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Into language acquisition at OSU?

Lacqueys interdisciplinary reading group
9am every Wednesday
Present your work! Read papers! Eat little oranges!

The Buckeye Language Network (BLN)
Umbrella group for language at OSU
Can nominate you for an award, feature your work in 
a flash talk series, connect you with mentors



Phonetic and phonological abilities in young infants
… suggest rapid and powerful learning mechanism



Experiments tell us what is 
learned, not always how

A classic study by Maye et al (2002) showed that infants could use statistical 
properties of speech to form protocategories

A process called distributional learning



Maye teaches infants minilanguages
Group 1 hears two categories

more like ta      …     more like da

Group 2 hears one category

more like ta      …     more like da



After a few minutes...

Test perception of the contrast

Infants in group 1 detect the change better! 

ta, ta, da, da ...
Wait! Something 
is different!



Can we simulate this kind of 
learning?

We can test hypotheses about how it works by building models

We’ll use these models to learn from real data
And see where they succeed and fail



Computer models to the rescue?

i

formant 2

formant 1

data: Hillenbrand, Getty, Clark and Wheeler 1995

approach of de Boer and Kuhl 2003,
see also Vallabha et al 2007



Start with random category system

formant 2

formant 1

data: Hillenbrand, Getty, Clark and Wheeler 1995

approach of de Boer and Kuhl 2003,
see also Vallabha et al 2007



Slowly improve the representations

formant 2

formant 1

data: Hillenbrand, Getty, Clark and Wheeler 1995

Categorize each 
sound based on the 
current category 
system

Then update the 
category 
representations

approach of de Boer and Kuhl 2003,
see also Vallabha et al 2007



Eventual success

formant 2

formant 1

data: Hillenbrand, Getty, Clark and Wheeler 1995

approach of de Boer and Kuhl 2003,
see also Vallabha et al 2007



This works fine for toy systems

Works well when:

Few relevant dimensions

Categories are allowed to overlap, but not too much

Sound categories have simple elliptical shape



But real life is highly variable

American English from the lab:
(Hillenbrand et al 1995)

American English from the wild:
Buckeye speech corpus (Pitt et al 2005)



And very high-dimensional

With highly correlated features!



Proposed solution: more features
Adding word-level information helps to 
compensate for the overlap between 
English vowel categories
 (Feldman et al 2013)

Adding consonant context compensates for 
coarticulatory effects in Inuktitut
 (Dillon et al 2013)



But in the end, we concluded 
something else was necessary

Some of our studies:

Japanese vowel length contrast can’t be learned from conversation, and 
normalizing the data doesn’t help (Hitczenko et al 2018)

Real English vowels overlap too much to learn (Antetomaso et al 2017)

Learning the vocabulary alongside the categories does not disambiguate 
all the English vowel contrasts (Elsner et al 2016)



Piling on covariates causes too many problems

Dependence: All the variables are correlated, in
    complicated and hard-to-model ways

Relevance: Not all predictable variation is phonologically
 meaningful

I don’t sound like you, but that doesn’t mean I 
should have my own, speaker-specific phonemes

There are too many correlations to 
learn each one separately



“Interaction terms”

Typically, we deal with potentially-correlated 
features using interaction terms

But these are like tribbles: they grow 
exponentially!

Too much data is required
And we’ll probably learn some spurious 
effects

from wikimedia commons



Limit the number of interactions

Feat. 1 Feat. 2 Feat. 3

H I

Y

A neural network is given a fixed 
number of intermediate variables…

These can summarize any 
combination of features 1, 2 and 3

These represent learned 
abstractions which summarize 
intermediate conclusions from the 
low-level cues

The model picks its own 
interaction terms



inputs

layer 1

layer 2

outputs

 

more layers?

Multilayer network

More complicated network topologies 
are common…

Take advantage of structure in the 
data:

Temporal (speech ms. by ms.)
Spatial (nearby frequency bands)
Source of data (my voice vs. yours)



Biological analogies?

Adaptation and Neuronal Network in Visual Cortex
Lyes Bachatene, Vishal Bharmauria and Stéphane 
Molotchnikoff

The visual cortex processes 
input in layers…

Lower layers detect 
“low-level” features; higher 
layers are more abstract



Biological analogies?

Adaptation and Neuronal Network in Visual Cortex
Lyes Bachatene, Vishal Bharmauria and Stéphane 
Molotchnikoff

Receptive Field Inference with Localized Priors
Mijung Park and Jonathan Pillow



Model design

We want to use networks to model human language learning...

We’ll try to deal with dependence and relevance issues by tuning:

The learning objective: what the network predicts

The inputs: what features we give it

The internal structure of the intermediate layers



Learning as memorization

People have limited working 

memory, especially for fine 

phonological details

This makes it difficult to 

remember speech in a 

language you’re unfamiliar 

with

speech input

working memory

reconstruction



Learning as memorization

Perhaps if you try to 

memorize well with limited 

space…

This will force you to learn 

some linguistic distinctions?

speech input

working memory

reconstruction



Learning as memorization

speech input

working memory

reconstruction

+high
+back
+rounded

speech input

working memory

reconstruction

idiosyncratic 
phonetic details



System design



System design



Clustering effectiveness

Zerospeech 2015 Challenge: Versteegh et al

Xitsonga: BantuAmerican English



Clustering effectiveness

Zerospeech 2015 Challenge: Versteegh et al

Xitsonga: BantuAmerican English

Homogeneity: 27%

Completeness: 18%

Homogeneity: 46%

Completeness: 27%

same label -> same phone

same phone -> same label



Cluster analysis

E

X



Cluster analysis

E

X

affricates nasals



voice 94
sonorant 92
continuant 86
consonantal 86
approximant 86
syllabic 84
dorsal 83
strident 81
low 80
front 73
high 67
back 66
round 66
labial 65
coronal 65
tense 63
delayed release 62
anterior 55
nasal 51
distributed 38
constr. glottis 29
lateral 26
labiodental 17
trill 15
spread glottis 12
implosive 1

voice 89
sonorant 87
approximant 82
continuant 81
consonantal 78
syllabic 74
dorsal 71
strident 68
coronal 63
anterior 61
delayed release 55
front 55
high 49
tense 45
back 44
nasal 41
labial 37
low 37
distributed 33
stress 33
diphthong 33
round 27
lateral 25
labiodental 14
spread glottis 7

EX
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voicing
p: -voice
b: +voice

vowels vs consonants
t: -sonorant
a: +sonorant
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EX

voicing
p: -voice
b: +voice

vowels vs consonants
t: -sonorant
a: +sonorant

vowel place features
i: -back

u: +back



Good news and bad news

The system learns to distinguish vowels from consonants very well

Some within-class distinctions can be acquired as well…

Others (including that annoying English vowel space) cannot

Presumably these depend on top-down evidence about words and 

phonological environments



Integrating larger units

This system represents single phones, and relies on pre-labeled 

phone boundaries

We really want to process unsegmented speech

This could allow us to learn higher-level units, but it’s also more 

difficult!



Basic sequential network

S S

Model has a “memory state”, S, 
based on what it’s already seen.
At any time, it can use its memory 
to guess a “target” value t.

new 
S

New S combines information from 
the input and from memory

current t

t t

Current t is predicted based on S.
Our choice for t determines what 
the system learns to remember.



Segments and hierarchy

This basic setup provides a label for each frame in the utterance 

(like the previous model)

But it doesn’t “chunk” the speech into coherent segments



Hierarchical sequential network

S S
new 

S

SS S

S S S
Highest level of memory (largest chunks)

Lowest level of memory (input-level)

At a boundary, the lower level 
communicates with the upper

No boundary here



How is this meant to work?

[ε
1
] [ε

2
] [ε

3
]

/εd//εd/ /εd/

“red” “red” “red”

No boundary here

hint: upcoming [d]



In practice, we don’t know what 
the levels will do

We can try to manipulate what the model learns in different ways

Starting with its learning objective (choice of target)



Memory in sequential model

S S
new 

S

The network tries to reconstruct a 
block of previously seen speech.



Prediction in sequential model

S S
new 

S

The network tries to guess a block 
of upcoming speech.



Factoring out non-linguistic cues

How do we get rid of speaker identity?

Infants are capable of identifying speakers in their native 

language (Johnson et al 2011)

But even young infant perception is not speaker-specific 

(Bergelson and Swingley 2017)



Dealing with speaker identity

Provide a speaker ID

Hopefully, the model isolates 
correlations between speaker and 
sound within a few dimensions of its 
representation.

Adversarial learning

Split the model’s representation in two, 
and punish the model if the “linguistic” 
part is correlated with the speaker

who what



Preliminary conclusions

Both memory and prediction objectives contain information about 

linguistic abstractions

Using some method to combat speaker specificity leads to 

higher-quality representations

The “adversarial” technique is effective at removing speaker 
information

We still don’t know if it’s linguistically helpful



Sample segmentations (transcribed speech)

yu want tu si D6bUk

lUk D*z 6b7 wIT hIz h&t

&nd 6d Ogi

yu want tu lUk&t DIs

lUk&t DIs

h&v 6d rINk

oke nQ

WAts DIs

WAts D&t

WAt Iz It

lUk k&n yu tek It Qt

tek It Qt

yu want It In

pUt D&t an

D&t

yEs

oke

op~ It Ap

tek D6 dOgi Qt

9T INk It wIl kAm Qt

Brent 1999



Visualizations (audio)

En: +/- voice En: +/- continuant



Preliminary conclusions

Systems that segment seem to learn roughly similar 

generalizations to the system with fixed boundaries

But not quite as well (yet)

Segmentation accuracy hovers in the high 50% range, but we 

believe we will do better soon



Conclusions

Simplistic models of distributional learning don’t appear to capture 

the flexibility and robustness of infant learning

Techniques that build hierarchical representations might be able to 

help

Low-level objectives (such as memorization) are capable of 

extracting considerable phonological information from raw audio
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