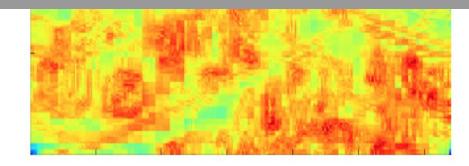


Language and Visual Processing

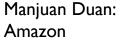
Micha Elsner The Ohio State University



Thanks to:

Alasdair Clarke: Psychology, University of Essex

Hannah Rohde: Linguistics and the English Language, University of Edinburgh



Marie-Catherine de Marneffe: Linguistics, OSU

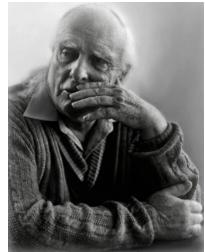
and Stephanie Antetomaso, Marten van Schijndel, Emma Ward, Amelia Hunt

Reference in visual worlds

Gricean principles

Quantity: Give as much information as necessary and not more.

In visual setting, implies two design goals: **Uniquely** identify the target But don't **overspecify**

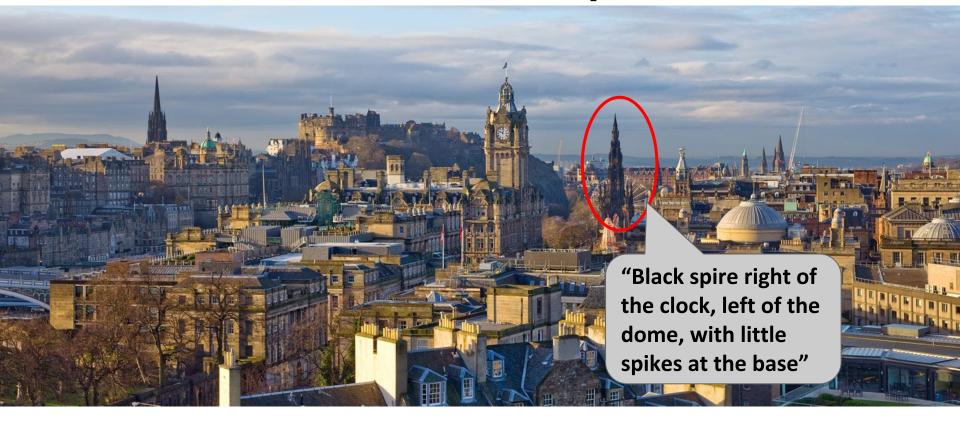


img: ordinaryphilosophy.com

Candidate description

Doesn't uniquely identify

Candidate description



Overspecified

Gricean reasoning is expensive

Gricean principles require us to think about counterfactuals...

What description strategies could I use? ("black", "right of", "has little spikes")

img: ordinaryphilosophy.com

What other objects might they apply to?

influential neo-Gricean research by Frank and Goodman 2012; Jaeger 2010; Degen, Franke and Jaeger 2013, and others

Is "spire" adequate?

Reducing the burden on listeners

Taking vision into account helps listeners to find the target quickly:

"black spire" not only eliminates some competing spires but does so **efficiently---**

white buildings can be screened out pre-attentively

Overspecification, particularly of color, is probably helpful

see Arts et al 2011; Koolen et al 2011 and others

Reducing the burden on speakers

Speakers take shortcuts, leading to descriptions which are not always optimal for their listeners...

Especially under pressure!

Horton and Keysar, 1996; Beun and Cremers 1998; Bard et al 2003 and others

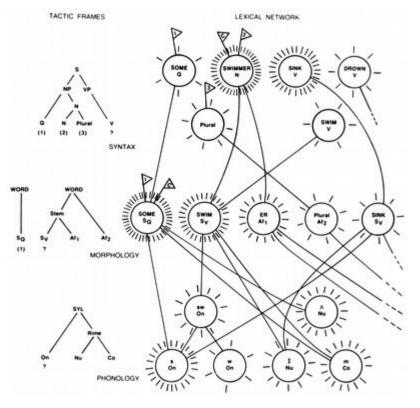
Standard models of speech production

Dell 1986, Levelt 1989 and others

Speech planning is:

Incremental Hierarchical Subject to revision

Real-time planning can't always keep up with Gricean ideals



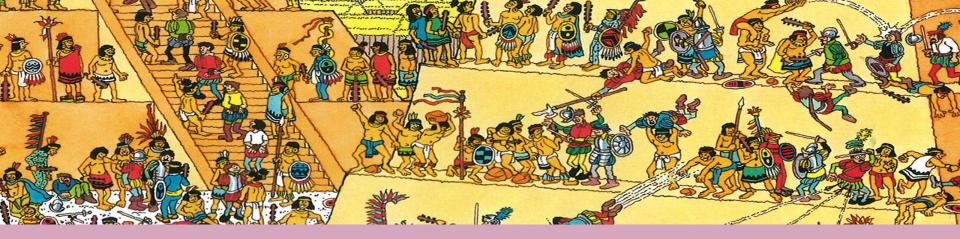
Dell 1986

How vision makes a difference

What is said? Content and discourse structure

When is it said? Eye-tracking and timing data

Why is it said? Cognitive modeling with neural nets

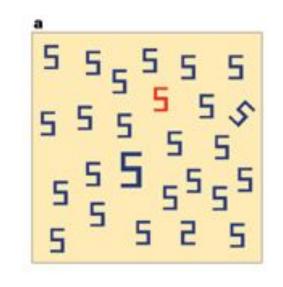


Content and discourse: Where's Wally?

"Visual salience"

The visual system is good at finding unique colors...

Not so good at finding uniquely sized objects quickly



It is easy to find the red, tilted or big '5'. It is not easy to find the '2' among the '5's.

Wolfe and Horowitz 2004

"Where's Wally" corpus

"Where's Wally" (Handford)... A game based on visual search Corpus collected on Mechanical Turk Selected human targets in each image Subject instructed to describe target so another person could find them

Download: http://datashare.is.ed.ac.uk/handle/10283/336

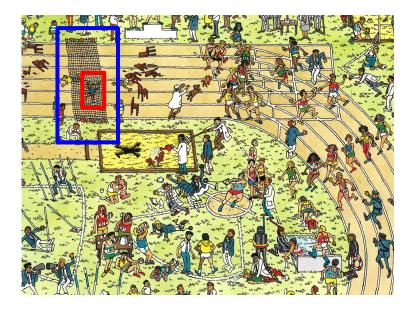
Sample descriptions...

"Man running in green skirt at the bottom right side of picture across from horse on his hind legs."

"On the bottom right of the picture, there is a man with a green covering running towards the horse that is bucking. His arms are outstretched."

"Look for the warrior in green shorts with a black stripe in the lower right corner. He's facing to the left and has his arms spread."

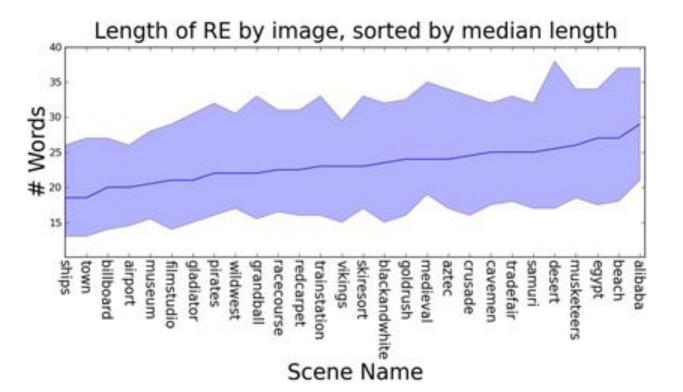
Annotation scheme



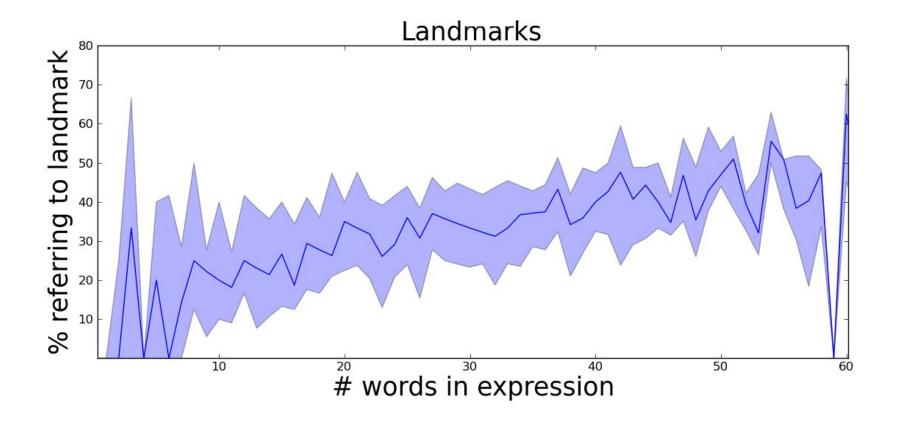
"Under <lmark rel="targ" obj="imglD"> a net </lmark> is <targ> a small child wearing a blue shirt and red shorts </targ>."

Descriptions vary in length

More cluttered images have longer descriptions (ρ = .45)



Longer descriptions, more landmarks

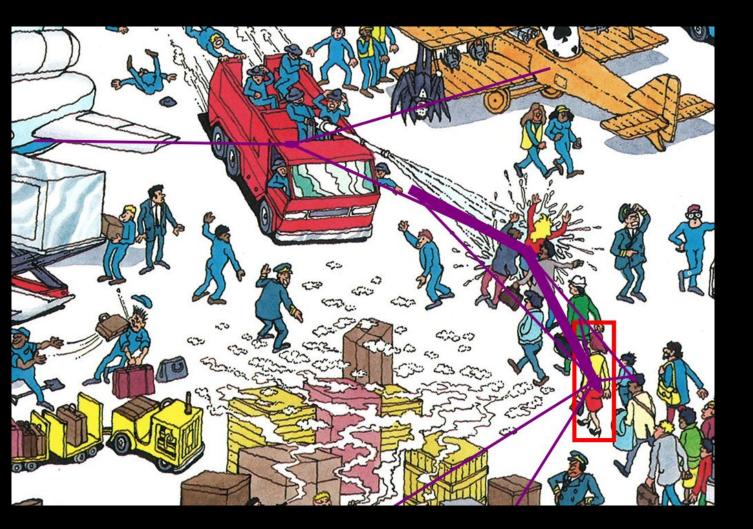


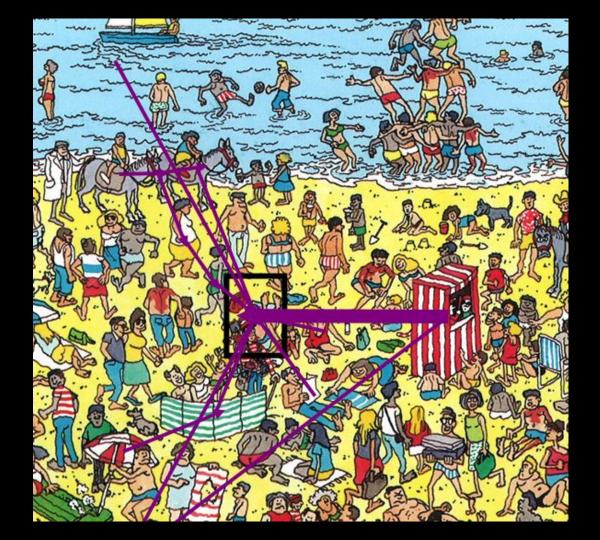
Use a relational description?

Larger, more salient targets take up more of the description

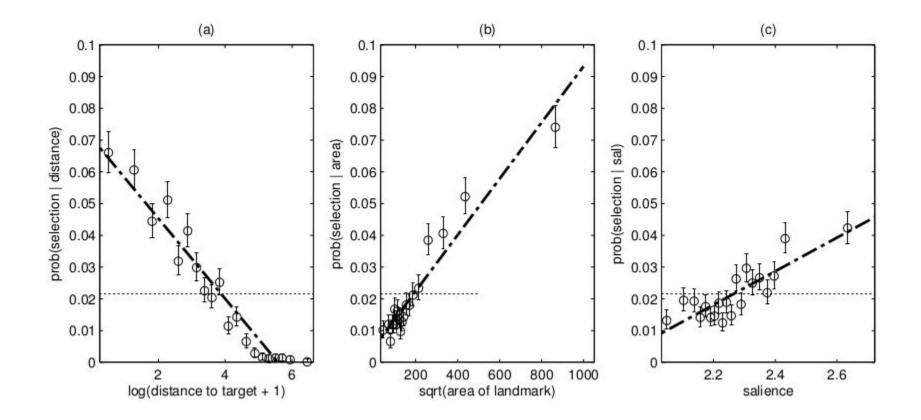
Mixed-effects regression: % of words referencing target (significant effects only)

	β
Area of target	.25
Visual salience model	.20
Area : salience model	11





Most landmarks: close, large, salient



Hierarchy of referring forms

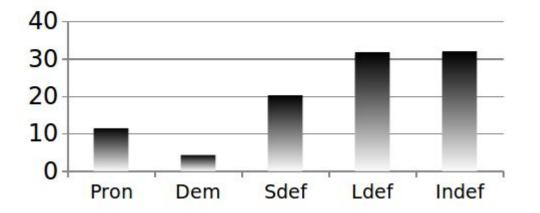
Ariel 1988; Prince 1999; Gundel 1993; Roberts 2003 and others

familiar					
entities	It	that N	the N	a N	new entities

Prediction: Easy-to-see objects more *definite* Hard-to-see objects more *indefinite* Definites require uniqueness (in a set) Fewer *definites* in cluttered image

Referring form of NPs

Pronoun: *it, she* Demonstrative: *that man* Short definite: *the car* Long definite: *the man in blue jeans* Indefinite: *a tree, some people* Bare singular: *brown dog* (grouped with definites)



Distribution of referring forms (%) N=9479

Predicting forms: visual features

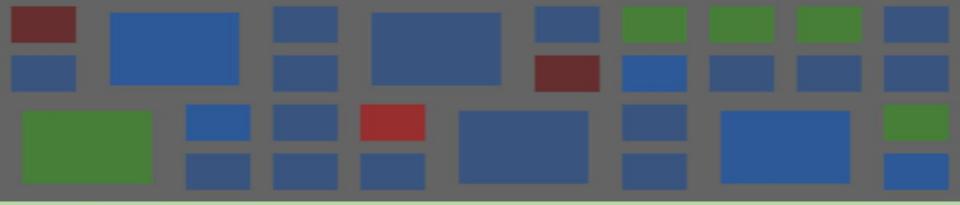
Features	Pron	Dem	SDef	LDef	(Def)	Indef
Area	-1.99	-0.94	0.71	-0.40	1.51	-1.78
Distance	0.38		0.15	0.13	0.43	-0.87
Clutter				-0.43		

- Large objects prefer short definites over indefinites
- More definites for objects far from the target
- Fewer definites in crowded images

Visual and discourse salience

Similar behavior from both kinds of salience Linguistic effects usually stronger (as in Viethen et al 2011) But visual effects are important

These experiments focused on speakers In a subsequent study, we found that listeners find the target faster when landmark mentions are visually appropriate



Descriptions in real time

	Elsner, Clarke and Rohde 2018

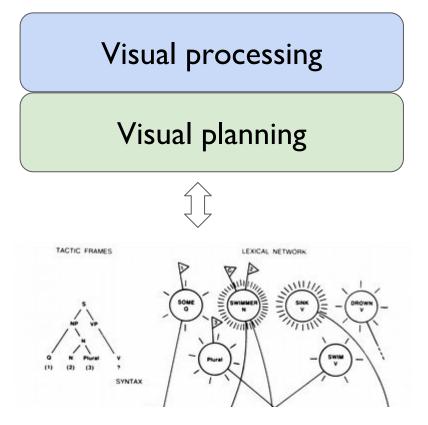
Language in real time

Vision matters for what speakers

say...

A window into the planning process.

How far in advance are people planning? What evidence do they use to make decisions?

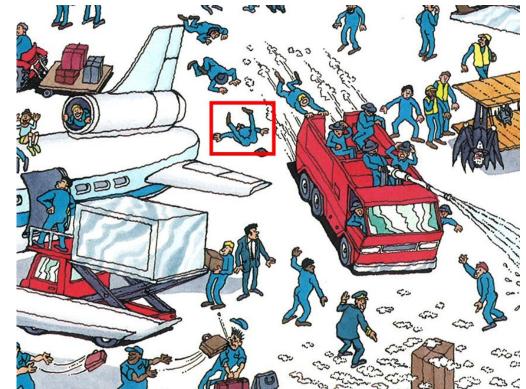


Why do different people make such different plans?

"Man on the ground to the left behind the fire truck laying on the ground with his legs in the air."

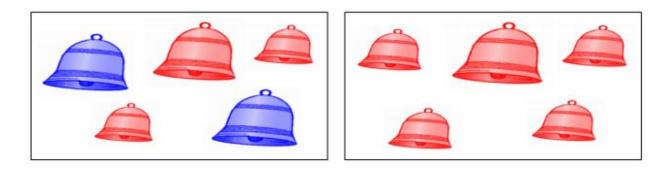
"Top left of the picture. A man falling from the sky with his legs up in the air. Next to the side wing. Looks like he is sleeping with his face up."

"In the top left of the picture, between the plane and the fire engine, a man is falling backwards, dressed in blue with his legs up."



Gatt's experiments

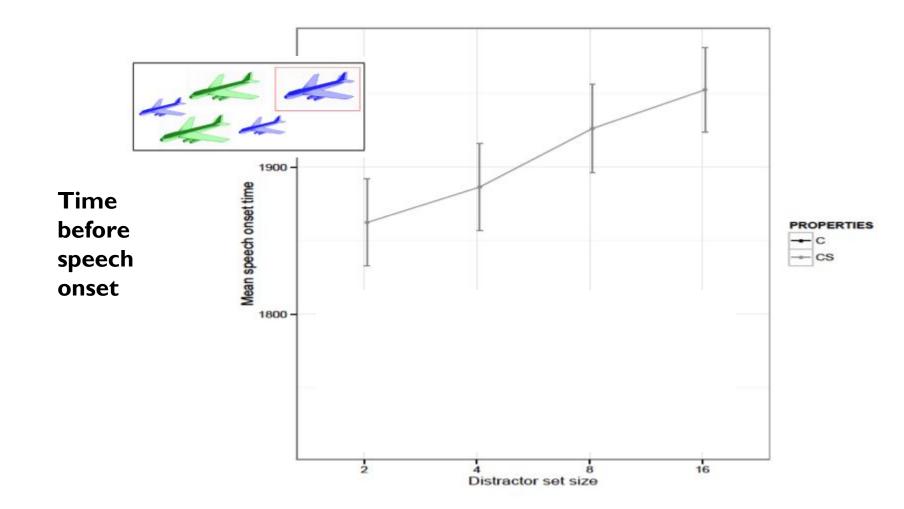
"Reference production as search: The impact of domain size on the production of distinguishing descriptions" Gatt et al 2017



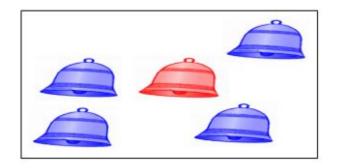
(b) A large red bell among large (c) A large bell among smaller dis-

blue and small red distractors tractors

Gatt varied the number of bells in the scene...



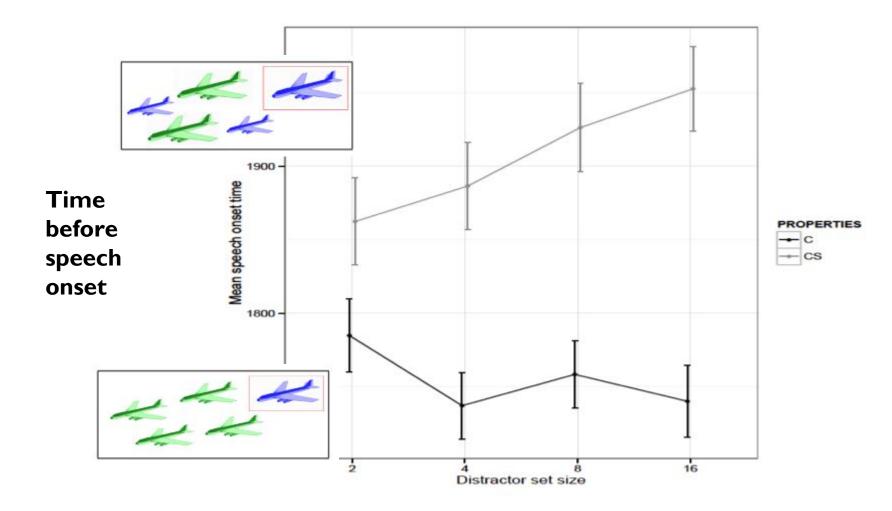
But some cases are easy



(a) A red bell among blue distrac-

tors

Gatt varied the number of bells in the scene...



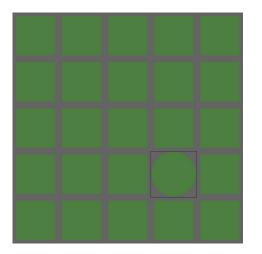
Gatt's results suggest a simple model

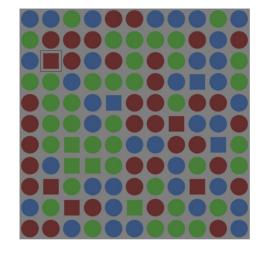
For these stimuli, the referring expression is **precomputed** by an **optimal Gricean process**

Potentially involving **exhaustive** search of the other objects to check uniqueness

But this is only true if search is easy!

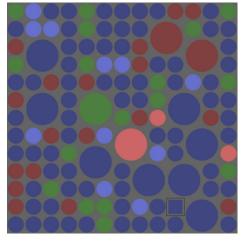
Our follow-up study





5x5 uniform unique target

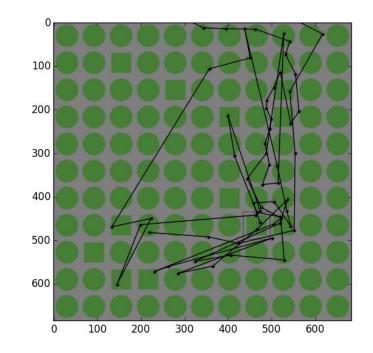
IIXII multicolor ambiguous target "red square" not enough



llxll skewed distr. unique target

Gaze tracks

We can see the speaker counting out rows and columns



"ooh green square uh f[rom] on the eighth row and ninth column"

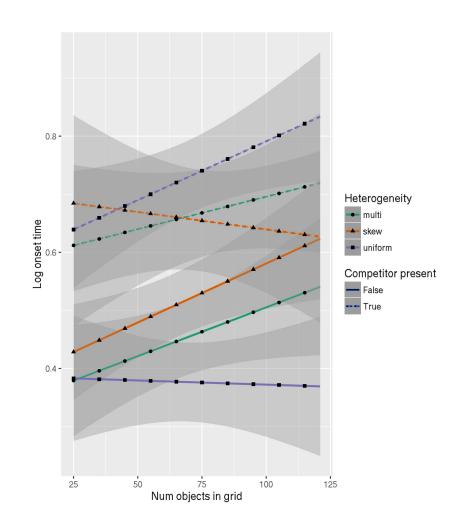
Planning is complex

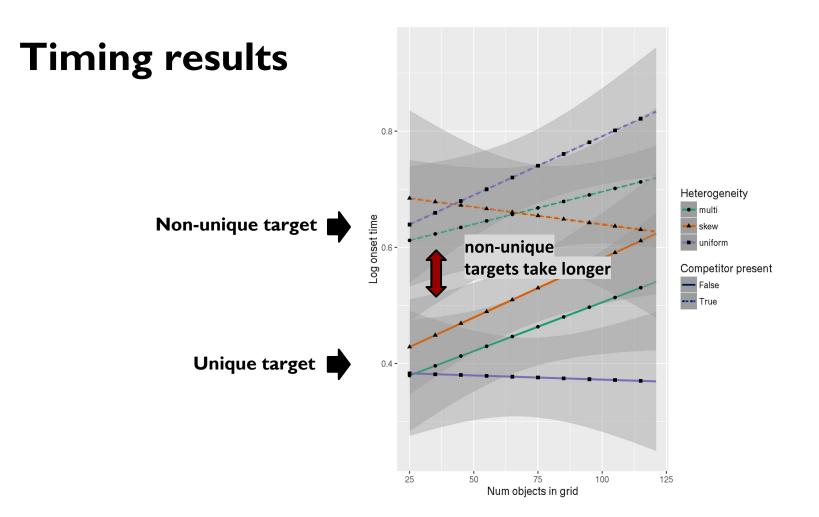
Speakers choose adaptively between strategies:

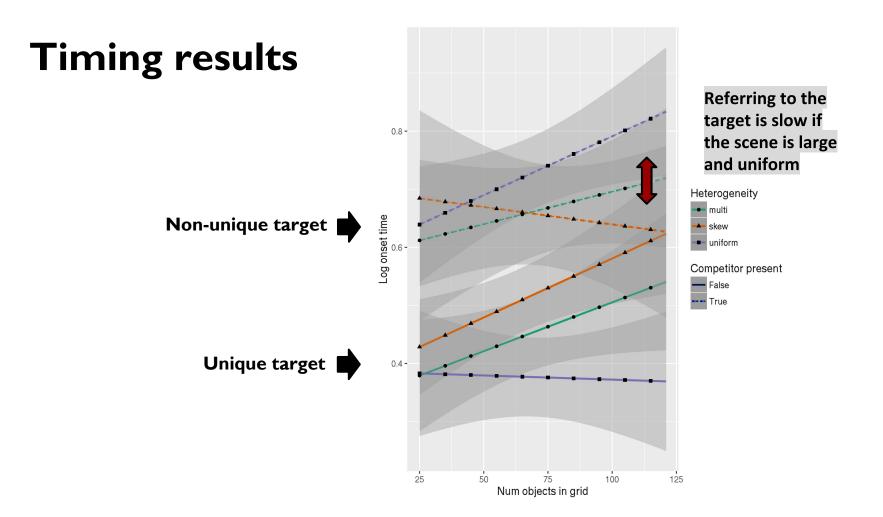
Unique, distinctive target \Rightarrow simple target description Larger grids \Rightarrow spatial descriptions like "top left" "Skewed" scene \Rightarrow landmarks Large uniform scene \Rightarrow coordinates

Coordinates (visually difficult to compute) as a fallback

Timing results



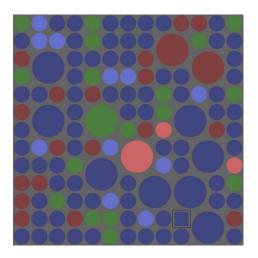




Initial perception guides strategy choice

Non-unique targets require more explanation; speakers know this.

Skewed scenes are visually hard to parse But enable **quick** linguistic strategies to screen out most of the chaos



l I x I I skewed distr. unique target

When things go wrong...

Speakers can miss an important detail and make a bad plan...

Early observation (Pechmann 1989): Speakers sometimes produce mis-ordered adjectives:

"red big square"

Vision as a source of speech errors

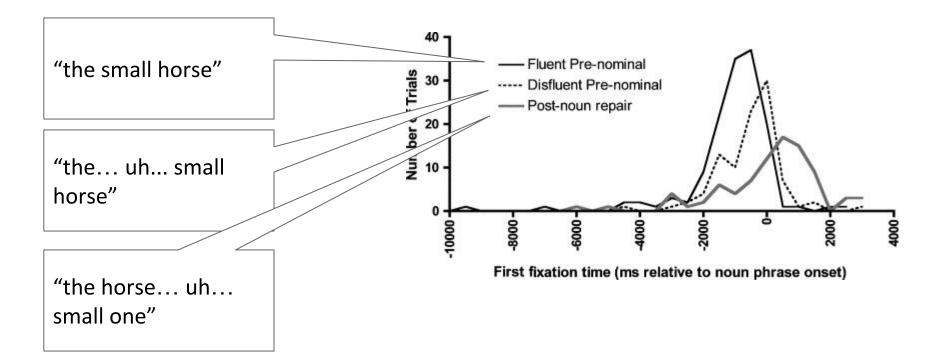
Is this a "small horse" or a "horse"?

When would you expect one vs the other?

"Watching the eyes when talking about size: An investigation of message formulation and utterance planning"

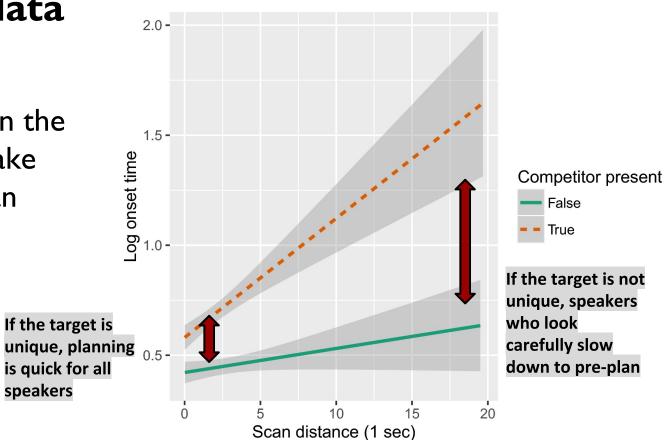
Brown-Schmidt and Tanenhaus 2006

Eye track: first look at large horse



In our own data

Speakers who scan the scene carefully make different plans than careless ones



Language and processing

When scenes are sufficiently complex, speakers use a variety of strategies to balance:

How much they're going to need to say How hard they have to look at the image

Time pressure sometimes causes an error/revision

Open question: Why variability?

Do people vary so much because of:

individual-level factors

How good they are at visual search? How good they are at speech planning?

circumstantial factors

What they looked at first? Entrainment to a strategy?

Can we predict / explain speech errors?

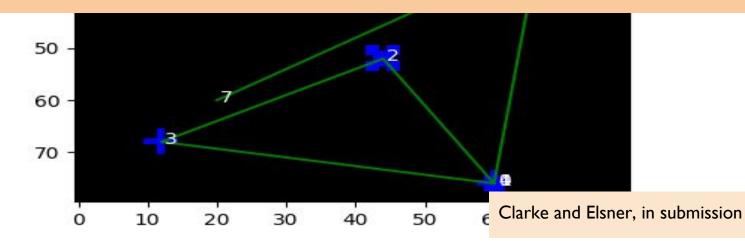
Experiments are ongoing

We're working on individual variation now...

But we're also trying to model the planning process With a good model, we could:

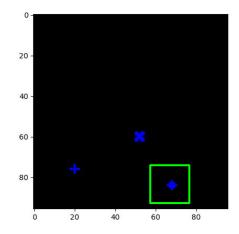
Check what utterances are likely given a gaze path Measure visual costs of different speech patterns

Computational Models



We are starting simple

Synthetic data: model learns to imitate a deterministic strategy. The teacher doesn't use vision, but the model does.



Teacher says:

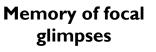
UNIQUE BLUE DIAMOND </s>

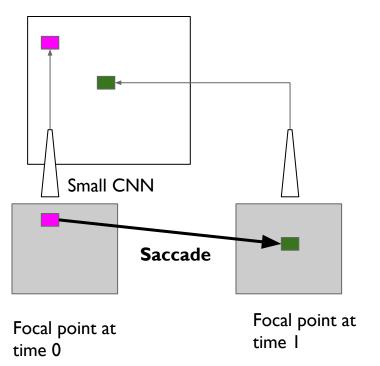
Model overview

The model has focal and peripheral vision At every step, it moves the focus point... And then decides whether to utter a word... And then which word to say

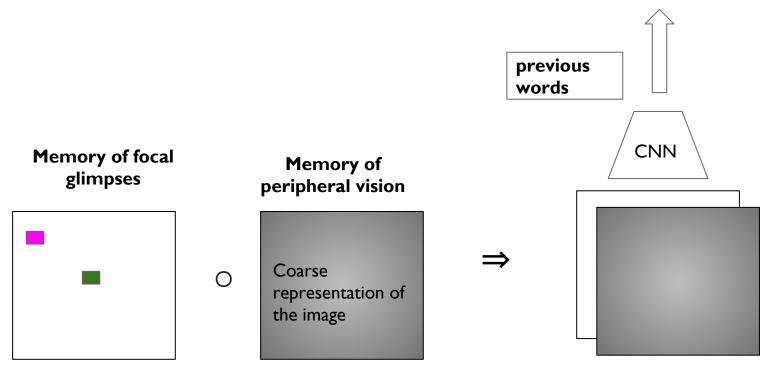
Retinotopic memory

When the model makes a fixation, what it sees is stored in a memory array, which is shaped like the image





Network outputs



Multi-channel memory

Training procedure

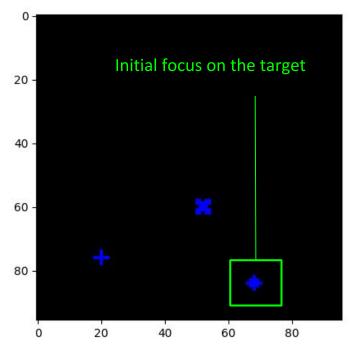
Decisions about where to look and whether to speak or not trained using deep Q-learning (reinforcement)

Positive reward for the right word, negative reward and trial halt for the wrong word, slight negative for pausing.

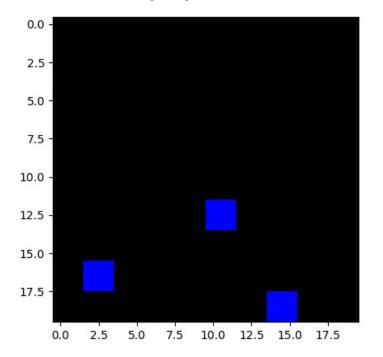
Decisions about **what word to say** (conditioned on whether to speak) trained using conventional max-likelihood

Experiment I: replicating Gatt

The actual scene

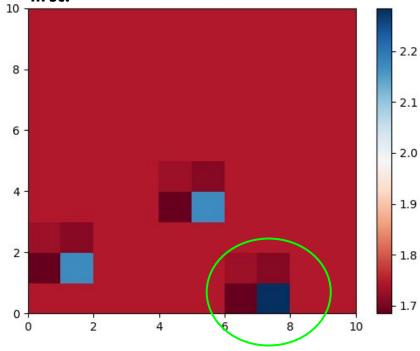


Simulated peripheral vision

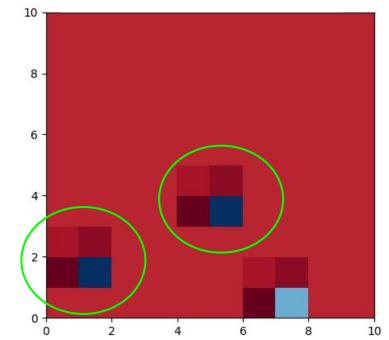


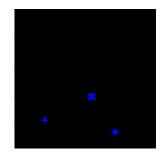
Learning where to look

Where does the model want to look first?

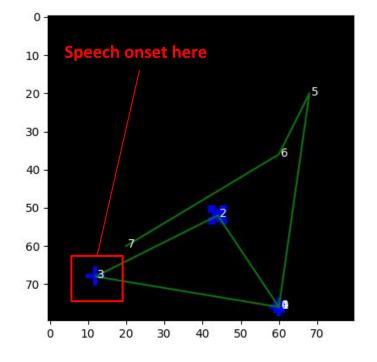


What will it do next?





The outcome

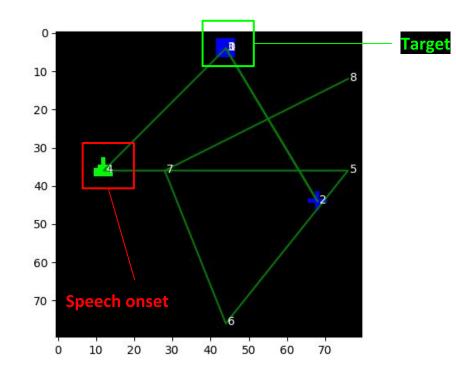


Caption: unique blue diamond </s>

What if the image is multicolor?

The system has learned to look at the other blue shape first...

(It still saccades to the green one afterwards.)



Onset times

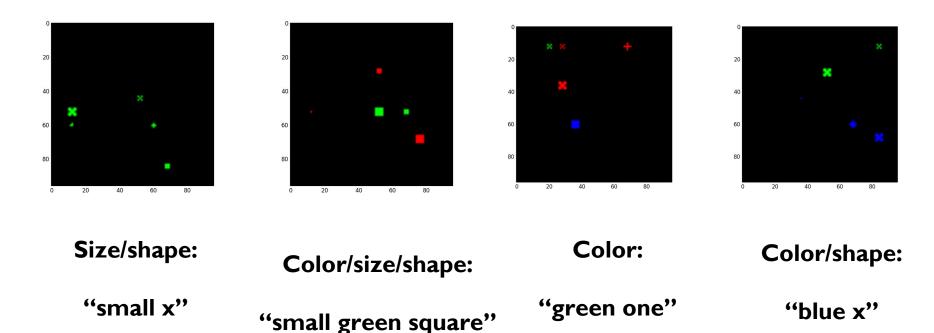
- Color -+- Color+Shape 1900 Saccades before speech ons Mean speech onset time 6 PROPERTIES + c + cs 4 1800 2 2 16 2 3 7 8 6 Distractor set size Distractor set size

Model onset times (saccades)

Gatt's onset times (milliseconds)

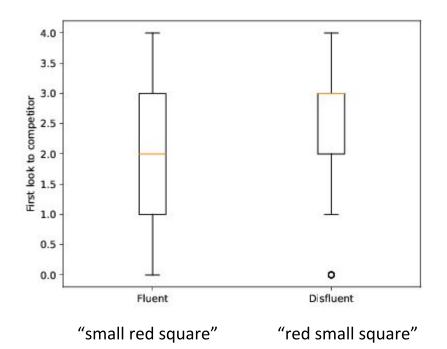
Experiment 2: disfluencies

Add size contrast; hierarchy of color > shape > size



Simulated disfluencies

Productions like "red small square" result when the system sees the other square too late to adjust.



Future work

We hope to improve the vision section of this model

In order to make predictions on photorealistic stimuli And analyze human gaze data

Conclusion

Pragmatics involves compromise between optimal design principles, and costs of various cognitive resources

Speakers reason intelligently about these costs

Not just vision, but memory, lexical retrieval, ... This creates complex planning problems and rich linguistic strategies for description

The language-vision interface

Understanding this process can help to improve virtual direction-giving and descriptive programs

Reveal details of human sentence planning

Delimit the boundaries of neo-Gricean theories for reference

Thank you!

Predicting forms: visual features

Mixed-effects one-vs-all regressions; only significant effects shown

Features	Pron	Dem	SDef	LDef	(Def)	Indef
Area	-1.99	-0.94	0.71	-0.40	1.51	-1.78
Pix.Sal.	-0.25					
Overlap		-0.91		-0.43	-0.45	0.53
Distance	0.38		0.15	0.13	0.43	-0.87
Clutter				-0.43		
Area:Clutter			0.28	-0.09	0.27	-0.22
Sal.:Clutter				-0.09	-0.10	0.15

- Large objects prefer short definites over indefinites
- More definites for objects far from the target
- Fewer definites in crowded images