

ai
as the discrimination parameter, bi as the item difficulty

parameter, and θp as the person latent ability in the IRTmodels. Therefore, the diffusion IRTmodel
predicts the response probability just as the 2PLM does, but it also predicts RT distributions with
Eq. 2.

The diffusion IRT model is not able to predict conditional dependence between response
accuracy and RT. The first passage time density of the model satisfies the following relationship
(Laming, 1968; Stone, 1960; Tuerlinckx & De Boeck, 2005):

fTpi |X pi (t |x = 0, ∗) = fTpi |X pi (t |x = 1, ∗) = fTpi (t, ∗) (4)

This implies fX pi ,Tpi (x, t |∗) = fX pi (x |∗) × fTpi (t |∗), and thus, the model assumes conditional
independence between choice response and RT given the model parameters. As responses do
not provide information on the RT distributions, the model predicts that correct and error RT
distributions have the same mean RTs and RT quantiles (hereafter called ‘symmetric’ correct and
error RT distributions). As we discussed in the previous section, often psychometric measurement
data have not supported this assumption and thus the model should be modified to appropriately
account for the psychological process underlying responses and RTs. One possibility is to extend
the model by introducing additional model parameters that represent some unexplained aspects
of the cognitive process. An interesting idea that we will examine in this article is to introduce
variability in some cognitive components of the model. This idea, previously used by Ratcliff
(Ratcliff, 1978, 2002; Ratcliff & Rouder, 1998), gave birth to the Ratcliff diffusion model, one of
the most compelling models of responses and RTs in perceptual and cognitive decision making
(Forstmann,Ratcliff,&Wagenmakers, 2016;Ratcliff&McKoon, 2008;Ratcliff, Smith, Brown,&
McKoon, 2016). For psychometric measurement data, Tuerlinckx De Boeck (2005) have already
proposed a related idea, which we will review with our additional proposal in the next section.
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2. Random Variability and Conditional Dependence of the Diffusion IRT Model

The conditional independence assumption is often not supported by data in perceptual and
cognitive decision making. It has been shown that, in the same experimental condition, an error
RT distribution is typically slower than the correct RT distribution. Also, there are fast errors
that make the leading edge of the error RT distribution relatively faster than that of the correct
RT distribution. In general, error RTs are slower than correct RTs when a task is difficult and
accuracy is stressed, while error RTs are faster when a task is easy and speed is stressed (Luce,
1986; Ratcliff &McKoon, 2008; Ratcliff & Rouder, 1998; Ratcliff, Van Zandt, &McKoon, 1999;
Smith & Vickers, 1988; Swensson, 1972; see also Luce, 1986, pp. 233–236 for a more detailed
review of faster and slower errors).

Accounting for the asymmetry between correct and error RT distributions has been a primary
interest in perceptual and cognitive decision making, and one of the successful approaches is to
add across-trial variability in some model parameters. A single set of Wiener diffusion model
parameters (boundary separation, starting point, drift rate, and nondecision time) is too restrictive
and is not able to account for the imbalance between correct and error RTs across multiple trials in
a psychological experiment. As amodification to this model, Ratcliff added across-trial variability
in drift rate, in starting point, and in nondecision time (Ratcliff, 1978, 2002; Ratcliff & McKoon,
2008; Ratcliff & Rouder, 1998), claiming that it is unlikely that a subject is able to accumulate
evidence at the same rate (Kang, Ratcliff, & Voskuilen, 2020; Ratcliff, Voskuilen, & McKoon,
2018), to start the evidence accumulation at exactly the same starting point, and to spend an equal
amount of time for nondecision processes across all trials. It has been shown that the Ratcliff
diffusion model can account for various behavioral benchmarks of response proportions and RT
distributions over a variety of psychological experiments, including slow and fast errors and
thus the asymmetry between correct and error RT distributions (Ratcliff, 1978, 2002; Ratcliff
& McKoon, 2008; Ratcliff & Rouder, 1998). These extensions may help to explain conditional
dependencies between response accuracy and RT and have not been used much for diffusion IRT
models.

Conditional accuracy function (CAF), a function of accuracy conditioned on RT, provides a
good way to study the conditional (in)dependence assumption of different models, particularly,
how the across-trial variability parameters in the Ratcliff diffusion model produce conditional
dependency. For any model with joint probability density function f (x, t |∗) of binary response
and RT, the CAF is obtained as P(x = 1|t, ∗) = f (x=1,t |∗)

f (t |∗)
= f (x=1,t |∗)

f (x=1,t |∗)+ f (x=0,t |∗)
(Luce, 1986).

Models with the conditional independence assumption (i.e., f (x, t |∗) = f (x |∗) f (t |∗)) satisfy
P(x = 1|t, ∗) = f (x=1|∗)

f (x=1|∗)+ f (x=0|∗)
. Thus, CAFs of these models (including the Wiener diffusion

model without variability extensions) have a flat shape and do not vary as a function of RT. The
three black solid lines (one at the top, another in the middle, and the other at the bottom) in Fig. 2
represent the CAFs of the Wiener diffusion model with parameter values α = 1.1, z = α/2,
t0 = 0.2, and ν = 2 for the top one (with accuracy of about 0.9), ν = 0 for the middle one (with
accuracy of 0.5), and ν = −2 for the bottom one (with accuracy of about 0.1), showing that the
model predicts flat CAFs.

The Ratcliff diffusion model predicts asymmetric RT distributions and nonflat CAFs, unlike
the Wiener diffusion model. The model prediction is based on two variability parameters: across-
trial variability in drift rates η (trial-wise drift rate ∼ N (ν, η2)) and across-trial variability in
starting points sz (trial-wise starting point∼ U (z− sz

2 , z+ sz
2 )). The effects of across-trial variability

on the CAFs differ by the values of the other model parameters, particularly the signs of the drift
rate. Suppose that responses corresponding to the upper boundary are ‘correct’ responses and
those corresponding to the lower boundary are ‘error’ responses. Given the other diffusion model
parameters are fixed and with a positive drift rate (ν > 0), the model predicts accuracy higher than
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Figure 2.
Conditional accuracy functions (CAFs) of the Ratcliff diffusion model. The predicted CAFs are generated with varying
values of across-trial variability in drift rates (η) and in starting points (sz ) shown at the bottom-left side of the figure. The
other parameters used are boundary separation α = 1.1, starting point z = α/2, nondecision time t0 = 0.2, and positive
drift rate of ν = 2 for the top four curves (above the gray horizontal line indicating accuracy of 0.5), negative drift rate
of ν = −2 for the bottom four curves (below the gray curve), and zero drift rate ν = 0 for the four curves in the middle
(Color figure online).

chance (0.5). In this case, nonzero η produces slow errors, while nonzero sz generates fast errors.
With the interaction of these two parameters, the Ratcliff diffusion model can capture various
asymmetries between correct and error RT distributions in the data. Figure 2 shows different
CAFs predicted by the Ratcliff diffusion model with different values of the variability parameters
as shown at the bottom-left. The predicted CAFs are plotted on the log scale of RTs as done in
Bolsinova and Molenaar (2018) and Chen et al. (2018a). The main four parameters are set to the
same values used for the solid black curves (the flat CAFs of theWiener diffusion model). Across-
trial variability in nondecision time is set to 0 as it does not affect the shape of the CAFs. We do
not discuss this kind of variability because it does not help to explain the local dependencies we
are interested in. The four curves on the top side (above the gray line indicating accuracy of 0.5)
show the CAF predictions with a positive drift rate (ν = 2). The model with nonzero η predicts a
decreasing CAF (e.g., red dashed line): Due to slow errors, there are likely more errors in slower
RT ranges and thus accuracy in these RT ranges gets lower. In contrast, the model with nonzero sz
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predicts a CAF with an early steep increase (green dotted line): Due to early fast errors, it is likely
that there aremore errors in the RT leading edge, but the relative amount of fast errors decreases up
to some RT point. Thus, accuracy keeps increasing until that RT point at which accuracy achieves
its asymptote. The model with nonzero variability parameters for both drift rate and starting point
predicts a curvilinear CAF (dot-dashed lines) which is the result of combining the first-increasing
and later-decreasing patterns. Among the two dot-dashed lines in Fig. 2, the model with a larger
value of η predicts the CAF with a lower peak (as more errors are predicted), while the model
with a smaller value predicts the one with a higher peak. Note that heights, slopes of change, and
asymptotes (if any) of the curves can differ by the parameter values.

The four curves on the bottom side of Fig. 2 show the CAF predictions with a negative drift
rate (ν = −2). Note that CAFs predicted by the model with negative drift rates are the mirror
images of those predicted with positive drift rates (reflected over the horizontal line of accuracy
= 0.5). For psychometric tests, a negative drift rate corresponds to the case where an item is
too difficult for a person so that the predicted accuracy is lower than chance (c.f., stimuli with
conflicting features in perceptual/cognitive tasks can also produce below-chance accuracy, Kang
& Ratcliff, 2020). In this case, the model with nonzero η predicts an increasing CAF (e.g., the red
dashed line below the gray horizontal line), but accuracy cannot reach 0.5. Similarly, the model
with nonzero sz predicts a CAF with an early steep decrease until its asymptotic lower bound,
and a combination of the nonzero across-trial variability parameters causes the model to produce
curvilinear CAFs with the first-decreasing and later-increasing pattern. Importantly, the opposite
curvilinear CAFs and their association with item difficulty predicted from the Ratcliff diffusion
model are consistent with the empirical findings in Chen et al. (2018a, 2018b).

When the drift rate is zero (ν = 0), the diffusion process accumulates noisy evidence without
any mean trend toward either boundary and thus responses are randomly determined. In this case,
themodel predicts chance accuracy (i.e., 0.5) regardless of the values of the variability parameters.
As a result, CAFs predicted by the model are always flat with accuracy of 0.5, as shown by the
four horizontal lines in the middle of Fig. 2. In general, the CAFs become flatter as the absolute
value of the drift rate is smaller.

Themodel predictions shown in Fig. 2 correspond to the interpretations of conditional depen-
dency in previous studies. Conditional dependency has been found to correlatewith item difficulty.
For easier items, the dependency is negative, and for more difficult items, it is weaker and can
be positive (Bolsinova, Tijmstra, Molenaar, & De Boeck, 2017; Chen et al., 2018a; De Boeck
et al., 2017; De Boeck & Jeon, 2019), which is also in line with Embretson’s (2021) results for
within-person correlations. These findings are consistent with the effects of variability in mean
rate of information processing (i.e., drift rate) in the Ratcliff diffusion model. De Boeck et al.
(2017) and De Boeck and Jeon (2019) have interpreted the local dependency findings referring to
the Ratcliff diffusion model. When the cognitive capacity (i.e., drift rate) varies, the probability
of the dominant response increases (decreases) and the response time decreases (increase). The
dominant response for easy items is the correct response, while it is an incorrect response for
difficult items. This can explain the correlation of local dependency with item difficulty and the
switch from a negative dependency to a positive dependency.

Bolsinova, Tijmstra, Molenaar, and De Boeck (2017) proposed another interpretation of pos-
itive conditional dependency. They claimed that this pattern can appear due to within-person
variation in the speed–accuracy balance and response caution during a test. Conceptually, this
variation is directly related to the variation in boundary separation in the diffusion model, but
across-trial variability in starting point can also account for this variation as both variability com-
ponents can change the amount of information required for the process to reach either boundary.
In this sense, we can interpret random variability in starting point as random variability in the
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amount of information or response caution.2 Because the starting point of the diffusion process
represents an initial bias of response process or a starting point of problem-solving and it is more
effective in the early RT period, the variability in starting point corresponds to the early increasing
(decreasing) pattern of the CAF predicted by the diffusion model when the drift rate is positive
(negative).

Tuerlinckx and De Boeck (2005) proposed to extend the variability idea to the diffusion IRT
model. In particular, they adopted across-trial variability in drift rates, but only a single random
variability parameter that works for all persons and items. This is because conceptually there is no
‘multiple-trial experiment’ in psychometric measurements as a single subject responds only once
to a single item. With the random variability in drift rate η, the drift rate corresponding to person
p and item i is modeled as νpi = θp − βi + εpi where εpi ∼ N (0,η). As shown in Fig. 2, the
resulting model produces a decreasing CAF with a positive drift rate and an increasing CAF with
a negative drift rate. Thus, given the other diffusion model parameters, it predicts that accuracy
of person p’s response to item i decreases (increases) as a function of RT when the drift rate is
positive (negative). The response probability and the first passage time density function of this
model can be obtained by adding εpi to drift rate in Eqs. 2 and 3 and integrating εpi out over its
normal distribution. It also has been shown that there is a closed-form solution to this integration
(Blurton, Kesselmeier, & Gondan, 2017; Tuerlinckx, 2004; Tuerlinckx & De Boeck, 2005).

Although the diffusion IRT model with random variability in drift rate can produce a nonflat
CAF, accuracy as a monotone (either decreasing or increasing) function of time is not justified by
psychometric data. As reviewed above, Bolsinova and Molenaar (2018) and Chen et al. (2018a)
provided evidence for a curvilinear CAF that implies accuracy grows as a function of RT in the
short RT range and then accuracy decreases after it reaches the peak. This trend can be predicted
by a combination of random variability in drift rate and in starting point as shown in Fig. 2. From
this observation, we propose to further extend the diffusion IRT model by introducing random
variability in starting point, expecting that the starting point variability can introduce the positive
(negative) dependency for easy (difficult) items that occurs primarily at the beginning of the
response process and produce a curvilinear CAF. As done for random variability in drift rate,
we implement a single parameter that governs random variability in starting point for all persons
and items. Additionally, instead of the sz parameter in the Ratcliff diffusion model which is the
absolute range of the uniform distribution of trial-wise starting points, we will use szr ∈ (0, 1)
such that sz,pi = αpi · szr , which represents the same range but as a ratio relative to the boundary
separation. This is because boundary separation is the maximum possible value of sz for the
unbiased process and it does vary by person and item in the diffusion IRT model. Thus, sz can be
severely underestimated if there are large individual differences in the boundary separation αpi

and min
p,i

(αpi ) is too small. The relative range parameter szr does not incur this problem, and thus,

we will use this parameterization in the current modeling.
Random variability in starting point in the diffusion IRT model represents that a level of

initial bias or a starting point of problem-solving can differ by person and by item in psychometric
measurement data. There are several potential sources of this variability. For example, responses
to earlier items can affect response to the current item, producing a bias at the beginning of the
response processes. The cognitive processes of problem-solving are thought to be induction-based
multiple-trial processes that starts closer to or farther away from the correct response depending
on the item and based on a partly random starting process. Starting points of the problem-solving
processes may vary across pairs of persons and items and can be represented by variability in
starting point rather than a change in the mean starting point (i.e., z). Given random variability in

2Random variability in decision boundaries is computationally more expensive because it requires two integrations
(one for the upper boundary and the other for the lower boundary). Thus, we only consider random variability in starting
point in our modeling.
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starting point szr , starting point of person p’s response to item i is modeled as z pi = αpi
2 + δpi

where δpi ∼ U (−αpi ·szr
2 ,

αpi ·szr
2 ).

The first passage time density function of the proposed model can be obtained by integrating
out the two variability components as

gX pi ,Tpi (x, t |∗) =
∫ αpi ·szr

2

− αpi ·szr
2

∫ ∞

−∞
fX pi ,Tpi (x, t |∗)N (0, η2)U

(
−αpi · szr

2
,
αpi · szr

2

)
dεpidδpi ,

(5)

and the response probability of the model can be obtained by integrating this density function
with respect to RT over (τp,∞)3

Pr(X pi = 1) = lim
t→∞

∫ t

τp

gX pi ,Tpi (x = 1, u|∗)du (6)

In sum, conditional dependency between response accuracy and RT of psychometric data
can be examined and explained via the CAF predicted by the model. Importantly, the model can
help to identify the dominant source of conditional dependence by examining whether either
the variation in the quality of evidence accumulation or the variation in the starting point of the
response process (or both) can account for the dependence.

3. Simulation: Parameter Recovery

We conducted a simulation study to test if the diffusion IRT model with random variability
can recover its parameters. A detailed description of the simulation setting and results can be
found in our supplementary material, and here, we briefly summarize the results.

• We generated data of RTs and binary responses with P = 200 persons and I = 15 items
from the diffusion IRT model with random variability in drift rate and in starting point.

• We used the differential evolution Markov Chain Monte Carlo (DE-MCMC; Ter Braak,
2006; Turner, Sederberg, Brown, & Steyvers, 2013) sampling method to fit the model to
the simulated data and compared the MAP estimates to the true data-generating values.

• For the person and item parameters, the Pearson correlation between the MAP estimates
and true parameter values is 0.972 (log(ai )), 0.988 (bi ), 0.954 (τp), 0.941 (log(γp)), and
0.868 (θp), and there was no noticeable bias (Figure S1 and Table S3 in the supplementry
material).

• Although variability in drift rate was slightly overestimated and the variability in start-
ing point was slightly underestimated, the recovery was reasonably good. Their posterior
distributions are provided in the supplementary material.

• Having more items can improve the estimation of the variability parameters (Figure S1
and Tables S3 in the supplementry material).

3The joint (cumulative) distribution function of response and RT of the diffusion IRT model can be obtained as
FX pi ,Tpi (x, t) = ∫ τp

t fX pi ,Tpi (x, u|∗)du, and thus, the response probability can also be computed as Pr(X pi = 1) =
∫ αpi ·szr

2

− αpi ·szr
2

∫ ∞
−∞ limt→∞ FX pi ,Tpi (x = 1, t |∗)N (0, η2)U (0, 1)dεpidδpi (see Ratcliff & Childers, 2015; Tuerlinckx,

2004, for related materials).



736 PSYCHOMETRIKA

4. Empirical Applications

In this section, we provide two empirical applications of the diffusion IRTmodel with random
variability parameters to two real datasets: extraversion and rotation (Molenaar et al., 2015).
Particularly, we focus on explaining how to use different diffusion IRT models to study sources
of conditional dependence between response and RT and how to produce model predictions of
the CAFs. The extraversion data are from 143 respondents who were presented with 10 words
related to introversion and extraversion (e.g., ‘active’) asking them to respond with ‘Yes’ or ‘No’
to describe their personality. Response accuracy is not defined for the extraversion data as we deal
with a latent trait. Thus, the diffusion IRTmodel and its CAF predictions jointly describe response
proportions and RT distributions. The rotation data have responses from 121 respondents to 10
binary mental rotation items with varying rotation angles (Borst, Kievit, Thompson, & Kosslyn,
2011; van der Maas et al., 2011). Each item presented two three-dimensional objects and the
respondents indicated whether the second object was a rotated version of the first object. The
response is coded 1 (correct) or 0 (incorrect). There was a time limit of 7, 500 ms in the rotation
data. This may have made the data RT distribution less right-skewed than usual RT distributions,
which can produce somemisfits. Despite this limitation, we analyzed the rotation data (along with
the extraversion data) to provide a descriptive example of how to produce the CAF predictions,
not to test a general theory about the mental rotation processes. Both datasets are available from
the diffIRT package in R (Molenaar et al., 2015).

To study sources of conditional dependence, we fitted four variants of the diffusion IRT
models, with and without each of the random variability parameters. The first model was the
diffusion IRT model (hereafter denoted as DIRT) without any random variability. The other three
models are diffusion IRTmodels with random variability components (hereafter denoted as DIRT-
RV). The second model in our comparison was the model with random variability in drift rate but
without random variability in starting point which we denote as DIRT-RV(η). Similarly, the third
model denoted as DIRT-RV(szr ) was defined as the model with random variability in starting
point but not in drift rate. The last model was the full model with both variability parameters
denoted as DIRT-RV(η, szr ). We fitted the models to the data with the same prior specification
and sampling method as used in the simulation study (see supplementary material). We also
assessed convergence in the same way as done in the simulation study (by visually inspecting the
posterior densities and with the Gelman–Rubin convergence diagnostic; Gelman, 1996; Gelman,
Carlin, Stern, Dunson, & Vehtari, 2013), and there was no convergence issue. When either a
response or an RT was not recorded for person p and item i , we considered the data point a
missing value and did not include it in the analysis. There was only one missing value (less than
0.1%) in the extraversion data, and there were 32 missing values (about 2.6%) in the rotation data.
Also, we excluded one person in the rotation data from the analysis due to overly fast responding
(9 out of 10 items were responded to in about a second, while 5% quantile of the overall RT
distribution is 1.2 seconds, and accuracy of this person was 0.2 which is much lower than chance
accuracy 0.5, implying that the person responded with wrong buttons), leaving 120 persons in the
final analysis.

Sources of conditional dependence and their magnitudes can be studied by comparing the
four models. The DIRTmodel plays a role as a reference model as it assumes conditional indepen-
dence. If any of the other three models improves the general model fits, it implies the existence of
conditional dependence. Furthermore, if the DIRT-RV(η, szr ) model performs the best, it implies
that both variability in drift rate and variability in starting point are sources of conditional depen-
dence. If either the DIRT-RV(η) model or the DIRT-RV(szr ) model shows the best model fit, it
implies that the dominant source of conditional dependence is the random variability assumed
in the model and the other variability has little contribution to behavioral patterns of the data.
We conducted this comparison based on the modified Akaike information criterion (mAIC) and
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the modified Bayesian information criterion (mBIC). These information criteria were proposed
to use for joint models of responses and RTs estimated with a Bayesian method (Bolsinova,
Tijmstra, & Molenaar, 2017; Bolsinova & Molenaar, 2018, 2019). These were calculated with
-2 log-likelihood (-2LL) evaluated at the posterior means of the model parameters, but we used
the MAP estimates for model evaluation instead. Because we jointly estimated all person and
item parameters (not marginalizing person parameters or latent traits/abilities), we included the
number of person parameters in the penalty term calculation. For example, the total number of
parameters of the full DIRT-RV model is 3P + 2I + 2.

The model comparison can be made at different levels. For each data set, the models are fit
to two (P × I ) matrices of responses and RTs, respectively, and produce a (P × I ) matrix of log-
likelihood values. Overall model fits can be evaluated with the sum of the log-likelihood values,
and the models can be compared with these sum values to identify general sources of conditional
dependence. However, there might be heterogeneity in conditional dependence between persons,
between items, or even between person-item combinations (i.e., between responses). For example,
a respondent may have more variability in starting point across items than other respondents and
an item may incur more variability in drift rate than other items. Conditional dependence on
different levels can be evaluated based on P row-wise sums, I column-wise sums, and P × I
points of the log-likelihood matrix, for between-person, between-item, and between-combination
conditional dependence, respectively. Then, heterogeneity in different conditional dependence
levels can be studied by comparing these values across the four models.

Table 1 summarizes the model fitting results. Relative model fit indices such as -2LL of the
four models evaluated at the MAP estimates, mAIC, and mBIC are shown in Overall Model Fits
section of the table in which the bold values indicate the best-fittingmodel. For both of the datasets
examined, the fullmodelwith the two randomvariability parameters performed the best, indicating
that there was a certain amount of random variability in drift rate and in starting point that would
be a dominant source of conditional dependence between response accuracy/proportion and RT.
Judging by the MAP estimates of the variability parameters (in Random Variability Estimates
section of Table 1), there was large random variability in drift rate and small random variability in
starting point in the extraversion data, while both variability components were fairly large in the
rotation data. Individual-Level Comparisons section presents the number of persons, the number
of items, and the number of person-item combinations (i.e., responses) that prefer the model in the
corresponding column. The numbers show that there was heterogeneity in conditional dependence
at different levels. Thus, even though the full model was supported by the overall model fit indices,
persons, items, and their combinations may have conditional dependence from different sources
and some may satisfy conditional independence between response accuracy/proportion and RT.

The model comparison result above only shows the relative model fits and does not guarantee
that the best model indeed accounts for the behavioral patterns of the data such as response
accuracy/proportions and the shape of the RT distributions. The absolute model fit is particularly
important for our analysis as it is necessary for the model-predicted CAFs to correctly represent
conditional dependence underlying response accuracy/proportion and RT; if a model fails to
explain behavioral patterns in the data, obviously it also fails to produce good CAF predictions.
The absolute model fit to data can be examined by comparing data and model predictions. One
can conclude that the model fits the data well and has a good absolute fit if the model predictions
match the data, capturing important behavioral patterns.

Figure 3 shows the posterior predictive checking results of the extraversion data. In the left-
most panel at the top row, the predicted proportions of the positive responses (‘Yes’ to given
extraversion-related words) computed by item are plotted against the data-based response pro-
portions. For all 10 items, the predicted item-wise response proportions are consistent with the
data proportions. At the top-left side of the panel, the Pearson correlation between the data and
predicted item-wise response proportions is shown as r = 0.993. Below the correlation estimates,
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Table 1.
Empirical fitting results.

Data Extraversion Rotation

Model DIRT DIRT-RV(η) DIRT-RV(szr ) DIRT-RV(η, szr ) DIRT DIRT-RV(η) DIRT-RV(szr ) DIRT-RV(η, szr )

Overall model fits
-2LL 1519.5 1471.2 1508.0 1465.6 3456.7 3449.3 3427.3 3387.3
mAIC 2417.5 2371.2 2408.0 2367.6 4222.7 4217.3 4195.3 4157.3
mBIC 3747.8 3704.5 3741.3 3703.9 5293.5 5290.9 5268.9 5233.7

Random variability estimates
η – 2.097 – 2.085 – 0.714 – 1.006

(1.546, 2.715) (1.570, 2.867) (0.400, 1.204) (0.625, 1.550)
szr – – 0.108 0.267 – – 0.473 0.605

(0.029, 0.271) (0.084, 0.432) (0.347, 0.597) (0.476, 0.738)
Individual-level comparisons
Person 33 33 40 37 25 35 34 27
Item 2 2 2 4 3 2 0 5
Combination 418 320 344 347 323 275 301 279

(1) Overall model fits: -2 log-likelihood, themodifiedAkaike information criterion (mAIC), and themodified
Bayesian information criterion (mBIC) of the four diffusion IRT models fitted to extraversion and rotation
data. The bold values indicate the best-fitting model. (2) Random variability estimates: MAP estimates of
the random variability in drift rates (η) and random variability in starting points (szr ) from different models,
followed by their 95% credible intervals in parentheses. (3) Individual-Level Comparisons: The number of
persons (‘Person’), the number of items (‘Item’), the number of the person-item combinations (i.e., responses;
‘Combination’) that prefer the model in the corresponding column. DIRT: Diffusion IRT Model, DIRT-RV:
Diffusion IRT Model with Random Variability.

the overall data proportion of the positive responses is shown with the predicted response pro-
portion in parentheses. The predicted proportion of ‘Yes’ responses is 0.806, which is consistent
with the data proportion. The result shows that the best-fitting model is able to predict the overall
and item-wise response proportions very well. In the top-middle panel, overall RT distributions
(in seconds) obtained by aggregating all persons and items are shown. The histograms show the
positive (‘Yes’ response; black) and negative (‘No’ response; red) RT distributions of the data. The
RTs for the negative responses are coded negative (multiplied by−1) and plotted correspondingly
for visual clarity. The black and red curves overlaid on the histograms show the predicted densities
of the RT distributions for positive and negative responses, respectively. The consistency between
the histograms and densities shows that the model predictions match the data very well. For an
additional inspection of the RT distributions, the rightmost panel at the top row plots the data RT
quantiles obtained by item on the x-axis against the predicted RT quantiles on the y-axis. The
numbers 1, 3, 5, 7, and 9 represent the 10%, 30%, 50%, 70%, and 90% quantiles, respectively, and
the black and red numbers represent RT quantiles for positive and negative responses, respectively.
The predicted RT quantiles match the data well with the Pearson correlation of rYes = 0.965 and
rNo = 0.819, for positive and negative responses, respectively. There is some misfit particularly
at the tail of the negative RT distributions (red 9’s). This is typical in the RT data from binary
choice tasks as the RT distributions are right-skewed so that there is large variability in the tail.
Also, the number of negative responses is much smaller than that of the positive responses (as
shown in the panels in the bottom two rows of Fig. 3), which makes it harder to obtain precise
data RT quantiles for the negative responses. Furthermore, there are some items with relatively
‘balanced’ data RT distributions, while the model predicts that negative responses are generally
slower than positive responses unless the estimated drift rate is close to 0. This also can make the
model overestimate some of the 90% quantiles of the item-wise negative RT distributions.
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Figure 3.
Absolute model fits of the DIRT-RV(η,szr ) model to extraversion data. In the top-left panel, item-wise data response
proportions are plotted on the x-axis against the model predictions on the y-axis. In the top-middle panel, overall RT
distributions (in seconds) obtained by aggregating all persons and items are shown. The histograms show the data, while
the densities show the model predictions and the positive (‘Yes’) RT distribution is colored black, while the negative
(‘No’) RT distribution is colored red. The RTs for negative responses are coded negative and plotted for visual clarity.
In the top-right panel, item-wise data RT quantiles are plotted on the x-axis against the model predictions on the y-axis.
The numbers 1, 3, 5, 7, and 9 represent the 10%, 30%, 50%, 70%, and 90% quantiles, respectively, and the black and red
numbers represent RT quantiles for positive and negative responses, respectively. In the bottom two rows, the item-wise
response proportions and RT distributions are presented. Within each panel, the data proportion of positive responses
is shown at the top-left corner with the model prediction shown in the following parentheses. The number of negative
responses (nN) and the total number of responses (n) for each item are shown under the proportion of ‘Yes’ responses.
For the item-wise RT predictions, RT quantiles in the top-right panel are plotted again, but now separately per item. In
each panel, ‘x’s indicate data, while ‘o’s with the line connecting them indicate the model predictions. The five quantile
points are plotted over the x-axis against their RT values on the y-axis. Positive responses are color-coded in black, while
negative responses are in red (Color figure online).

In the bottom two rows of Fig. 3, the item-wise response proportions and RT distributions
are presented. Within each panel, the data proportion of positive responses is shown at the top-left
corner with the model prediction shown in parentheses. These values correspond to the black dots
in the top-left panel. For the item-wise RT predictions, RT quantiles in the top-right panel are
plotted again, but now separately per item. In each panel, ‘x’s indicate data, while ‘o’s with the
line connecting them indicate the model predictions. The five quantile points are plotted over the
x-axis against their RT values on the y-axis. Positive responses are color-coded in black, while
negative responses are in red. The model predictions for the positive RT distributions match the
data well for most of the items, while there are some misfits in the negative RT distributions
for some items. The misfits in the negative RT distributions can be attributed to fewer negative
response observations. The number of negative responses (nN) and the total number of responses
(n; the number of persons minus the number of missing values) for each item are shown at the top-
left corner of each panel, under the proportion of ‘Yes’ responses. For example, the proportion of
‘Yes’ responses to item 6 is 0.902 and there are only 14 (≈ 143×0.098) ‘No’ responses. These are
obviously insufficient to obtain precise values of five (data)RTquantiles for the negative responses,
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particularly considering that different persons responded to this item and thus the person effects
are intermixed within those responses. The parameter estimation is more influenced by the more
frequent responses (such as positive responses when there are only a few negative responses, and
also, negative responses when there are many as for items 1–3) and less so by the less frequent
responses (such as the negative RT distribution for item 6) to capture the dominant patterns of
the data. Hence, it can be concluded that the misfits at the tails of the negative RT distributions
are mostly due to the right-skewness, the corresponding larger sampling variability, and the small
number of observations as pointed out above.

The model accounts for the asymmetry between the item-wise positive and negative RT
distributions. The asymmetry is captured well for some items (e.g., item 3) but not well for other
items (e.g., item 6). The misfit is related to the fewer negative response observations as described
above, whichmakes it unlikely to obtain precise data RT quantiles. Furthermore, some items (e.g.,
items 2, 5, 6, and 9) have relatively symmetric data RT distributions, while the negative responses
are slower in the overall RT distributions. Thus, there are across-item differences in the balance
between positive and negative RT distributions (i.e., item-specific conditional dependency), which
cannot be fully captured by the current model with a single random variability in drift rate η and
a single random variability in starting point szr . Although the actual effects of a single variability
parameter would differ by person and by item (for example, as a function of drift rates vpi as
shown in Fig. 2), a single variability parameter for all persons and items might be too restrictive
to fully capture the asymmetry for all item-wise RT distributions. The model predicts rather flat
CAFs when the drift rate is close to 0, which makes it capture symmetric RT distributions when
item response proportion is near chance as for items 2 and 5. However, items 6 and 9 have high
proportions of positive responses, and thus, the model predicts slower negative RT distributions
which do not match the data. Inter-item heterogeneity in the RT balance can be better accounted
for if the random variability is allowed to vary by item. However, this requires a large number of
persons to obtain precise estimates of the item-wise variability parameters which is why we do
not further investigate. Given the limited sample size (P = 143) and the parsimoniousness of our
modeling, the model predictions of the item-wise response proportions and RT distributions are
generally consistent with data, and thus, the absolute model fit with single variability parameters
is reasonably good.

Figure 4 shows the posterior predictive checking results of the rotation data. The top-left panel
shows that the data-based response accuracy is quite high for all items and the model produces
good predictions for accuracy with the Pearson correlation of r = 0.974 and no noticeable bias.
The overall data accuracy is 0.872, and the model prediction (0.893) is close to the data. The
top-middle panel shows the data RT distributions obtained by aggregating all persons and items
(histograms) and the corresponding model predictions (densities). Due to the time limit (7500ms)
of the task, posterior predictive samples with RTs greater than the time limit were excluded and the
model predictions were generated with the remaining samples. In general, the densities match the
histograms well, showing that the model performs well in predicting the overall RT distributions.
The top-right panel shows the good consistency between the data and predicted RT quantiles per
item, with rC = 0.982 for correct responses and rE = 0.929 for error responses. The panels in
the bottom two rows provide a more thorough inspection of the item-wise RT distributions. The
correct RT quantiles match the data well for all items, while there are some mismatches in the
error RT quantiles. The discrepancies can be explained by the fewer numbers of error observations
(as shown as nE in each panel) and the effect of the time limit of the task. Despite these limitations
in the data, the model predictions of the 10–70% error RT quantiles match the data reasonably
well. Taken together, the model shows a good absolute fit for the rotation data.

Having demonstrated good absolute fits of the DIRT-RV(η, szr ) model to the extraversion
and rotation data, we generated the model predictions of the CAFs underlying responses and
RTs. As described in Sect. 2, the diffusion IRT model produces a single CAF prediction per set
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Figure 4.
Absolute model fits of the DIRT-RV(η,szr ) model to rotation data. See the text or the caption of Fig. 3 for the detailed
description of this figure (Color figure online).

of diffusion parameters such as drift rate and boundary separation. Thus, with P persons and I
items, the model produces P × I different CAFs for the P × I pairs of persons and items. This
makes the model capable of capturing heterogeneity in conditional dependence across responses
although the capability of the model is limited to the differences in the person and item parameters
estimated from the model fit (as the model has only a single η and a single szr , while drift rate
and boundary separation are functions of the person and item parameters). As the absolute fit of
the model was particularly good for the positive (‘Yes’) responses in the extraversion data and the
correct responses in the rotation data, the CAF predictionswere generated only for the person-item
combinations with these responses. When generating the CAFs, the nondecision time parameters
were fixed to 0 as they do not affect the trend of the CAFs. Thus, the predicted CAFs are based
on the decision times, not on the whole RTs including nondecision times. Also, the CAFs are
displayed on the logarithmic scale of the time as in Bolsinova and Molenaar (2018) and Chen et
al. (2018a).

Figure 5 shows the predicted CAFs for the extraversion data (left) and the rotation data (right).
In each panel, each black curve shows a CAF corresponding to one of the P × I person-item
combinations (i.e., responses). For the extraversion data, most of the CAFs show a decreasing
trend but with different slopes. The decrease is due to the large estimate of the random variability
in drift rate (η̂ = 2.085). Although this single random variability parameter determines the overall
decrease in the predicted CAFs, the slopes differ by person-item combination as different persons
and items are associated with different boundary separations and drift rates. There are also some
CAFs that grow from very low positive response proportions to about 0.5. Person-item pairs
corresponding to these CAFs have higher probabilities of ‘No’ responses to given extraversion
items. Both decreasing and increasing trends are from randomvariability in drift rate, which shows
that conditional dependency is correlated with predicted response proportions. The estimate of
the random variability in starting point was ŝzr = 0.267. It turns out that this estimate is too
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Figure 5.
The predicted conditional accuracy functions (CAFs) for the extraversion data (left) and the rotation data (right): In each
panel, each black curve shows a CAF corresponding to one of the P × I person-item combinations (i.e., responses). The
green dashed curves and the red dotted curves represent the CAFs of selected persons with different response proportions
as shown at the bottom-left side of each panel. A single person has multiple CAFs each of which corresponds to an item.
Acc: Accuracy (Color figure online).

small to make the first-increasing trend clearly appear in the CAFs, but it makes the slope of the
decreasing trend less steep in the early RT period.

For the rotation data, the dominant pattern of the predicted CAFs is not monotone: accuracy
increases first and then decreases as a function of the decision time. The random variability
in starting point that determines the overall degree of the first-increasing trend is estimated as
ŝzr = 0.605, which is fairly large. The estimate of the random variability in drift rate is also
sufficiently large (η̂ = 1.006) so that it allows to predict the later-decreasing trend. Like those of
the extraversion data, the predicted CAFs of the rotation data also show heterogeneity as the CAFs
start to increase at different rates, reach the peak at different decision times, and also decrease at
different rates. The curvilinear pattern appears when accuracy is generally high. There are also
some CAFs whose accuracy is generally low and flat in the early RT period and later increases
over time. As in the extraversion data, these predictions are from random variability in drift rate
when the predicted drift rates for person-item combinations are negative. That is, the same source
of conditional dependency predicts different patterns as a function of item difficulty.

Heterogeneity in the CAFs over all persons and items (i.e., differences across all the gray
curves in Fig. 5) might be too ambiguous to provide meaningful information. This can be more
thoroughly studied by taking some persons as examples and looking at their CAFs. In each panel
of Fig. 5, the green dashed curves represent the CAFs of a selected person with the response
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proportion (of positive responses in the extraversion data and of correct responses in the rotation
data) of 0.8 and the red dotted curves represent the CAFs of another selected person with the
response proportion of 0.6. For each person, different curves represent the CAFs corresponding
to different items to which the person made positive or correct responses. These curves show that,
even for a single person, conditional dependency can vary by item (i.e., item-specific dependency).
Differences in the height and slope of the curves show that the response proportion and its change
as a function of RT can differ due to item effects. In particular, when items are rather difficult for
a person, the model predicts that the general trend of the CAF can entirely change. For example,
the red dotted curves in the right panel show that a single person (Person 82) has curvilinear CAFs
for most of the items, while the same person has rather flat CAFs with low accuracy for other
items. A similar analysis can be done with some selected items as examples, which can show
heterogeneity due to person effects.

Our results show that the best-fitting variant of the diffusion IRT model predicts previously
observed trends of conditional dependency. In the extraversion data, negative dependency is
dominant although there are some cases with positive dependency with low positive response
proportions. These predictions are mainly from random variability in drift rate and its interaction
with predicted item response proportions. In the rotation data, the prevalent pattern in the CAFs
is curvilinear with a first-increasing and then decreasing trend. As in the Ratcliff diffusion model,
this trend results from a combination of random variability in drift rate and in starting point. The
former produces the decreasing (increasing) trend over time for easy (difficult) items, while the
latter produces changes in CAFs in the early RT period. As in the extraversion data, predictions
from random variability in drift rate show that conditional dependency can be positive or negative
depending on item difficulty, which is consistent with previous findings (Bolsinova, De Boeck,
& Tijmstra, 2017; Bolsinova, Tijmstra, Molenaar, & De Boeck, 2017; De Boeck & Jeon, 2019).

5. Discussion

In this paper, we extended the diffusion IRT model by implementing random variability
in drift rate and in starting point. With this extension, the model can account for previously
found conditional dependence between response accuracy and RT given latent variables and
item parameters. Random variability in drift rate is a source of negative conditional dependency
when the drift rate is positive (i.e., when an item is relatively easy for a person), while the same
variability causes positive conditional dependency when the drift rate is negative (i.e., when an
item is difficult for a person). Thus, drift rate variability explains both trends of dependency and
also their correlation with item difficulty. Random variability in starting point produces positive
conditional dependency in the early residual RT period when the drift rate is positive and also
early negative conditional dependency when the drift rate is negative. By combining both the
variability in drift rate and variability in starting point, the extended model can account for
various conditional dependency patterns including the curvilinear trend. Although our extension
included a single parameter for randomvariability in drift rate and another for randomvariability in
starting point, the model can capture the heterogeneity of conditional dependency across persons
and items. This is because the effects of variability parameters vary as a function of the other
cognitive components of the model.

The model-based explanation of conditional dependency that we provided with the random
variability extension is consistent with the interpretations proposed in earlier studies. Positive and
negative conditional dependency and their interaction with item difficulty can be interpreted as
outcomes of the variation in cognitive capacity (Chen et al., 2018a;DeBoeck& Jeon, 2019),which
is in accord with the model prediction with random variability in drift rate. This natural variation
in the available capacity across time can occur due to random changes in the level of attention,
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effort, or motivation, as well as due to person-by-item specificities of the tasks or expressions of
a trait (e.g., extraversion). Although the size of the variation may differ by person or by item,
it is plausible that the variation is a general phenomenon that applies to all persons and items.
The emergence of positive conditional dependency, primarily at the beginning of the response
process, was predicted by random variability in starting point. The variation in starting point is
a natural process in that, even with an equal level of capacity, the starting point of a cognitive
process may be closer or farther away from the correct response. This is most likely the case
for inductive processes because these are necessarily based on repeated hypothesis testing, for
knowledge-based processes because not all knowledge is equally available at a constant level of
accessibility, and for complex processes with different possible approaches and trials. In a general
test setting, responses to earlier items can induce an initial bias for response to a new item. A
possible interpretation for the curvilinear conditional dependency between response accuracy and
RTs is that it reflects the solution process of a respondent working on an item after individual
difference parameters and item difference parameters are controlled for.

We also illustrated how to study sources and trends of conditional dependency with the
diffusion IRT model. By comparing models with different assumptions, we can identify the
presence of conditional dependency and its dominant sources. The plain diffusion IRT model
without any variability component serves as a reference model. If a model with conditional
dependency works better for data, this provides evidence for the dependency of response accuracy
and RT unexplained by person and item effects. Provided that the conditional dependency model
accounts for behavioral patterns of data, we can interpret sources of dependency assumed in the
model as sources of dependency underlying response and RT data. Then, trends of conditional
dependency can be visualized by CAFs predicted by the model.

We provided two empirical examples to describe the procedure illustrated above. With the
extraversion data, we showed how to apply the procedure to personality measures. In this case,
CAFs describe the pattern of response proportion, not accuracy. The full model with both vari-
abilities in drift rate and in starting point was the best-fitting model, and its absolute model fit
was also good. However, judging from the predicted CAFs, the dominant source of conditional
dependency was random variability in drift rate as the functions of response proportion showed
large decreasing trends for extraversion-oriented person-item pairs and large increasing trends
for introversion-oriented person-item pairs. The variability of drift rate suggests that there are
idiosyncratic aspects to the nature of extraversion depending on the individual person, with item-
specific aspects of extraversion per person. The estimate of random variability in starting point
was relatively small, and thus, the predicted CAFs did not clearly show the early positive/negative
conditional dependency induced by variation in the initial bias. Our CAF analysis of the extraver-
sion data also showed that RT is generally faster when a response is strongly in favor of either
option (positive or negative) and slower when there is no preferred option. That is, more cognitive
effort (i.e., evidence accumulation according to the diffusion model account) is required when
it is unclear to a respondent if a presented extraversion-related word applies to the respondent’s
personality. A behavioral trend of residual dependency of other latent traits can be studied in the
same way.

The rotation data provide an empirical application of the diffusion IRT model with random
variability parameters to a cognitive ability test. The full model was also the best-fitting model for
the rotation data and the model predictions accounted for item-wise accuracy and item-wise RT
distributions. The predicted CAFs showed the curvilinear pattern, implying that both variability
in the efficiency in information processing and variability in starting point of the problem-solving
processwere dominant sources of conditional dependence underlying the rotation data. Variability
in starting point also suggests a partly random repeated trial strategy to solve the rotation problems.
There is one caveat we should mention regarding our analysis result of the rotation data. There
was a time limit imposed in this task which potentially affected characteristics of the data RT
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distributions, and in turn, conditional dependency with response accuracy. Therefore, the result
we obtained should be interpreted as a behavioral feature of the rotation task under time pressure
rather than a general feature.

The curvilinear conditional dependency we obtained from the rotation data is consistent with
thefindings inChen et al. (2018a) andBolsinova andMolenaar (2018).Chen et al. (2018a) obtained
a single CAF by aggregating all the data points and applying double-centering. Although it is not
guaranteed that centering by person-wise and item-wise mean is sufficient to control for person
and item effects, the curvilinear pattern shown in Chen et al.’s work corresponds to conditional
dependency at an ‘aggregate’ level (i.e., across all person-item pairs or across all responses)
Bolsinova and Molenaar (2018) found the curvilinear relationship between an item intercept
(which has a positive relationship with accuracy) and standardized log residual RTs, providing
evidence for the curvilinear relationship at the ‘item’ level. In contrast, the model predictions
from the diffusion IRT model illustrate trends of conditional dependency for a person-item pair
(the ‘response’ level). Although there are some differences in approach, the two earlier studies
and our current work provide evidence for the curvilinear pattern of conditional dependency, and
at the different levels: aggregate, item, and response levels.

In our modeling approach, we defined a drift rate of evidence accumulation as the difference
between a person-wise drift rate and an item difficulty parameter, in line with the diffusion IRT
model as defined by Tuerlinckx andDeBoeck (2005). van derMaas et al. (2011) have proposed an
alternative parametrization of the drift rate as the quotient of a person-wise drift rate and an item
difficulty, with both parameters constrained to be positive (i.e., their ‘Q-diffusion IRT’ model
as an alternative for the ‘D-diffusion IRT’ model by Tuerlinckx and De Boeck). The authors
explained that, unlike the practice of most other IRT and factor-analytic models, abilities need to
be parameterized in the positive range of numerical values. Although this is a valuable alternative,
we have not followed the Q-diffusion IRT approach for the following reasons. First, the drift rate
parameter of the diffusion model as conceived and used in cognitive psychology has a range that
comprises the real line and thus negative values as well. In the context of testing, a negative drift
rate corresponds to the tendency to move to the opposite response option and it is a conceptual
issue whether the reasoning of van der Maas et al. (2011) regarding ability can be applied to the
drift rate. Second, as far as drift rate can be interpreted in terms of ability, we side with a large
majority of psychometric models and work with positive and negative values for latent abilities.
Third, the positive ability assumption implies that the lowest response accuracy that the quotient
parameterization can predict is 0.5 for binary-choice items unless the model is further adjusted
based on assumptions for the multiple-choice format (which does not apply to our data). Thus,
without amodification, theQ-diffusion IRTmodel cannot account for difficult itemswith accuracy
less than 0.5. Nonetheless, the random variation extension can also be applied to the Q-diffusion
IRT model. However, this would be more restricted than our current extension because a negative
drift rate is not allowed and some patterns of dependency cannot be explained. For example, Chen
et al. (2018b) showed that, for difficult items, the conditional accuracy function first decreases
and then increases. This is consistent with the prediction from the D-diffusion IRT model with a
negative drift rate (the bottom-half of Fig. 2), but the positive quotient drift rate cannot account
for this.

Although we only implemented a single random variability parameter that works for all
persons and items, it is also possible to extend the model with multiple variability parameters.
For example, item-wise variability in drift rate and in starting point can be implemented given
responses from a large number of persons to each item. In fact, De Boeck et al. (2017) provided
evidence for the item-specific nature of conditional dependency. This implies the potential ofmod-
eling item-wise variability in cognitive components in the study of conditional dependency. The
estimation of a person-wise variability parameter is rather unrealistic since it requires responses
from a single person to hundreds of items, which is not typically done in psychometrics. Also,
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as Bolsinova, Tijmstra , Molenaar, and De Boeck (2017) stated, variation of person components
across items cannot easily be distinguished from the variation of item components across persons
because both of them represent the same interaction effect of persons and items.

Conditional dependence is a complicated feature of responses and RTs, and its characteris-
tics can vary by different tests and inventories. For example, cognitive tests may involve multiple
heterogeneous processes and conditional dependency underlying these tests can be much dif-
ferent from dependency underlying tests involving a single process. The diffusion IRT model
assumes a single process, namely the evidence accumulation process, and thus, the current model
may not provide the best account for psychometric measurements with multiple heterogeneous
processes. However, variability in cognitive components can potentially capture the unexplained
heterogeneity in psychological processes and the diffusion model with variability extension can
provide a reasonable approximation to complex psychological processes. For example, it has
been under debate whether the mental rotation entails a single process or multiple heterogeneous
processes (Cooper & Shepard, 1973; Shepard & Cooper, 1982; Shepard & Metzler, 1971). If the
latter is the case, it might be possible to find a multi-process model to provide a better description
of conditional dependency underlying the mental rotation. However, the diffusion IRT model
showed a good absolute model fit to the rotation data we examined and this implies that the
model with the variability extension can provide a good account for or a good approximation
to the mental rotation processes. Similarly, different features of psychometric measurement such
as response modalities (e.g., binary response vs multiple-option response) and time pressure can
influence how responses affect RTs and vice versa. We believe identifying and modeling this
potential heterogeneity of conditional dependence will provide us with insightful information for
more accurate and precise measurement of psychological constructs and a better understanding
of cognitive processes underlying item response behavior.
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