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1 Morse Theory: Introduction and Preliminary Motiva-
tion

Warning. None of the exercises here are particularly important. The most important
part of this section are the ideas. The interested reader is encouraged to work out
the details spelled out below. The author has followed closely the textbook account
afforded in Jet Nestruev’s Smooth Manifolds and Observables.

We begin with some motivation. To what extent does the ring (in fact, R-algebra)
C∞(M, R) = C∞(M) of smooth real-valued functions on a smooth manifold M de-
termine the geometry of the smooth manifold and the relationships it has with other
smooth manifolds? If this is a good, rich sort of algebraic invariant of a smooth man-
ifold, then we might expect that we can study the geometry and topology of smooth
manifold M using smooth functions M→ R.

Aggregating all results below, what we shall end up showing is the following.

Theorem

There is an equivalence of categories

C∞(−) : Manop ↔ SmAlgR : |−|

between the opposite category of smooth manifolds with corners and the full sub-
category of R-algebrasa consisting of those R-algebras that are commutative, geo-
metric, complete and smooth.

In particular, the essential image of M 7→ C∞(M) in commutative R-algebras
is precisely characterized as those that are commutative, geometric, complete and
smooth.

aWe always assume R-algebras are associative and unital.

This says that a manifold is totally determined by its R-algebra of smooth functions.
We start with some reminders about category theory.

1.1 Categorical Reminders

Let us give a somewhat imprecise definition of a category first, ignoring set-theoretic
difficulties. We shall implicitly assume all categories are locall small, meaning that the
collections of morphisms between two objects is always a set, and not a proper class.

If this looks somewhat mysterious, see the list of examples following this defini-
tion.

Definition 1

A category is a class objects Ob(C) and arrows (also called morphisms) Ar(C)
(which should be thought of as maps between objects in the category) such that

(1) There are source and target functions s, t : Ar(C) → Ob(C) picking out the
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source (domain) object and target (codomain) object for each morphism.

(2) There is an operation of composition of morphisms when one morphism has

codomain the domain of the other: f ◦ g : s(g)
g−→ t(g) = s( f )

f−→ t( f ). We
demand that composition is associative.

(3) There is an identity map idc for each c ∈ Ob (()C) such that for any f : c′ → c
and g : c→ c′′, g ◦ idc = g and idc ◦ f .

As with functions, we often denote a morphism f with source c and target c′ by

f : c → c′ or c
f−→ c′. We also denote for any two objects c, c′ ∈ C the set of

arrows between them by homC(c, c′) = hom(c, c′) (where we drop the subscript
indicating the category where it is clear).

Definition 2

A morphism f : c → c′ in C is said to be an isomorphism if there is a morphism
g : c′ → c such that f ◦ g = idc′ and g ◦ f = idc.

Example 1

The following are all categories.

(1) The category Set of sets whose objects are sets and morphisms are functions
between them.

(2) The category Grp (resp. Ab) of groups (resp. abelian groups) whose objects
are (resp. abelian) groups and morphisms are homomorphisms.

(3) The category ModR of modules over a ring R whose morphism are R-linear
maps.

(4) The category Vectk of vector spaces over a field whose morphisms are k-
linear maps.

(5) The category Top of spaces and continuous maps between them.

(6) The category Man = DIFF of smooth manifolds with corners and smooth
maps between them.

(7) The category AlgR of R-algebras and R-algebra homomorphisms between
them. (We will define this precisely in the next subsection.)

(8) Just as well, the category GAlgR of geometric commutative R-algebras with
R-algebra homomorphisms between them.
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Definition 3

Given any category C, its opposite category Cop has the same underlying objects
and arrows as C except all arrows are reversed. To clarify that an arrow f actually
belongs to the opposite category of some category C, we sometimes decorate it as
f op.

More precisely, if f ∈ Ar(C) with f : c→ c′, then f op : c′ → c (i.e., s( f op) = t( f )
and t( f op) = s( f )). Composition ◦Cop in Cop is defined by the formula

gop ◦Cop f op def
= ( f ◦C g)op

Some thought shows that this is well-defined and yields a category.

Thus, for any category C, Cop is another category.

Definition 4

A functor between two categories F : C → D is a rule that assigns to each object
c ∈ C an object F(c) ∈ D and assigns to each morphism f : c→ c′ in C a morphism
F( f ) : F(c) → F(c′) such that F preserves the additional data of a category—that
is,

(1) for every c ∈ C F(idc) = idF(c);

(2) F( f ◦ g) = F( f ) ◦ F(g).

Definition 5

A natural transformation η between two functors F, G : C→ D, often written as

η : F → G

is a function η : Ob(C)→ Ar(D), assigning to each object c ∈ C an arrow ηc : Fc→
Gc such that for every morphism f : c→ c′ in C the following diagram commutes:

Fc Fc′

Gc Gc′

F f

ηc ηc′

G f

When each map ηc is an isomorphism, then η is said to be a natural isomorphism.

The intuition is that a natural transformation is precisely the data that “takes a com-
mutative diagram in F into a commutative diagram in G.” This is made more precise
in the following exercise.
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Exercise 1

Let η : F → G be a natural transformation. Given a commutative diagram in C in
the form of a functor D : J → C, show that there is canonically defined natural
transformation ηD : F ◦ D → G ◦ D.

Natural transformations and functors form can be used to form a category.

Exercise 2

(a) Show that there is a category Fun(C,D) whose objects are functors F : C→ D
and whose arrows are natural transformations thereof. Show that the iso-
morphisms of this category are the natural isomorphisms. [Hint: What are
the identities?]

(b) A category C is said to be small if its class of objects and morphisms are
both sets (and thus not proper classes). Show that there is a category Cat
whose objects are small categories and morphisms are functors between
them. [Hint: What are the identities?]

(c) Show that a group G is equivalently a category BG which has a single object
∗ such that every morphism of BG is an isomorphism. [Hint: The group G
should now be the set homBG(∗, ∗) under composition.]

(d) Given two groups G and G′, show that every functor F : BG → BG′ deter-
mines and is determined by a group-homomorphism G → G′.

(e) Define a functor BG : Grp→ Cat. Show that this functor is fully-faithfula.

aThis means that for all objects, G, G′ ∈ Grp, the induced map homGrp(G, G′) BG−→
homCat(BG, BG′) is an isomorphism(=bijection) of sets.

Finally, let us state the only theorem we’ll need below.

Theorem

A functor F : C→ D is said to be an equivalence or an equivalence of categories if
there is a functor G : D→ C and natural isomorphisms FG ∼= idD and GF ∼= idC.

A functor F : C → D is an equivalence iff F is fully-faithfula and essentially
surjectiveb.

aThis means that for all objects c, c′ ∈ C, the induced map homC(c, c′) F−→ homD(Fc, Fc′) is an
isomorphism(=bijection) of sets.

bThis means that for every d ∈ D, there is a c ∈ C and an isomorphism Fc ∼= d in D (i.e., F hits
every isomorphism class in D).

Remark. There is a set-theoretic problem here we will ignore. Basically one needs
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a strong enough version of choice because the proof uses a choice function. But, of
course, the axiom of choice is true1, so this is irrelevant.

1.2 Characterization of Manifolds by Their Algebras of Smooth Func-
tions

Notation 1.1. We will write Man = DIFF throughout to emphasize we are thinking
about manifolds with corners, although we understand these two things to mean
the same category. We also write the ring of smooth functions on M as C∞(M) =
C∞(M, R), suppressing the R.

The idea of Morse theory is to study manifolds using the smooth functions. How
much information do the smooth function on M contain about M and its relationships
with other manifolds? As it turns out, the theory of smooth manifolds is a special case
of that of locally ringed spaces, where a manifold has as its sheaf of rings its structure
sheaf—namely the sheaf of smooth functions defined on its open subsets.

Exercise 3

Let M be a smooth manifold (with corners say) and let Oop
M be the opposite cate-

gory of its poset of open subsets. Denote the structure sheaf (by a small abuse of
notation) as OM where OM(U) = C∞(U) for U ∈ Oop

M .

(a) Show that the structure sheaf really is a sheaf. That is, show that the functor
U 7→ C∞(U) = OM(U) is a sheaf OM : Oop

M → Ring.

(b) Show that for each p ∈ M, the stalk limU∋p C∞(U) is the ring of germs of
smooth functions at p. Show in particular that this ring is local, with unique
maximal ideal consisting of those germs of smooth functions vanishing at p.

(c) Show that the functor Manop → LRS sending M 7→ (M,OM) is a fully-faithful
functor into the category of locally ringed spaces.

This fits the differential topology of smooth manifolds into the suit of algebraic geom-
etry.

It gets better, in fact. With a little more work and elbow-grease, we can see that
the theory of smooth manifolds is a special case of that of commutative R-algebras,
showing that manifolds are, in a certain sense, classified by their R-algebras of smooth
real-valued functions.

Exercise 4

Let Rn
k denote the model corner space Rn−k × Rk

≥0. For any manifold M with cor-
ners, give C∞(M) the R-algebra structure arising from the ring-homomorphism
R→ C∞(M) sending r 7→ cr, the constant function on M with value r.

1The author will brook no dissent on this point!
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(a) Show that C∞(Rn
k ) ̸∼= C∞(Rm

ℓ ) as R-algebras unless m = n and k = ℓ.

(b) If M is connected, show that the constant functions form the unique maximal
subfield of C∞(M, R). What goes wrong if M is not connected? [Hint: Show
there is a unique ring-homomorphism (hence, R-algebra homomorphism) R →
C∞(M). What can be said about the kernel of a ring-homomorphism out of a field?]

(c) If M is not connected, say M = ⨿ Mi show that there is a canonical inclusion
C∞(Mi) ⊂ C∞(M) as an ideal. [Hint: Use the preceding part.]

(d) Show that for every ring-homomorphism ϕ : C∞(M) → R, if f > 0 every-
where, then ϕ( f ) > 0 and, conversely, if f < 0 everywhere, then ϕ( f ) < 0.

(e) Show that for every ring-homomorphism ϕ : C∞(M)→ R, ϕ evaluated on a
constant function is the value of that function. [Hint: It is true that for every
r ∈ Q, ϕ takes the constant function cq at q to ϕ(cq) = q (which property of ϕ
guarantees this?). Using the preceding part, conclude that ϕ(cr) = r for all r ∈ R
(what property does Q ⊂ R have that might be relevant here?). ]

(f) Suppose M is connected. Show that every ring-homomorphism ϕ : C∞(M)→
R is an R-algebra homomorphism. [Hint: Preceding part.]

(g) Show that every ring-homomorphism ϕ : C∞(M) → R is evaluation at a
point of M. [Hint: Suppose this is not true and obtain a contradiction of (d) by
finding a function F for which F > 0 but ϕ(F) = 0. You may find it helpful to let
g : M → R≥0 be a compact exhaustion function—that is, a smooth function that
is proper, which means preimages of compact sets are compact (which property of
manifolds guarantees this function exists?).]

(h) Show that the functor Manop → AlgR sending M 7→ C∞(M, R) is fully-
faithful. If CAlgR is the subcategory of commutative R-algebras, show that
this functor lands in CAlgR. [Hint: Faithfullness is easy. To see that it is full, use
the preceding part to deduce that any R-algebra homomorphism is precomopsition
with a function f : M→ N and argue that f must be smooth.]

Remark. If this exercise seems daunting, it may be more enlightening to show that a
smooth structure on a topological manifold M may be recovered from C∞(M). (How
might you build a smooth atlas out of this?)

Even better, we can characterize the essential image of this functor and even con-
struct its inverse equivalence out of its essential image. To do this, we have to establish
some terminology and theory.

Definition 6

For concreteness, we fix R the field of real numbers and think of R-algebras.

(a) The center Z(A) of a ring A is the set {a ∈ A : ∀b ∈ A, ab = ba}. This is a
subring of A.
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(b) An R-algebra is a ringa A together with ring-homomorphism R → Z(A)
(note that since R is a field, this is necessarily injective unless A= 0). Equiv-
alently, an R-algebra is a ring A with a scalar multiplication R×A→ Asuch
that for any r, s ∈ R and a, b ∈ A, (ra) · (sb) = (rs)(a · b).

(c) A morphism f : A→ Bof R-algebras is a ring-homomorphism which addi-
tionally respects the scalar product: f (ra) = r f (a) for r ∈ R and a ∈ A.

(d) A commutative R-algebra is an R-algebra A such that A is a commutative
ring.

(e) Say the dual space of R-points |A| of an R-algebra A is the set of surjective
R-algebra homomorphisms A → R. We shall show later that this has a
naturally defined topology in Definition 7.

(f) We say an R-algebra A is geometric if A is a commutative R-algebra and⋂
x∈|A|Ker x = 0.

aAll rings are assumed to be unital and associative.

Remark. If A ̸= 0 is an R-algebra, then every R-algebra homomorphism f : A→ R
is surjective, since, as a ring-homomorphism, f (1A) = 1 and by compatibility with
the scalar product, f (r1A) = r f (1A) = r. Hence, it can be shown that for A ̸= 0,
|A| = homAlgR(A, R).

Remark. There is only one R-algebra homomorphism to the zero R-algebra and there
are no R-algebra homomorphisms from the zero R-algebra because there are no ring-
homomorphisms out of the zero ring other than isomorphisms.

Lemma 1

Let Abe a commutative R-algebra. Let

Ã= {ã : |A| → R | ∀x ∈ |A| , x(a) = ã(x)}

or, in other words, those functions having the form x 7→ x(a) for some a ∈ Aand
so, equivalently,

Ã= {eva : |A| → R : a ∈ A}
where eva(x) = x(a).

Then Ã is a commutative R-algebra with the natural R-algebra structure de-
fined pointwise by

(ã + b̃)(x) = ã(x) + b̃(x) = x(a) + x(b) = x(a + b)

(ã · b̃)(x) = ã(x) · b̃(x) = x(a) · x(b) = x(a · b)
(rã)(x) = rã(x) = rx(a).
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The natural map
τA: A→ Ã, a 7→ ã

is a surjective map of R-algebras. In fact, this construction if functorial and τ
assembles into a natural transformation

τ : idCAlgR → −̃

which restricts to a natural isomorphism on the class of geometric algebras and
thereby restricts to a natural isomorphism

τ : idGCAlgR → −̃.

Proof. All of this is obvious except the last bit, so the only thing that really needs be
shown is that the natural map is injective on geometric commutative R-algebras. For
this, observe that a ∈ Ker τA iff ã ≡ 0 and so for all x ∈ |A|, x(a) = 0 and hence that
a ∈ ⋂x∈|A|Ker x and we assumed this intersection is trivial.

We now establish the following topology on the dual space of R points for a commu-
tative R-algebra.

Definition 7

The dual space of R-points for a commutative R-algebra Ahas a topology with a
basis of open sets given by ã−1(V) with V ⊂ R open. This is the weakest topology
for which all elements ã ∈ Ã are continuous. This becomes a functor CAlg

op
R →

Top given on arrows φ : A→ Bby

|φ| : |B| → |A| , x 7→ x ◦ φ.

Exercise 5

Let Aand Bbe commutative R-algebra.

(a) Verify that |φ| really is well-defined. [Hint: One must consider the case of the
zero R-algebra.]

(b) Show that if φ : A→ B is an surjective R-algebra homomorphism, then |φ|
is an embedding.

(c) Show that if A is additionally geometric, then |A| is Hausdorff, and so

|−| : GCAlgop
R → HTop

is a functor from the opposite category of geometric commutative algebras
to Hausdorff spaces. [Hint: If x, y ∈ |A|, why does there exist f ∈ Ã for which
f (x) ̸= f (y)?]
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(d) Combine the preceding parts to show that there is no surjective R-algebra
homomorphism A→ Bwhere A is geometric and |B| is not Hausdorff.

Exercise 6

Show that for any manifold S there is a naturally defined homeomorphism

θ : S
∼=−→ |C∞(S)|

given by
p 7→ ( f 7→ f (p)) = evp.

[Hint: That this is bijective follows from a part of the preceeding exercise.]

Definition 8

Given commutative geometric R-algebra A and T ⊂ |A| any subset of its dual
space, define the restriction A|T of Ato T to be the set of functions f : T → R such
that for each p ∈ T, there is a nbhd (in the subspace topology) U ⊂ T of p and an
element ãU ∈ Ã such that f |U = ãU|U. This is a commutative R-algebra once
again in the evident pointwise fashion.

In other words, this is the set of all functions T → R which are locally (in T)
the restriction of an element in Ã(i.e., locally given by evaluation at some element
of A).

It follows that for such Acommutative and geometric, there is a restriction ho-
momorphism ρT : A→ A|T given by a 7→ ã| T. This is a morphism of R-algebras

Exercise 7

Show that the restriction homomorphism is always injective. [Hint: Show its kernel
is trivial using the geometric condition.]

Exercise 8

Let φ : A→ Bbe a morphism of two geometric commutative R-algebras, B ⊂ |B|.
The map

( |φ||B)
∗ : A||φ|(B) → B|B , f 7→ f ◦ |φ||B

is a morphism of R-algebras which is an isomorphism when φ is an isomorphism.

Exercise 9

Let T ⊂ M be any subset of a manifold and let C∞(T) be those functions T → R
that are restrictions of smooth functions defined on an open nbhd of T. (See, for
instance, the discussion of general notions of smoothness in the appendix). Show
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that C∞(M)|T = C∞(T). [Hint: Show that C∞(M)|T consists of those continuous
functions T → R that are locally (in T) of the form p 7→ f (p) where f : M → R is
smooth. Then a theorem in Appendix A will be useful.]

Exercise 10

Show that C∞(M) is a complete, geometric commutative R-algebra.

Definition 9

A commutative, geometric R-algebra is said to be complete if ρ|A| : A→ A||A| is
surjective and hence by the preceding exercise an isomorphism.

A complete, geometric, commutative R-algebra A is said to be smooth if there
exists an integer n ≥ 0 and a countable open cover {Ui}i∈N of the dual space |A|
such that all the algebras A|Ui

are isomorphic to some C∞(Rn
k ) where n is fixed

and called the dimension of Aand 0 ≤ k ≤ n is allowed to vary.

Example 2

If M is a smooth manifold with corners, then C∞(M) is a complete, geometric,
smooth commutative R-algebra. This is the last exercise.

Lemma 2

Let Abe a commutative, geometric R-algebra and A ⊂ |A|.

(a) A|A is a subalgebra of the continuous functions A → R where A ⊂ |A| has
the subspace topology.

(b) The natural map
µ : A→ |A|A| µ(x) = evx

is continuous. In fact, given φ : A→ B a morphism of commutative, geo-
metric R-algebras and B ⊂ |B|, TFDC:

B |φ| (B)

|B|B|
∣∣∣A|| f |(B)

∣∣∣

|φ|

µ µ

|( |φ||B)∗|

(c) µ is a homeomorphism onto its image.
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(d) Given A ⊂ B ⊂ |A|,
(A|B)|A = A|A .

Proof. (a) A|A is the set of all functions A → R which are locally (in A) the restriction
of an element in Ã(i.e., locally given by evaluation of at some element of A). It follows
that A|A is a subalgebra of the continuous function A→ R since if f : A→ R is locally
of the form ã = eva for some a ∈ A, then for each open set V ⊂ R, f−1(V) is a union
of sets of the form ã−1(V) ∩ A and therefore is continuous for the subspace topology
on A.

(b) It follows immediately that the assignment µ is continuous, since if f̃ : |A|A| →
R is given by evaluation at f ∈ A|A then for V ⊂ R open, µ−1( f̃−1(V)) is the set of all
points g ∈ A such that f̃ (g) = f (g) ∈ V (the notation is terrible but this is the form
the evaluation takes). That is, the set f−1(V) which is open in the subspace topology
since f is continuous on A by assumption. Hence µ is continuous.

As for the naturality condition, fixing x ∈ B we chase the diagram

x x ◦ φ

evx ( |φ||B)∗(evx)
?
= evx◦φ

and indeed ( |φ||B)∗(evx) = evx ◦ |φ||B = evx◦φ.
(c) µ is clearly injective since if x1, x2 ∈ A are distinct points, then they are non-

equal surjective R-algebra homomorphisms A→ R. Hence, there is some a ∈ A such
that eva(x0) ̸= eva(x1). In particular, eva| A ∈ |A|A| by restriction so that these points
µ(x1) and µ(x2) must determine different homomorphisms A|A → R.

To see that the inverse map µ(A) → A is continuous, consider a basis set A ∩
ã−1(V) for V ⊂ R open and ã ∈ Ã evaluation at a. This is mapped onto the set
µ(A) ∩ ( ã| A)−1(V) which is open. This shows that the inverse map is open on basis
sets and therefore open and continuous.

(d) Immediate from the preceding considerations.

Exercise 11

Suppose A is a geometric commutative R-algebra and A|U ∼= C∞(Rn
k ). Show that

the embedding µ : U → |A|U| is in fact surjective and thus a homeomorphism.

[Hints: Let i : A|U
∼=−→ C∞(Rn

k ) be the isomorphism. If µ is not surjective, there exists
p ∈ |A|U| \ µ(U); set p = |i|−1 (p). If p ∈ µ(U), let f : Rn

k \ {p} → R be defined

by x 7→ 1/∥x − p∥ and show that g = f i−1
µ ∈ A|U while i(g) must be smooth on

all of Rn and coincide with f on the set |i|−1 (µ(U)), whose closure contains p, deduce a
contradiction. For the case a /∈ µ(U), let f be a smooth function vanishing on the closed
set |i|−1 (µ(U)) and equals 1 on {p} by the smooth Urysohn lemma. Then f and the
function that is identically zero must pullback by i on A|U to different elements. Deduce
a contradiction.]
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Finally, we have our first theorem.

Theorem 1

The class of complete, geometric, smooth commutative R-algebras characterize
the essential image of the functor Manop → CAlgR sending M 7→ C∞(M, R). In
other words, such R-algebras are, up to isomorphism, the R-algebras of smooth
functions on a smooth manifold.

We give a somewhat “sheafy” proof of this.

Proof. Given such an R-algebra A of dimension n, we claim that |A| is a second-
countable, locally Euclidean and Hausdorff. The last item we have already seen. Pick
countable open cover {Ui}i∈N of the dual space |A| such that all the algebras A|Ui

are
isomorphic to some C∞(Rn

k ). We claim that A||A| is the equalizer

A||A| ∏i∈N A|Ui
∏(i,j)∈N×N A|Ui∩Uj

where the two parallel arrows correspond to inclusions restrictions arising from Ui ∩
Uj ⊂ Ui and Ui ∩Uj ⊂ Uj and the equalizing arrow is the evident one corresponding
to the inclusions Ui ⊂ |A|.

To see that this is so, note that by direct construction it can be seen by direct con-
struction that an element of the equalizer is tantamount to the data of a function
f : |A| → R that restricts to each open set Ui as a continuous function and an element
of A|Ui

with compatibility on overlaps, and thus is an element of A||A|. Conversely,
given f ∈ A||A|, it is easy to see that this determines an element of the equalizer. This
establishes a set-theoretic bijection between the equalizer and A||A|, that it is an R-
algebra homomorphism follows once again by inspecting the R-algebra structure on
the equalizer and observing that it is suitably pointwise as required.

But, by assumption, A is complete, and so the restriction map A → A||A| is an
isomorphism, so that A is the equalizer of the diagram above as well. Now, since each
A|Ui

∼= C∞(Rn
k ), it follows that the composite Ui →

∣∣∣A|Ui

∣∣∣ ∼= ∣∣C∞(Rn
k )
∣∣ is in fact a

homeomorphism

ϕ : Ui
∼=−→ Rn

k .

This follows by the preceding lemma and Exercise 6. We claim that this implies that
each A|Ui∩Uj

is a ring of smooth functions on an open subset of some model corner
space Rn

k (possibly with k = 0). In fact, we claim that A|Ui∩Uj
∼= C∞(ϕ(Ui ∩Uj)). To

see that this is so, it suffices to prove that C∞(Rn
k )
∣∣
ϕ(Ui∩Uj)

∼= C∞(ϕ(Ui ∩Uj)) and this
now follows from Exercise 6.

Since the equalizer above lives in GCAlgR of geometric commutative R-algebras,
we claim |−| turns this particular equalizer into a coequalizer. To see this, note that
there are isomorphism A|Ui

∼= C∞(Rn
k ) and that ∏i C∞(Rn

k(i))
∼= C∞(⨿i Rn

k(i)). Some
thought shows that this means that |−| of both products in the equalizer become co-
products.

Hence, we have a coequalizer
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⨿(i,j)∈N×N Ui ∩Uj ⨿i∈N Ui |A|

where we are justified in replacing the terms |A|T| by T according to the naturality
result of Lemma 2(b) and the two parallel arrows are the evident inclusions Ui ∩Uj ⊂
Ui and Ui ∩Uj ⊂ Uj, respectively. It is essentially immediate that the resulting space
|A| is a topological manifold. One checks that this is indeed a coequalizer diagram by
hand just as above.

As for its smooth structure, first note that by Exercise 11, since µ : Ui →
∣∣∣A|Ui

∣∣∣
is a homeomorphism, |ρU| (where ρU : A → A|Ui

is the restriction homomorphism)
must be a homeomorphism onto its image U ⊂ |A| since the composite |ρU| ◦ µ is the

inclusion U ⊂ |A|. Now choose a collection of isomorphisms ϕi : A|Ui

∼=−→ Rn
k ) where

k is allowed to vary 0 ≤ k ≤ n, let hi be the the composite

A
ρU−→ A|U

ϕi−→ C∞(Rn
k )

and and consider the family xi = |hi|−1 (this makes sense because |h| : Rn → U ⊂ |A|
is a homeomorphism). We claim these are smoothly compatible charts; note that |ρU|
is a homeomorphism onto its image (namely U) by Exercise 11.

By Exercises 8 and 9, the restrictions are isomorphisms

ϕi|Ui∩Uj
: A|Ui∩Uj

∼=−→ C∞(xi(Ui ∩Uj)) ϕj
∣∣
Ui∩Uj

: A|Ui∩Uj

∼=−→ C∞(xj(Ui ∩Uj))

and so we obtain an isomorphism ψ : C∞(xi(Ui ∩ Uj)) → C∞(xj(Ui ∩ Uj)). Hence,
applying |−|, using the naturality given by Exercise 6, the resulting map (abusing
notation) |ψ| : xj((Ui ∩Uj) → xi(Ui ∩Uj) is a diffeomorphism of open subsets of the
relevant model spaces, we claim. Unwinding this, |ψ| (evq) = evq ◦ψ and this must
have the form evp for some p ∈ xi(Ui ∩Uj); if we fix the (unique) fk for which ψ( fk) =

xk, the k-th standard coordinate projection function, then evq ◦ψ = evp where p =
(evq ψ( f1), . . . , evq ψ( fn)). In particular, this shows that

|ψ| (q) = (ψ( f1)(q), . . . , ψ( fn)(q))

which is smooth, and a similar argument using ψ−1 shows that
∣∣ψ−1

∣∣ = |ψ|−1 is
smooth so that this is a diffeomorphism.

That this is independent of the choices of isomorphism ϕi is a simple exercise.

Remark. In particular, |−| : SmAlgR → Manop from smooth, complete, geometric R-
algebras to the opposite category of smooth manifolds is an equivalence of categories
for which |C∞(−)| ≃ id and C∞(|−|) ≃ id.

The upshot of the discussion is the following slogan: to study manifolds, we should
study their smooth functions because this already contains all of the information about
the manifold and its relations with other manifolds.
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2 Morse Functions

2.1 Basic Properties and First Topological Consequence

Although all smooth functions are good, C∞(M) is an unwieldy object containing
many uninteresting maps throwing away tangential information. For instance, every
map M → R that is constant contains no interesting information about the topology
of the manifold. To get a grasp on this, we will first characterize what happens when a
smooth function f : M→ R has no critical values in an interval [a, b], under mild (and,
in fact, generic, in a suitable sense in a space of smooth functions) hypotheses.

Notation 2.1. Given a function f : M→ R, we let Ma = f−1((−∞, a]).

Reminder. As a consequence of the improved regular value theorem (see the ap-
pendix), whenever a is a regular value of a smooth function f : M → R, the sets
f−1((−∞, a]) and f−1([a, ∞)) are submanifolds of M having boundary f−1(a).

Recall as well that for a Riemannian manifold M and smooth function f : M → R,
grad f is the unique vector field with the property that for any vector Xp ∈ TpM (as
usual, using the identity chart on R),〈

(grad f )p | Xp
〉
= Xp( f ) = f∗p(Xp).

In local coordinates, grad f =
∂ f
∂xi gij ∂

∂xj .

Theorem 2

Let f : M→ R be smooth. Suppose the interval [a, b] contains no critical points of
f , f−1([a, b]) is compact and f−1(a) ̸= Ø.

(a) Suppose ∂M = Ø. Since f−1([a, b]) is compact, f ( f−1[a, b])) has a maxi-
mum, say c. Then for all d ∈ [c, b], Md = Mc.

(b) Suppose ∂M = Ø. There is a diffeomorphism Ma ∼= Mb. In fact, for any
a ≤ d ≤ b, Ma ∼= Md.

(c) The level sets f−1(a) ∼= f−1(d) for any a ≤ d ≤ c.

(d) Mb smoothly deformation retracts onto Ma. In fact for any a ≤ d ≤ b, Md

smoothly deformation retracts onto Ma.

(e) Suppose now that M is compact with non-empty boundary ∂M and, in ad-
dition, f : M → [a, b] and satisfies that f (∂M) = {a, b}. Then there is a
diffeomorphism F : f−1(a)× [a, b]→ M for which TFDC:
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f−1(a)× [a, b] M

[a, b] [a, b]

F

pr f

Warning. Every source I know of stating this theorem omits the hypothesis that f−1(a) ̸=
Ø. The problem is that if a /∈ Im( f ) but b ∈ Im f then f−1(a) = Ø while f−1(b) ̸= Ø.
For instance, this is the case for the embedding f : R>0 ↪→ R, which has no critical
points but f−1(0) = Ø while for every ε > 0, f−1(ε) = (0, ε]. There is also an implicit
assumption that [a, b] ⊂ Im f in all proofs.

Proof. (a) This is obvious.
(b) It suffices to show this for Mc and Ma. Since the condition of being full rank

is an open condition, there is an open nbhd U of f−1([a, b]) such that U contains no
critical points of f and U has compact closure. Let ρ be a bump function which is
identically 1 on f−1([a, b]) and has supp ρ ⊂ U and consider the vector field

X = −ρ
grad f
∥ grad f ∥2 .

Since supp X ⊂ U is compact, X has a global flow ΦX and since the flow is global, ΦX
t

is a diffeomorphism of M with itself for all t.
Consider the integral curve γp through p. If γp(s) ∈ f−1([a, b]), then

d
dt

f (γp(t))
∣∣∣∣
t=s

= f∗γp(s)(
d
dt

γp(t)
∣∣∣∣
t=s

) = f∗γp(s)(Xγp(s))

and since γp(s) ∈ f−1([a, b]),

f∗γp(s)(Xγp(s)) = f∗γp(s)

(
−

(grad f )γp(s)

∥(grad f )γp(s)∥2)

)

and by the properties of gradients,

f∗γp(s)

(
−

(grad f )γp(s)

∥(grad f )γp(s)∥2)

)
=

〈
(grad f )γp(s) | −

(grad f )γp(s)

∥(grad f )γp(s)∥2)

〉
= −1.

By existence and uniqueness of solutions to ODEs, if γp(s) ∈ f−1([a, b]), it must be
that f ◦ γp(t + s) = −t + f (γp(s)). The same argument shows that, more generally,

d
dt

f (γp(t))
∣∣∣∣
t=s
≤ 0

for any p ∈ M and s ∈ R for which the domain makes sense.
From this, it is easy to see that Φc−a sends Mc onto Ma diffeomorphically, mapping

the level set f−1(c) onto f−1(a) diffeomorphically. Similarly, for any a < d < c, Φd−a

is a diffeomorphism Md ∼= Ma mapping f−1(d) onto f−1(a).
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(c) Really this follows from the above and smooth invarince of the boundary (any
diffeomorphism restricts to a diffeomorphism of the boundary). This establishes the
claim about the diffeomorphism and the level sets.

(d) It suffices to show this for Mc. Let H : [0, 1]×Mc → Ma be

H(t, p) = ΦX(t max { f (p)− a, 0} , p).

this gives a continuous deformation retract.
Now let ρ be a smooth non-negative function ρ : [0, 1] × M → [0, 1] which is 0

precisely on the closed set f−1((−∞, a]) × [0, 1] and is 1 precisely on the closed set
f−1([c, ∞))× {1} by the strong form of the smooth Urysohn lemma. Then

H : [0, 1]×Mc → Ma

given by
H(t, p) = ΦX(tρ(t, p)( f (p)− a), p)

is the desired smooth deformation retract.
(e) Let

X =
grad f
∥ grad f ∥2 .

Then X has integral curves those of grad f except reparameterized. Note that the
vector field X never tangent to ∂M and is outward pointing on f−1(a) and inward
pointing on f−1(b). Since M is compact, it follows that the flow for X exists wherever
it makes sense and, in particular, the maximal flow domain is

AX = {(t, p) ∈ R×M : t ∈ [a− f (p), b + f (p)]} .

As before, we find that for any integral curve γ of X,
d
dt

f ◦ γ ≡ 1 (using the identity

chart on R as usual). Hence, f (γ(t1))− f (γ(t0)) = t1 − t0.
Define F : f−1(a)× [a, b]→ M by

F(t, p) = ΦX(t− a, p).

Since f−1(a)× [a, b] is compact, we only need to show that F is a smooth embedding
with image all of M. We shall expand on this point in Exercise 13 following this theo-
rem. For now, let us assume that it is true this is all we need to show.

The only way F can fail to be injective, due to uniqueness of integral curves, is
if ΦX(t − a, p) = ΦX(s, a, p). This is impossible since f increases along the integral
curves of grad f and thus those of X and so F is injective. F is surjective because for
each p ∈ M, we can flow backwards to f−1(a) from p since the integral curve through
p for X has domain [a− f (p), b + f (p)] and has constant speed 1.

Thus, we need only show F is an immersion to conclude. Intuitively, this is be-
cause the integral curves for Φ are transverse to the level submanifolds f−1(d). More
precisely, note that by the Leibniz formula,

ΦX
(t,p)∗(v + ∂t) = ΦX(−, p)t∗(∂t) + ΦX(t,−)∗p(v) = XΦX(t,p) + ΦX(t,−)p∗(v).
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It is easy to see that ΦX(t,−)
∣∣ f−1(a) is a diffeomorphism onto its image—the subman-

ifold f−1(t + a)—since it has smooth inverse ΦX(−t,−)
∣∣ f−1(t + a). Hence, to show

that this is an immersion (i.e., full rank), it suffices to verify the transversality condi-
tion mentioned. This follows easily since f is constant on level sets and f increases
along all integral curves.

Exercise 12

What goes wrong in the first parts above if we allow M to have boundary above?

Remark. This theorem shows that if M
f−→ R has no critical points (and say is a proper

map), nothing interesting is changing in the topology of of M in an interval [a, b] con-
taining no critical values of f . Later, we shall see a partial converse to this, under
suitable conditions on the function f .

It is not true in general that if M has non-empty boundary and f : M → N is an injec-
tive immersion, then f is an embedding. Extra assumptions are required to make this
true; one such hypothesis that was used in the proof above is that M is compact.

Exercise 13

Let f : M→ N be a smooth injective immersion.

(a) Show that any continuous propera map g : M → N between two manifolds
is a closed map. [Hints: The only property that is needed is that the target space
is locally compactb Hausdorff. For a closed set F, show that f (F) is closed by taking
an open nbhd about any of its limit points q with compact closure (why does such a
nbhd exist?) and show that q ∈ f (F).]

(b) If f is an open or closed map, then f is a smooth embedding.

(c) f is a proper map, then f is a smooth embedding.

(d) If M is compact, then f is a smooth embedding.

(e) If ∂M = Ø and dim M = dim N, then f is a smooth embedding. [Hint: Use
Proposition 4 to deduce that Im( f ) ⊂ Int N. Then use the constant rank theorem
to deduce that f is a local diffeomorphism and hence open map into Int N.]

aThis means that preimages of compact sets are compact.
bThis means that every point p has an open nbhd U which contains a compact set K such that

p ∈ K ⊂ U.

Now let us consider the hollow torus T defined as the subset of R3 given by

T =

{
(x, y, z) ∈ R3 : (2−

√
x2 + y2)2 + z2 = 1

}
,

which is the hollow torus of inner-radius 1 and outer radius 2. This has a projection
f : T → R sending (x, y, z) ∈ T to z. This function is more interesting than a constant
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function, but is nevertheless still somehow less interesting than it could be. Notice that
f has a circle of critical points at the top and bottom of T.

The problem with this projection is that it throws away higher order tangential in-
formation about the manifold. More precisely, let γ be a loop with constant speed
parameterizing the ring of critical points on the bottom of T. It is possible to intro-
duce smooth coordinates near each γ(t) on T for which f looks like a smooth function
R2 ⊃ U → R depending only on the last coordinate for which f ◦ γ is constant in these
coordinates. At each point γ(t), the Hessian for f in these coordinates has the form

Hessγ(t) f =

∗ 0

0 0


where ∗ ̸= 0. This matrix does not have full rank and so has thrown away higher
order tangential information. What separates the world of smooth manifolds from
that of topological manifolds is the tangent bundle, so this is clearly not ideal.

Finally, as a last, attempt, let us consider the projection T → R sending (x, y, z) 7→
x. This function measures the “height” of T along the x-axis, and it can be shown that
this function has 4 critical points, where for each the Hessian in smooth coordinates
has full rank (is a non-degenerate bilinear form). This is the sort of function Morse the-
ory concerns itself with—there is enough residual topological and smooth information
at these critical points to say something interesting about the manifold.

Warning (Higher-order Partial Derivatives). There is one small issue we have elided.
To make sense of higher order partial derivatives, we want to differentiate along vec-
tors. This requires, in general, a covariant derivative, but as one may find in the
appendix, the naive way of defining the Hessian of a smooth function is correct at any
critical point. See Lemma 42 and Exercise 44 for these details.

Definition 10

If M is a smooth manifold, we say that f : M → R is a Morse function if at every
critical point p ∈ Cr( f ), the Hessian Hessp( f ) is non-degenerate—equivalently,
the Hessian has full rank at p.

Exercise 14

Let f : M → R be smooth. Show that a critical point p for f is non-degenerate iff
the d f : M → T∗M intersects the zero section transversely at p (i.e., d fp∗(TpM) +
Td f (p)Z = Td f (p)T∗M). [Hint: Work in local coordinates to produce a projection

p : T∗M|U → T∗p M

and show that p is non-degenerate iff 0 ∈ T∗p M is a regular value of p (why?). In the
chosen coordinates, what does the Jacobian of p ◦ d f look like?]
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Definition 11

Given f smooth and a critical point p ∈ Cr( f ) that is non-degenerate, we say the
index of the critical point p is the index of the bilinear form Hessp( f )—namely, the
number of negative eigenvalues Hessp( f ) has, and thus by the spectral theorem
the dimension of the subspace upon which this bilinear form is negative-definite.

It turns out that at non-degenerate critical points, there is a smooth chart for which
f takes a particularly nice form, which essentially says that, locally, there is a chart for
which f is equal to a the associated quadratic form for a particular diagonalization of
Hessp f .

Lemma 3 (Morse)

If f : M → R is smooth, dim M = m and f has non-degenerate critical point
p of index k, then there is a coordinate system (x, U) called a Morse chart with
x : (U, p)→ (x(U), 0) a diffeomorphism onto a convex open set x(U) ⊂ Rm, such
that

f ◦ x−1(x1, . . . , xn) = f (p)−
k

∑
i=1

(xi)2 +
m

∑
j=k+1

(xj)2.

Exercise 15

Prove the Morse lemma. [Hint: Reduce to a local argument with p = 0. Taylor’s the-
orem with integral remainder form implies that f (x)− f (0) = ∑i,j aij(x1, . . . , xm)xixj

where aij =
∫ 1

0 (1− t)
∂2

∂xi∂xj f (tx1, . . . , txm) dt and aij(0) =
1
2

∂2 f
∂xi∂xj (0). Make suit-

able changes of coordinates.]

Remark. The proof hinted at above is Morse’s original proof. It is based on an idea of
Lagrange in the case that these suitable changes of coordinates are linear functions.

An immediate corollary of the Morse lemma is that non-degenerate critical points are
isolated in the set of all critical points.

Corollary 1

Non-degenerate critical points are isolated in the subset Cr( f ). In particular, the
critical points of Morse functions are isolated.

2.2 Genericity of Morse Functions

But what can be said about the existence of Morse functions and their abundance
or genericity? For this, we introduce smooth function space topologies; namely, the
weak Whitney topology (also called the weak, or C∞ compact-open topology) and the
strong Whitney topology (also called the strong topology).
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Definition 12

Given two manifolds M and N, possibly with corners, let C∞
W(M, N) be the set

C∞(M, N) with the topology generated by the following subbase

{N∞
W( f ; (x, U), (y, V), K, ε)} f ,x,y,ε

where f ∈ C∞(M, N), x is a chart on M, y a chart on N, K ⊂ U is compact with
f (K) ⊂ V and ε > 0. Here

Nr
W( f , x, y, K, ε) = set of g ∈ C∞(M, N) such that∣∣∣(∂α(y f x−1)j − ∂α(ygx−1)j)(p)

∣∣∣ < ε, ∀j, ∀p ∈ K, ∀multi-indces, 0 ≤ |α| < ∞.

Exercise 16

Show that a sequence ( fn)n∈N in C∞(M, N) converges iff for each compact set
K ⊂ M in the domain of a chart of M, the following holds: for any charts (x, U)
and (y, V) with K ⊂ U and f (K) ⊂ V, there exists N ≥ 0 such that for all n ≥
N, fn(K) ⊂ V and in the local representation afforded by these charts, fn → f
uniformly on K and for each possible partial derivative, ∂α fn → ∂α f uniformly on
K.

Exercise 17

Because the weak Whitney topology is (completely) metrizable (so first-countable),
this condition in fact characterizes the closed sets and thus characterizes the topol-
ogy. Namely, show that metric spaces are sequential spaces.

Definition 13

Given two manifolds M and N, possibly with corners, let C∞
S (M, N) be the set

C∞(M, N) with the topology generated by the following base

{N∞
S ( f ; Φ, Ψ, K, ε)} f ,Φ,Ψ,ε

where f ∈ C∞(M, N), Φ and Ψ are locally finite, countable covers of M and N by
charts xi and yi, K = {Ki} is a family of compact subsets Ki ⊂ Ui and ε = {εi} is a
family of positive numbers. Here

N∞
S ( f ; Φ, Ψ, K, ε) = {g ∈ C∞(M, N) : ∀i ∈ N, g ∈ N∞

W( f ; xi, yi, Ki, εi)} .
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Exercise 18

(a) Show that local finiteness of an open cover of a manifold M already implies
that it is countable.

(b) If M is compact, show that C∞
S (M, N) = C∞

W(M, N).

(c) Show that this really is a base (not a subbase) for the topology.

(d) Show that another base for the topology consists of the subset of those basis
sets N∞

S ( f ; Φ, Ψ, K, ε) for which K = {Ki} covers M. Show as well that for
any subset J ⊂ N,

⋃
j∈J Kj is closed. [Hint: The last part will follow if K is a

locally finite collection of closed sets.]

(e) Show that fn → f in C∞
S (M, N) iff there is a compact set K ⊂ M contained in

the domain of a chart such that for all but finitely many fn, f |M \ K = fn|M \ K
and on K, in any pair of compatible charts (x, U) and (y, V), for sufficiently large
n that fn(K) ⊂ V, fn → f uniformly and ∂α fn → ∂α f uniformly, for all partial
derivatives. [Hint: Show first that this is true for an arbitrary compact subset
by taking a good compact exhaustion of M. Then show that this gives the
result for K contained in the domain of a chart.]

The strong topology is not metrizable in general, and not even first-countable in gen-
eral. It does have a saving grace, however.

Theorem 3

C∞
S (M, N) is a Baire space.

Proof. Omitted. We will not need this, but a proof may be found in Hirsch’s Differential
Topology.

Exercise 19

(a) Define a weak (resp. strong) topology on Cr(M, N) for 0 ≤ r < ∞ where for
r = 0, the weak topology corresponds to the usual compact-open topology.
[Hint: Where does r appear in the subbasis and basis sets?]

(b) Show that the inclusion Cr+1(M, N) ⊂ Cr(M, N) is continuous in the weak
and strong topologies but never an embedding.

(c) Show that C∞
W(M, N) = limr Cr(M, N) in both the weak and strong topolo-

gies.

(d) Let r ≤ s. Let U ⊂ Rm
k be open, V ⊂ Rn

ℓ be open, F ⊂ U be closed and
W ⊂ U open. If f : U → V is Cr and Cs on a nbhd of F \W, then every nbhd
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Nof f in Cr
S(U, V) contains a Cr map h : U → V which is Cs in a nbhd of K

with h|U \W = f |U \W.

(e) Show that Cs(M, N) ⊂ Cs(M, N) is a dense subset for 1 ≤ r ≤ s ≤ ∞
in either the strong or the weak topologies. [Hint: Consider a basic nbhd
Nr( f ; {(xi, Ui)}i , {(yi, Vi)}i , {Ki}i , {εi}i) with Ki a cover by (d) of Exercise 2.2
and let {Wi}i be a family of open sets with Ki ⊂Wi ⊂W i ⊂ Ui. Define a family of
Cr maps by induction such that g0 = f and for k ≥ 1, gk = gk−1 on M \Wk such
that gk is Cs on a nbhd of the closed set

⋃k
i=1 Ki. Set g(x) = gmax{k:x∈Uk}(x).]

(f) Show that Cr
W(M, N) ⊂ Cs

W(M, N) is a weak homotopy equivalence for the
weak topologies for all 0 ≤ s ≤ r ≤ ∞. [Hint: This is highly non-trivial. An
even stronger result is that for any open subset U ⊂ Cs

W(M, N), U∩Cr
W(M, N) ⊂

Cs
W(M, N) ⊂ U is a weak homotopy equivalence. See, for instance, this paper for

more details.]

It can be useful to consider Morse functions on manifolds with boundary too.

Definition 14

A Morse function f : M→ R is said to be admissible if f (M) ⊂ [a, b] with f−1(a)∪
f−1(b) = ∂M such that both a and b are regular values of f .

Remark. When ∂M = Ø and M is compact, all Morse functions are admissible.

We shall show Morse functions are generic by showing they are dense in the strong
topology; in particular, Morse functions always exist.

Remark. In a beautiful part of applied mathematics, there is a clever notion of preva-
lence. This notion is related to Takens’ theorem (essentially a souped-up or spicy
version of the Whitney embedding theorem) and has connections to the theory of
time-delay embedding theorems, which are useful in such places as neuroscience and
specifically signals-processing. For more information, one might see the papers preva-
lence: a translation-invariant “almost every” on infinite-dimensional spaces or embedology.
This is a notion adapted to real-world examples. While Morse functions are “preva-
lent” in the sense of being dense—a purely topological notion of “prevalence”—they
are not prevalent in the definition given in these papers.

We will adapt an argument from Guillemin and Pollack’s Differential Topology.
We will need some technical lemmas first.

Lemma 4

If M ⊂ RN is a submanifold without boundary, then about p ∈ M, the restriction
to M of some subcollection of the standard basis coordinate functions xi1 , . . . , xim

of RN, say with i1 < · · · < im, may be used as smooth coordinate charts for M.
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Proof. The standard coordinate basis is a linear basis, so consider their linear duals

(xi)∗ : RN → R.

We may think of these as the “pointwise” version of their smooth manifold duals
(xi)∗ : RN → RN × (RN)∗, since the cotangent bundle ofRN is canonically trivializ-
able T∗RN ∼= RN × (RN)∗, there is no ambiguity in this and on each fiber, (xi)∗(p) is
the element of the linear dual (xi)∗ which is the element of the dual basis as defined
above.

It follows that some m of these are linearly independent when restricted to TpRN,
some subcollection of size m of them are linearly independent on the subspace TpM;
WLOG say (x1)∗ . . . , (xm)∗. It is certainly true that the xi restrict to smooth functions
on M, so we need only show that the function M ∋ q 7→ (x1(q), . . . , xm(q)) has full
rank at p, since then this is a local diffeomorphism by the inverse function theorem.

To see this, note that, essentially by definition, the derivative of the coordinate func-
tion xi : RN → R at p acts on vectors by (xi)∗(p)(v) = vi = (xi)∗(p)(v) and so, upon
restriction to M, this acts on TpM ⊂ RN according to the same formula (we can and do
use the identity chart on R as usual). This means that the map (x1, . . . , xm) : M → RM

is a local diffeomorphism at p since otherwise there is a linear dependence of the
(xi)∗(p) for i = 1, . . . , m, which is impossible.

Lemma 5

Let U ⊂ Rm be open and f : U → R be smooth. Define F : Rm ×U → R by

F(v, p) = f (p) + ⟨v | p⟩ = f (p) + v · p

where ⟨− | −⟩ is the standard inner product on Rm. Then for almost all v ∈ Rm,
the function fv = F(v,−) is Morse.

Proof. Everything is Euclidean, so we may use the usual notions of calculus. Define
g : U → Rm by

g =

(
∂ f
∂x1 , . . . ,

∂ f
∂xm

)
.

The derivative of fv at p is then

( fv)p∗ = g(p) + v

and so p is a critical point of fv if and only if g(p) = −v. Note that fv and f have the
same Hessian matrix everywhere—namely g∗x.

Suppose now that −v is a regular value for g. Then g∗x is non-singular whenever
g(x) = −a. hence, every critical point of fv is non-degenerate and so fv is Morse.
Sard’s theorem now implies that −v is a regular value of g for almost every v ∈ Rm.

The idea now is to use the lemmas on slices to show the following.
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Proposition 1

Given M a manifold without boundary and f : M → R, there is a family of func-
tions F : RN × M → R with F(0,−) = f such that for almost every v ∈ RN,
fv = F(v,−) is Morse.

In particular, for an embedding M ⊂ RN,

F(v, p) = f (p) + v · p

viewing p ∈ M ⊂ RN.

Proof. WLOG suppose M is a submanifold of RN for sufficiently large N. Cover M
by coordinate charts Ui such that, for each, some m of the standard basis functions
x1, . . . , xN are a smooth coordinate chart on Ui by the preceding lemma. Since M is
second countable, we may suppose this collection is countable.

Fixing Ui, suppose WLOG that x1, . . . , xm form a coordinate system for Ui. We re-
duce to a local case, in this way. Note that for F defined as in the proposition statement,
it can be shown that

For each c ∈ RN−m, define

f(0,c) : Ui × RN−m → R

by
f(0,c)(p, x) = f (p) + c · x.

Note that since the first m standard coordinate functions restrict to a chart on M, Ui
is diffeomorphic to an open subset of Rm and Ui × RN−m is open in RN under this
diffeomorphism, so we conflate Ui with its image in Rm.

Now define
F(0,c) : (Ui × RN−m)× Rm = Ui × RN → R

by
F(0,c)(p, x, b) = f (p) + ⟨(b, c) | (p, x)⟩ = f (p) + (b, c) · (p, x).

Thus, for each c, the preceding lemma implies that F(0,c)(−, x, b) = f(b,c) is Morse for
almost every b ∈ Rk for each x ∈ RN−m. Let

Si =
{

a ∈ RN : fa is not Morse on Ui

}
.

Then from what we have just shown, each slice Si ∩ (Rk × {c}) has measure 0. By
Fubini’s theorem, it follows that Si has measure 0.

Thus, it is easy to see that{
a ∈ RN : fa is not Morse

}
=
⋃

i∈N

Si

and the right-hand side is a countable union of measure 0 sets and therefore has mea-
sure 0.
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Corollary 2

The conclusion remains true when M is a manifold with corners.

Proof. By the flow-in theorem, M is diffeomorphic to a codimension 0 submanifold Ṁ
of Int M which is a closed subset. Therefore, by the Whitney approximation theorem,
f extends from Ṁ to all of Int M. Since Ṁ has codimension 0, it is easy to see that the
preceding proposition implies the result immediately.

Exercise 20

Suppose M is compact. Show that Morse functions are dense in C∞(M, R) directly.

The more general assertion is as follows.

Theorem 4

Morse functions are dense in C∞
S (M) when ∂M = Ø.

Proof. Omitted. This follows from a the multi-jet transversality theorem, once one has
established some more theory.

Exercise 21

Show that this implies Morse functions are dense in C∞(M) for any manifold M
with corners. [Hint: An argument similar in spirit to the last corollary proves this.]

Lemma 6

Admissible Morse functions always exist when ∂M is compact.

Proof. Take a collar in M for which the restriction of the collar to [0, a] × ∂M gives a
closed embedding for all a ≥ 0. This is always true for any collar when ∂M is compact.
If ∂M is not compact, this is still true by the flow-in theorem.

Write V0 ⨿ V1 = ∂M. Since the restriction of the collar to say [0, 1/2]× ∂M gives a
closed embedding, there is a continuous function

g(p) =


t p = (t, x) ∈ [0, 1/2]×V0

1− t p = (t, x) ∈ [0, 1/2]×V1

1/2 else,

(it is continuous by the pasting lemma, which critically uses that the first two pieces are
defined on closed subspaces) a smooth function g̃ which agrees with g on the closed
subset [0, 1/2] × ∂M and takes values 1/4 < g̃(p) < 3/4 outside of [0, 1/2] × ∂M.
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This follows by the Whitney approximation theorem. Then g̃ has no critical points in
a nbhd of ∂M and f−1(i) = Vi.

Embed M into RN for suitably large N. Since the open unit ball is diffeomorphic
to RN, we may suppose M ⊂

{
x ∈ RN : ∥x∥ < 1

}
. We shall proceed as before, using

this embedding to modify M by elements of (RN)∗ (linear maps RN → R).
Let µ be smooth, equal to 0 in ∂M× [0, 1/4] and equals 1 on in M \ (∂M× [0, 1/2]).

Let L be any linear map RN → R (i.e., an element of RN ∼= (RN)∗). As we have seen,
g̃ + L is a Morse function on M for almost every L.

Equip M with a metric. By compactness, |dg̃| is bounded below by a positive num-
ber in ∂M× [0, 1/2]. By taking |L| sufficiently small, we can arrange that

|d(g̃ + µL)| ≥ |dg̃| − |d(µL)| > 0 in ∂M× [0, 1/2]

so that g̃ + µL, as can be easily seen, has no critical points therein. By denseness of
Morse functions, we can arrange that g̃ + L is Morse (i.e., by Proposition 1) and thus
so too is g̃ + µL where L satisfies the above inequality, thereby giving an admissible
Morse function.

Exercise 22

Prove or provide a counter-example to the following assertion: the above hold
even if M is not compact. [I do not know the answer to this. I suspect it is true and
one uses a good collar afforded by the flow-in theorem and then shows that |dg̃| can be
arranged to be bounded below by a positive number as above. Alternatively, perhaps show
that C∞

S (M)×2 → C∞
S (M) by ( f , g) 7→ f + g is continuous and argue about its image

to show that some suitable function can be used to perturb g̃ and get a Morse function.]

2.3 Passing a Non-degenerate Critical Point

We now show that the topology changes when passing a critical point for a Morse
function.

Theorem 5

Let M be compact and let f : M→ [a, b] be an admissible Morse function having a
unique critical point z of index k. Then there exists a k and an n− k cell ek, en−k ⊂
M − f−1(a) such that ek, en−k ∩ f−1(b) = ∂ek, ∂en−k and there is a deformation
retract of M onto f−1(b)∪ ek (resp. f−1(b)∪ en−k). Moreover, these n− k cells can
be chosen to intersect only at z and do so transversely.

Proof. WLOG f (z) = 0. It suffices to prove this for f−1[−ε, ε] by the preceding interval
theorem applied to [a,−ε] and [ε, b]. Let (φ, U) be a Morse chart for f about z where
φ(z) = (0, 0). Write f φ−1 = − |x|2 + |y|2 meaning the obvious thing. Set V = φ(U).
Let 0 < δ < 1 be so large that the rectangle

R = Bk(δ)× Bn−k(δ)
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is contained in V. Let ε < δ be small, say ε < δ2/100. Let

Bk = Bk(
√

ε)× {0} and Bn−k = {0} × Bn−k(
√

ε).

These are embedded cells meeting transversely at a single point and thus so too do
ek = φ−1Bk and en−k = φ−1Bn−k. We now restrict to the case of the k-cell case, the
(n− k)-cell case being dual.

It suffices to consider f−1[−ε, ε] as we have set things up, and as we commented.
The proof of the retraction and all for ek goes through for en−k by using the Morse
function − f instead (which has a different index, of course). So we consider the first
case.

Give M a Riemannian metric that agrees with the induced metric in φ−1(R) ob-
tained from the Euclidean metric (i.e,. a metric which on R equals ⟨φ∗, φ∗⟩ with ⟨⟩ the
standard Euclidean metric. Then on φ−1(R) we have that

φp∗(grad
p

f ) = grad
φ(p)

f φ−1

by computing that g(gradp f , X) = X f with this metric means that
〈

φp∗ gradp f , φp∗X
〉
=

X f but on the other hand, one can check that (φ∗X)( f φ−1) = X f by a computation,
whence the equality.

Let
R1 = Bk(

√
2ε)× Bn−k(

√
3ε)

and
R2 = Bk(

√
3ε)× Bn−k(2

√
ε).

In these coordinates, identify
M = f−1[−ε, ε]

and write
g = f ◦ φ−1.

These are chosen such that g−1(ε) exits R1 and R2 at corners of these boxes.
Now, we have contrived that nothing outside of φ−1(R2) will flow under the nega-

tive gradient flow to the critical point and in particular into R2 before hitting f−1(−ε).
Indeed, the integral curves in R have the form, (x0e2t, y0e−2t) interpreted appropri-
ately. Hence, if (x0, y0) ∈ R \ R2, then the integral curve through it along it |x0| in-
creases and |y0| decreases and |grad f | has a positive lower bound in the compact
manifold M \ Int(φ−1R1).

Since M \ R2 is a smooth compact manifold with an admissible Morse function,
it is diffeomorphic to f−1(−ε) × [−ε, ε] over [−ε, ε] (note that f−1(−ε) is a union of
boundary components by our assumptions and thus is disjoint from R2).

M \ R2 f−1(−ε)× [−ε, ε]

[−ε, ε] [−ε, ε]

f

F
∼=

pr
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Working on the right-hand side, we can scale − grad f by pr(p, t) = t so that the
negative gradient flow moves each point to f−1(−ε) in unit time.

Inside of g−1[−ε, ε] ∩ R1, consider the deformation

(x, y, t) 7→ (x, (1− t)s(x, y)y)

where

s(x, y) =

{
0 |x|2 ≤ ε√
|x|2 − ε/ |y| |x|2 ≥ ε.

which is continuous; this path is the closure of the flow lines for the vector field
(0,−2y) in R2. To piece these together, consider the vector field X = (0,−2y), in
R2 consider the vector field− grad g = (2x,−2y). Let µ : M→ [0, 1] be a smooth func-
tion with µ−1(0) = R1 and µ−1(1) = M \ Int(R1) by the strong form of the smooth
Urysohn lemma.

Let
Y(x, y) = (2µ(x, y)x,−2y)

and extend this to all of M in the evident way by declaring Y to be − grad f outside
of the chart. Let ΦY be the flow for this. We now produce the deformation by moving
along the closures of the flow lines of Y at constant speed, reaching g−1(−ε) ∪ Bk in
unit time where by construction the points of g−1(−ε) ∪ Bk are stationary.

Exercise 23

Verify Y is continuous as defined. Then show that the points of R2 \ R1 really
deform onto g−1(−ε) ∪ Bk.

Of course, critical points of Morse functions are discrete, so it is easy to establish
the following analogue of this theorem. First, we introduce some terminology.

Definition 15

Given f : M→ [a, b] an admissible Morse function with M compact, say dim M =
m. Say the type of the Morse function f is (v0, . . . , vm) where vk = vk( f ) is the
number of index k critical points of f .

Corollary 3

Let M be compact. Given f : M → [a, b] an admissible Morse function of type
(v0, . . . , vm), there are disjoint embedded k-cells ek

i ⊂ M \ f−1(b) (1 ≤ i ≤ vk,
0 ≤ k ≤ m) such that ek

i ∩ f−1(a) = ∂ek
i and M deformation retracts onto f−1(a) ∪{⋃

i,k ek
i
}

.

Proof. This is a minor modification of the preceding argument using the fact that the
critical points of a Morse function are isolated.
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Exercise 24

Let f : M→ R be a Morse function.

(a) If M is compact and f admissible, show that there is a sequence of admissible
Morse functions fn : M → R such that fn → f in the weak (=strong in this
case) Whitney topology such that each fn has distinct critical values for its
critical points. [Hint: Let ρ : [0, ∞) → [0, 1] be such that ρ(0) = 1, ρ(t) = 0 for
t ≥ 2 and −1 ≤ ρ′(t) ≤ 0 everywhere. In a Morse chart about p ∈ Cr( f ), use
this function (or a suitable modification of it) to perturb f (p).]

(b) If M is not compact, can the same thing be arranged?

[I do not know if (b) is true!]

3 Handle Presentation Theorem

This forms the technical heart of these lecture notes. We give a modern presenta-
tion of handle attachments and then later provide as an exercise the classical corner-
smoothing procedure.

3.1 Operations on Manifolds

In this subsection, we shall only consider operations involving compact manifolds.
Everything construction works more generally, but we do not obtain good invariance
properties if certain manifolds are not compact because then we cannot appeal to the
isotopy extension theorem.

Connect Sums

This forms the basis for all examples to come. This is the case of gluing to mani-
folds together by deleting the compact manifold that is a point. First we introduce the
categorical prerequsite of a pushout.

Before giving the definition, which looks quite complicated, let us give some in-
tuition. The idea is actually quite simple. When we have three objects (e.g., spaces)
connected by morphisms (e.g., continuous maps)

C A B
g f

the pushout of this data (sometimes called a span or correspondence in category the-
ory) is precisely the object formed by gluing C and B together along A.

Example 3
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Recall that ∂D2 = S1. Consider the span of the inclusions

D2 S1 D2

in the category TOP of spaces. The hooks indicate that the maps are the (evident)
embeddings. the pushout of this data is S2. Similarly, the pushout (in this case,
this is also called a cofiber) of the following span

∗ S1 D2

(∗ is the one point space) is S2.
In particular, we obtain a commutative diagram

S1 D2

D2 S2

which is universal in a certain sense described in the definition below.

Definition 16

Fix a category C (think C = TOP spaces or C = DIFF smooth manifolds). Given a
diagram in C of the form

c0 c1

c2

f

g (∗)

the pushout of (∗) (should it exist) is an object c ∈ C along with morphisms

c2
F−→ c G←− c1

making the following diagram commutes

c0 c1

c2 c

f

g G

F
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and satisfying the following universal property. For any other commutative square

c0 c1

c2 c′

f

g G′

F′

there is a unique morphism H : c→ c′ in C making TFDC

c0 c1

c′

c2 c

f

g G

G′

F

F′ H

Remark. It is this universal property that makes precise the idea that we are gluing to
objects together along another.

Notation 3.1. If a square

c0 c1

c2 c

f

g G

F

in a category C is a pushout square, we often decorate it with the following symbol to
indicate that it is a pushout square

c0 c1

c2 c

f

g G

F

⌜

Warning. Pushouts are not always guaranteed to exist.

Exercise 25

(a) Show that all pushouts in Set (i.e., the category of sets) exist. [Hint: Given

a span Y
f←− X

g−→ Z of sets, start with the coproduct Y ⨿ Z with the evident
structure maps Y → Y ⨿ Z ← Z. Show that the universal property forces you to
mod out by the equivalence relation on Y ⨿ Z generated by f (x) ∼ g(x).]

(b) Show that if a pushout in TOP exists, then the by forgetting topologies it is a
pushout in the underlying category of sets. [Hint: Give any set X the discrete

Page 31



MORSE THEORY & (HAMILTONIAN) FLOER HOMOLOGY MATT CARR

topology.]

(c) Given a span B
f←− A

g−→ C in spaces, show that its pushout exists and is the
quotient space B ⨿ C/ { f (a) ∼ g(a)}.

(d) Show that while DIFF does not have all pushouts (i.e., construct a span in
the category of smooth manifolds for which its pushout does not exist).

(e) Find an example of a span in DIFF N ← M → P for which the pushout
in DIFF exists but does not agree with its pushout in TOP. [Hint: Two maps
out of space X into a Hausdorff space Y agreeing on a dense subset are equal. All
manifolds are Hausdorff.]

Clearly, then, pushouts in DIFF are not well-behaved objects. The idea to make them
well-behaved is to include normal bundle data.

First we introduce some notation.

Notation 3.2. Let E be a Riemannian vector bundle over M. Given

α : R>0 → R>0

an orientation-reversing diffeomorphism (such as x 7→ 1
x ), we obtain an embedding

αE : E \M→ E \M

(where M sits as the 0 section) by the assignment

αE(v) = α(∥v∥) v
∥v∥ .

When M = ∗ and E = Rm, we simply denote this by αm using the standard Euclidean
metric.

Exercise 26

Given a pushout in TOP

A B

C D

i

f F

j

⌜

where i is injective, as indicated by the tail.

(a) Show that

D = B ⨿ C/
{

c ∼ f i−1(c) ∀c such that this makes sense
}

.

[Hint: This only requires i injective.]

(b) Show that j is an injective.
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(c) If i is an open (resp. closed) embedding, then j is an open (resp. closed)
embedding.

Theorem 6

Fix two m-manifolds M1 and M2 and for simplicity suppose M1 and M2 are con-
nected. Fix points pi ∈ Mi along with tubular nbhds (thought of as charts and
therefore landing in the interiors of both manifolds) hi : Rm → Mi. If M1 and M2
are orientable, assume that h1 preserves orientation and h2 reverses it, where Rm

has its standard orientation.
Define a new space

M1#M2 = M1#M2(h1, h2, α)

called their connected sum as the pushout

Rm \ {0} M1 \ p1

M2 \ {p2} M1#M2(h1, h2, α)

h2◦αm

h1

⌜

in the category TOP of spaces. This satisfies the following properties.

(a) M1#M2(h1, h2, α) is a topological manifold of dimension m with a unique
smooth structure such that the two topological embeddings of the square
above colored in blue are smooth embeddings.

(b) The pushout above is a pushout in DIFF.

(c) M1#M2(h1, h2, α) is connected when M1 and M2 are and m ≥ 2.

(d) M1#M2(h1, h2, α) is orientable when M1 and M2 are.

(e) ∂(M1#M2) = ∂M1 ⨿ ∂M2.

(f) M1#M2(h1, h2, α) is indepdent of the orientation reversing α.

(g) When M1 is (resp. M2) is orientable, M1#M2(h1, h2, α) is independent of h1
(resp. h2) up to any other orientation-preserving (resp. orientation-reversing)
embedding. When M1 (resp. M2) is non-orientable, then M1#M2(h1, h2, α) is
independent of the choice of embedding h1 (resp. h2).

Proof. The pushout is easily seen to be locally Euclidean. Hence, the invariance of do-
main implies that the blue arrows are open maps and thus M1#M2 is second-countable.
To show it is Hausdorff, one simply shows that if x ∈ M1 \ p1 and y ∈ M2 \ p2 are not
identified, then they have disjoint nbhds by a case checking argument.

Hence, since h2αmh−1
1 is an (orientation-preserving) diffeomorphism, the fact that

the blue maps are embeddings implies that the smooth structures on M1 \ p1 and M2 \
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p2 are compatible inside M1#M2 and hence yield an (oriented) atlas for which the two
blue maps are smooth embeddings. This is clearly the unique structure for which this
is true.

Now consider the following diagram in TOP where each object and solid arrow
belongs to DIFF.

Rm \ {0} M1 \ p1

N

M2 \ {p2} M1#M2(h1, h2, α)

h2◦αm

h1

f

g h

The dashed arrow exists in TOP. To see that it is smooth, simply observe that smooth-
ness is a local condition and the blue arrows are open smooth embeddings.

Now we verify the independence assertions. Let t1 ∈ (0, ∞) and let t0 ∈ [0, ∞) be
such that 0 ≤ t0 < t1. Let

Rm(t0, t1) = {v ∈ Rm : t0 < ∥v∥ < t1} ,

and note that αm(Rm(t0, t1)) = Rm(α(t1), α(t0)). Note that when t0 = 0, we shall write

Rm(t1) = Rm(0, t1).

Consider the pushout

Rm(t0, t1) M1 \ p1

M2 \ {p2} M(h1, h2, α)

h2◦αm

h1

⌜

it is easy to see that M(h1, h2, α) has a unique smooth structure such that blue arrows
are open smooth embeddings and, furthermore, with this smooth structure it is diffeo-
morphic to M1#M2(h1, h2, α).

Exercise 27

Verify this. In particular, show that the above square is a pushout in DIFF. [Hint:
Then make an argument using universal properties.]

Now we make a claim (really, an observation).

Claim. The construction M(h1, h2, α) only depends on h2αmh−1
1 restricted to h1(Rm(t1))

in the sense that if we had any other h′i : Rm \ 0→ Mi \ {pi} (i = 1, 2) with

h1(Rm(t1)) = h′1(R
m(t1))

and
h2αmh1| h1(Rm(t1)) = h′2αm(h′1)

−1
∣∣∣ h1(Rm(t1))

then there is a diffeomorphism M(h1, h2, α) ∼= M(h′1, h′2, α).
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This follows immediately from the alternate description of the pushout quotient
relation given in Exercise 26.

Let β1 be any smooth embedding β1 : Rm → Rm that is a shrinking in the sense of
Definition 39 such that

β1|Rm(t1) ∪ {0} = id, β1(Rm \ (0)) ⊂ {v ∈ Rm : |v| < t2} where t1 < t2.

Let β2 be any smooth embedding β2 : Rm → Rm that is similarly a shrinking such that

β2|Rm(α(t1)) ∪ {0} = id, β2(Rm \ (0)) ⊂ {v ∈ Rm : |v| < t3} where α(t1) < t3.

Since the construction above only depends on h2αmh−1
1 restricted to h1(Rm(t1)), it fol-

lows that M(h1β1, h2β2, α) is diffeomorphic to M(h1, h2, α).
It follows that each hiβi : Rm → Mi has the structure of a proper tubular nbhd

about pi. Hence, WLOG, we may suppose our tubular nbhds are proper. This allows
us to show independence of the construction on the hi.

If M1 is not oriented, then if h′1 : Rm → M is any other proper tubular nbhd about
a point p′1, then either h′1 is orientation-preserving or there is a smooth orientation-
reversing loop γ : [0, 1] → M1 at p′1 which, by the isotopy extension theorem, extends
to diffeotopy K : M1 × I → M1, and we therefore obtain an isotopy

H = (Rm × I
h′1×I
−−→ M1 × I K−→ M1)

with the property that H(−, 1) is a proper tubular nbhd of p′1 and the embedding with
the same orientation type as h1.

Now take any smooth path γ : [0, 1] → M1 from p′1 to p1. This once again extends
to a diffeotopy P : M1 × I → M1 which moves the proper tubular nbhd H(−, 1) =
K(h′1(−), 1) about p′1 to a proper tubular nbhd P(K(h′1(−), 1), 1) about p1. Finally, by
uniqueness of tubular nbhds, there is diffeotopy g̃ : M1 × I → M1 such that g̃(−, 1) =
g0 : M1 → M1 restricts to a linear isometry of P(K(h′1(R

m), 1), 1) onto h1(Rm).
However, this map may be such that the following diagrma does not commute!

Rm Rm

M1 M1

P(K(h′1(−),1),1) h1

g0

Note that with the acquired orientations, g0 restricts to an orientation-preserving lin-
ear isomorphism. To see this, note that orientation class is preserved under isotopy.
Hence, the map g0(P(K(h′1(−), 1), 1)) has the same orientation type as h′1 and thus h1.
Hence, there is an element A ∈ O(m) in the identity component of O(m) such that A ◦
g0(P(K(h′1(−), 1), 1)) = h1 (where we only apply A to the image of g0(P(K(h′1(−), 1), 1))).
This is critical, because it means there is a smooth path γ : [0, 1] → O(m) from the
identity to A. Thus, by another application of the isotopy extension theorem to γ ◦
g(P(K(h′1(−), 1), 1)), we obtain a diffeomorphism g : M1 → M1 such that

g(g0(P(K(h′1(−), 1), 1))) = h1.
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Notation 3.3. WLOG we will simply replace the composite g ◦ g0 by g.

Notice, in particular, that P(K(−, 1), 1)) is a diffeomorphism M1 \ {p′1}
∼=−→ M1 \

{p1}. Finally, define a map G : M1#M2(h′1, h2, α)→ M1#M2(h1, h2, α) by

G(p) =

{
g(P(K(p, 1), 1)), p ∈ M1 \ {p′1}
p, p ∈ M2 \ {p2} .

To see that this is well-defined, we must show that when p ∈ M2 \ {p2} is in the image
of h2αm, then the given formula makes sense. This is because if p = h2αm(v), then it is
identified with h′1(v) ∈ M1 \ {p′1} and as we saw above

G(h′1(v)) = g(P(K(h′1(v), 1), 1)) = h1(v)

and in M1#M2(h1, h2, α), h1(v) = h2αm(v). To see that it is smooth, simply observe
that it is smooth on the open submanifolds M1 \ {p′1} and M2 \ {p2} and therefore
smooth globally since these cover the connected sum. The same argument shows that
the construction is independent of h2 when M2 is non-orientable.

Finally, suppose M1 and M2 are orientable and h′1 : Rm → M1 is a tubular nbhd
of p′1 such that h′1 and h1 have the same orientation type. Then there is no need to
do the first diffeotopy K; we may as well suppose K = id. Doing so, the rest of the
argument is identical and goes through by replacing K = id everywhere. But, in
addition, we obtain that the map G is an orientation-preserving diffeomorphism. The
same argument shows that the construction is independent of h2 so long as h2 is any
other orientation-reversing embedding.

Exercise 28

Verify that G as described above is indeed orientation-preserving.

Finally, we can see that this is independent of α. Suppose β is any other orientation-
reversing diffeomorphism β : R>0 → R>0. Then there is an orientation-preserving
diffeomorphism g : R>0 → R>0 which is the identity in a nbhd of 0 and in a nbhd
of ∞, and such that on some interval (t0, t1), α| (t0, t1) = βg| (t0, t1) by Theorem 28.
Hence,

αm|Rm(t0, t1) = βmgm|Rm(t0, t1), where Rm(t0, t1) = {v ∈ Rm : t0 < |v| < t1} .

Thus, there are diffeomorphism

M1#M2(h1, h2, α) ∼= M1#M2(h1gm, h2, α) ∼= M(h1gm, h2, α) ∼= M(h1, h2, β),

where each diffeomorphism follows from something we have shown before. As for
the last diffeomorphism, this is a consequence of Exercise 27.

The above construction is complicated, but its utility is that we can use arbitrary—not
necessarily proper—embeddings to construct connect sums.

One might wonder about whether the connect sum can be orientable if one or even
both manifolds are non-orientable. The next exercise shows this is impossible.
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Exercise 29

(a) Show that every 1-dimensional manifold, possibly with corners, is orientable.
[Hint: When it does not have boundary, there are two 1-dimensional manifolds S1

and R.]

(b) Show that if M1 is non-orientable (resp. orientable), then M1 \ {p} is non-
orientable (resp. orientable). [Hint: Certain definitions of orientability in DIFF
make this immediately obvious. The same can be shown for topological manifolds
but involves algebraic topology.]

(c) Show that if at least one of M1 and M2 are non-orientable, then M1#M2 is
non-orientable. [Hint: Use the preceding part and argue a contradiction.]

The idea with the connect sum is that the two manifolds are joined by a tube. The
following exercise makes this precise.

Exercise 30

(a) Show that there is an embedding h : Rm#Rm(h1, h2, α)→ Rm× [−1, 1] where
h1 preserves and h2 reverses orientation such that h1 and h2 are tubular
nbhds of 0.

(b) Use this to deduce a similar sort of embedding for connected sum M1#M2
when M1 and M2 are orientable.

(c) What happens if we assume that h1 and h2 are equioriented? What happens
in the non-orientable case?

Boundary Connected Sum

A Technicalities and Manifolds with Corners

A.1 General Notions of Smoothness in Local Coordinates

Important Notation and Definitions

Notation A.1. We make the following notational conventions.

R+
def
= (0, ∞)

Rn
≥0

def
= [0, ∞)n

Hn def
= Rn−1 × R≥0

Rn
k

def
= Rn−k × Rk

≥0
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We will denote
in,k : Rn

k = Rn−k × Rk
≥0 → Rn

the canonical embedding given by the evident subset inclusion for each 0 ≤ k ≤ n.

Definition 17 (Smoothness on Subsets)

(a) For A ⊂ Rk, a function f : A → Rn is smooth if for each p ∈ A, there is an
open nbhd U of p in Rk and a smooth function f : U → N such that f

∣∣∣ A = f .

(b) Similarly, for A ⊂ Rk−ℓ × Rℓ
≥0, a function f : A → Rn is smooth if for each

p ∈ A, there is an open nbhd U of p in Rk ⊃ Rk−ℓ × Rℓ
≥0 and a smooth

function f : U → Rn such that f
∣∣∣ A = f .

(c) For a subset A ⊂ Rk−ℓ × Rℓ
≥0 and a function f : A → Rm

n , we will say that f
is smooth if for each p ∈ A, there is an open nbhd U of p in Rk ⊃ Rk−ℓ×Rℓ

≥0

and a smooth function f : U → Rm such that f
∣∣∣ A = f . In other words, for

the purposes of smoothness, we consider a function into Rm
n to be smooth iff

it is smooth considered as a function into Rn—in other words, f is said to be
smooth if im,n ◦ f is smooth in the sense given above.

(d) We will define manifolds with corners in the section below. Given two such
manifolds Mm and Nn, we will say a function f : M → N is smooth if for
each p ∈ M, there are charts (x, U) about p and (y, V) about f (p) such that
the map

y ◦ f ◦ x−1 : x(U ∩ f−1y−1(V))︸ ︷︷ ︸
⊂Rm

k

→ y(V)︸ ︷︷ ︸
⊂Rn

ℓ

is smooth in the sense just described for subsets of Euclidean space.

Basic Results

Theorem 7

Let A ⊂ M be a subset of a manifold and f : A→ Rk be a function.

(a) f is smooth iff there is an open set U ⊂ Rk with A ⊂ U ⊂ Rk and a smooth
function f : U → N such that f

∣∣∣ A = f .

(b) If, in addition, A is assumed to be closed, then f is smooth iff it extends to
all of Rn. In fact, if A is any closed subset of a manifold with corners and
f is smooth on A, then for any open subset containing A, there is a smooth
function f̃ : M→ Rk such that f̃

∣∣∣ A = f and supp f̃ ⊂ U.
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(c) f : A → Rk is smooth iff f is locally the restriction of a smooth function
M→ Rk (no assumptions on A are needed here).

Proof. This is a partition of unity argument.
(a) f admits (locally) a smooth extension in an open nbhd of each point of A by

definition. Cover A by these nbhds, observe that this covering admits a locally finite
open refinement and run a partition of unity subordinate to this open cover.

(b) This is a refinement of the preceding argument.
(c) This follows using point-set topological properties of manifolds and (b).

Corollary 4

The same is true if A ⊂ Rk−ℓ × Rℓ
≥0.

Proof. ∂A in Rk−ℓ × Rℓ
≥0 is ∂A in Rk. Indeed, Rk−ℓ × Rℓ

≥0 ⊂ Rk is closed, and so
contains all of its limit points and hence the limit points of A in Rk−ℓ × Rℓ

≥0 is the
same as the limit points of A in Rk.

A.2 Manifolds With Corners

Basic Definitions and Facts

Definition 18 (Model Spaces)

Consider Rn
k ⊂ Rn. We give this the following standard smooth structure where a

smooth chart of Rn
k is a smooth homeomorphism onto an open subset of some Rn

ℓ
where smoothness is defined as in Definition 17 for subsets of Euclidean spaces.
Smooth compatibility of these charts boils down to a simple exercise in point-set
topology. These will be our model spaces or model corner spaces after which we
pattern manifolds with corners.

Definition 19 (Manifold with Corners)

A smooth manifold with corners of dimension n is a second countable, Hausdorff
space that is locally patterned after the spaces Rn−k × Rk

≥0 (k is not fixed, k ≥
0) with a maximal smooth atlas A comprised of such charts that are smoothly
compatible—smooth compatibility of these charts. Smoothness of their transitions
y ◦ x−1 is defined as in Definition 17. The definition of a smooth function between
two manifolds with corners is then patterned after the notion of smoothness for
functions Rm

k → Rn
ℓ introduced above. See, specifically, (d) of Definition 17.

We shall say that a chart (x, U) for an n-manifold-with-corner M is a boundary
chart if it is a homeomorphism from U onto an open subset of Rn−k × Rk

≥0 such
that x(U) ∩ Rn−k × Rk−ℓ

≥0 × 0 ̸= Ø for some 1 ≤ ℓ ≤ k. We shall say that a chart
(x, U) for an n-manifold-with-corner M is a corner chart if it is a homeomorphism
from U onto an open subset of Rn−k × Rk

≥0 with k ≥ 2 such that x(U) ∩ Rn−k ×
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Rk−ℓ
≥0 × 0 ̸= Ø for some 2 ≤ ℓ ≤ k.

This definition is equivalent to a more flexible definition. First we introduce some
notation.

Definition 20

Denote by (Rn)∗ the linear dual of Rn (the space of linear maps Rn → R). Define
a k-corner subspace of Rn to be any subset of the form

Cn
k = {x ∈ Rn : λ1(x) ≥ 0, . . . , λk(x) ≥ 0}

where we require λ1, . . . , λk ∈ (Rn)∗ \ {0} to bee such that λi ̸= λj for any i ̸= j.
If k = 0, we set by convention

Cn
k = Rn.

Exercise 31

Show that a smooth manifold with corners of dimension n as in the definition
above is equivalent to the following definition:

A smooth manifold with corners of dimension n is a second countable, Haus-
dorff space that is locally patterned after the spaces Cn

k (k is not fixed, k ≥ 0) with a
maximal smooth atlas A comprised of such charts that are smoothly compatible.

[Hint: It suffices (why?) to show that Cn
k is diffeomorphica to Rn

k . ]
aIn the sense that that there is a homeomorphism which is smooth with smooth inverse where

smoothness is defined as in Definition 17.

Definition 21 (Boundary and Corners)

By abuse of notation, we shall refer to the boundary ∂M of a smooth manifold
with corners M to be the set of all points that are mapped by some chart to the
boundary of one of model spaces Rn−k × Rk

≥0 (k ≥ 1) and we shall call the set
of points which are mapped by some chart to the boundary of one of the model
spaces Rn−k × Rk

≥0 with k ≥ 2 the corner set of M and denote it by ∠M.

Definition 22 (Corner Depth)

Let M be a manifold-with-corners of dimension n. For each 1 ≤ k ≤ n, let ∠k M
be the set of points p ∈ M for which there is a chart (x, U), x : U → Rn−k × Rk

≥0
such that x(p) ∈ Rn−k × 0 ⊂ Rn−k × Rk

≥0. We call the set ∠k M the set of k-th
order corners or corners of depth k. We denote by depthM(p) or simply depth(p)
the smallest integer k for which there exists a chart (x, U) about p where x : U →
Rn−k × Rk

≥0. We call this the depth of p.
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Remark. The upshot of the remainder of this chapter is that what you expect to be true
is indeed true.

The following theorem is a standard result in algebraic topology.

Theorem 8 (Topological Invariance of the Boundary)

Given a topological n-dimensional manifold with boundary M, if there is a chart
(x, U) for which x(p) ∈ ∂Rn

≥0, then the same is true for all other charts of M.

Proof. This is a local homology argument. By shrinking U if necessary and shifting, we
may suppose x(U) is an open half ball of some fixed radius ε > 0 centered at x(p) =
0 ∈ Rn

≥0. By excision, Hn(M, M \ {p}) ∼= Hn(U, U \ {p}) ∼= Hn(x(U), x(U) \ {0}). By
the LES of the pair and contractibility of x(U), Hn(x(U), x(U) \ {0}) ∼= Hn−1(x(U) \
{0}) and x(U) \ {0} ≃ Sn−1 by the radial contraction onto the boundary. Hence, the
local homology of p is non-trivial and evidently concentrated in degree n− 1 with a
factor of Z. Since local homology is a homeomorphism invariant, this shows that any
other chart must send p to a point with non-trivial local homology and some thought
shows that the only such points lie on the boundary of Rn

≥0 as desired.

Theorem 9 (Smooth Invariance of Corner Points)

Let M be a manifold-with-corner.

(a) If p ∈ ∠M, then p is topologically a boundary point in the sense that there
is a homeomorphism Rn

k
∼= Rn

≥0 for k ≥ 1.

(b) If p ∈ ∂M, then the defining condition is true for every chart about p in the
smooth and topological case.

(c) If p ∈ ∠M, then the defining condition is true for every chart about p in the
smooth case. In particular, there is no diffeomorphism Rn

≥0 ̸∼= Rn−k × Rk
≥0

for any k ≥ 2.

(d) If i ̸= j and p ∈ ∠i M, then p /∈ ∠jM.

(e) Any diffeomorphism Rn−k×Rk
≥0 → Rn−k×Rk

≥0 preserves ∠k(Rn−k×Rk
≥0)

for each 1 ≤ k ≤ n. This lifts to manifolds with corners in the obvious way.

Sketch. The idea is that you can successively flatten the walls of Rn
k to get a homeo-

morphism Rn
k
∼= Rn

≥0, but it cannot be smooth because things go “too quickly” around
the origin. This can be made precise by contradiction, supposing there is a diffeomor-
phism f : Rn

k → Rn
≥0, taking a smooth curve γ in ∂Rn

+ passing through f (0) at time
t = 0 with non-zero derivative and then observing that f−1(γ) has a kink at time t = 0
and does not slow to speed 0, so could not possibly be smooth.

(c) and (d) are proved in essentially the same manner. The gist of it is that ∂Rn
k \

∠Rn
k is disconnected with components consisting of the boundary points of Rn

k for
which exactly one of the coordinates xn−k+1, . . . , xn are equal to 0.
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Constant Rank Theorem

The following is adapted from Spivak.

Theorem 10

Suppose Mm and Nn are smooth manifolds (without boundary) and that f : M→
N is smooth.

(a) If f has rank k at p ∈ M, then is some coordinate system (x, U) about p
and some coordinate system (y, V) about f (p) with y ◦ f ◦ x−1 in the form

(y ◦ f ◦ x−1)(a1, . . . , am) = (a1, . . . , ak, ψk+1(a), . . . , ψn(a)).

Moreover, given any coordinate system y, the appropriate coordinate system
on N can be obtained by permuting the component functions of y.

(b) If f has rank k in a nbhd of p, then there are coordinate systems (x, U)
about p and (y, V) about f (p) with y ◦ f ◦ x−1 in the form

(y ◦ f ◦ x−1)(a1, . . . , am) = (a1, . . . , ak, 0, . . . , 0).

(c) If n ≤ m and f has rank n at p, then for any coordinate system (y, V)
about f (p), there is some coordinate system (x, U) about p with

y ◦ f ◦ x−1(a1, . . . , am) = (a1, . . . , an).

(d) If m ≤ n and f has rank m at p, then for any coordinate system (x, U)
about p, there is a coordinate system (y, V) about f (p) with

y ◦ f ◦ x−1(a1, . . . , am) = (a1, . . . , am, 0, . . . , 0).

(e) (Equivariant Rank Theorem) Let G be a Lie group acting on M and N and
suppose the action on M is transitive. Let f : M → N be G-equivariant and
smooth. Then f has constant rank.

Remark. Note that rank f ≤ min {m, n}. Hence, in (c) and (d), f has full rank at p and
therefore f has full rank in a nbhd of p since the condition of being full rank is an open
condition.

Proof. (a) Fix a coordinate system (y, V) about f (p) and choose some coordinate sys-
tem u about p. Since rank(d fp) = k, there is some k × k submatrix of d fp (in coor-
dinates) whose determinant is nonzero. Thus, by performing some diffeomorphisms
(i.e., permuting the coordinate functions ui and yi and thereby performing row/column
operations) and relabeling, we can bring this k× k-submatrix into the upper left-hand
corner of D(y ◦ f ◦ u−1):

det
(

∂(yα ◦ f )
∂uβ

(p)
)
̸= 0 α, β = 1, . . . , k.
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Now, define

xα = yα ◦ f α = 1, . . . , k
xr = ur r = k + 1, . . . , m.

Then, recalling that
∂(yα ◦ f )

∂uβ

def
= Dβ(yα ◦ f ◦ u−1)(u(p)), we see that the determinant

m×m matrix
(

∂xi

∂uj (p)
)

is in fact

det


(

∂(yα ◦ f )
∂uβ

)
α,β=1,...,k

(
Di(yj ◦ f ◦ u−1)(u(p)))

)
i=k+1,...,m, j=1,...,n

0k×k 1(m−k)×(m−k)

 ̸= 0

because the columns are clearly linearly independent. Unraveling what this matrix is
(namely, Dk(xα ◦ u−1)), it follows by the Inverse Function Theorem that x ◦ u−1 is a
diffeomorphism in a nbhd of u(p). Hence, x = (x ◦ u−1) ◦ u is a coordinate system in
some nbhd of p in M: it will be a homeomorphism and if (z, W) were any other coordi-
nate system about p in M, then the transition map will likewise clearly be smooth. The
cases of ∂z/∂x are taken care of by noting that the Inverse Function Theorem (really
the chain rule, I think) gives us a description of ∂z/∂x as (∂x/∂z)−1.

Now, if q = x−1(a1, . . . , am), then x(q) = (a1, . . . , am) and therefore xi(q) = ai and
hence, {

yα ◦ f (q) = aα α = 1, . . . , k,
ur(q) = ar r = k + 1, . . . , m,

so

y ◦ f ◦ x−1(a1, . . . , am) = y ◦ f (q) for q = x−1(a1, . . . , an)

= (a1, . . . , ak, ).

This is (a).
(b) As above, choose coordinate systems x and v so that v ◦ f ◦ x−1 has the form

obtained in (a). Since rank(d fp) = k in a nbhd of p, the lower rectangle in the n× m

matrix
(

∂(vi ◦ f )
∂xj

)
must vanish in a nbhd of p. That is, the lower (right) rectangle of



1k×k 0k×(m−k)

×
Dk+1ψk+1 · · · Dmψk+1

... · · · ...

Dk+1ψn · · · Dmψn
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Hence, ψk+1, . . . , ψn are independent of ak+1, . . . , am on said nbhd. Since the ψk+i are
smooth, this means that we can write

ψr(a) = ψ
r
(a1, . . . , ak) r = k + 1, . . . , n.

To see this, “walk along coordinate lines,” use the MVT and possibly regroup—we can
always walk in an open, path-connected subset of Rn from one point to another along
coordinate lines by using compactness and a metric d to put an ε-tube around a curve
connecting the two points (I think... see for instance HW 5).

Define

yα = vα α = 1, . . . , k

yr = vr − ψ
r ◦ (v1, . . . , vk) r = k + 1, . . . , n.

Since

y ◦ v−1(b1, . . . , bn) = y(q) for v(q) = (b1, . . . , bn)

= (b1, . . . , bk, bk+1 − ψ
k+1

(b1, . . . , bk), . . . , bbm − ψ
n
(b1, . . . , bk)),

the n× n Jacobian matrix (
∂yi

∂vj

)
=

1k×k 0k×(n−k)

× 1(n−k)×(n−k)


has nonzero determinant, clearly, as the columns are linearly independent. Therefore
y is a coordinate system in a nbhd of f (p) by the same reasoning as in (a) (i.e., diffeo-
morphism, etc.). Moreover, from the previous centered equation,

y ◦ f ◦ x−1(a1, . . . , am) = y ◦ v−1 ◦ v ◦ f ◦ x−1(a1, . . . , am)

= y ◦ v−1(a1, . . . , ak, ψk+1(a), . . . , ψn(a))

= (a1, . . . , ak, ψk+1(a)− ψ
k+1

(a1, . . . , ak), . . . , ψn(a)− ψ
n
(a1, . . . , ak))

= (a1, . . . , ak, 0, . . . , 0),

as desired.
(c) This is basically a special case of (a). Except, when k = m, it is unnecessary to

permute the yi (i.e., the column space), only the ui (i.e., the rows) need to be permuted
in order that

det
(

∂(yα ◦ f )
∂uβ

(p)
)
̸= 0 α, β = 1, . . . , k.

(d) Since the rank of f at any point must be ≤ m, the rank of f equals m in some
nbhd of p (i.e., full rank at a point implies full rank in a nbhd). It is easier to think
of the case that M = Rm and N = Rn and find the coordinate system y when we
are given x = idRm—since this result is local, we don’t really lose anything. Then (b)
yields coordinate systems φ on Rm and ψ for Rn such that

ψ ◦ f ◦ φ−1(a1, . . . , am) = (a1, . . . , am, 0, . . . , 0).
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Even without φ−1, ψ ◦ f takes Rm into Rm × {0} ⊆ Rn except—as Spivak puts it—the
points of Rm just get moved to the wrong place in Rm × {0}. This is corrected by
defining a diffeomorphism λ : Rn → Rn. In particular,

λ(b1, . . . , bn) = (φ−1(b1, . . . , bm), bm+1, . . . , bn).

Then, if φ−1(b1, . . . , bm) = (a1, . . . , am), we have

λ ◦ ψ ◦ f (a1, . . . , an) = λ ◦ ψ ◦ f ◦ φ−1(b1, . . . , bn)

= λ(b1, . . . , bm, 0 . . . , 0)

= (φ−1(b1, . . . , bm), 0, . . . , 0)

= (a1, . . . , am, 0, . . . , 0),

which shows that λ ◦ ψ is the coordinate system y we sought (of course, since these
are smooth manifolds, the diffeomorphism λ being compatible with the maximal atlas
will obviously be a chart). If we are given a coordinate system x on Rm other than the
identity, we define

λ(b1, . . . , bn) = (x(φ−1(b1, . . . , bm), bm+1, . . . , bn),

and is not hard to check that y = λ ◦ ψ is the coordinate system we sought.
(e) Choose g ∈ G such that gp = q in M for any two points p, q ∈ M. By transitivity,

this g exists. Since g · f = f (g · −) (equivariance) TFDC:

TpM Tf (p)N

TqM Tf (q)N

f∗p

g∗ g∗

f∗q

with the linear maps isomorphisms. Hence, f must have constant rank.

Corollary 5

Suppose f : Mm → Nn has full rank at p ∈ M and suppose that M and N have
corners.

(a) Suppose n ≤ m. For any coordinate system (y, V) about f (p) (say a k-corner
chart) and any coordinate system (x, U) about p and any smooth extension
of in,k ◦ y ◦ f ◦ x−1 to a smooth function defined on an open subset of Rm,
there is a coordinate system (z, W) of Rm about x(p) with

in,k ◦ y ◦ f ◦ x−1 ◦ z−1(a1, . . . , am) = (a1, . . . , an).

(b) Suppose m ≤ n. For any coordinate system (x, U) about p, any coordinate
system (y, V) about f (p) (say a k-corner chart) and any smooth extension
of in,k ◦ y ◦ f ◦ x−1 there is a coordinate system (z, W) about (in,k ◦ y ◦ f )(p)

Page 45



MORSE THEORY & (HAMILTONIAN) FLOER HOMOLOGY MATT CARR

with
z ◦ in,k ◦ y ◦ f ◦ x−1(a1, . . . , am) = (a1, . . . , am, 0, . . . , 0).

Remark. In practice, it is convenient to drop the standard embeddings ik,ℓ from these
expressions.

Proof. Since the condition of full rank is an open condition (since the rank function is
a lower semicontinuous function), any smooth extension of y ◦ f ◦ x−1 to a function
from an open subset of Rm into Rn has full rank in a sufficiently small nbhd of the
original domain. We will use this in the short argument below.

(a) For any charts y and x, by definition of smoothness, we may suppose y ◦ f ◦ x−1

is defined on an open nbhd U ⊂ Rm into Rn and, furthermore, since max rank is an
open condition, we may suppose that f has max rank on this extension and then apply
(c) of the constant rank theorem.

(b) This argument is entirely analogous.

Submanifolds

Warning. The following definition is wordy and seemingly difficult to parse but the
basic idea is completely tractable and that is how one should remember it. There is an
easier way to phrase this but somehow I thought writing up this way would be slicker;
that was dumb. We will give the idea immediately after the definition.

Definition 23 (Submanifold)

Let M be an m-dimensional manifold with corner or boundary. A subset N ⊂ M
is a submanifold of dimension n or an n-dimensional submanifold of M if the
following holds.

For each point q ∈ N there is a chart x : U → Rm−k × Rk
≥0 of M about q (note

that necessarily k ≥ depthM(q) by smooth invariance of corner points) such that
for each p ∈ im,k(x(U ∩ N)), there is a chart (φp, Vp) of Rm about p such that for
some 0 ≤ ℓ ≤ n,

Vp ∩ (im,k ◦ x)(U ∩ N) = φ−1
p (0m−n × Rn−ℓ × Rℓ

≥0)

or, equivalently,

φp(Vp ∩ im,k(x(U ∩ N))) = φp(Vp) ∩ (0m−n × Rn−ℓ × Rℓ
≥0).

In other words, φp sends Vp ∩ im,k(x(U ∩ N)) homeomorphically onto its image
in 0m−n × Rn−ℓ × Rℓ

≥0
∼= Rn−ℓ × Rℓ

≥0.

Lemma 7

In the above definition, one can replace the set 0m−n × Rn
ℓ by any permutation of
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the factors of the product.

Proof. Permute the components functions of φ in the definition—this permutation is a
diffeomorphism.

Remark. The idea this definition captures is relatively simple. A submanifold should
be a subset that sits nicely in charts of the original manifold. This condition is too
restrictive when we do not map into a full Euclidean space since we haven’t allowed
ourselves the room to massage a subset into a locally nice form.

Thus, the idea here is that a submanifold of a manifold with corners is a subset
which can be “straightened out” locally after embedding the model space Rn

k in Rn.
Thus, in some sense, this condition is no different from the one that is encountered for
manifold without boundary.

In the following definition, ∂ means the generalized boundary, as usual.

Definition 24

A neat submanifold of a manifold-with-corners Nn is a submanifold Mm of N, in
the sense of being immersed and topologically embedded, such that the additoinal
following data hold.

(a) (∂N) ∩M = ∂M;

(b) (∂N) ∩M = (∂N) ∩M;

(c) For every point p ∈ ∂M, depthM(p) = depthN(p) and there is a (corner)

chart (x, U) of N about p such that x−1(0 × Rm−depthN(p) × RdepthN(p)
≥0 ) =

U ∩M.

Remarks.

(a) (b) is an item of convenience in the sense that it’s possible only items (b) and
(c) may matter some application. For tubular neighborhoods of codimension 0
manifolds, however, (b) is essential, as we remark below.

(b) Sometimes people require a neat submanifold to be in addition a closed subman-
ifold (i.e., a closed subset as well) instead of the weaker condition that ∂M∩N =
∂M ∩ N. The reason why is that we may want to throw away pathological ex-
amples like M = {(0, y) ∈ R× R≥0 : y > 0} and N = H2 = R× R≥0 because M
will not admit a tubular neighborhood!

(c) In the case of a manifold with boundary but no corners, the idea is that a neat
submanifold is a submanifold that meats the boundary transversely.

(d) Observe that when ∂N = Ø, this recovers the definition of submanifold we used
previously when we only discussed manifolds without boundary. The only dif-
ference is that we previously asked that it sit nicely in the first m-coordinates—we
have to modify this to make notation easier.
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(e) One essential difference between a neat submanifold and an ordinary submani-
fold is that we require the submanifold be able to be straightened out natively in
the ambient manifold M, as opposed to straightening it out in the codomain Rn

of some chart for M.

(f) The condition that depthN(p) = depthM(p) is superfluous if we restrict our-
selves only to manifolds with or without boundary. Otherwise, this guarantees
that we avoid something like M = {(t, t, t) : t ≥ 0} ⊂ R3

≥0, where M meets ∂N
at a depth 3 corner point but the corresponding point in M has depth 1 (i.e., a
boundary point).

Observation. For manifolds without boundary, this definition recovers the usual one
since the composite of two diffeomorphisms is a diffeomorphism and so the two charts
at play compose to give a single chart for the smooth structure.

Exercise 32

When working with manifolds with boundary and no corners, the condition of
being a neat submanifold in the sense of satisfying (a) of the definition above is
precisely the same as the assertion ∂N ⋔ M. [Hint: See Definition 45.]

Example 4 (Kissing the Disk)

Let M ∼= D2 be the unit disk with boundary in R2 centered at (x, y) = (0, 1) and
let N be the image of (−1/2, 1/2) of the curve t 7→ (t, t2). For the moment, let us
forget that N ⊂ R2 and M ⊂ R2.

One can check that N ⊂ M and that N meets ∂M tangentially at the single
point (0, 0). We claim there is no chart (x, U) of M about (0, 0) such that x(U ∩
N) = x(U)∩R× {a} in R2

≥0 for any a ≥ 0. This is because, by smooth invariance
of the boundary, boundary points must be sent to boundary points, so any such
chart of M sends (0, 0) 7→ ∂R2

≥0 and similarly every other point of N in this chart
must be mapped to an interior point. Moreover, since N meets the boundary of
M tangentially, we are precluded from straightening N out as {a} × R≥0.

Now let us embed this picture in R2 by remembering that N ⊂ R2 and M ⊂
R2. We can now imagine a chart of R2 that “unfurls” the boundary of the disk
locally near (0, 0) and so sends N near (0, 0) onto R× {0}. Here are some words
about this. The desired chart of R2 can be produced by sending (x, y) 7→ (x, y−
x2). This is certainly smooth and it is bijective since (x, y − x2) = (x0, y0 − x2

0)
if and only if x = x0 and hence y = y0 (from the equation y − x2 = y0 − x2).

This is invertible because the Jacobian of (x, y) 7→ (x, y− x2) is

 1 0

−2x 1

 with

determinant 1 ̸= 0 and so this is a bijective, smooth, locally invertible function
and so it is a diffeomorphism. This sends x2 to the line y = 0.
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Definition 25 (Submanifold Chart)

Let M be an m-dimensional manifold with corner or boundary and let N ⊂ M be a
subset which is an n-dimensional submanifold. Given a chart x : U → Rm−k×Rk

≥0
such that U ∩ N ̸= Ø and for which there exists a chart (φ, V) of Rm satisfying
V ∩ (im,k ◦ x)(U ∩ N) = φ−1(0m−n × Rn

ℓ ) as above, we say that φ ◦ im,k ◦ x is a
submanifold chart for N. As usual, we will think of the submanifold chart φ ◦
im,k ◦ x as a smooth function onto an open subset of some Rn

ℓ .

Remark. This is guaranteed to exist when N is a submanifold by restricting the chart
x to the open set U ∩ x−1(Vp).

Theorem 11

Suppose N ⊂ M is an n-dimensional submanifold with corners, where dim M =
m. Then N can be given the structure of a smooth manifold with corners de-
termined by collection of submanifold charts and this makes N ↪→ M a smooth
embedding. In particular, the corner points of N are well-defined.

Conversely, any smooth embedding i : N ↪→ M has submanifold charts in this
way with the smooth structure on N determined by them and, hence, the smooth
structure on N is the unique one for which the topological embedding N ↪→ M
is an immersion. In other words, i(N) is a submanifold of M and N → i(N) is a
diffeomorphism.

Warning. This proof is made more difficult because of how I have defined charts. This
is unfortunate. It would be easier to have slightly different (yet equivalent) definitions
to make this look less notationally hideous. It is also probably easier to understand
some of the arguments below if we reduce to working with model spaces.

Proof. (⇒) Before proceeding, we should point out that the property of being Haus-
dorff and second-countable are all inherited by subspaces.

The smooth structure on N is obtained by giving it the atlas (extended to a maximal
atlas as usual) consisting of submanifold charts for N. (φim,kx, (im,kx)−1(V) ∩U ∩ N).
To see smoothness of transitions, let us write

(φ′im,k′y)(φim,kx)−1) = φ′im,k′yx−1i−1
m,k φ−1

where we are now required to show that smoothness of φ−1 and i−1
m,k makes sense

in this context. Let us consider their composite. Smoothness of i−1
m,k φ−1 means that

there is a smooth extension to a function onto an open subset of Rm, by definition.
Recalling that φ is a chart of Rm, it is clear that the smooth extension of this composite
is simply φ−1 on its full domain. This shows, additionally, that the corners of N are
well-defined. To see this, let φ and ψ be two of the charts as above. Then smoothness
of φ ◦ ψ−1 means that depth(ψ(p)) = depth(φ(p)) by smooth invariance of corner
points.
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We should like, additionally, for N to be paracompact in the subspace topology.
This follows since manifolds are hereditarily paracompact. We argue this in a remark
below the end of this proof. We could also appeal to the fact that every manifold is
metrizable and every metric space is paracompact—since subspaces of metric spaces
are metric spaces this is enough.

(⇐) Now suppose N is a manifold with corners and i : N → M is a smooth embed-
ding. Let q ∈ N and pick a coordinate system (x, U) about q and a coordinate system
(y, V) about i(q) and consider the composite y ◦ i ◦ x−1, which is smooth. By shrinking
U and shifting things as necessary, we may suppose this is a map x(U) → y(i(U)) ⊂
Rm−k × Rk

≥0 and where x(U) ⊂ Rn−ℓ × Rℓ
≥0. In other words, WLOG we henceforth

suppose x(U) ⊂ V.
Since the composite im,k ◦ y ◦ i ◦ x−1 is smooth, we know it extends to a function on

an open subspace of Rn and since it is full rank, which is an open condition, we may
suppose that the function has full rank on this open subspace. By (d) of the constant
rank theorem, it follows that there is a chart (z, Vp) about each p ∈ im,k(y(i(U))) in Rm

such that zp ◦ im,k ◦ y ◦ i ◦ x−1(a1, . . . , an) = (0, . . . , 0, a1, . . . , an) ∈ Rm (recall that we’re
being fiddly with the way coordinates go so WLOG we make them go this way). This
means that zp ◦ im,k ◦ y almost constitutes a submanifold chart for i(N) (after intersect-
ing the domain with i(N)). It remains to show that when zp ◦ im,k ◦ y, when restricted
to V ∩ N, or perhaps some V′ ∩ N where V′ ⊂ V is open, has the desired form. This is
where it is important that i be a topological embedding. Since i is an embedding, i(U)
is an open subspace of V ∩ N, and so by definition of the subspace topology there is
some W such that W ∩ N = i(U)—we may suppose W ⊂ V by the obvious modifi-
cation and thus for the chart (W, y) we have what we want—zp ◦ im,k ◦ y has the right
form and is a submanifold chart.

Now we consider uniqueness of the smooth structure. Let i : N →
i(N) be a smooth embedding. Recall that the collection of all submani-
fold charts determines a subbase for the subspace topology on i(N) and
likewise determine the submanifold smooth structure on i(N). We’ve just
shown in one direction that these charts are smoothly compatible with
N—namely, we just showed that i : N → i(N) is smooth with the charts.
Now let us consider the other way around i−1 : i(N)→ N, which certainly exists since
i is a topological embedding and so homeomorphism onto its image. This will be
smooth if we can show that x ◦ i−1 ◦ (zp ◦ im,k ◦ y)−1 is smooth. This is the part where
i being a topological embedding is important—we need to throw away the possibility
of the immersed line j : R→ R2 at right, where the map j−1 back to R from the interval
indicated will necessarily discontinuous in the subspace topology. Just as before, there
is some W ⊂ V such that W ∩ N = i(U) ⊂ V. Hence, for the shrunken chart (W, y),
we know that x ◦ i−1 ◦ (zp ◦ im,k ◦ y)−1 has the form (0, . . . , 0, a1, . . . , an) 7→ (a1, . . . , an)

which is obviously smooth—hence, i−1 is smooth and therefore i : N → i(N) is a dif-
feomorphism.

Remark. Thus, i being a topological embedding lets us exclude the possibility that
some disparate piece of N intersects every open nbhd in M of V ∩ N.

Remark (Hereditarily Paracompact). All manifolds are hereditarily paracompact. Ac-
cording to the Wikipedia article for paracompactness, this is equivalent to having all
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open subspaces being paracompact. In fact, by the Whitney embedding theorem, it
suffices to show that all subspaces of Rn are paracompact, so let U ⊂ Rn be open.
In any case, there’s a shortcut to this result. Any locally compact second-countable
Hausdorff space is paracompact, say by Theorem 2.6 here. The property of being
second-countable and Hausdorff is hereditary. Clearly any open subspace of Rn is
locally compact since ε-balls are precompact. Similarly for any model space Rn

k .

Corollary 6

Fix N ⊂ M a submanifold. A submanifold chart y = φ ◦ im,k ◦ x considered as a
smooth function defined on an open nbhd U of M is a diffeomorphism onto its
image—in particular, y(U) is a submanifold of Rn.

Proof. The map is a smooth embedding and so by the above theorem determines a
smooth structure on its image. The inverse map restricted to its image is certainly a
homeomorphism and it is smooth as the map x ◦ x−1 ◦ i−1

m,k ◦ φ−1 = i−1
m,k ◦ φ−1 defined

on a subset of Euclidean space has smooth extension given simply by φ−1.

Theorem 12 (Universal Property of Submanifolds)

Let S ⊂ N be a submanifold and let i : S → N be the inclusion. A map f : M → S
is smooth iff i ◦ f is smooth. Say dim M = m, dim N = n and dim S = s.

Proof. (⇒) Easy since i : S→ N is smooth. (⇐) Suppose i ◦ f is smooth. By definition
of a submanifold, about each point in S, there is a nbhd V and a diffeomorphism onto
its image y : V → y(V) ⊂ Rn, such that y(V ∩ N) = y(V) ∩ (0×Rs−ℓ ×Rℓ

≥0)—that is,
a submanifold chart. We have concluded y is a diffeomorphism onto its image by the
above corollary. Thus, in coordinates, y ◦ i ◦ f ◦ x−1 looks like a map onto these last s
coordinates and is assumed smooth. But this has the same form as y|V ∩ N ◦ f ◦ x−1

using the submanifold chart constructed as above and, hence, y|V ∩ N ◦ f ◦ x−1 is
smooth. Hence, f is smooth.

When all manifolds in question have no corners, there is a nice criterion for detect-
ing neat submanifolds. In the following theorem, Kosinski demands the submanifold
be closed. We will not demand this. We might ask instead that N ∩ ∂M = N ∩ ∂M but
we will not ask for this either. We will understand neatness in a slightly looser sense
than our definition.

Theorem 13 (K. II.2.3)

Let m ≥ 1 and let M be an n-manifold-with-boundary. A subset N ⊂ M can
be given the structure of a neat m-dimensional submanifold iff about every point
q ∈ N there is a chart (x, U) of M for which either of the two following conditions
hold:

(a) If q ∈ Int N, then (x, U) is a submanifold chart, and if q ∈ N ∩ ∂M, then
x−1({0} ×Hn) = U ∩ N.

Page 51

http://math.stanford.edu/~conrad/diffgeomPage/handouts/paracompact.pdf


MORSE THEORY & (HAMILTONIAN) FLOER HOMOLOGY MATT CARR

(b) There is a submersion σ : U → Rn−m which is also a submersion on its re-
striction to U ∩ ∂M, such that σ(q) = 0 and σ−1(0) = U ∩ N. (This is like a
projection off of the slices containing N).

These conditions are moreover equivalent.
The resulting smooth structure is unique up to diffeomorphism. In particu-

lar, we do not need to assume N is closed or satisfies condition (b) of the neat
submanifold definition to make this work, if we are willing to work with a partic-
ularly weak notion of a neat submanifold.

Remark. As before, to make things go as we want, we adopt the convention that sub-
manifold charts are in the last n coordinates and 0 in the first coordinates instead of
the converse. We assume m ≥ 1 above because these conditions will not make sense
for m = 0 (when m = 0 there is really nothing to prove).

Proof. If i : N ⊂ M is a neat m-submanifold, then (a) clearly holds. Now to see that
(a) implies a neat submanifold, all we have to do is show that the collection of neat
submanifold charts (a) affords us gives us a differentiable structure on N. This is ba-
sically easy since, for instance, everything will come from restrictions. The (maybe?)
tricky part is to see that i : N ⊂ M is an immersion—note that i has full rank and
hence, locally, in coordinates, any smooth extension to an open subset of Rm still has
full rank since the condition of being full rank is an open condition (i.e., rank is lower
semi-continuous) and so it follows that the usual local coordinate formulas still hold
in this setting. Hence, namely, for the extension ŷix

−1
: Rm ⊃ Û → Hn ⊂ Rn—and

note that we must interpret this as a function Û → Rn to obtain this extension—and
so by (c) of the constant rank theorem, there are coordinates for which this looks like
the standard inclusion Rm → Rn and thus i clearly is an immersion.

If N ⊂ M is neat, then to see that (b) holds, note that at interior points q ∈ Int N,
we can take a submanifold chart (x, U) let σ be the composite U x−→ Rn → Rn−m the
last map killing the first m coordinates thereby projecting onto the slice of N contained
in this chart. This is obviously a submersion with σ−1(σ(q)) = U ∩ M. In the case
that U is a boundary chart for q ∈ N ∩ ∂M which is also a neat submanifold chart,
then virtually the same analysis goes through except we need something new for the
boundary submersion, but this follows by virtually the same analysis as well.

Now suppose (b) holds. Consider any boundary chart (x, U) about q ∈ N ∩ ∂M
so that x(q) ∈ ∂Hn. Then we know that σx−1 and σx−1

∣∣ ∂Hn are submersions since
m ≥ 1. Let V ⊂ Rn where V is a nbhd of x(q) for which σx−1 extends and suppose we
have extended it there so that σx−1

∣∣V is a submersion. WLOG take V to be an open
ball about x(q) of constant radius, perhaps by suitably shrinking. We may therefore
suppose there is a diffeomorphism (V, V ∩Hn) ∼= (Rn, Hn). Since full rank is an open
condition we may suppose this extension on a nbhd of x(q) remains full rank and by
abuse of notation we call it the same thing.

Since m ≥ 1, n− m ≤ n− 1 and dim ∂Hn−1 = n− 1 so since by assumption the
restriction of σ to U ∩ ∂M is a submersion, σx−1

∣∣ ∂Hn is a submersion. A close inspec-
tion of (c) of the constant rank theorem (using the standard coordinate system as our
starting chart) shows that there is a coordinate system y about x(q) for which σx−1y−1

is a projection onto the first n− m coordinates and, moreover, y is a diffeomorphism
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of open nbhds of 0 ∈ Rn mapping the upper half-plane into itself since, in particu-
lar, we may suppose yn−m+1, . . . , yn are the standard basis functions for Rn by close
inspection of (c) of the constant rank theorem. This will allow us to construct a chart.

Let g = y−1x so that g(U) ⊂ Hn, σg−1(0×Hm) = 0 and gσ−1(0) ⊂ 0×Hm. Then
(g, U) is a smoothly compatible boundary chart since we took (V, V ∩Hn) ∼= (Rn, Hn)
and since gσ−1(0) = g(U ∩M) ⊂ 0×Hm, σ−1(0) ⊂ x−1(0×Hm) (here we have used
that y : (Rn, Hn) ∼= (Rn, Hn) has as its last m coordinates the standard basis functions).
The reverse inclusion x−1(Hm) ⊂ σ−1(0) is obvious from our assumption. Hence, (a)
holds. The case of p /∈ N ∩ ∂M is similar but easier.

This concludes the proof that (a) and (b) are equivalent. We now turn to consider-
ing the smooth structure and its uniqueness.

Suppose (a) holds. Cover N by charts satisfying (a). These are all submanifold
charts, as we know, and it is easy to see this defines a smooth atlas on N so that
∂N ⊂ ∂M. So we must show that that structure makes it topologically embedded
and immersed—the former is obvious and the latter follows because, in coordinates,
the inclusion of N into M looks like 0× Rm ⊂ Rn or 0×Hm ⊂ Hn. Uniqueness of the
smooth structure goes as one expects it to go.

A.3 Whitney Theorems

Remark. All of the following material is adapted from Lee’s Introduction to Smooth
Manifolds.

Lemma 8 (Lee, 2.26)

Let M be a manifold with corners, A ⊂ M closed, and f : A → Rk smooth.a For
any open nbhd U of A, there is a smooth function f̃ : M → Rk such that f̃

∣∣∣ A = f

and supp f̃ ⊂ U.
aRecall that this means that there is a smooth extension of f in an open nbhd of each point

p ∈ A.

Proof. This is a partition of unity argument.

Warning. If A is not closed, then we have no control over the boundary behavior
and this will therefore fail in general. For example, consider 1/x defined on the set
(0, 1] ⊂ R—we cannot extend this at 0. However, it is still possible to smoothly extend
functions defined on a subset A to an open subset containing A.

Theorem 14 (Whitney Approximation Theorem for Functions)

Let M be a manifold with corners and F : M→ Rk continuous. Given any positive
continuous function δ : M → R, there is a smooth function F̃ : M → Rk that is δ-
close to F—that is

∣∣∣F(x)− F̃(x)
∣∣∣ < δ(x) for all x ∈ M. If F is smooth on a closed
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subset A ⊂ M, then F̃ can be chosen such that F̃
∣∣∣ A = F| A.

Proof. Partition of unity argument along with the lemma above.

Corollary 7

If M is a manifold with corners and δ : M → R a continuous function, then there
is a smooth positive function ε : M→ R with 0 < ε(x) < δ(x) for all x ∈ M.

Proof. Apply Whitney approximation to construct a smooth e : M → R such that∣∣∣∣e(x)− 1
2

δ(x)
∣∣∣∣ < 1

2
δ(x).

Remark. This gives an easy way to construct the smooth function used in the proof of
the collar nbhd theorem for smooth manifolds.

Theorem 15 (Whitney Approximation Theorem)

Let N be a manifold with corners, M is a manifold without boundary and let
F : N → M be continuous. Then F is homotopic to a smooth map F̃ : N → M.
If F is already smooth on a closed subset A ⊂ N, then the homotopy can be taken
relative to A (this means that the homotopy is fixed on A).

Remark. It will turn out that dropping the relative homotopy assumption makes this
go through for manifolds M with boundary, but perhaps not necessarily with corners.

Corollary 8

Suppose M has no boundary and we are given a homotopy H : N × I → M be-
tween smooth maps f , g : N → M. Then there is a smooth homotopy H̃ : N × I →
M between f and g such that H and H̃ are themselves homotopic rel N × ∂I.

Proof. Let A = N × ∂I be a closed subset and note that H is already smooth on it.
The Whitney approximation theorem tells us that there exists a smooth homotopy H̃
satisfying the properties we want.

Remark. In particular, this shows that for a manifold M with empty boundary, the
homotopy groups of M may defined in the smooth category by taking A = ∗× I where
∗ ∈ Sn is a chosen basepoint.

Corollary 9

If N is a manifold with corners, M has no boundary, A ⊂ N is closed and f : A→
M is smooth, then f has a smooth extension to N iff it has a continuous extension
to N.
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Proof. Whitney approximation!

Here’s an example of what goes wrong when M has boundary and we insist the
homotopy be fixed on a closed subset.

Example 5 (Lee, 6-7)

Let F : R → H2 by t 7→ (t, |t|), A = [0, ∞). Then no such homotopy fixed on A
exists.

To get this to work for manifolds with boundary, but without corners, we need to

construct a smooth “flowing in” map R : M → Int M
ι︷︸︸︷
⊂ M and a smooth homotopy

H : M× I → M satisfying the following properties: H is a smooth homotopy from ι ◦R
to idM and the restriction of H to Int M× I gives a smooth homotopy from R| Int M to
idInt M.

We shall prove the following later, after we construct collars.

Theorem 16 (Lee 9.26, Flow-in)

Let M be a manifold with boundary and possibly corners. Let ι : Int M ↪→ M be
the inclusion.

(a) Suppose M has no corners. There exists a collar nbhd C : R≥0 × ∂M ↪→ M

such that for any a ∈ (0, ∞), the subset M(a) def
= M \ C([0, a) × ∂M) is a

properly embedded submanifold of M and, furthermore, for any such a
there exists a propera smooth embedding Ra : M ↪→ Int M with image M(a)
such that the composites ι ◦ R and R ◦ ι are smoothly homotopic to the iden-
tity maps—in particular, ι is a homotopy equivalence. In particular, we shall
construct a collar of M all of whose restrictions to intervals [0, a] are closed
collars.

(b) If M has corners, there exists a proper smooth embedding R : M → Int M
such that the composites ι ◦R and R ◦ ι are homotopic to the identity maps—in
particular, ι is a homotopy equivalence.

(c) In each case, the image of M in its interior is a closed subset (because the map
is proper) and when M has no corners, there is a strong isotopy between the
identity map and the map Ra.

aThis means that the preimage of compact sets is compact.

Remark. An injective immersion that is proper is an embedding with closed image.
This is a consequence of a theorem in the chapter Point-Set Results.
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Theorem 17 (Whitney Approximation Theorem)

Let N be a manifold with corners, M a manifold with boundary or corners and let
F : N → M be continuous. Then F is homotopic to a smooth map F̃ : N → M.

Proof. With the flow-in theorem in hand, we see that

R ◦ F : N F−→ M R−→ Int M

is smoothly homotopic to a map G by the standard Whitney approximation theorem.
Let ι : Int M → M be the inclusion. Then the flow back homotopy gives a homotopy
ι ◦ G ≃ ι ◦ R ◦ F ≃ F, so ι ◦ G : N → M is a smooth map homotopic to F.

Theorem 18

Let M and N be manifold with corners. If F, G : N → M are homotopic, then they
are smoothly homotopic.

Proof. Let R be the flow-in constructed above. Then R ◦ G and R ◦ F are homotopic
smooth maps from N into Int M, so they are smoothly homotopic. Thus we have
smooth homotopies F ≃ ιRF ≃ ιRG ≃ G as desired. Obviously smooth homotopy is
an equivalence relation so we’re good.

A.4 Collars and Boundaries

Lemma 9

Let M be a manifold-with-boundary. Then TM is a manifold-with-boundary and,
in particular, ∂TM = T∂M.

Proof. This is essentially the vector bundle construction lemma, Lee 10.6, and is not
hard to see directly. The bundle charts are the same, they are still (x1, . . . , xn, ∂1, . . . , ∂n)
and so we see we only run into issues when the chart x in question is a boundary
chart.

Lemma 10

Let M be a manifold-with-boundary. Then, in coordinates, for every p ∈ ∂M,
Tp∂M ⊂ TpM consists of the vectors with last coordinate 0.

Proof. This is easiest to see with curves.

Page 56



MORSE THEORY & (HAMILTONIAN) FLOER HOMOLOGY MATT CARR

Definition 26

Let M be a manifold-with-boundary and p ∈ ∂M. It is easy to see that one may
still take TpM to be the vector space of derivations of germs of smooth functions.
Moreover, TpM has a distinguished class of inward pointing vectors, defined as
those vectors with a strictly positive last coordinate. This definition is invariant
under choice of coordinates. One similarly defines outward pointing vectors.

Remark. We might be tempted to define TpM in terms of smooth curves, but this
seems to require annoying modifications—we must allow ourselves to consider smooth
curves with domain (−ε, 0] and [0, ε) (really just one by symmetry) to make sense of
this. There is a geometric interpretation of inwards pointing vectors in terms of smooth
curves.

Exercise 1. The above definitions are invariant under choice of coordinates and can be
detected using curves (in the appropriate sense) and derivations.

Definition 27 (Collar)

A collar of a manifold-with-boundary M is an embedding i : ∂M× [0, 1)→ M (or
equivalently an embedding ∂M× R≥0 ↪→ M) such that i|∂M×{0} is the canonical
inclusion of ∂M ⊂ M. In particular, a collar is a neat submanifold (see above
for the definition). Say a closed collar is the restriction of the embedding of an
open collar to i : ∂M × [0, a] → M for some a > 0 with closed image. A closed
collar always contains a collar, but we cannot guarantee that every collar may be
restricted to a closed collar.

Example 6

Let M = H2 \ {0}. Then the collar R \ {0} × [0, 1) ↪→ M does not contain a closed
collar for any a.

Remark. There is an evident way to fix this. We shall see that every manifold admits
an open collar all of whose restrictions to closed intervals are closed collars.

Warning. While it might be tempting to try and define collars for mani-
folds with corners, we run into a serious issue with smoothness. Namely,
consider the (filled) teardrop. This is a smooth manifold with corners of
dimension 2. But its boundary could not possibly be a manifold with
corners with its subspace topology, because it has a singularity! This is
basically because, as remarked before, the boundary of a manifold with
corners does not have a smooth structure unless there is no corner set.
However, if we were content to work outside some category of smooth manifolds, then
we strongly suspect that collars will exist in some modified sense and the same argu-
ment will work.

Example A.2. The manifold H2 \ {0} never has a closed collar.
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Proposition 2

A collar i : [0, 1)× ∂M ↪→ M, is an open submanifold of M. A closed collar (if it
exists) is a closed submanifold. In particular, they are open (resp. closed) maps.

Proof. The latter part is essentially immediate since the embedding is a closed codi-
mension 0 submanifold by definition. We consider the first part.

The invariance of domain implies that any embedding between manifolds with
empty boundary of the same dimension is an open map, since it amounts to giving an
injective map from an open subspace of Rn into itself sends the subspace to another
open subspace, and being an open map is a local property when the map in question
is injective. Hence, on the interior of the collar (0, 1) × ∂M, at least, the map C an
open map. We can cheat for points on the boundary. Fix a coordinate nbhd for the
boundary of [0, 1)× ∂M. In coordinates, we might as well assume the map looks like
an embedding Hn ⊃ U → Hn. We can then extend this to a smooth map Rn ⊃ Û →
Rn. Since collar map is an embedding of full rank, this is an open condition and so
we may assume the extended map has full rank. This means that in a nbhd of p the
map is a local embedding and therefore by invariance of domain an open map. But
this means that its restriction to U is open by inspecting what the subspace topology
does.

Remark. It is important to note in the last step here that we are really showing that
the restriction of the extension to the map between the relevant subspaces is an open
map. In general, an embedding between Hn → Rn will not be an open or closed map,
it will only be so onto its image, so we are really some extra information here.

Note that neatness is essentially automatic since the only points to worry about
from the definition are the boundary points and we gave ourselves the entire bound-
ary!

Remark. We will prove these always exist. First we need a few lemmas. We will go
about this in the most natural way to prove it, at least I think. Another way to prove it
is to use tubular neighborhoods by embedding the manifold in RN for big enough N
(here we simply mean an immersion and topological embedding). Kupers takes this
approach in his differential topology lecture notes.

Say a vector field on a manifold-with-boundary or corners M is an inward pointing
vector field if for all p ∈ ∂M, Xp points inward.

Lemma 11

Let M be a manifold-with-boundary or corners of dimension n. Then there exists
an inward pointing vector field X on M.

Proof. This is a partition of unity argument where we stipulate that on a non-boundary

coordinate patch Uα, Xα =
∂

∂xn , and on a coordinate patch for a corner with order k,
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we set Xα = ∑n
i=n−k

∂

∂xi . Then we set X = ∑α ραXα. It is easy to see that Xp is inward
pointing since only boundary charts intersect the boundary.

The idea is to flow in along this vector field.

Remark. It is important to point out that the flow for an inward pointing vector field
exists and is smooth. The proof is a variation upon the usual argument which we
sketch below.

Theorem 19 (Collar Neighborhood Theorem)

Let M be a manifold-with-boundary of dimension n.

(a) M has a collar. In addition, for a collar C : [0, 1)× ∂M→ M, the complement
of C(a) = Im(C| [0, a) × ∂M) is closed. In particular, a collar is an open
submanifold and the collar map is an open map.

(b) Suppose N ⊂ M is a neat submanifold. Then we can find a collar for M that
restricts to a collar for N.

(c) If ∂M is compact, then any collar of M and any a > 0 restricts to a compact
and hence closed collar on the interval [0, a].

Remark. We give two proofs. The first will be for (a) and the second for (b), which
implies (a). The first I learned from some notes by Sander Kupers. The second may
be found in Hirsch’s book. For (b), the idea is roughly that we can find a fat enough
covering of N by neat submanifold charts and then cover the rest of M by charts that
never meet ∂N. It is worth pointing out that we do not need to assume N ∩ ∂M = ∂N
and we do not need to assume N is closed for this argument to work.

Note that (b) does not follow from (a). The problem is that an inward pointing
vector for ∂M may not correspond to an inward pointing vector for ∂N in general.

We prove (a) and (c) together first.

Proof. (c) This follows from (a) by restricting a collar R≥0× ∂M→ M to [0, 1]× ∂M→
M, using the fact that [0, 1]× ∂M is compact to show that the map is proper and there-
fore an embedding. See, for instance, Exercise 13.

(a) Let X be an inward pointing vector field on M and consider the ODE on M
given by γ̇ = X(γ) with initial condition γ(o) = p ∈ M. In coordinates, this locally
has the form y′ = f (t, y(t)) where f (t, y(t)) = y(t) and this is Lipschitz continuous
in the dummy variable y(t) so that the Picard-Lindelöf theorem applies (and one can
easily check that transitions preserve solutions). Kosinski I.6.3 shows that the flow
exists and, because of the time tube argument for flows extending to a global flow, we
know that in general the valid times for the flow may taper off to 0 unless the manifold
is compact. So let A be the maximal flow domain about M × {0} in M × R, and let
the flow be Φ. Let U = A ∩ (∂M× R) and note that this is open in ∂M× R≥0. Then
for (q, 0) ∈ U, Φ∗,(q,0)(∂i, r · d/dt) = ∂i + rXn(q) and so clearly is an isomorphism
between tangent spaces T(q,0)U→ TqM, since we have arranged that Xn ̸= 0 for any

Page 59



MORSE THEORY & (HAMILTONIAN) FLOER HOMOLOGY MATT CARR

q ∈ ∂M. We used the fact that X(q) only has component in the inwards direction from
the construction above.

Note that Φ maps the boundary ∂(∂M × R≥0) = ∂M × {0} to the boundary of
M. Hence, by (d) of the constant rank theorem Φ| U is a local diffeomorphism, we
claim. Of course, one might rightly worry that the constant rank theorem does not
apply because of the boundary and, in particular, the part about the map being a lo-
cal diffeomorphism. To see that things work out, note that this certainly applies for
Φ| (U∩ (∂M× (0, ∞))). To see that this plays nicely with the boundary, it is enough
to inspect what the corollary of the constant rank theorem says carefully.

Exercise 33

Verify this by appealing to Corollary 5. [Hint: Choose a boundary chart x about
p ∈ ∂M and consider the charts y = x on the target and (x| (Rn−1 × {0})× t) on the
domain where t = idR≥0 is the identity chart. Then apply (b) of the corollary. What has
to be true about the chart z in relation to y = x?]

Observation. We can glue the local inverses together once we know that Φ is injec-
tive on an open subspace of U consisting of the union of the nbhds upon which Φ is
invertible, showing that Φ is an embedding on that nbhd.

One way to see the existence of such a nbhd is to observe that the integral curves
of a flow are unique and thus intersect only if they are the same integral curve. Thus,
some thought using uniqueness of integral curves shows that the only possible issue
is if two points on the boundary of ∂M are connected by an integral curve—this is im-
possible since our vector field points inwards everywhere, so no integral curves exists
between two distinct points of ∂M. A more high-powered way to see the existence of
such a nbhd is the tubular neighborhood trick.

Thus, we may also suppose WLOG that Φ is an embedding on U, perhaps by
shrinking it first—note that U will always contain ∂M× {0}. (It is clearly an embed-
ding.) Suppose we have a smooth function ε : ∂M → (0, ∞) such that (q, ε(q)) ∈ U

for the moment. Then c : ∂M × [0, 1) → M by (p, t) 7→ Φ(p, tε(p)) is an embedding
that is neat on [0, 1). It is certainly smooth because everything in sight is smooth and
to show it is an embedding it suffices to show that (p, t) 7→ (p, tε(p)) is an embedding
into U⊂ ∂M× R≥0 since Φ is an embedding on U by hypothesis now. This function
is also certainly smooth and injective. It has differential (id, ?) into ∂M×R≥0 so it suf-
fices to determine the differential of (p, t) 7→ t · ε(q). In coordinates, the matrix for this
will be 1× (n + 1) or a row vector of length n + 1 and it is clear that this will be (using
the identity chart on the time part) (t∂1ε · · · t∂nε ε(q)). Since ε(q) > 0 for all q, this will
always have full rank. Hence, the differential is componentwise (id, full rank) and so
is clearly an isomorphism. It therefore remains to construct ε.

The construction of ε can be done in an ad hoc fashion as a partition of unity argu-
ment in ∂M or by appealing to Corollary A.2.4. We proceed to do this with an ad hoc
construction.

Construction. Note that every q ∈ ∂M has a coordinate nbhd U such that U× [0, εU) ∈
U where εU > 0. Pick an open cover of ∂M by charts {Uα}α∈J such that for each
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α ∈ J, there exists uα > 0 such that {q} × [0, uα] ⊂ U for all q ∈ Uα. To see this
exists, simply shrink everything as needed, using the fact that, locally (perhaps after
extending things), flows exist for a uniform time parameter.

Exercise 34

Verify this. [Hint: You will probably find Theorem I.5.2 from Spivak’s first Differential
Geometry volume about existence of flows useful.]

WLOG we may suppose by paracompactness that {Uα}α∈J is locally finite.
Let Iα be the (finite) set of β ∈ J such that Uα ∩Uβ ̸= ØLet Iα,2 be the (finite) set of

all γ ∈ J for which there exists β ∈ J such that Uα ∩Uβ ̸= Ø and Uβ ∩Uγ ̸= Ø (i.e.,
“second-order” intersection). Note that Iα ⊂ Iα,2. Let Nα = max

{
#(Iβ) : β ∈ Iα,2

}
.

Observation. For each β ∈ Iα, Nβ ≥ #(Iα) since α ∈ Iβ,2 and, in particular, α ∈ Iβ.

Set
tα = min

{
uβ/ max

{
N2

α , N2
β

}
: β ∈ Iα,2

}
.

Running the partition of unity subordinate to {Uα}, we put

ε = ∑ ραtα.

For q ∈ Uα, we now wish to show that for each γ ∈ Iα, ε(q) < uγ. Fix now γ ∈ Iα.

Then for each β ∈ Iα, tβ ≤ uγ/ max
{

N2
β, N2

γ

}
. Then

ε(q) ≤ ∑
β∈Iα

tβ ≤ ∑
β∈Iα

uγ/ max
{

N2
β, N2

γ

}
= #(Iα)uγ ∑

β∈Iα

1/ max
{

N2
β, N2

γ

}
≤ #(Iα)uγ/#(Iα) = uγ

hence, ε(q) ≤ uβ for all β ∈ Iα so we’ve achieved our goal, ε is smooth into where this
is an embedding.

Here’s a slightly different and more terse proof for (b).

(b). Cover ∂N ⊂ ∂M by neat submanifold charts in M with image coordinate balls of
radius 2, say {(zi, Vi)}i∈I . WLOG we may assume this collection is locally finite by
paracompactness since manifolds are hereditarily paracompact. Let U be the union of
the restriction of each neat submanifold chart (zi, Vi) to the coordinate balls of radius
1—call the resulting chart (zi, Ui). Let F be the union of the restrictions of the Ui to the
closed coordinate balls of radius 3/4 and note by local finiteness F is closed.

In the coordinates of the neat submanifold charts, the last coordinate points inward
for both N and M. We must be prudent about how we extend this covering. Roughly,
we need to preserve everything sufficiently closed to p ∈ ∂N. For this, we use F.
Indeed, we just need to find nbhds separating p and F and this amounts to saying that
a manifold is a regular space. Thus, we may find a sufficiently small boundary chart
(x, V) about p such that V ∩ (U ∩ ∂M) = Ø.
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Cover the rest of ∂M by such charts and then observe that M \ F is open and cover
it by charts contained in it. Now we construct a partition of unity subordinate to
this open cover where we use the radius 1 charts constructed in the first paragraph.

Let X = ∑ ραXα where Xα is, in coordinates,
∂

∂xm the last coordinate. Then for any
p ∈ ∂N, Xp is inward pointing, being a sum of inward pointing vectors for N and M
and similarly for any p ∈ ∂M. This is a consequence of the above construction.

Let W1 ⊂ M× R≥0 be the open subset on which the flow of X is defined, call the
flow Φ, and let W ⊂ ∂M× R≥0 be W1 ∩ ∂M× R≥0. Then since W1 is open, W is open
in ∂M× R≥0. We must shrink W to yet another open subset to make things work out.
Begin by noting that for q ∈ ∂M and working in one of our neat submanifold charts
about this point, Φ∗(q,0)(∂i + r · d/dt) can be computed as

(∂i + r
d
dt
)(xj ◦Φ) = (∂i + r

d
dt
)(xj ◦Φ) = (∂i + r

d
dt
)Φj

= ∂iΦj + r
d
dt

Φj = ∂iΦj + r
d
dt

γ
j
q

∣∣∣∣
t0

= ∂iΦj + rγ̇
j
q(0)

= ∂iΦj + rγ̇
j
Φ(q,t0)

(0) = ∂iΦj + rX j
q = ∂i + X j

q

where we have used the group law to deduce this for the X term and since Φ(−, 0) =
id, so the directional derivative ∂i of id at (q, 0) is still ∂i. It follows easily that Φ∗(q,0)
has full rank. Hence, even though we have boundary from R≥0, the inverse function
theorem implies that this is a local diffeomorphism and thus we may shrink W to an
open subset where Φ∗(q,t) has full rank and by the same argument as above—following
the remark—we may suppose that Φ is injective on W.

As above, we can construction an embedding ∂M × [0, 1) ↪→ W and now the de-
sired collar map is

∂M× [0, 1) ↪→W Φ−→ M

since everything in sight here has full rank. The open part follows as before.
We now want to show that we can restrict this to a collar for N. At this point, we

might worry that Φ may shoot W out of N, despite pointing into N, so we need to
shrink W yet again. To fix this, let U be the union of the boundary charts in our open
cover and let W ′ = W ∩Φ−1(U). Redoing the above construction with W ′ in place of
W gives us a collar that restricts as a consequence of the delicate construction of our
given open cover. Essentially, restricting to W ∩Φ−1(U) makes us shoot into points of
only U—by working in the nice submanifold coordinates, for points p ∈ ∂N, we see
that we are simply flowing vertically inward for both N and M in U.

Openness of the restricted collar is the same argument as usual.

Let us call such a function ε as above a smooth shrinking function.

Lemma 12

Shrinking functions exist.

This lemma should be interpreted appropriately.
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Corollary 10

Every open nbhd of ∂M contains a collar.

Proof. An open nbhd U of ∂M is an open submanifold and, in particular, it is neat
submanifold-with-boundary, so the same argument applies to show a collar exists.

Although we didn’t need the collar nbhd theorem to show the following, it makes
it particularly straightforward and easy to see.

Corollary 11

Suppose M is orientable. Then TM| ∂M ∼= T∂M ⊕ R where as usual R is the
trivial bundle over ∂M with fiber R. In particular, the normal bundle of ∂M in M
is trivial.

Proof. Let i : ∂M → M be the inclusion and let j : ∂M × [0, 1) → M be a collar nbhd
so that j| ∂M× {0} = i. First note that TM| ∂M ∼= i∗TM. The collar neighborhood is
an open submanifold of M and has tangent bundle diffeomorphic to T∂M × R over
∂M× [0, 1) and, as before, this is diffeomorphic to j∗TM. The collar has a submanifold
(and note that the condition of being a neat submanifold is transitive) ∂M × {0}. By
pasting pullbacks we get the following rectangle with every rectangle a pullback

i∗TM j∗TM TM

∂M ∂M× [0, 1) M

⌜ ⌜

i0

i

j

where j∗TM ∼= T∂M × R as we said above. Hence, we must compute i∗0 j∗TM. Of
course, one sees immediately that this is what we described.

Remark. To identify the normal bundle ν∂M with R, one can simply use a partition of
unity argument and a collar to produce a Riemannian metric on M which is a product
metric in a nbhd of ∂M. Say we make it the product metric at least on [0, 1/4) by
covering M with open sets that only intersect the collar at [1/4, 1)× ∂M. This can be
done using coordinate balls whose closure in M is compact.

For this next corollary, it helps to know that M is orientable iff TM is orientable as
a vector bundle over M. First, we make a definition.

Definition 28 (Induced Orientation)

Let M be an orientable manifold with boundary (but not corners) of dimension n.
Then ∂M inherits an induced orientation from M. The natural way of specifying
this for which Stokes’ theorem has a nice form is the outward pointing first con-
vention. Namely, for each p ∈ ∂M, we define an orientation class for Tp∂M by
declaring a tuple of vectors (v1, . . . , vn−1) ∈ Tp∂M to be in this orientation class iff
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for each outward pointing vector (hence, any outward pointing vector) w ∈ TpM,
(w, v1, . . . , vn−1) defines a positively oriented basis in TpM. One could similarly
make a definition by using the inward pointing first convention but we do not
need this.

Of course, we must check that these actually define an orientation.

Corollary 12

Let M be an orientable manifold with boundary. Then ∂M inherits a natural ori-
entation by the outward pointing first convention. Namely, for each p ∈ ∂M, we
define an orientation class for Tp∂M by declaring a tuple of vectors (v1, . . . , vn) ∈
Tp∂M to be in this orientation class iff for each outward pointing vector (hence,
any outward pointing vector) w ∈ TpM, (w, v1, . . . , vn) defines a positively ori-
ented basis in TpM.

Proof. This is straightforward using the definitions.

B Proof of the Flow-in Theorem

Before we begin, we provide a remark and state a theorem.

Remark. The idea here is to show that the smooth flow of an inwards pointing vector
field is locally an open map and an embedding in a nbhd of each point p ∈ ∂M×R≥0.
Since we have less access to the tools of calculus—since ∂M is not a manifold—we
have to get our hands dirty and work directly with the flow in coordinates and crack
open the standard existence and uniqueness results about flows to get what want.

The proof of this theorem is not actually difficult, just extremely tedious. The stan-
dard result about flows that we want is Theorem I.5.2 from Spivak’s first Differential
Geometry volume. We also want to know that the flow in the aforementioned theorem
is sufficiently smooth; this is not proved in Spivak’s book, but on page 145, Spivak
indicates that it is smooth. A proof may be found in Lang’s Introduction to Differential
Manifolds (2nd ed.) or in Lang’s Real and Functional Analysis (3rd ed.), pp. 371− 379.
Spivak claims the latter proof is easier to digest. For convenience, we state this result
in the form that we will need it.

Theorem (Spivak, Thm. I.5.2)

Let f : U → Rn be any function of class Ck with k ≥ 1, where U ⊂ Rn is open. Let
x0 ∈ U. There exists a > 0 and constants K, L > 0 with the following properties.

(1) The closed ball B2a(x0) of radius 2a and center x0 is contained in U;

(2) | f | ≤ L on B2a(x0);

(3) f is Lipschitz continuous with Lipschitz constant K on B2a(x0).

Choose b > 0 such that
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(4) b ≤ a/L;

(5) b < 1/K.

Then for each x ∈ Ba(x0), there is a unique γx : (−b, b)→ U such that

γ̇x(t) = f (γx(t)) and γx(0) = x.

Furthermore, the map

α : Ba(x0)× (−b, b)→ U (p, t) 7→ γp(t)

is of class Ck.

We have stated this in a restricted generality. Here the remarks needed to see that this
is implied by what is in Spivak’s book which we leave as an exercise.

Exercise 35

Show that any C1 function is locally Lipschitz, which guarantees the flow α is
at least continuous. Show that this implies that any C1 function is Lipschitz on
compact sets. More generally, show that any locally Lipschitz function on a locally
compact metric space is Lipschitz continuous on compact subsets.

We begin with a lemma.

Lemma 13

Let M be a manifold with corners. An inwards-pointing vector field on M exists.

Remark. Inwards-pointing means precisely the analogous thing for manifolds that
have corners. Namely, in coordinates

x : U
∼=−→ Rn

k = Rn−k × Rk
≥0,

an inwards pointing vector at a point p ∈ ∂Rn
k is a vector whose last k-coordinates

are all positive. Invariance under coordinate change follows by considering a curve
whose initial velocity vector is an inwards pointing vector and observing that coordi-
nate changes cannot make the curve leave the chart.

Proof. This is exactly the same as the proof for manifolds-with-boundary, except we
must argue that invariance of inwards-pointing vectors in corner charts, and that ar-
gument is itself exactly analogous to the case of manifolds-with-boundary—that is, we
use smooth invariance of corner points of depth k.

In particular, we can always assume the corner charts are diffeomorphism x : U →
Rn

k = Rn−k × Rk
≥0 for some k. In this case, the inwards-pointing vector field on Rn

k
may be constructed as X = (0, . . . , 0, 1, . . . , 1) where the last k-coordinates are 1.

An immediate consequence of this lemma is the following.
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Corollary 13

The restriction TM| ∂M of the tangent bundle TM to the subspace ∂M splits as a
Whitney sum of a vector bundle of rank m− 1 over ∂M and a trivial line bundle:

TM| ∂M ∼= HX ⊕ R.

Proof. The bundle TM| ∂M is the pullback bundle

TM| ∂M TM

∂M M

so it is certainly a vector bundle. Moreover, if X is an inwards-pointing vector field
on M, then X is a global non-vanishing section of TM| ∂M which implies the splitting
into the “horizontal” subbundle HX and the trivial line bundle R.

We should also get a better characterization of corner points of depth greater than or
equal to 2.

Lemma 14

In a manifold with corners M of dimension m, the subset ∂1M of ∂M consisting of
those points which haves corner depth 1 (have a nbhd diffeomorphic to Rm−1 ×
R≥0) is an open dense subset of ∂M (but not necessarily open in M). In fact, the
subset of proper corner points have measure 0 and are a closed subset. Moreover,
corners of maximal depth m are a discrete set.

Proof. It is easy to see ∂1M is open in ∂M, since in ∂M each point of corner depth 1 has
a nbhd of points of the same corner depth, essentially by definition. To see that it is
dense, cover ∂M by a countable collection of corner charts. In each such chart U, the
subset {

(x1, . . . , xm) ∈ Rm
k : xi1 = xi2 = 0 for some i1 ̸= i2

}
is the complement of ∂1M in this chart (implicitly using smooth invariance of corner
points); and this subset satisfies that the closure of ∂1M in U is everything. Thus,
similarly, since each of these has measure 0, their countable union does too.

The last assertion is obvious by smooth invariance of corner points.

Lemma 15

Fix a manifold M of dimension m with corners. Then M admits a smooth collar
neighborhood. That is, M admits an embedding

C : ∂M× R≥0 ↪→ M

having the satisfying properties.
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(a) C is an open map that further restricts to the identity on ∂M.

(b) C is a homeomorphism onto its image. Moreover, there is a a splitting of
TM| ∂M ∼= HX ⊕ R such that C induces a fiberwise injective map C∗ : HX ×
R→ TM.

Proof. Cover ∂M by corner charts {(xα, Uα)}α∈J . WLOG suppose {Uα}α∈J is locally
finite. Let {ρα}α∈J be a partition of unity for

⋃
Uα subordinate to the evident covering.

Using these, we may construct an inwards-pointing vector field X on M with support
supp X ⊂ V. One can show that the flow for X exists in the manner expected and
is smooth2 in the manner described in the statement of the lemma. More precisely,
the flow map ΦX : AX → M is smooth in the sense that for each (p, t) ∈ AX, there is a
nbhd U of (p, t) in M×R and a smooth map ϕ : U → M for which ΦX is the restriction
of ϕ—this follows from how one builds flows for manifolds with boundary or corners.

Using the flow of X as in the proof of the collar nbhd theorem, we may find an
open nbhd U of ∂M×{0} inside the subset ∂M×R≥0 upon which the flow is defined.

Claim. ∂M× R≥0 ∩ AX is open in ∂M× R≥0.

The maximal integral curves starting at p ∈ ∂M are easily seen to be embeddings
[0, a) → M since if the integral curve ever became stationary, then it must have been
constant to begin with by a uniqueness of integral curves argument. Now, given
(p, t) ∈ ∂M × R≥0 ∩ AX, the remarks above show that there is an open nbhd about
(p, t) in M × R for which the flow exists exists—at least after passing to coordinates
and extending X to be defined on an open nbhd in Eucldiean space and then appeal-
ing to the usual results about existence and uniqueness of flows—and in particular,
for which this flow exists in such a way that the flow stays inside of the image of M
in our chosen coordiantes. This is so because we are guaranteed that ΦX(p, t) ∈ Int M
whenever t > 0. Some thought then shows that, indeed, ∂M × R≥0 ∩ AX is open in
∂M× R≥0.

Remark. If the vector field were not everywhere inward-pointing, then we are not
guaranteed that the flow will move points into M when we work in coordinates and
extend the vector field X. For instance, consider the flow of an outwards-pointing
vector field—at boundary points, the flow can only exist for times t ≤ 0.

We claim that the flow map is an embedding in a nbhd of each point p ∈ ∂M and,
moreover, an open map on some nbhd of ∂M. This will follow from a more delicate
(but still entirely usual) argument about existence and uniqueness of flows. We spell
this out explicitly.

Pick p ∈ ∂M and pick a chart about it, say (x, U0) where x : U0 → Rm
k is a diffeo-

morphism onto an open nbhd U0 of 0 in the model corner space. In coordinates, we
may extend the vector field X to an open nbhd U of x(U0) in Rm. Since X is inwards-
pointing, it is easy to see that X| (x(U0)∩Rm

k ) is inwards pointing. By the usual results
on flows, there is a smooth flow defined on an open nbhd V of x(p) ∈ U ⊂ Rm and a

2Essentially because one suitably extends things to construct the flow in coordinates and then re-
stricts.
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ε > 0 such that the flow F of X is defined as a smooth map

F : V × (−2ε, 2ε)→ U

where, as usual, F(−, t) is a diffeomorphism onto its image for each t ∈ (−ε, ε). It is
possible to, moreover, assume that V has compact closure contained inside of U and
so we do this. (See, for instance, Theorem I.5.2 from Spivak’s first Differential Geometry
volume.) We assume that this is so. WLOG we additionally suppose that the flow F is
defined on V × (−2ε, 2ε), perhaps by shrinking V first, if necessary.

Using the chart (x, U0), the flow for X on M is constructed by suitably restricting
and then lifting this flow back to M. Since F(−, t) is a diffeomorphism, it follows easily
that F(−, t)| (V ∩U0) is a diffeomorphism onto its image. Note that since X is inwards
pointing,

Im(F| (V ∩U0)× [0, ε)) ⊂ Rm
k .

Now let W = V ∩ ∂Rm
k and let

Ψ = F|W × [0, ε).

We claim that Ψ is a topological embedding into Rn
k and, in fact, an open map.

First we note that Ψ is injective as a consequence of uniqueness of integral curves.
So to show it is a topological embedding. For this, we claim we may reduce to show
that the restriction of F to

W × [−ε, ε]

is a proper map, where
W = V ∩ ∂Rm

k ⊂ ∂Rm
k

and where, from our assumptions, V is compact. Clearly from our assumptions F is
defined and, by the same argument above, is injective on W × [−ε, ε]. It is enough to
show this is a proper map (see Exercise 13), so if this is proper, then it is a topological
embedding and, hence, it restricts a topological embedding on its subspace W × [0, ε).
This now follows because the domain W × [−ε, ε] is compact, so Ψ is a topological
embedding.

Now we show Ψ is an open map. For this, it is enough to show that

Ψ′ = F|W × (−ε, ε)

is an open map into U, we claim. First let us show that Ψ′ is an open map.
Note that, after forgetting about smoothness, we may suppose WLOG that ∂Rm

k =

Rm−1 and thereby suppose W is homeomorphic to an open subspace of W ⊂ Rm−1.
Then Ψ′ is a continuous injective map W × (−ε, ε) → Rm and hence by invariance of
domain, Ψ′ is an open map.

Now we claim that we may suppose Ψ is an embedding in the sense of item (c)
in some open nbhd of ∂M× R≥0. This follows by working in local coordinates in the
extension of Ψ as above and then arguing the same as in the proof of the collar nbhd
theorem. Since the details are essentially identical, we omit them.

Since X is an inward-pointing vector field, it is not hard to see that (Ψ′)−1(Rm
k ) =

W × [0, ε). It follows that Im(Ψ′) ∩ Rm
k = Im Ψ which, by definition of the subspace
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topology, is consequently open in Rn
k and hence open in U ⊃ x(U0) and it follows that

Ψ is an open map as well.
It is easy to see that Ψ lifts to an open map x−1(V)× [0, ε) → M, where x−1(V) ⊂

∂M is open. It is moreover smooth in the sense we have just described and an injective
open map in a nbhd of p and so a topological embedding. Since we can do this ev-
erywhere, by using a partition of unity argument on a locally finite covering, we can
show that there is an open nbhd U of ∂M××{0} in ∂M× R≥0 and an open injective
map (hence topological embedding) U→ M that restricts to the identity on ∂M and
is smooth in the sense that it is locally the restriction of a smooth map. This is an ar-
gument that is also tedious. It is analogous to what we did in the proof of the collar
nbhd theorem but see also Theorem 9.20 in Lee’s Introduction to Smooth Manifolds.

As for the smoothness part, this is essentially automatic from the construction, in
that each map x−1(V) × [0, ε) → M is locally the restriction of a smooth map de-
fined on a nbhd U of this set in M. It is worth pointing out by the last lemma, since
∂1M ⊂ ∂M is an open dense subset, it follows easily that ∂1M acquires the structure
of a submanifold without boundary and C : ∂1M×R≥0 ∩ U→ M is a smooth embed-
ding that is an open map.

Finally, the same argument as in the collar nbhd theorem lets us assume C is an
embedding ∂M × R≥0 → M by suitably shrinking. It suffices, clearly, to do this for
[0, 1) instead and doing so we can assume the shrinking function shrinking ∂M× [0, 1)
into U is smooth in the sense we are using by working in coordinates about points in
the boundary and using a similar local existence and uniqueness argument for flows as
above. Performing the same construction as above, we may find a function ε : ∂M →
R>0 that is locally the restriction of a smooth function such that {p} × [0, ε(p)) ⊂ U

for all p. See the proof of the collar nbhd theorem for how to construct such a function.
The only difference is that one uses charts of M and then restricts the resulting function
to ∂M and we can just as well assume this extends to all M as a smooth function
ε : M→ R>0. We claim that the function

(p, t) 7→ C(p, ε(p)t)

is a collar C′ in that C′ is an open embedding and smooth in the sense we have just
described. For the open embedding part, we claim the map

ι : ∂M× [0, 1) ∋ (p, t) 7→ (p, ε(p)t) ∈ U

is an open embedding that is smooth in the sense we are using the word in. For
smoothness, observe that since ε locally extends, so too does ι by the same formula—it
is easiest to see this by passing to an open rectangle—except possibly taking image in
M× R≥0. Hence, ι is locally the restriction of a smooth map. Moreover, that smooth
map is easily seen to give a smooth embedding

M× [0, 1)→ M× R≥0 (p, t) 7→ (p, ε(p)t),

by the same formula (some care must be used at the boundary). Hence, the restriction
is likewise an embedding onto its image. Invariance of domain implies it is an open
map on its interior. The same sort argument as in Exercise 33 then shows that it is
open and an embedding everywhere. It follows that the restriction

∂M× [0, 1)→ U⊂ ∂M× R≥0
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is an open map and embedding; the embedding part is obvious, the open part by the
definition of the subspace topologies and the fact that M × [0, 1) → M × R≥0 is an
open embedding.

We now give a collar C : ∂M× [0, 1)→ M the smooth structure inherited from that
of its image—an open submanifold of M. This is constructed by passing back charts.
The uniqueness of the smooth structure follows from Theorem 37.

Theorem (Lee 9.26, Flow-in)

Let M be a manifold with boundary and possibly corners. Let ι : Int M ↪→ M be
the inclusion.

(a) Suppose M has no corners. There exists a collar nbhd C : R≥0 × ∂M ↪→ M

such that for any a ∈ (0, ∞), the subset M(a) def
= M \ C([0, a) × ∂M) is a

properly embedded submanifold of M and, furthermore, for any such a
there exists a propera smooth embedding Ra : M ↪→ Int M with image M(a)
such that the composites ι ◦ R and R ◦ ι are smoothly homotopic to the iden-
tity maps—in particular, ι is a homotopy equivalence. In particular, we shall
construct a collar of M all of whose restrictions to intervals [0, a] are closed
collars.

(b) If M has corners, there exists a proper smooth embedding R : M → Int M
such that the composites ι ◦R and R ◦ ι are homotopic to the identity maps—in
particular, ι is a homotopy equivalence.

(c) In each case, the image of M in its interior is a closed subset (because the map
is proper) and when M has no corners, there is a strong isotopy between the
identity map and the map Ra.

aThis means that the preimage of compact sets is compact.

We start with (b), since (a) is really a special case. The first order of business will be
establishing the manifolds with corners admit a collar in a suitable sense.

Proof. Fix a collar C : ∂M× R≥0 → M as above. We claim that we may assume that C
has full rank everywhere in the sense that

By modifying the construction of the inwards pointing vector field suitably, it is
possible to assume that, for some choice of complete metric on M, that |X| is bounded.
For instance, choose a covering of ∂M by charts (xi, Ui) in which each point p of

⋃
i Ui is

in at most m + 1 charts. This is possible to arrange because the covering dimension of
an m-dimensional manifold is the same as its dimension. Then construct an inwards
pointing vector field as usual and in each chart (xi, Ui) modify the vector field Xi
constructed so that |Xi| < 1 in Ui. This is possible to do using a suitable scaling
function that is smooth. Using a partiton of unity to piece together the Xi, it is easy
to see that the resulting vector field X has |X| bounded above for this covering. By
standard arguments, this means the flow of X is global in a suitable sense for manifolds
with corners. In particular, the flow map ΦX has domain containing ∂M× R≥0.
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One can then easily verify that ΦX
∣∣ ∂M×R≥0 is a homeomorphism onto its image

by showing that it is an open map; one shows that by showing that it sends sufficiently
small open sets to open sets. The argument is entirely analogous to how we showed
the collar map is an open map for manifolds with corners—namely, one invokes in-
variance of domain in coordinates after suitably extending things. In particular, note
that ∂M is at least locally homeomorphic to open subsets of Euclidean space—this is

because there are homeomorphisms Rn
k
∼=−→ Rn sending the boundary to the boundary.

Since ∂M × R≥0 → M is injective and continuous, by invariance of domain, it is an
open map on ∂M× (0, ∞) since the restriction to ∂M× (0, ∞) maps into the interior of
M. The fact that it is an open map in a nbhd of ∂M× {0} now follows from precisely
the analysis from above.

Note that for this flow, the domain of the flow contains M × R≥0. The flow map
restricts to a map ∂M×R≥0 → M. We claim that this map is an immersion everywhere
with respect to the product bundle HX×R→ ∂M×R≥0 so that, in particular, the flow
map induces a map

HX × R→ TM.

To see this, simply note that this map is the evident restriction of the differential

Φ∗ : TM× R→ TM M× R≥0 → M.

Now, the only way the induced map HX × R → TM could fail to be injective at
a point (p, s) ∈ ∂M× R≥0 is if some vector v ∈ (HX)p is either mapped to zero or is
mapped to the vector Φ∗(p,s)(∂/∂t) = Xp(γp(s)) where γp is the integral curve of X
starting at p.

To see that it is an immersion everywhere, note that this is so for induced map on
the bundle TM| ∂M → TM We claim that the map M × {t} → M sending (p, t) 7→
ΦX(p, t) is a likewise a diffeomorphism onto its image. It is certainly smooth, so we
wish to verify it is a topological embedding and thus a smooth embedding and there-
fore a homeomorphism onto its image. For this, we show the map is an open map.
When t = 0 this is obvious so suppose t > 0. To see this, note that the restriction
Int M× {t} → Int M ⊂ M is injective so by invariance of domain the map is open. To
see that the map is open in a nbhd of ∂M × {t} in M × {t}, note that from what we
showed above, it follows that ∂M× {t} → M is an open map onto its image.

This is essentially a consequence of Corollary 5 and the fact that for t > 0, the map
has image in the interior of M and for t = 0 the map is the identity.

WLOG we suppose C is this collar.
Now let f : M → R>0 be a smooth compact exhaustion function, that is, a smooth

map such that f−1((−∞, c]) is compact for all c. This can always be arranged. Let

W = {(p, t) ∈ ∂M× R≥0 : f (C(p, t)) > f (p)− 1} .

This is an open nbhd of ∂M × {0} in ∂M × R≥0. Using a partition of unity as in
the proof of the collar nbhd theorem, we may construct a smooth positive function
ε : ∂M→ R>0 such that (p, t) ∈W whenever 0 ≤ t < ε(x). Define

C̃ : ∂M× R≥0 → M C̃(p, t) = C(p, ε(p)t).
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Then C̃ is still an open injective map and smooth embedding in the sense of the lemma
above. Indeed, the map ∂M×R≥0 → ∂M×R≥0 given by (p, t) 7→ (p, ε(p)t) is clearly
smooth in that it is the restriction of a smooth map G : M× R≥0 → M× R≥0 defined
by the same formula and one easily verifies that, moreover, G is a diffeomorphism
having smooth inverse

(p, t) 7→ (p, (1/ε(p))t).

This then provides a new collar C̃ where C̃ is a collar in the sense we defined it above.
We do not demand that the map ∂M×R≥0 → ∂M×R≥0 respect the smooth structure
inherited from the collar C on the left-hand side and the collar C̃ on the right-hand
side and vice-versa.

Observe that, by construction,

f (C̃(p, t)) > f (p)− 1 ∀(p, t) ∈ ∂M× R≥0.

We show that for all a ∈ R>0, the set

Ma = C̃(∂M× [0, a])

is closed.
Suppose p is a boundary point of Ma so that there is a sequence (pi, ti)i in ∂M ×

[0, a] such that C̃(pi, ti) → p. Then f (C̃(pi, ti)) is bounded by convergence and so
f (pi) < f (C̃(pi, ti)) + 1 likewise is bounded. Since ∂M is closed in M, f | ∂M is
also an exhaustion function, and so the sequence (pi)i lies in some compact subset
K = f−1((−∞, c]) ∩ ∂M of ∂M. Hence, there is a subsequence (pij)j which converges
to a point p0 of K. Similarly, since [0, a] is compact, the correspondingly indexed sub-
sequence (tij)j of (ti)i has itself a convergent subsequence. WLOG we may suppose
it is this subsequence and therefore (pij , tij)j → (p0, t0) converges by compactness

K× [0, a]. It follows that p = C̃(p0, t0) ∈ C̃(∂M× [0, a]) is therefore closed.
This shows that C̃ is a collar satisfying some additional nice properties. C̃ is still a

collar in the sense that it is an open map, one should carefully note. WLOG we may
suppose

C = C̃

to simplify notation henceforth. It follows quickly from this last thing that the preim-
ages of compact subsets under the collar map C̃ = C are compact.

For each a ∈ R≥0, let C(a) = C(∂M × [0, a)) and let M(a) = M \ C(a), which is
a closed subspace by the above considerations. We claim that M(a) is a submanifold
with corners diffeomorphic to M. To see this, observe that M(a) is simply the image of
the subset M× {a} ⊂ M× R≥0 under the flow map, and we have seen that (p, a) 7→
ΦX(p, a) is a diffeomorphism onto its image. Since its image is, additionally, closed,
this is in fact a proper smooth embedding.

Let ψ : R≥0 → [1
3 , ∞) be an increasing diffeomorphism that is the identity for all

s ≥ 2
3 and define R : M→ Int M by

R(p) =

{
p, p ∈ Int(M(2/3))
C(x, ψ(s)), p = C(x, s) ∈ Im C.
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These two definitions are the identity on the open set Im(C) \ C(2/3), where they
overlap and so R is smooth by the pasting lemma. This map is a diffeomorphism onto
the closed subspace M(1/3) and so it is a proper map and thus a smooth embedding
of M into Int(M).

Define H : M× I → M by

H(p, t) =

{
p, p ∈ Int(M(2/3))
C(x, ts + (1− t)ψ(s)), p = (x, s) ∈ Im C.

This scaling is manifestly smooth when ∂M is a manifold (e.g., when M has no cor-
ners) since the smooth structure on Im C is precisely that of ∂M × R≥0. It is at least
continuous when M has corners.

As for the last part, properness implies the map is closed. W

Exercise 36

Is scaling smooth for the smooth structure coming from the collar? [I do not know
how to show this, but it is worth pointing out that the smooth structure is pinned down
on ∂1M×R≥0 as the product smooth structure and ∂1M×R≥0 is a dense open subset of
∂M× R≥0.

Exercise 37

Let M be a manifold with corners and give M a complete Riemannian metrica and
suppose X is a vector field on M for which |X| is bounded in the given Riemannian
metric.

(a) Show that if M has corners, then any vector field on M that is everywhere
tangent to ∂1M must be 0 at corner points of depth greater than 1. [Hint:
You may find the second lemma of this section useful for more than just the notation
∂1M.]

(b) Show that every maximal integral curve γ of X with initial condition γ(0) =
p is defined on a connected interval J(x) which is a closed subset of R.

(c) If X is tangent to ∂M everywhere, then the maximal flow domain of X is
M× R.

(d) If the vector field is inwards-pointing, show that the maximal flow domain
contains M× R≥0.

aThis always exists in a conformal class of any Riemannian metric using a suitable compact
exhaustion function.
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C Bundles, Normal Bundles, Tubular Neighborhoods

C.1 Bundle Potpourri

Remark. Many of the following proofs are adapted or reproduced from Brian Con-
rad’s thorough differential geometry handouts.

Proposition 3

Let B be a paracompact Hausdorff space and p : E → B be a vector bundle. Then
E admits a metric (i.e., inner product).

Proof. Define E∗ ⊗ E∗ as before and define S2E∗ as before. Construct local sections
ω : Uα → S2E∗

∣∣
Uα

. ω(x) = ∑ij ωij(x)(ℓi(x)⊗ ℓj(x)) (in general). Set ω(x) = ∑i ℓi(x)⊗
ℓi(x). Then ω is positive definite. Partition of unity {λi}. Convex linear combination
(adds to 1, not negative) ∑ λiωi for positive definite ωi. Since this is a convex linear
combination of positive definite forms, the resulting function is positive definite.

Remark. Paracompact Hausdorff is equivalent to the statement that every open cover
admits a subordinate partition of unity.

Lemma 16

Let p : E → B be a vector bundle of (as we always implicitly assume) finite rank.
Then the dual bundle E∨ exists and there is a natural isomorphism of bundles
E∨∨ ∼= E. Moreover, E∨ ∼= Hom(E, R).

Proof. E∨ is constructed as in the vector/fiber bundle construction lemma. To show
that E∨∨ ∼= E naturally, we simply let E∨∨p

∼= Ep be the natural double duality isomor-
phism for FDVSs. On trivializations, this is basically just U × R∨∨ → U × R.

For the next part, pick a trivialization U for E. Then Hom(E, R) on U has trivializa-
tion given essentially by doing φ−1∗—that is, on fibers it is Hom(Ep, R)→ Hom(Rn, R).

Theorem 20

Let f : E′ → E be a morphism of smooth vector bundles over M. The function
p 7→ dim Ker fp is locally constant iff there is a covering of M by open sets Ui such
that E′|Ui admits a trivializing frame containing a subset whose specialization in
each fiber over each point p ∈ Ui is a basis of Ker fp (i.e., a subset of the collection
of specified local sections on Ui are at each point a basis for the kernel).

Proof. (⇐) This is obvious. (⇒) WLOG we may assume the Ui are path-connected.
Admitting a trivializing frame is the same as saying the Ui are trivializing, we re-
mark. Since we have assumed local constant-ness, we may assume that for all p ∈ Ui,
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dim Ker fp = d. Let
{

s′i
}

and
{

sj
}

be trivializing frames with 1 ≤ i ≤ n′ and 1 ≤ j ≤ n
so that r = n′ − d is the common rank of the maps fp on Ui. We can write

f (s′j) = ∑
i

aijsi

since the si are a local frame where aij : Ui → R are smooth functions. For each p ∈ Ui,
since fp has rank r (i.e., for all p ∈ Ui, rank fp = r). It follows from standard linear
algebra that an r× r submatrix of (aij(p)) has full rank (i.e., is invertible), call it A(p)
where A is the function which is this particular submatrix at all points. Since rank is a
lower semi-continuous function, the set of points q ∈ Ui for which rank A(q) > r− 1
is open. Hence, we can cover Ui by open sets for which some submatrix satisfies this
property—say we cover Ui by Uα for which a submatrix Aα is invertible and let Iα and
Jα be the sets of indices picking out Aα in (aij).

Fix α and restrict attention to Uα. WLOG suppose that the upper left r × r matrix
of (aij) is Aα, perhaps by rearranging indices. Since (aij) has rank r on Uα, it is easy to
see that the first r columns of (aij) span the image of (aij) at each point—basically this
is because a linear dependency among the full column vector would imply a linear
dependency for Aα which is impossible because Aα is invertible. Hence, for each j > r
and p ∈ Uα, there is a unique linear combination in E′p

f (s′j)(p) =
r

∑
k=1

ckj f (s′k)(p) =
r

∑
k=1

n′

∑
i=1

ckjaik(p)si(p).

Of course, also, by linear independence of the si everywhere, we must have that

aij(p)si(p) =
r

∑
k=1

ckjaik(p)si(p)

or in other words

aij(p) =
r

∑
k=1

aik(p)ckj.

This gives a system of n′ equations for fixed j by varying i. Since (aij)1≤i,j≤r is invertible
everywhere, Cramer’s Rule allows us to solve for each ckj uniquely such that all of
these n′ equations are satisfied. In particular, Cramer’s rule tells us that each ckj is a
rational function of the a′ijs with denominator the determinant polynomial which is
non-vanishing by assumption. So these are all smooth.

Hence, we get d sections

vj = s′j+r −
r

∑
k=1

ck,j+rs′k

with 1 ≤ j ≤ d such that vj(p) ∈ Ker( f |p) for all p ∈ Uα. One sees this since we just
showed for j > r that f (s′j) = ∑r

k=1 ckj f (s′k) and f is linear on each fiber so this means
that f (s′j)− f (∑r

k=1 ckjs′k) = 0 and so s′j − ∑r
k=1 ckjs′k is in the kernel of f at each point

but s′j −∑r
k=1 ckjs′k ̸= 0 by linear independence of the s′i.
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By inspection, the d vectors vj are linearly independent essentially because if j ̸= j′

then vj has a factor of s′j+r whereas vj′ has a factor of sj′+r. Hence, dimension consid-
erations force v1, . . . , vd to span Ker f |p at each point p ∈ Uα.

Finally, consider the n′ sections s′1, . . . , s′r, v1, . . . , vd. By construction, for each p ∈
Uα, f (s′1(p)), . . . , f (s′r(p)) are a basis for the image of f |p whereas v1(p), . . . , vd(p) are
a basis for its kernel. Hence, together they form a basis for E′p by dimension consider-
ations and the Rank-Nullity theorem.

Corollary 14

Let f : E → E′ be a bundle surjection over B, then p 7→ Ker fp is locally constant
iff Ker f is a subbundle of E.

Proof. (⇐) Trivial. (⇒) We have local trivializing frames by the preceding theorem.

Corollary 15

If f : E→ E′ is a bundle surjection then Ker f is a subbundle of E.

Theorem 21

Let f : E → E′ be a smooth bundle map over B. Then f is a bundle isomorphism
iff it is a fiberwise (linear) isomorphism.

Proof. (⇒) This is obvious.
(⇐) Choose local coordinates about a point b ∈ B—say with the same trivializing

open set U WLOG—with trivializations g and h for E and E′, respectively, and consider

the composite U × Rn h−1 f g−−−→ U × Rn—we must show this is a diffeomorphism.
Since f is smooth, h−1 f g is smooth. Working in the evident local frame, we see that

this map is therefore given by mapping (b, x) 7→ (b, y) with

yi = ∑
j

aij(b)xj

and, furthermore, that the non-singular matrix (aij(b))i,j varies smoothly with b. The
formula for the inverse matrix involves dividing by the determinant and the cofactors
of the given matrix—these are all polynomial in the entries of (aij) and thus is smooth
on the same domain. Denote the inverse matrix by (Aij(b)). Then

g−1 f−1h(b, y) = (b, x) xi = ∑
j

Aij(b)yj

and this is smooth since Aij depends smoothly on b as we have just argued.
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Reminder. Recall that a subbundle of a vector bundle p : E → B is a subspace E′ ⊂ E
such that for all p ∈ B

(a) E′p ⊂ Ep is equipped with the natural vector subspace structure coming from Ep;

(b) E′p ⊂ Ep has rank constant k (at least, say, on each connected component of E if
we really want to include that possibility).

We also demand that p : E′ → B has the structure over a vector bundle over B. If we
forget to say smooth before subbundle, we will probably mean a smooth subbundle,
which is a subbundle that is also a submanifold of E.

Lemma 17

Let p′ : E′ → B and p : E → B be smooth vector bundles over B of rank n′ and n
respectively and let i : E′ → E be a smooth bundle morphism which is injective on
fibers (a bundle monomorphism).

(a) Then i(E′) is a smooth subbundle of E. In particular, i is a closed embedding
and immersion (hence, a submanifold inclusion) and i locally looks like the
standard inclusion U × Rn′ → U × Rn′ × Rn−n′ = U × Rn.

(b) If f : E′1 → E is a bundle map over B with f (E′1) ⊂ i(E′), then there is
a unique smooth bundle map ϕ : E′1 → E′ over B such that iϕ = f . If f
is a fiberwise isomorphism, then ϕ is a smooth bundle isomorphism. In
particular, the subset i(E′) ⊂ E uniquely determines the pair (E′, i) up to a
unique smooth bundle isomorphism.

We shall do this by showing that there are local trivializations determined by frames
such that n′ of the local sections lie entirely in E′ entirely and constitute a frame for
E′—we then extend this to a local frame for E.

Proof. (a) i is obviously injective. We will first show that i is a closed immersion. Let U
be a common trivialization of E′ and E perhaps by shrinking things enough. We may
also suppose U is path-connected. Restricting to U, we may suppose that the bundles
in question are both trivial. Henceforth we assume the bundles over B are trivial.

Pick trivializing frames
{

s′k
}

and
{

sj
}

. There is an n × n′ matrix (ajk) such that
ips′k(p) = ∑j ajk(p)sj(p) where ajk : B → R are smooth. This has rank n′ at all points
i is injective on all fibers. It is a standard linear algebra fact that at each point p ∈ B,
an n′ × n′ submatrix of (ajk(p)) is invertible. Since rank is lower semi-continuous, this
is an open condition. Hence, we can once again pass to smaller (connected) neigh-
borhood, say V ⊂ U on which the same n′ × n′ submatrix of (ajk) is invertible at all
points. Hence, we might as well assume that the bundles are trivial and, furthermore,
that upper left n′ × n′ submatrix of (ajk) is everywhere invertible on B (perhaps after
rearranging indices).

Notation C.1. Denote is′k the function i(s′k) for each 1 ≤ k ≤ n′.

Denote this submatrix by A(p) at each point p ∈ B.
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Observation. The n × n matrix (call is M) of smooth functions representing Σ =
(is′1, . . . , is′n′ , sn′+1, . . . , sn) in the basis of the sj’s has upper left n′×n′ submatrix A. Fur-
thermore the upper right n′× (n−n′) submatrix is 0, the lower right (n−n′)× (n−n′)
submatrix is the identity matrix.

These observations imply that the matrix M is invertible at all points p ∈ B—for
instance, expanding the determinant along the last column each time will reduce us to
computing det A so that det M = ±det A. It follows that M(p) is a basis for the vector
space over p for each p ∈ B. In particular, Σ comprises a trivializing frame.

The bundle morphism i in the bundle charts determined by
{

s′k
}

and Σ is then

(p, (v1, . . . , vn′)) 7→ (p, (v1, . . . , vn′ , 0, . . . , 0).

It is easy to see from this description that i is an immersion and an embedding. To
see that Im(i) is closed, let v ∈ E \ Im(i) and say it lies over the fiber over p ∈ B. In
coordinates, this looks like v ∈ V × Rn \ Rn′ × 0 and from this description it is clear
that the complement is open so that Im(i) is closed.

Since i is a closed injective immersion, it is a proper injective immersion. Proper
injective immersions are exactly the submanifold inclusions with closed image. Since
the given map is in fact closed, this is already satisfied.

(b) Once we build ϕ uniquely as a bundle map, then when f is a fiberwise isomor-
phism we will have that ϕ is a bundle map that is bijective on fibers and hence a bundle
isomorphism. Uniqueness of ϕ follows immediately since i is a fiberwise injection. As
for existence of ϕ, it is certainly a set map that is fiberwise linear. To check smoothness,
it is enough to work locally. By (a), we may assume i is locally the standard inclusion.
Then we are reduced to showing that the smooth map U×Rn′1 → U×Rn which lands
in the submanifold U × Rn′ ⊂ U × Rn is smooth, and this is clear even without using
the universal property of submanifolds because of the niceness of the standard smooth
structure on Euclidean space.

Lemma 18

Let E → B be a vector bundle of rank n and let E′ ⊂ E be a fiberwise subset
having constant dimension n′. Then E′ is a subbundle of rank n′ over B iff there is
a covering {Ui}i∈I of B by trivializing open sets such that over each Ui there exists
a vector bundle E′′i and bundle isomorphisms φi : E′|Ui ⊕ E′′i

∼= E|Ui satisfying
that the composite E′|Ui → E′|Ui ⊕ E′′i

∼= E|Ui is the inclusion map over Ui.

Remark. The idea is take local frames for E′ and E and apply linear algebra to see that
at a point p there is a basis for the fiber Ep that contains the frame for E′ evaluated at
p. Then we use calculus to show this holds in fact holds locally.

Proof. (⇒) We can construct frames for both bundles
{

s′i
}

and
{

sj
}

over a small
enough trivializing nbhd U. Fix p ∈ U. Then some subcollection of the sj’s ap-
pend to

{
s′i
}

to construct a linearly independent set at p, WLOG say sn′+1, . . . , sn.
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The n × n′ matrix (ajk) of smooth functions satisfying s′k = ∑ ajksj has rank n′ ev-
erywhere and therefore has an n′ × n′ invertible submatrix at p, which we may sup-
pose after rearranging indices is the block (ajk)1≤j,k≤n′ . This is an open condition so let
p ∈ V ⊂ U be open where this block is invertible. On V it follows that the matrix of co-
efficients for

{
s′1, . . . , s′n′ , sn′+1, . . . , sn

}
in terms of the

{
sj
}

has upper left n′ × n′ block
(ajk)1≤j,k≤n′ (perhaps after rearranging), upper right n′ × (n − n′) block 0 and lower
right (n− n′)× (n− n′) block the identity matrix. Hence, this matrix is invertible and
so is invertible locally on p ∈ V′ ⊂ V ⊂ U and so furnishes a frame.

This construction gives us a trivialization for which E′|V′ ∼= V′ × Rn′ × 0 ⊂ V′ ×
Rn ∼= E|V′. Let E′′ = V′ × 0× Rn−n′ . That E′|V′ ⊕ E′′ ∼= E|V′ in the desired manner
follows by

E′
∣∣V′ ⊕ E′′

∣∣V′ ∼= (X× Rn′)⊕ (X× Rn−n′) ∼= X× (Rn ⊕ Rn−n′) ∼= X× Rn ∼= E|V′

where in the first isomorphism we used the local frame
{

s′1, . . . , s′n′
}

on E′ over V′ to
construct the isomorphism, noting that E′′|V′ = X × Rn−n′ , and in the last isomor-
phism we used the inverse of the trivialization afforded by

{
s′1, . . . , s′n′ , sn′+1, . . . , sn

}
.

This obviously respects the inclusion in the sense that the composite E′|V′ → E′|V ⊕
E′′|V′ ∼= E|V′ is the inclusion.

(⇐) The conditions here imply that E′ has the structure of a smooth vector bundle
since smoothness is local and it is clearly subbundle from the condition here as well.

Corollary 16

If E′ ⊂ E is a subbundle of p : E → B where E′ has rank n′ and E has rank n, then
there are bundle charts of E covering B such that φi : (p−1(Ui), p−1(Ui) ∩ E′) ∼=
(Ui × Rn, Ui × Rn′ × 0).

Proof. We constructed these charts above.

Corollary 17

Let E′ ⊂ E be a subbundle of rank n′ of the vector bundle p : E → B of rank n.
Then the quotient bundle E/E′ → B exists.

Proof. Using the charts above, we may fix and consistently use the obvious isomor-
phism Rn/Rn′ × 0 ∼= Rn−n′ sending a vector to the element defined by its last n− n′

coordinates. Define E/E′ to be fiberwise the quotient Eb/E′b. Pick bundle charts
Ui for E such that p−1(Ui) ∩ E′ maps under the trivialization to Ui × Rn′ × 0 and
let q : E/E′ → B be the obvious projection. We topologize q−1(Ui) by declaring
the isomorphism of sets q−1(Ui) ∼= Ui × Rn−n′ induced by p−1(Ui) ∼= Ui × Rn →
Ui ×Rn/Rn′ ∼= Ui ×Rn−n′ by the universal property of the quotient to be a homeomor-
phism. By giving Ui the inherited smooth structure, we can pull back the smooths
structure on Ui × Rn−n′ to give q−1(Ui) a smooth structure. We generate topolo-
gies/take maximal atlases everywhere.
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Corollary 18

Every subbundle of rank k of a real bundle p : E→ B of rank n over a paracompact
Hausdorff space B admits a complement. In particular, if E1 ⊂ E is a subbundle,
then E/E1

∼= E⊥1 (non-canonically, I think) for any choice of metric on E. In par-
ticular, E ∼= E1 ⊕ E⊥1 and E/E1

∼= E⊥1 .

Proof. Let E1 ⊂ E be a subbundle over B. Fix a metric g and let E⊥1 be its fiberwise
orthogonal complement. One can check that E⊥1 is a subbundle and that E ∼= E1⊕ E⊥1 .
Denote q : E/E1 → B and q1 : E⊥1 → B the bundle projections (the latter being the
restriction of p to E⊥1 and the former being defined in essentially the same manner).
Note further that we can give the bundle q1 : E⊥1 → B the same trivializations as q and
as p. For E/E1, the trivializations are defined as above.

There is a fiberwise isomorphism E1 ⊕ E⊥1 → E by sending vectors to their sum.
Note that this sends the obvious subbundle E1 ⊕ 0 to the subbundle E1 diffeomor-
phically, clearly. To see that this is smooth, note that in coordinates this looks like
U × Rk × Rn−k → U × Rn sending (p, v, w) 7→ (p, v + w) and this is certainly smooth.
To get this description, we just have to observe that local frames for E1 and E⊥1 yield a
local frame for their direct sum as well as for E. Since this is smooth and bijective, it is
a diffeomorphism.

The last thing to check is that E1 ⊕ E⊥1 /E1
∼= E⊥1 , since it surely must be that

E1 ⊕ E⊥1 /E1
∼= E/E1 because the isomorphism given above preserves the copies of

E1. Define E1 ⊕ E⊥1 → E⊥1 by sending (p, v, w) 7→ (p, w). This descends to the de-
sired fiberwise quotient as a function. The description of the quotient given above
immediately shows that it is smooth with little effort.

Before this next theorem, we need an easy auxiliary result.

Proposition 4

If f : M → N is smooth and q ∈ ∂N is a regular value for f , then f−1(q) ⊂ ∂M.
More generally, for smooth f : M→ N with dim N ≤ dim M where f has maximal
rank at p ∈ M, if f (p) ∈ ∂N then p ∈ ∂M.

Proof. For f to even have a regular point p, we must have that dim N ≤ dim M. We
will prove parts in one go, since nothing we do below will depend on q being a regular
value of f , only that f (p) = q and f has maximal rank dim N ≤ dim M at p.

Let q ∈ ∂N be a regular value and suppose for a contradiction there is a point
p ∈ f−1(q) ∩ Int(M). Then we can take a small enough coordinate nbhd about p such
that the coordinate chart is strictly Euclidean.

At this point, we assume WLOG that we are working in the following coordinate
set up where our map has the form

Rm ⊃ U0
f−→ Rn−k × Rk

≥0 ⊂ Rn. (∗)

By (c) of the constant rank theorem, there is a chart for Rm about p ∈ U0, call it
(x, U) with U ⊂ U0 such that the new coordinate form of (∗) looks like a projection
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U → Rn killing the last m− n coordinates. We now wish to analyze what happens to
U under this projection.

Observation. Note that we only modify the domain chart, so the image of f in the
coordinates of (x, U), U ⊂ U0 ⊂ Rm, remains unchanged and so is still a subset of
Rn−k × Rk

≥0.

Since U ⊂ Rm is open and the projection Rm → Rn is an open map, it follows from
the above description of f in the coordinates of (x, U) that f |U is an open map into
Rn, since it is an open map in the coordinates of (x, U). By the observation, regardless
of the domain chart, f takes U into Rn−k × Rk

≥0. But the open subsets of Rn contained
in Rn−k × Rk

≥0 are precisely the ones that miss ∂(Rn−k × Rk
≥0), since there is no open

subset V of Rn for which W = V ∩ ∂(Rn−k × Rk
≥0) ̸= Ø is open, and this is because W

its own boundary in that case.
Thus, f (p) = q could not possibly be in ∂N since, in coordinates, it misses ∂(Rn−k×

Rk
≥0). This is the first part. As mentioned at the beginning, this has secretly shown the

second part.

Warning. I do not think this analysis can be extended further because we would have
to extend from an open subset of Rm−ℓ × Rℓ

≥0 to an open subset of Rm and we can no
longer guarantee that the extension stays in Rn−k × Rk

≥0.

Remark. The contrapositive of the above is that for smooth f with maximal rank
dim N at p, p ∈ Int(M) implies that f (p) ∈ Int(N). So for a submersion, it appears to
be possible that boundary points in M are send to interior points in N.

Corollary 19

There is no surjective smooth submersion f : M→ N for ∂M = Ø and ∂N ̸= Ø.

Proof. Easy consequence of the above.

Theorem 22

Let π : E → B be a smooth vector bundle and let i : Z ↪→ E be a closed injective
immersion such that Z ∩ Eb is a linear subspace for all b ∈ B whose dimension is
locally constant as a function of b ∈ B (in particular, Z ∩ Eb ̸= Ø for any b ∈ B).
Suppose in addition the following properties hold.

(i) Locally, i can be made to look like the standard inclusion U×Rn′ → U×Rn.

(ii) For every z ∈ Z, there is a smooth local section about π(z) ∈ B of π such
that π(z) 7→ z.

Then Z admits a unique structure as a smooth vector bundle over B for which i
is a subbundle inclusion. If Z has no boundary, then B has no boundary and the

Page 81



MORSE THEORY & (HAMILTONIAN) FLOER HOMOLOGY MATT CARR

local assumptions are automatically satisfied.

Proof. WLOG B is connected. Then Z inherits a linear structure on its fibers and we
must only check there are compatible local trivializations for this structure. By the
universal property of submanifolds (a closed injective immersion is an embedding,

after all), the zero section B→ E which lands in Z is smooth into Z. Thus, B 0−→ Z π−→ B
is smooth and the identity and so by the chain rule Z → B is a submersion. It is
surjective from our assumptions.

When Z has no boundary, there can be no smooth surjective submersion onto B
unless ∂B = Ø as well by the above. Hence, by the constant rank theorem, the desired
local sections will clearly exist. Thus, for each b ∈ B, if X1, . . . , Xn′ is a basis of Zb, then
we can find, locally, smooth sections s1, . . . , sn′ such that si(b) = Xi for each i.

Having shown the above, we return to the general case. By shrinking, we may
suppose the problem is local and thus we may suppose the bundle E is trivial over B,
say

E = B× Rn.

Let the s1, . . . , sn′ be as in the paragraph above for some b ∈ B. At b, these smooth
sections s1, . . . , sn′ form an n × n′ matrix of rank n′ and therefore there is an n′ × n′

submatrix which is invertible and thus invertible on a nbhd of b. Shrinking again we
may suppose that this is globally invertible and thereby suppose the sections s1, . . . , sn′

are fiberwise linearly independent for all b ∈ B.
Now consider the map S : B× Rn′ → B× Rn defined by

(b, r1, . . . , rn′) 7→ (b, r1s1(b), . . . , rn′sn′(b)).

This is clearly smooth and fiberwise injective with Im(S) = Z and defines a subbundle
essentially because we have constructed the sections si. Thus, S is a closed immersion
and thus also an embedding. Since i : Z → E is another map with the same properties
and same image. Hence, there are unique continuous maps Z → B× Rn′ and B× Rn′

which factor i and S through each other. To show that this is smooth, we simply use the
fact that, locally, each map Z → B× Rn and B× Rn′ → B× Rn look like the standard
inclusion U × Rn′ → U × Rn′ × Rn−n′ ∼= U × Rn. Essentially, TFDC:

U × Rn′ B× Rn′ B× Rn U × Rn′ × Rn−n′

U × Rn′ Z B× Rn U × Rn′ × Rn−n′

inc

inc

which, by projecting, U × Rn′ × Rn−n′ → U × Rn′ shows that the dashed arrow is
simply the identity. Similarly in the other direction for Z → B × Rn′ . This shows
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that the two maps Z → B× Rn′ and B× Rn′ are in fact smooth and fiberwise linear.
They necessarily inverse to each other, so this establishes the desired fiberwise linear
isomorphism. What we have actually shown (un-reducing all of our assumptions) is
that Z has local trivializations, as desired.

Theorem 23

Over paracompact Hausdorff spaces, all short exact sequences of bundles split,
but as usual the splitting is not natural. In particular, in the smooth category, the
splitting is additionally smooth.

Proof. We just need access to partitions of unity. Let 0 → A i−→ B
p−→ C → 0 be a short

exact sequence of bundles (i.e., fiberwise short exact). We construct a section s : B→ A
of i : A → B. Pick a local trivialization of A and extend this to a local trivialization of
B in such a way that the trivialization has A sit as Rk × 0 in Rn —this exists as we
have seen. The section is obvious then. Doing this locally everywhere by a partition
of unity argument, we must show that the resulting thing is a global left inverse. One
can do this with careful analysis.

Now we must show that this implies that B splits. This follows by showing that
A⊕ B/A ∼= B, which can be done.

Remark. Alternatively, equip the bundle B with a Riemannian metric by a partition of
unity argument and take the orthogonal complement of A in B. The argument fails in
the holomorphic category because we need not have a holomorphic partition of unity.
This is what separates the world of smooth manifolds from the world of complex
manifolds—the latter are much more rigid objects.

Warning. Kernels are only guaranteed to exist in the category of vector bundles when
we take the kernel of an epimorphism. See Hirsch’s book on page 93.

Definition 29

A (linear) sphere bundle (resp. (linear) disk bundle) is a fiber bundle in which ev-
ery fiber is (homeomorphic to) the standard metric (i.e., unit) sphere (resp. metric
disk) in Euclidean space having structure group the orthogonal group.

Lemma 19

A (smooth) vector bundle (of rank n) E → B is the same thing as a fiber bundle
F → E → B with structure group GLn(R) and a (smooth) GLn(R)-equivariant
isomorphism F ∼= Rn for all p ∈ B.

If B is paracompact Hausdorff, then a (smooth) vector bundle (of rank n) E→
B is additionally the same thing as a (smooth) vector bundle with structure group
O(n) which is the same thing as a fiber bundle F → E → B with structure group
On(R) and a (smooth) On(R)-equivariant isomorphism F ∼= Rn.
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Proof. For the first part, the inclusion ⊂ is clear from the trivializations. For ⊃, make F
into a vector space by pulling back the vector space structure on Rn. We can then de-
fine new trivializations by composing with the isomorphism F ∼= Rn: ψj : q−1(Ui) ∼=
Ui × F ∼= Ui × Rn. Define a vector space structure on Ep by fixing a trivialization
about p and pulling back the vector space structure from any trivialization. The choice
of trivialization does not matter up to isomorphism of vector spaces. To see this,
begin by letting p ∈ Ui ∩ Uj. Then the transition functions relate the homeomor-
phisms/diffeomorphisms ψj : Ep ∼= Rn and ψi : Ep ∼= Rn by a linear isomorphism,
since F ∼= Rn is GLn(R)-equivariant. The claim, then, is that the two induced struc-
tures on Ep are isomorphic, and this is clear because pulling back this structure means
that the two structures will themselves be related by an element of GLn(R). Thus, for
the trivialization ψi : q−1(Ui) ∼= Ui × Rn, we have for p ∈ Ui ∩Uj and Ep the structure
coming from the index j that ψi| Ep is still linear since it becomes linear after post-
composition with tji(p) = tij(p)−1 ∈ GLn(R), which is a linear isomorphism and so
forces ψi| Ep to be.

For second part, give the vector bundle a (smooth) metric and on each trivialization
let ei

1, . . . , ei
n : Ui → Ui × Rn be a (smooth) orthonormal frame for the metric. Let the

transition functions now be defined by letting t′ij(p) be the change of basis matrix

taking (ej
1(p), . . . , ej

n(p)) 7→ (ei
1(p), . . . , ei

n(p)). This is clearly smooth and the resulting
vector is still isomorphic to the one with the old tij via the identity map. The last part
is analogous to the above.

Proposition 5

Over a paracompact Hausdorff base space, a real vector bundle of rank n having
structure group O(n) determines and is determined by linear sphere bundles and
linear disk bundles. That is, these notions are “the same.”

Proof. Strictly speaking, this follows by the equivalence of categories BunRn

O(n) ≃ PrinO(n) ≃
BunSn−1

O(n) and similarly for linear disk bundles.

Lemma 20

Let V and W be vector bundles over X. Then Hom(V, W) ∼= V∗ ⊗W and if V and
W have common rank n, then the subset Iso(V, W) is a fiber bundle over X with
typical fiber GLn(R) and Γ(Iso(V, W)) ∼= {bundle isos V ∼= W}.

Proof. A section X → Iso(V, W) is a choice of isomorphism Vp →Wp for all p ∈ X. We
must show that this determines an isomorphism of bundles. In a nbhd of U ⊂ X, this
is a section U → U×GLn(R)) and is therefore determined by fU : U → GLn(R). Such
a map determines at each p ∈ U a map Rn → Rn and so an assignment U × Rn →
U × Rn given by (p, v) 7→ (p, fUv) which is therefore as continuous or smooth as fU
is. We worked locally and these all glue.
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Lemma 21

Let V and W have the same rank. Then Iso(V, W) is an open subset of Hom(V, W)

Proof. In the trivializations, this looks something like U × Rn2
and the isos are the

matrices of full rank which is an open condition.

C.2 Some Further Recollections on Bundles

Lemma 22

Let f , g : M → R be functions from a manifold into R and let 0 ≤ k ≤ ∞. If
f1 + · · ·+ fn = h is Ck and f1, . . . , fn−1 are Ck, then fn is Ck.

Proof. fn = h− ( f1 + · · ·+ fn−1) and so must be Ck since h and the sum f1 + · · ·+ fn−1
are.

Proposition 6

Let p : E → B and p′ : E′ → B be vector bundles of rank n and let f : E → E′

be a smooth map that is a linear isomorphism on each fiber. f is then a bundle
isomorphism—that is, it is a diffeomorphism over B.

Proof. In bundle coordinates, f looks like a map U × Rn → U × Rn by (p, v) 7→
(p, fp(v)) for fp the bundle coordinate version of the relevant linear isomorphism.
Define f−1 by (p, v) 7→ (p, f−1

p (v)). Let A : U → GLn(R) be such that A(p)v = fp(v)
so that f is (p, v) 7→ (p, A(p)v).

Claim. The action (p, v) 7→ A(p)v, U × Rn → Rn, is smooth. Therefore the adjoint of
A is smooth into GLn(R), which is equivalent to saying that A is smooth into Rn2

and
hence equivalent to saying that the component functions of A are smooth.

For convenience, we will write A for A(p). Since GLn(R) is an open subset of
Rn2

, being the preimage under det of R \ {0}, smoothness into GLn(R) is equivalent
to smoothness into Rn2

. Recall that we are in bundle coordinates U × Rn → U ×
Rn—WLOG suppose U is the domain of a chart on B perhaps by shrinking if necessary.
Observe that smoothness of (p, v) 7→ (p, A(p)v) means that the assignment (p, v) 7→
A(p)v, U×Rn → Rn, is smooth. This is because finite products exist in the category of
manifolds. In particular, fix v0 = (δi

j). Then U × {v0} → Rn is smooth since U × {v0}
is a submanifold of U × Rn. This map is then (p, v0) 7→ (A1i, . . . , Ani) and so for this
to be smooth in Rn, each component must be smooth. Now the map A : U → GLn(R)
is simply the map p 7→ (Aij(p)) and by the above observation that GLn(R) is open in
Rn2

, this is smooth because each component is smooth.

Claim. The inversion (−)−1 : GLn(R)→ GLn(R) is smooth.
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The inverse of matrix has entries rational functions which in the (i, j) spot has nu-
merator a polynomial in the various relevant entries for the relevant minor and has
numerator the determinant of the matrix. Since det : GLn(R)→ R is smooth and non-
vanishing, the denominator is a smooth and non-vanishing function, so everything
checks out.

Putting this together, the function defined in bundle coordinates as (p, v) 7→ (p, A−1(p)v)
is smooth, it is well-defined since we have defined it in bundle coordinates locally, and
it is clearly inverse to the given map.

Lemma 23

Let p : E→ B be a smooth rank n vector bundle. Let R be the trivial rank 1 bundle
over B. Then the bundle maps m : R ⊕ E → E and + : E ⊕ E → E are smooth,
where this is the Whitney sum.

Proof. These are the Whitney sums of the bundles. Let U be a trivializing nbhd for
E, which we can assume exists by shrinking if necessary any trivializing nbhd. The
resulting trivialization of R× E is then simply the one sending (p, r, v) 7→ (p, r, Φp(v))
where Φ : p−1(U) → U × Rn is the trivializing diffeomorphism. The first map in
coordinates is given by U × R × Rn → U × Rn sending (p, r, v) 7→ (p, rv). This is
basically a diagram chase since for p ∈ B mp(r, vp) = rvp ∈ Ep since the trivializations
respect vector space operations. This map is further in coordinates Rm × R × Rn →
Rm×Rn by (p, r, v) 7→ (p, rv). The multiplication map R×Rn → Rn is clearly smooth.
For the second map, one argues as before and notes that addition Rn × Rn → Rn is
clearly smooth.

Lemma 24 (Lee, 10.19)

Let p : E → B be a smooth vector bundle of rank n and let U ⊂ B be an open
neighborhood. Denote ẽi : U → U × Rn the i-th standard section p 7→ (p, ei). For
any smooth local frame {s1, . . . , sn} on U, there exists a diffeomorphism—in fact
trivialization—Ψ : p−1(U) → U × Rn such that Ψ−1 ◦ ẽi = si. Hence, smooth sec-
tions over an open set U determine a smooth bundle trivialization and conversely.

Proof. We will define Ψ−1 and show it is fiberwise linear and a diffeomorphism, jus-
tifying the inverse notation. Define Ψ−1(p, (v1, . . . , vn)) = ∑i visi(p) and note that
this is certainly fiberwise linear! To show this is smooth, we only need to check that
the operation of summing is smooth on p−1(U). This is true since for any V ⊂ U
a trivializing open nbhd with Φ the trivialization, Φ is a diffeomorphism linear on
each fiber and so commutes with the sum and hence ∑i visi(p) = Φ−1Φ(∑i visi(p)) =
Φ−1(∑i Φ(visi(p))) and the fiberwise sum on U × Rn is smooth as part of the defini-
tion of a smooth vector bundle from the above. Thus, if Ψ−1 is smooth, then Ψ is a
smooth local trivialization and clearly we have Ψ−1 ◦ ẽi = si.

It is clear that Ψ−1 is a bijection since the si form a frame, so to show it is a diffeo-
morphism, it suffices to show it is a local diffeomorphism. Let V ⊂ U be a trivializing
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open nbhd as above. If we can show that Φ ◦ Ψ−1
∣∣V × Rn is a diffeomorphism of

V × Rn with itself, then since Φ is a diffeomorphism, we will have that Ψ−1 is a dif-
feomorphism V × Rn → p−1(V). Now, Φ ◦ si is smooth as a composite of smooth
functions. Hence, in coordinates Φ(si(p)) = (p, (σi

1(p), . . . , σi
n(p))) and the σi must be

smooth in p for this function to be smooth. Thus,

Φ ◦Ψ−1(p, (v1, . . . , vn)) = Φ(∑
i

visi(p)) = (p, (∑
i

viσ
i
1(p), . . . , ∑

i
viσ

i
n(p))) = ∑

i
Φ(visi(p))

which is smooth as the sum operation is smooth as soon as we know that the sum op-
eration is smooth and we do know this (essentially the last equality). What’s happen-
ing here is that the smooth matrix (σi

j)i,j is at each point p the matrix (σi
j(p))i,j which

transforms something in the ordered basis (s1(p), . . . , sn(p)) for Ep to something in the
standard basis for Rn. In other words, this is a change of basis matrix and it is there-
fore invertible. Thus, Φ ◦ Ψ−1(p, (v1, . . . , vn)) = (σi

j(p))(v1, . . . , vn)t the matrix multi-
plication—this is smooth because the matrix multiplication just gives polynomials in
smooth functions. It follows that the inverse is given by (Φ ◦Ψ−1)−1(p, (w1, . . . , wn)) =
(σi

j(p))−1(w1, . . . , wn)t and since (σi
j) is everywhere invertible, its determinant is al-

ways non-zero and smooth, so the inverse matrix is a smooth function being a rational
function of smooth functions where the denominator never vanishes.

Remark. Nothing we used above relied on using Rn for the typical fiber. We could
just as well have consider complex vector bundles with typical fiber Cn.

Exercise 38

Does the above hold for the real (or complex) quaternions?

Corollary 20

If an open nbhd U ⊂ B admits a smooth local frame for p : E→ B a smooth vector
bundle of rank n, then U is a trivializing open nbhd.

Corollary 21

A smooth local trivialization is equivalent to a smooth local frame by sending
v ∈ Ep to (v1, . . . , vn) where ∑i visi(p).

Proof. This just deconstructs what the construction above did.

Corollary 22

Let π : E → B and π′ : E′ → B be smooth vector bundles of rank n and n′ re-
spectively with say dim B = m. Let f : E → E′ any fiberwise linear function (not
assumed to be continuous or anything). Then f is smooth iff each point p ∈ B is
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contained in the domain of a smooth local frame F such that f sends each section
in F to a smooth function.

Proof. The direction (⇒) is trivial since f is fiberwise linear, so let s1, . . . , sn be smooth
sections of the first in a nbhd of a point that form a frame and let σi = f ◦ si and
suppose the σi are smooth. Then in the trivialization constructed from the smooth
local frame F , we know this is U × Rn → (π′)−1(U) by

(p, (v1, . . . , vn)) 7→∑
i

visi(p) 7→∑
i

viσi(p).

Note that we have used the fact that f is fiberwise linear to pull the coefficients out at
the last step—this is evidently an indispensable assumption.

Let s′i be local frame for E′ on this same nbhd (perhaps by shrinking). Since the σi

are smooth, σi = ∑n′
k=1 ciks′k where the cik are smooth real-valued functions. Thus, this

can be written

(p, (v1, . . . , vn)) 7→∑
i

n′

∑
k=1

vicik(p)s′k(p) =
n′

∑
k=1

(
n

∑
i=1

vicik(p)

)
s′k(p)

Hence, in the local trivializations afforded to us by these frames as we constructed
above, the assignment is

(p, (v1, . . . , vn)) 7→ (p, (
n

∑
i=1

vici1(p), . . . ,
n

∑
i=1

vicin′(p))).

This is smooth because each of the components are smooth. Indeed, using a chart for
U, this is basically just

((x1, . . . , xm), (v1, . . . , vn)) 7→ ((x1, . . . , xm), (
n

∑
i=1

vici1(x1, . . . , xn), . . . ,
n

∑
i=1

vicin′(x1, . . . , xn)))

All mixed partial derivatives with respect to each coordinate x1, . . . , xn, v1, . . . , vn clearly
exist and are always smooth, clearly.

Corollary 23

Let π : E → B be a smooth vector bundle over B and f : E → R a map that is
linear on each fiber. Then f is smooth iff f sends some smooth local frame in a
neighborhood of every point to smooth functions B→ R.

Proof. f is the composite E → R × B → R where the last map is the projection and
is therefore smooth and the first map sends v ∈ Ep to ( f (v), π(p)) which is smooth
precisely if f is smooth (since π is assumed to be smooth). This reduces us to the case
above for the map ( f , π) where it suffices to show that ( f , π) satisfies the conclusions
of the preceding corollary and surely it does.
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C.3 Normal Bundles & Tubular Neighborhoods

Normal Bundles

Reminder. Recall that we have seen that E′/E ∼= E⊥.

Definition 30

Let f : M → N be an immersion. Denote ν f = ( f ∗TN)/TM the normal bundle
of the immersion f . Here, the quotient by TM occurs via the identification of TM
with its image in TN. When f is an embedding of M into N, we denote this by
νM.

Remark. Recall that f ∗TN = {(p, v) ∈ M× TN : f (p) = πN(v)}.

Lemma 25

If N is a Riemannian manifold, then ν f may be taken to be the subbundle of

f ∗TN = {(p, v) ∈ M× TN : f (p) = πN(v)}

consisting of all pairs (p, v) where v ∈ TpM⊥ (identifying TpM with its image).

Proof. Exercise. Should be similar to the proof that E′/E ∼= E⊥.

Theorem 24

Let f : M→ N be an immersion. Then f ∗TN ∼= TM⊕ ν f .

Proof. Use a metric. Define TM⊕ ν f → f ∗TN by sending (p, v, w) 7→ (p, v + w). This
is smooth and a fiberwise isomorphism so it is a diffeomorphism.

Remark. Everything above ought to hold for manifolds with boundary.

Exponential Map and Shrinking

Taken from Riemannian Geometry class notes. All manifolds are without bound-
ary.

Reminder. Recall that for a Riemannian manifold M with dim M = n, we call γp,v
the geodesic having γ̇(0) = v and γ(0) = p. In coordinates, the geodesic equation

is γ̈ℓ(t) + Γℓ
ij(γ(t))γ̇

i(t)γ̇j(t) = 0 for 1 ≤ ℓ ≤ n, where Γℓ
ij =

1
2

gℓk(gik,j + gjk,i − gij,k).

More concisely, this is Dtγ̇(t) = 0, where Dt is the covariant derivative along γ.
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Proposition 7 (Naturality of geodesics)

Let M and M̃ be two Riemannian manifolds and φ : M → M̃ a Riemannian
isometry. If p ∈ M and γ is a geodesic on M such that γ(0) = p and γ̇(0) = v ∈
TpM, then γ̃ := φ ◦ γ is a geodesic on M̃ such that γ̃(0) = φ(p) and ˙̃γ(0) = φ∗(v).

Remark. Note that the geodesic equation Dtγ̇(t) = 0 is a non-linear differential equa-
tion.

Lemma 26

There exists a unique vector field G on TM whose integral curves are of the form
t 7→ (γ(t), γ̇(t)) where γ is a geodesic. The flow of G is called the geodesic flow.

Proof. The geodesic equations are in local coordinates ẍℓ + Γℓ
ij ẋ

i ẋj = 0. We reduce this
to a first order equation by introducing the variable yk = ẋk. Then in bundle coordi-
nates for TU, a solution to the geoedesic equation t 7→ (x1(t), . . . , xn(t), ẋ1(t), . . . , ẋn(t))
satisfies the system of first order equations{

ẋk = yk 1 ≤ k ≤ n,
ẏk = −Γk

ijyiyj 1 ≤ k ≤ n.

where, here, this is in terms of the coordinates afforded by the trivializing frame

(x1, . . . , xn,
∂

∂x1 , . . . ,
∂

∂xn ). By standard results, there is a flow for this (the centered
equations just above) pinned down by the usual specification. We recall that the flow
is obtained by piecing together the integral curves, and it is unique by uniqueness
of integral curves as usual—in particular, the integral curves are geodesics where the
geodesic through (p, v) is precisely γp,v.

Corollary 24 (Local Existence and Uniqueness)

Suppose ∂M = Ø. Let p0 ∈ M and u0 ∈ Tp0 M. Then there exists ε0 > 0 and an
open neighborhood U0 ⊂ TM of (p0, u0) with the following properties:

1. For any (p, u) ∈ U0, there exists a unique geodesic γp,u : (−ε, ε) → M such
that γp,u(0) = p and γ̇p,u(0) = u.

2. The map γ·,·(·) : U0 × (−ε0, ε0) → M defined by ((p, u), t) 7→ γp,u(t), is
smooth.

Proof. This follows by consideration of the properties that flows have.

Remark. This has an analogous phrasing when ∂M ̸= Ø, just changing words slightly.
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Corollary 25

Fix s ∈ R. If γp,sv(1) exists, then γp,v(s) exists and γp,tv(1) = γp,v(s). In particular,
γp,sv = γp,v(s · −).

Proof. If s = 0, then we can check by hand that this is true. So suppose s ̸= 0. In local
coordinates, one checks that γp,v(s · −) is the solution to the IVP for

γ̈ℓ(t) + Γℓ
ij(γ(t))γ̇

i(t)γ̇j(t) = 0 1 ≤ ℓ ≤ n

subject to the initial conditions γ̇(0) = sv and γ(0) = p. This is because we can divide
through by the common factor of s2. Hence, uniqueness forces our hand.

Set
Op

def
= {v ∈ TpM : γp,v(t) is defined for all t ∈ [0, 1]} ⊂ TpM.

Notice that by the preceding, there exists δ > 0 such that BTp M
δ (0p) ⊂ Op (an open

ball). It will turn out that Op is open and that O =
⋃

p∈M Op are both open.

Definition 31

For p ∈ M, define the exponential map at p as expp : Op → M by v 7→ γp,v(1).
When ∂M ̸= Ø, we must restrict to inward pointing vector for this to make sense.

Remarks.

1. For p fixed, the map expp is C∞ (for instance by smoothness of flows).

2. For t ∈ R and v ∈ TpM such that tv ∈ Op, we have expp(tv) = γp,tv(1) = γp,v(t).

Proposition 8

Let dim M = n. The differential map d expp(0p) is the identity where we under-
stand T0TpM ∼= Rn and TpM ∼= Rn.

Proof. Pick v ∈ TpM. Since γp,tv(1) = γp,v(t), we have

d expp(0p)(v) =
d
dt

∣∣∣
t=0

expp(tv) =
d
dt

∣∣∣
t=0

γp,v(t) = γ̇p,v(t)
∣∣∣
t=0

= v.

Corollary 26

On a neighborhood of 0p ∈ TpM, the exponential map expp is a diffeomorphism
onto its image in M (with suitable modification to inward pointing vectors when
∂M ̸= Ø).
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Proof. This follows from the inverse function theorem since d expp(0p) : T0pOp → TM
is an isomorphism. When ∂M ̸= Ø and p ∈ ∂M, we restrict ourselves to inwards
pointing vectors. Smoothness of expp about 0p implies it has a smooth extension in an
open nbhd of Rn (in coordinates) and thus since full rank is an open condition, WLOG
that it is full rank on this nbhd. The same argument now works.

Lemma 27

Suppose ∂M = Ø. exp is smooth on an open subset of O. In particular, O is open
in TM, Op is open in TpM, and exp is smooth on O. When ∂M ̸= Ø, exp is at least
smooth.

Proof. Suppose dim M = n. Let G denote the geodesic flow, which we assume is
maximal, as always—let A ⊂ R × M denote the maximal flow domain, which we
know is a subset of R × TM which is open when ∂M = Ø. Thus, when M has no
boundary, the set TM1 = {(p, v) ∈ TM : (1, p, v) ∈ A} is open in TM. In particu-
lar, if (p, v) ∈ TM1, then (p, v) ∈ TMt for all t ∈ [0, 1] since one constructs the
maximal flow domain as the union of the maximal integral curves. We can there-
fore write the exponential function on its maximal domain of definition as the com-

posite TM1
(1,id)−−−→ A G−→ TM π−→ M. All functions in sight are smooth and TM1 is

open in TM. Now observe that TM1 = O which is therefore open and moreover that
TM1,p = TM1 ∩ TpM =

{
(p, v) ∈ TpM : (1, p, v) ∈ A

}
= Op is open in TpM in the

subspace topology—the subspace topology on TpM is equivalent to the topology it
inherits from being diffeomorphic with Rn. When ∂M = Ø, local existence at least
tells us that the exponential is smooth locally and thus globally by the same composite
argument where now TM1 is simply a subset and not a submanifold. In other words,
the geodesic flow still makes sense and we simply compose it with the projection—we
must restrict ourselves to inwards pointing vectors of course on the boundary.

Corollary 27

Consider the map E : O → M×M given by (p, v) 7→ (p, expp(v)). Then for each
p ∈ M,

dE((p, 0p)) : T(p,0p)TM→ T(p,p)(M×M)

is nonsingular.

Proof. Let (x, U) be chart about p in M. Note that any basis
∂

∂dxi

∣∣∣∣
(p,0p)

has for 1 ≤

i ≤ m
∂

∂dxi

∣∣∣∣
(p,0p)

=
∂

∂xi

∣∣∣∣
p

essentially by definition. Equipping the codomain with the

basis induced by the chart x × x, we see that the matrix of dE((p, 0p)) must have the
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form

idm×m 0m×m

X Y

 as the projection is independent of ∂j for j ≥ m + 1. On the

other hand, for m + 1 ≤ i ≤ 2m, we already know that d expp(0p) is the identity by the
above. Hence, Y = idm×m. Hence, in coordinates, we must have

dE((p, 0p)) =

idm×m 0m×m

X idm×m


which is upper triangular and therefore invertible. Hence, for each p ∈ M, dE((p, 0p))
is non-singular.

Theorem 25 (Naturality exponential map)

Let M and M̃ be two Riemannian manifolds, Φ : M → M̃ be a Riemannian isom-
etry and p a point in M. Denote by expM and expM̃ the exponential maps of M
and M̃, respectively. Then

expM̃
Φ(p) ◦Φ∗ = Φ ◦ expM

p .

Theorem 26

Let M and M̃ be two Riemannian manifolds, and Φ1, Φ2 : M → M̃ be two
Riemannian isometries. If there exists p ∈ M such that Φ1(p) = Φ2(p) and
dΦ1(p) = dΦ2(p), then Φ1 ≡ Φ2.

Proof. Exercise. (Hint: Prove that the set where the two isometries agree is both open
and closed.)

C.4 Polar Decomposition and Hermitian Bundles

Definition 32

Fix a choice for CAT. Given a complex vector bundle p : E → B, a Hermitian
metric on E is a section h : B → E⊗C E∗ of the bundle E⊗C E∗ → B such that at
each point p ∈ B, the hp is a complex inner product that is conjugate linear in the
first coordinate.

Here, E∗ is constructed as usual and has fiber over b F∗b the C-linear dual of Fb.
The bundle E has the same underlying fiber bundle E∗ → B but with C-action on
the fibers defined as follows. For a + ib ∈ C and v ∈ F∗p , (a + ib)v = av− ibv.
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Definition 33

Given a real vector bundle p : E → B, a Riemannian metric on E is a section
h : B→ E∗ ⊗R E∗ of the bundle E∗ ⊗R E∗ → B such that at each point p ∈ B, hp is
an inner product. We demand this be smooth when everything in sight is smooth.

Proposition 9

Let ξ denote the rank n ≥ 1 k-vector bundle p : E → B over a paracompact Haus-
dorff space with k = R or C. Then there exists a bundle atlas for ξ with transitions
in O(n) when k = R and U(n) when k = C.

Proof. Using a partition of unity argument, we may equip the vector bundle with a
metric in the real case and a hermitian metric in the complex case. The point is that
convex linear combinations of positive-definite symmetric forms is positive definite
and symmetric and, similarly, a convex linear combination of positive-definite hermi-
tian forms is positive-definite hermitian.

Take any bundle atlas for ξ and consider the standard sections for each fiber given
by (s1, . . . , sn) where si : U → p−1(U) is defined by using the associated trivialization
φ : p−1(U) ∼= U×Rn (or U×Cn) as p 7→ φ−1(p, ei) everywhere. Even in the case of the
hermitian inner product, the same Gram-Schmidt algorithm works and we may apply
this algorithm to the sections associated to the trivializations to obtain everywhere
orthonormal sections s1, . . . , sn. In particular, using Lee 10.19, we may modify the
trivialization to obtain a CAT trivialization that sends si 7→ ei in the real case. In the
complex case, a careful inspection of Lee 10.19 or Lemma 24 reveals nothing particular
to Rn was used so this carries over to complex case just as well.

Having done this, we must check that the resulting transition functions are CAT
and lie in O(n) (resp. U(n)). For CAT = DIFF, smoothness follows in the real case
from an argument from before and in the complex case by the analogous argument
applied to GLn(C). On overlaps, the transitions are (p, v) 7→ (p, gij(p)v) and we claim
that gij(p) ∈ O(n) (resp. U(n)). The corresponding transition coming from the trivi-
alizations we just constructed, call it φij, sends (e1, . . . , en) to an ordered orthonormal
basis (si

1(p), . . . , si
n(p)) for the relevant fiber. There a unique O(n) (resp. U(n)) change-

of-basis matrix A that sends this ordered orthonormal basis to the one corresponding
to ordered orthonormal basis constructed the chart φj, say (sj

1(p), . . . , sj
n(p)). Since φj

is linear, φj(A(si
1(p), . . . , si

n(p))) = (e1, . . . , en) = Aφj((si
1(p), . . . , si

n(p))) and hence,
one then deduces that gij(p) = A−1 ∈ O(n) (resp. U(n)).

Remark. The uniqueness of A in the real case is apparent since it is completely spec-
ified by the requirement that Asi

k = sj
k for each 1 ≤ k ≤ n. To check A ∈ O(n) (resp.

A ∈ U(n)), it is easier to forget about bases and simply check that ⟨Av | Aw⟩ = ⟨v | w⟩,
and this is certainly true because A took and orthogonal basis to an orthogonal basis.
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Lemma 28

The space of symmetric (resp. hermitian) matrices is diffeomorphic to Rn(n+1)/2

(resp. Rn(n+1)/2+n(n−1)/2 = Rn2
and the symmetric positive-definite (resp. her-

mitian positive-definite) matrices is an open submanifold thereof. The diffeo-
morphism is defined for hermitian matrices by decomposing such a matrix into
X + iY where X is a real symmetric matrix and Y is an antisymmetric (i.e., skew-
symmetric) matrix.

Proof. Note that every hermitian matrix A is the sum X + iY with X a real symmetric
matrix and Y a real antisymmetric (i.e., skew-symmetric) matrix and in fact this de-
composition is unique in the obvious way by taking real and imaginary parts which

we can express as X =
1
2
(A + At) and Y =

1
2i
(A− At), since A∗ = A and A∗ = At.

Hence, the hermitian matrices are diffeomorphic to Rn(n+1)/2+n(n−1)/2 = Rn2
and the

positive-definite hermitian matrices are an open submanifold of the hermitian matri-
ces and thus an open subhmanifold of Rn2

, we claim.
Now, the characteristic polynomial of any hermitian matrix A depends smoothly

on A as a function from hermitian matrices into the vector space of degree at most n
real polynomials (since the roots of the characteristic polynomial for a hermitian ma-
trix are all real) and therefore the roots depend smoothly on A. If all roots are positive,
this then remains true under small perturbations of A and thus of the characteristic
polynomial, whence the conclusion. In the real case, the symmetric matrices are a
submanifold of Rn2

diffeomorphic to Rn(n+1)/2 and the positive-definite symmetric
matrices are an open submanifold by precisely the same sort of argument.

The following is a form of polar decomposition for matrices.

Theorem 27 (Polar Decomposition)

Given a matrix M ∈ GL(n), there is a unique symmetric positive definite (hermi-
tian) matrix S such that M = OS with O ∈ O(n) (O ∈ U(n) for complex things).
Moreover, S depends smoothly on M and hence the matrix O is unique and de-
pends smoothly on M as well.

Proof. A symmetric positive definite matrix is invertible (its determinant is positive),
so the smoothness of O will follow by setting O = MS−1 (S−1 will of course depend
smoothly on M). This likewise shows that O is unique. Let us assume that the unique
factorization exists. By the spectral theorem, there is a unitary (resp. orthogonal)
matrix P such that P−1SP is diagonal. Suppose we can show that P depends smoothly
on S. One then sets S = (M∗M)1/2 (M∗M is positive-semidefinite and hermitian, the
first by observing that z∗M∗Mz = (Mz)∗Mz and the second by the obvious argument)
and so has a unique positive-definite hermitian square root. Then one sets O = MS−1.

We claim that the matrix square root (sending a positive-definite hermitina matrix
to its unique positive-definite square root) is smooth on the space of positive-definite
hermitian matrices. To see this, we must show A 7→ A2 is a diffeomorphism of the
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space of positive-definite hermitian matrices with itself. Indeed, A2 is positive-definite
and hermitian since (A2)∗ = (AA)∗ = A∗A∗ and A∗ = A for a hermitian matrix so
this is clear and it is positive-definite as a consequence of the spectral theorem. If
we had A2 = B2 then there is a unitary matrix P such that P−1A2P = P−1B2P as
symmetric matrices. Hence, (P−1AP)2 = (P−1BP)2. Since A has an orthonormal basis
of eigenvectors, A2 has the same orthonormal basis of eigenvectors up to scaling. The
same is true for B. Hence, for P to act as a change of basis on A2 diagonalizing A, it
must also do so for A. Hence, P−1AP is diagonal and thus so too is P−1BP. Positive-
definiteness forces us to conclude A = B. This map is obviously smooth and it is
obviously surjective.

To see that it is an immersion, note that conjugation by a unitary matrix is an auto-
morphism of the space of positive-definite hermitian matrices. Let P ∈ U(n) be such
that at P−1AP is diagonal where A is positive-definite and hermitian. Then the rank
of this self map at A is the rank of this self map at the diagonal matrix P−1AP by the
chain rule. If we know this, we are done.

Exercise 39

Fill in the last step of this proof. [Hint: Since everything is a submanifold of a Euclidean
space, it is enough to work with coordinates in that Euclidean space.]

Remark. This goes through in the real case basically verbatim. Positive-definite her-
mitian matrices are a submanifold since they are determined by the upper triangle of
the matrix entries and thus clearly sit in the prescribed way!

We will use these results later.

D Isotopy and Diffeotopy

Definition 34

An isotopy is a smooth map h : M× I → N such that for each t ∈ I, h(−, t) is an
embedding of M in N.

Definition 35

An strong isotopy is a level-preserving embedding h : M× I → N × I.

Theorem 28

Every strong isotopy is an isotopy. If M is compact, then every isotopy M× I → N
is a strong isotopy, but the converse is not true in general.

Page 96



MORSE THEORY & (HAMILTONIAN) FLOER HOMOLOGY MATT CARR

Remark. The converse statement is a common error in textbooks! A counter-example
is furnished in a short paper by Hansjörg Geiges. It is always true that a level-preserving
embedding M× I → N × I defines a (smooth) isotopy but the converse that the track
of an isotopy yields an embedding is definitely not true in general.

Proof. Let h : M× I → N × I be a level-preserving embedding. For fixed t, since h is
an embedding, ht : M× {t} → N× I is an embedding of a submanifold. Since it takes
image in N×{t}which is a submanifold of N× I, it is a submanifold of N×{t}. Now
forget the ts. When M is compact, strongness follows since the map is injective of full
rank and proper (by compactness of the domain).

We used the following.

Lemma 29

If L ⊂ M ⊂ N where M is a submanifold of N and L is a submanifold of M, then
L is a submanifold of N.

Proof. Since M → N is an immersion and homeomorphism onto its image, it follows
that L → N is a homeomorphism onto its image (since L → M is a homeomorphism
onto its image) and since L → M is an immersion, so too is L → N. An alternative
argument uses submanifold charts but is trickier to see.

Definition 36

A normalized isotopy is a strong isotopy h : M × I → N × I which extends to a
level preserving embedding h : M × R → N × R such that for t ≤ 0, h(p, t) =
h(p, 0) and for t ≥ 1, h(p, t) = h(p, 1).

Proposition 10

Every strong isotopy h : M× I → N × I admits a normalization.

Proof. Let

k(x) =

{
e−(2(x− 1

2)−1)
−2

e−(2(x− 1
2)+1)

−2

x ∈ (0, 1)
0 x /∈ (0, 1).

This is a modified version of the classic bump function which is found in Spivak’s
book. Then

l(t) =
∫ t

0
k(x) dx/

∫ 1

0
k(x) dx

is 0 for t ≤ 0, is positive for t > 0, is 1 for all t ≥ 1 and increasing on (0, 1). In
particular, l : R→ [0, 1] is smooth.
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Given h a strong isotopy, normalize it by setting H(p, t) = (prN h(p, l(t)), t). This
is what we want if we can show it is a smooth embedding. This is still an embedding,
we claim. To see this, consider the composite

M× R
idM ×(l,idR)−−−−−−−→ (M× I)× R

h×idR−−−→ (N × I)× R.

Each of these is an embedding, we claim. The first is an embedding since (l, idR) is
clearly an embedding—the tangent vector never maps to zero, clearly, and the image
is just the graph of the function and so a homeomorphism onto its image—so it is a
product of embeddings and thus an embedding. As for the latter map, h is known to
be an embedding and so this is a product of embeddings.

Hence, the whole composite M× R → N × I × R is an embedding and, in partic-
ular, (l, idR) : R→ I × R is an embedding and one easily checks that this implies

M× R
h×(l,idR)−−−−−→ (N × I)× R

prN × idR−−−−−→ N × R

is an embedding and that this composite is H.

Using this we can show the following.

Theorem 29

An isotopy from f to g is equivalently a level-preserving map H : M×R→ N×R
such that for each t Ht : M → N is an embedding and for t ≤ 0 H(p, t) = f (p)
and for t ≥ 1 H(p, t) = g(p) and equivalently a level-preserving map G : M× I →
N × I such that each Gt : M→ N is an embedding.

Proof. Use the function/construction above for the first part. The second part is obvi-
ous.

Theorem 30 (Isotopy Concatenation)

Given isotopies H : f → g and G : g→ h, there is an isotopy K : f → h.

Proof. Use the function/construction above for M × R → N × R. One may worry
about the concatenation point, but by being stationary between joining the two iso-
topies, the resulting function is smooth and then some thought shows that we may let
this stationary period disappear. We have to perform this twice as fast, then but that
is no issue.

Definition 37

Let f , g : M → N be two embeddings. An ambient isotopy between f and g is an
isotopy F : N × I → N such that F(p, 0) = p and F( f , 1) = g. Some thought on
what this means shows that it is an isotopy extending an isotopy between f and
g.
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Definition 38

The support of an isotopy H : M× I → N is

supp(h) = ClM ({p ∈ M : h(p, t) ̸= h(p, s) for some t, s ∈ I with t ̸= s}) .

Remark. An isotopy h : M × I → N with compact support is precisely an isotopy
which is stationary outside of a compact subset of M. A useful way to think about the
support of the isotopy is through its adjoint as the closure of the set of points p ∈ M
that map to non-constant paths in N.

In particular, a point p ∈ ∂ supp(h) for supp(h) compact is such that for all t,
h(p, t) = h(p, 0) since otherwise there is some t0 > 0 for which h(p, t0) ̸= h(p, 0) and
thus this is true for (q, t) in a nbhd about (p, t0) since by continuity h for every nbhd of
h(p, t0), there is a nbhd of (p, t0) which maps into this nbhd, so by Hausdorfness we
can choose a separating nbhd for h(p, t0) and h(p, 0) and hence, the nbhd guaranteed
to exist by continuity about (p, t0) maps into two disjoint sets.

Theorem 31

An isotopy with compact support is a strong isotopy.

Proof. Let h : M × I → N × I be an isotopy and let K = supp(h) its support. Then
h|K× I : K× I → N× I is a strong isotopy. In fact, for Kc× I = M× I \K× I, which is
an open subset of M× I, h : Kc× I → N× I is an embedding we claim—this is because
this map is constant with each slice being the same embedding. In fact, ∂K is a closed
set and for each p ∈ ∂K, h(p, t) = h(p, 0) by the above remark, so it follows easily that
h : Int(K)c× I → N× I is an embedding, where Kc× I ∪ ∂K× I = Int(K)c× I. Since h
is an embedding on two closed sets whose union is all of M× I, it is an embedding on
I. Indeed, simply think about showing that this map sends closed sets to closed sets
in the subspace topology.

Theorem 32

Let f : E → F be an isomorphism between two smooth Riemannian (resp. hermi-
tian) vector bundles over a base manifold M. Then there is an isometry g : E→ F
and in fact a strong isotopy (diffeotopy, even) from f to g.

Proof. WLOG suppose F = E. The two metrics can be represented by two families of
orthonormal bases of each tangent space—this is just saying that there is a reduction of
structure group. An automorphism of E is locally given by matrices Mp such that Mp
is simply the change of basis matrix. This automorphism is then an isometry iff these
matrices are all orthogonal matrices. (We should use trivializations here that have the
same open sets and choose our trivializations to be isometries as well.)
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Writing Mp = OpSp as above, the matrices Op define an isometry over p−1(U)
(perhaps by carrying it back to this). Working in an overlapping trivializing chart, the
same procedure produces a compatible map since the transition functions are change
of bases corresponding to the image of the given bases in the fibers under the two
trivializations. One sees this using uniqueness of the polar decomposition and some
thought.

Let Mp(t) = Op(tIn + (1− t)Sp). The set of positive-definite hermitian (resp. sym-
metric) matrices is convex, so the same argument as above shows that this defines
the desired parametrized family of automorphisms H : E× I → E (and it is certainly
smooth with the obvious extension). This is a strong isotopy because E× I → E× I is
a diffeomorphism with inverse given by using Mp(t)−1.

Theorem 33

For every ε > 0, for every continuous section s of a Riemannian bundle that is
smooth on a closed subset K, s can be approximated by a smooth section t agreeing
with s on K such that, fiberwise, ∥s(p)− t(p)∥ < ε.

Proof. Standard approximation argument using partition of unity.

Definition 39

Let ε : M → R>0 be smooth. Then a ε-shrinking of a Riemannian bundle π : E →
M over M is the smooth map ε̃ : E→ E given by

v 7→ ε(π(v))
v√

1 + ∥v∥2

For simplicity, assume now that M is connected. Then, more generally, a
shrinking of a vector bundle π : E → M is any fiber-preserving smooth embed-
ding ε : E→ E with the following properties.

(1) If Ep = π−1(p), then ε(Ep) ⊊ Ep is a proper subset.

(2) If w, v ∈ Ep are collinear, then ε(w) and ε(v) are collinear in Ep.

(3) Im(ε) has the structure of an open-disk subbundle of E. In other words, it
is a subset of E with the structure of fiber bundle with typical fiber an open
disk of unit radius in Rk centered at 0 and structure group O(k) where k is
the rank of the bundle with trivializations inherited by restriction from those
of E.

Lemma 30

Fix a Riemannian vector bundle π : E→ M with metric g0 and let ε : M→ R>0 be
smooth. Then the above ε-shrinking procedure really does afford an open (linear)
disk bundle. In particular, we may modify g0 within its conformal class to obtain
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a metric g such that the ε-shrinking is the open unit disk-bundle of E with metric
g.

Proof. Suppose the rank of the bundle is k. Then in the conformal class of g0, we may

modify it to a new metric g =
1
ε
· g0 (this is well-defined since ε > 0 everywhere). Note

that the image of the ε-shrinking procedure has fiberwise image
{

v ∈ Ep : g0(v, v) < ε(p)
}

and so, equivalently,
{

v ∈ Ep : g(v, v) < 1
}

. Using the metric g, the Gram-Schmidt

procedure allows us to construct trivializations φ : π−1(U)
∼=−→ U × Rk that are fiber-

wise isometries where Rk acquires the standard Euclidean inner product, thereby re-
ducing the structure group of the bundle to transition functions all lying in O(k). It
follows easily that the transitions respect the unit open-disk bundle for the metric g
and thus the image of the ε-shrinking procedure.

Now let us justify that the shrinking terminology is what we expect it to be.

Lemma 31

If ε : E → E is a shrinking of E where π : E → M has rank k. Then in for any
Riemannian metric on E, the following hold.

(i) If v ∈ Ep (the fiber over p) is non-zero, then ε(v) ̸= 0.

(ii) For any trivialization φ : π−1(U)
∼=−→ U×Rk that is a fiberwise isometry and

any v ∈ Ep \ {0},
ε(tφ(v))

dt
< 0.

(iii) If v, w ∈ Ep are collinear and |v| < |w|, then |ε(v)| < |ε(w)|.

Proof. Using a fixed choice of Riemannian metric on E, we may assume this bundle
has structure group O(k) with trivializations fiberwise isometries. Note that ε restricts
to an embedding Ep → Ep for each p.

(a) For the first, this is because only 0 is collinear with every other vector, and ε is
required to preserve this.

(b) We implicitly use that ε sends one-dimensional subspaces to one-dimensional

subspaces now. Fix v ∈ Ep \ {0}. Now for any trivialization φ : π−1(U)
∼=−→ U×Rk that

is a fiberwise isometry,
ε(tφ(v))

dt
= 0 for some t where v ̸= 0, this would contradict

that ε : Ep → Ep is an embedding and thus has full rank. On the other hand, some t

satisfies that
ε(tφ(v))

dt
< 0 we claim. Indeed, by invariance of domain, ε(Ep) is open in

Ep, an open subspace of Ep containing the one-dimensional line span(v) cannot inherit
the structure of an open-disk bundle from E since there is no metric on E for which

every vector in span(v) has finite length. Hence,
ε(tφ(v))

dt
< 0 for all t since otherwise

by continuity some t would have
ε(tφ(v))

dt
= 0 which we have seen is impossible.

(c) Some thought shows this follows immediately from (b).
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Thus, a shrinking really is a function that shrinks vectors inwards towards the origin.

Lemma 32

Suppose ∂M = Ø and let X be a vector field on M×R with t-coordinate
∂

∂t
(where

t is the identity coordinate system on R). If X admits a global flow, then X induces
a strong isotopy of the identity map of M via (p, t) 7→ Φ((p, 0), t). This is in fact a
diffeotopy since it has the evident inverse for each t.

Remark. Suppose M is a compact manifold. Then a vector field X̃ on M has a global

flow. It follows (abusing notation) that the vector field X = X̃ +
∂

∂t
admits a global

flow on M × R since X has bounded velocity on M × R for any product Rieman-
nian metric on M× R (i.e., sup(p,t) ∥X(p,t)∥ < ∞). See Hirsch’s remarks on flows and
bounded velocity in his book—the boundedness condition guarantees the existence of
a global flow.

Theorem 34 (Isotopy Extension Theorem)

Let f : M→ N be an embedding, let K ⊂ M a compact subset and let G : M×R→
N × R a strong isotopy of f . Suppose G(K × I) ∩ (∂N) × I = Ø. Then there
is an isotopy of the identity map on N, H : N × R → N × R, such that for all
x ∈ K, H( f (x), t) = G(x, t). In particular, this isotopy has compact support and
is thus strong and is in fact a diffeotopy. Furthermore, for any appropriate nbhd
U of G(K× I) with compact closure, we may suppose this diffeotopy has support
contained in prN U which is compact.

The same, moreover, is true if we suppose instead that N has boundary and
no corners and we suppose G(K× I) ⊂ (∂N)× I. It follows that the diffeotopy H
restricts to a diffeotopy of ∂N and Int N, separately.

Proof. We start with the first case. Let X = DG(∂t). Note that X has t-coordinate in
the obvious product chart simply ∂t. Since G(M× R) ⊂ N × R is a submanifold, this
vector field is locally extendable. Let B = G(K × [0, 1]). This is compact and closed
and so X extends over N × R to a vector field Y agreeing with X on B and WLOG
vanishing outside of some nbhd U of B where we assume U is compact and does not
intersect the boundary of N at any time (compactness allows us to arrange this). Let

Z = (Y− t-coordinate of Y) + ∂t

so that the t-coordinate of Z in the obvious sort of product chart is ∂t and Z| B =
Y| B = X| B.

Let V be an open set with compact closure containing U such that V ∩ ∂N = Ø.
Then the integral curves originating outside V have the form (x0, t + t0) until they
reach U. Since U is compact, is a δ > 0 for which all solutions starting outside of V are
defined for |t| < δ. For instance, we may suppose V and U are product nbhds to see
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this. Furthermore, since V is compact, there is an ε > 0 such that all solutions starting
in V are defined for time |t| < ε. Indeed, this is the tube lemma applied to the slice
V × {0} ⊂ Int N × R for the open nbhd AZ ∩ V × R containing this slice, where AZ
is the flow domain of Z restricted to Int N. This implies that the flow domain for Z in
Int N contains a tube about Int N×{0} and thus has a global flow in Int N by the usual
argument as in the existence of global flows for vector fields on compact manifolds.

Thus, there is an isotopy Int N × R of the identity map of Int N by the preceeding
Lemma and some thought gives us the other piece of the conclusion. All that is left is
to extend this to an isotopy N × R → N × R. What we have so far is constructed as
in the above Lemma and since Z has only ∂t coordinate outside U, it is easy to see this
isotopy is the identity outside of U and thus extends in the evident way.

The isotopy so constructed has compact support, we claim. Note that the vector
field Z on N × R has trivial projection onto TN outside of the nbhd U of B where U
is compact. Thus, the support of the isotopy is contained in prN U clearly and since
prN U is compact (continuous image of a compact set) and thus closed, we get

prN U = prN U ⊃ prN U

and so the support is compact. This implies, as we have seen, that it is a strong isotopy.
Now consider the latter case. Let X = DG(∂t). Note that X has t-coordinate in

the obvious product chart simply ∂t. Since G(M× R) ⊂ N × R is a submanifold, this
vector field is locally extendable. Let B = G(K × [0, 1]). This is compact and closed
and so X extends over N × R to a vector field Y agreeing with X on B and WLOG
vanishing outside of some nbhd U of B where we assume U. Let

Z = (Y− t-coordinate of Y) + ∂t

so that the t-coordinate of Z in the obvious sort of product chart is ∂t and Z| B =
Y| B = X| B.

Now the horizontal piece of Z, namely Z = (Y − t-coordinate of Y), is tangent to
∂(N×R) = (∂N)×R at all times and has compact support. It is easy to see that this is
a vector field for which the flow is global just as above. The flow for the vertical piece
of Z is likewise globally defined. We can piece these together to form the flow for Z
in the evident way. The same argument about compact support works showing the
diffeotopy is strong. As for the part about restriction, this follows by smooth invari-
ance of the boundary. Alternatively, a point in Int N at time 0 can never flow into ∂N
since Z is always tangent to ∂N at all times, so this contradicts uniqueness of integral
curves.

Definition 40

Let γ : S1 → M be a loop in an m-manifold M. Let M̃ be the orientation double-
cover of M. We say that γ is orientation-preserving if γ∗M̃ is a trivial Z/2-bundle
and is orientation-reversing if γ∗M̃ is a non-trivial Z/2-bundle.

Remark. Since the orientation double-cover is a regular covering space and thus a
principle Z/2-bundle, there are only two Z/2-bundles over S1.
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Remark. The orientation double cover is always itself oriented—when the base is ori-
ented, then it is the trivial (disconnected) double cover and we give opposite orien-
tations to each piece. Viewing γ as a class in some fundamental group of M (M is
connected, of course, as always), then γ being orientation-preserving is the same as
saying that the action of γ on the covering space is orientation-preserving (for either
choice of orientation, of course).

Warning. Double check a few things in the next proposition.

Proposition 11

If M is orientable, all smooth loops are orientation preserving. If M is not ori-
entable, there is an orientation-reversing loop through any point. There are also
orientation-preserving loops if M is not orientable. When M is not orientable, the
orientation-preserving loops form a subgroup of index 2 in π1(M) (as usual M is
connected) which is thus a normal subgroup.

Proof. M is orientable iff it has disconnected orientation double cover (the trivial Z/2-
principal bundle), in which case this is clear. Now suppose M is non-orientable and
let γ be the projection of a path between the two points in the fiber of M̃ → M over
p and let γ : S1 → M be the induced loop with 0 ∈ S1 mapping to p obtained by
post-composition with the bundle projection of the path. If γ∗M̃ is trivial, then over
the basepoint 0 we get a Z/2-equivariant map that maps one point to each fiber. On
the other hand, restricting to one piece of this gives a loop in M̃ covering γ and this is
clearly impossible. A loop in M̃ will always pass to an orientation-preserving loop.

The point here is that M̃ is a regular covering space with two sheets, so the image
of π1(M̃) in π1(M) is a normal subgroup of index 2.

Corollary 28 (Disc Theorem, Palais)

Let N be a manifold with corners that is connected for simplicity. Let f , g : Dk →
N be two embeddings of the closed disk in N. If k = n and N is orientable, sup-
pose further that f and g are both orientation preserving or orientation reversing.
Then f and g are ambient isotopic.

In particular, the following hold.

(a) If Im( f ) ∪ Im(g) ⊂ Int(N), then this isotopy may be assumed to be a dif-
feotopy with compact support.

(b) If ∂N is compact, then this isotopy may be assumed to have compact sup-
port.

(c) If f = g on a disc Dm ⊂ Dk and Im( f ) ∪ Im(g) ⊂ Int(N), then this isotopy
may be assumed to be stationary on Dm.

(d) The same is true of embeddings of the open disks as long as the embeddings
extend to Rk—more precisely, so long as the embeddings are restrictions of
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embeddings of closed disks of strictly larger radius than 1.

Warning. We repeatedly and implicitly use the isotopy extension theorem throughout
the proof. We silently suppress the assumption of the open disk case when we apply
the isotopy extension theorem.

Proof. If f and g intersect the boundary of N, we can use the We first show the closed-
disk case reduces to the case of embeddings of open disks. We can then knock both
cases (half-disks and non half-disks) out in one go. For a closed disk, by shrinking just
a little, we find that the embedding is isotopic to the “restriction” to the closed disk of
radius 1/2 inside Dk viewed as the map

f̃ : Dk 1/2−−→ Dk f−→ N,

(i.e., smoothly shrinking the radius 1 disk into the radius 1/2 disk). This means that f̃
admits an extension to an embedding of the open disk B of radius 4/3 = 1 + 1/3 by

the same formula as f̃ , call this ˜̃f . We can do this for any two maps f and g. An isotopy

between ˜̃f and ˜̃g will restrict to an isotopy between f and g. Since the domains of ˜̃f
and ˜̃g are diffeomorphic to open balls of radius 1, knowing the result for open balls of
radius 1 suffices.

If ∂N ̸= Ø, then there is an isotopy of N retracting a collar of N diffeomorphically
say into the interior of N. If ∂N is compact, we may suppose this is a diffeomorphism
generated by an isotopy ∂N×R≥0× I → ∂N×R≥0 between the identity and the map
sending [0, 1] ⊂ R≥0 to [1/2, 1] ⊂ R≥0 diffeomorphically and in such a way that the
isotopy is constant outside of ∂N × [0, 1] and so has compact support. Assuming the
other assertions are true, we are now free to apply them so this reduces to the case of
embeddings into the interior.

We consider the case of non-half disks first.
For ∂N = Ø and open disks, take a smooth path between the centers of the disks

f (0) to g(0) and extend this to an ambient isotopy which we may assume is a dif-
feotopy with compact support (fixing the boundary in the case ∂N ̸= Ø since by
shrinking we may assume these disks do not have closure intersecting the bound-
ary up to isotopy and so WLOG). Call the images of the open disks f D and gD and
call the image of f D under this isotopy K1 f D. Since the final map is a diffeomorphism
of N with itself, it is an open map, so some open nbhd of f (0) gets mapped into an
open nbhd of g(0). WLOG we assume it contains all of f D perhaps by shrinking first.
Call the last map of the isotopy of the disk so far constructed H1 so that we can declare
H1D = K1 f D.

Suppose for the moment that N is oriented. Then f and g have the same orientation
type for the standard orientation on the open disk, then since ambient isotopies (and
in particular ambient diffeotopies) are orientation preserving, being homotopic to the
identity map, the orientations of the final map of f D into gD is necessarily orientation
preserving between the disks with their orientations inherited from f and g (which are
both the same orientation type). By pre-composing with f , this gives an isotopy from f
to an embedding into g, perhaps after shrinking K1 f D (these are both still necessarily
open nbhds of g(0) by invariance of domain so we can do this), and these all preserve
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orientation type since this is an isotopy and thus the map onto the image of g has the
same orientation type as f and g.

By shrinking we may assume g has image in the domain of a chart and that these
coordinates g(0) = 0. WLOG we may likewise suppose by shrinking, perhaps, that
H1D = K1 f D ⊂ gD (these are both still necessarily open nbhds of g(0) by invariance
of domain and the fact that we are doing ambient isotopies so we can do this).

When k = n, then, equipped with the induced orientations, in coordinates, there
is no reason that f and g (and thus H1 and g) need to have the same orientation type
when we make only the assumption that N is non-orientable. However, we may take
an orientation-reversing loop in the manifold and isotope H1 around this so that the
orientations then agree. Thus, WLOG suppose that in this chart, then, when k = n,
then both f and g preserve orientation. When N is orientable, this follows from the
additional hypothesis on f and g.

Whatever the case on the dimensions,g is, in coordinates, isotopic to the linear map
given by its differential at 0. This isotopy is the standard isotopy Dk × I → Rn given
by

(x, t) 7→
{

t−1g(tx) 0 < t ≤ 1
Dg0x t = 0

which is smooth essentially by Hadamard’s lemma applied to g(tx), for which we may
write

g(tx) = g(0) + ∑
i

txihi(tx) = ∑
i

txihi(tx)

with hi satisfying some relevant properties and xi the i-th coordinate. Note that Dg0
has rank k.

When k = n, then Dg0 is in the identity path-component of GLn(R) based on our
assumptions and there is an isotopy from this map to the identity map by taking a
smooth path from Dg0 to the identity matrix in this Lie group. Similarly in these
coordinates H1 admits an isotopy to the identity linear map of the same form by our
assumptions. These isotopies act via (x, t) 7→ γ(t)x where γ(t) ∈ GLn(R).

When k < n, we first isotope f and g to linear maps of the form above. Then
we extend these to all of Rk by the same formula for the subspace Rk × 0 ⊂ Rn and
then we choose the remaining n − k coordinates by picking a basis of Rn for which
the first k coordinates span the image of Dg0 (resp. D f0) and the last n − k simply
extend this to a basis. We choose this such that there is an evident linear extension
(automorphism even) which we write suggestively as Rk×Rn−k → Rk×Rn−k having
positive determinant, which we can arrange by choosing the signs of the last n − k
coordinates appropriately where they map in this basis as ek+i 7→ ±ek+i. The reasoning
of above applied to these maps shows they are isotopic and they then restrict to the
isotopy of the maps desired.

Now consider the boundary case. We can retract a collar nbhd of N into N and
therefore we may assume WLOG that the embeddings are actually into the interior of
N. WLOG by shrinking suppose f and g take image in an interior chart o N. Smooth-
ness then means that near 0, each of f and g extend locally—hence, we may suppose
they are defined in an open ball of radius ε > 0 about 0 in Rk ⊃ Dk. By shrinking the
disk, we may even suppose that f and g are then defined on the interior of this open

Page 106



MORSE THEORY & (HAMILTONIAN) FLOER HOMOLOGY MATT CARR

ball. This reduces us to the case above, since an isotopy of these extensions restricts to
an isotopy of the open half-disks and we know the latter exists.

Exercise 40

Formulate and prove an extension for half-disks of the above theorem. Break this
into two interesting cases:

(a) Make no other assumptions. [Hint: Flow inwards. Assume you may construct
this as an embedding.]

(b) Suppose ∂N is compact.

Corollary 29

If fi, gi : Dk → M (i = 1, . . . , n) are embeddings of closed disks (resp. open disks
that are restrictions of embeddings of strictly larger closed disks) such that the
fi have disjoint images (resp. have disjoint closure of images) and the gi have
disjoint images (resp. have disjoint closure of images). When M is orientable and
k = n we assume in addition that the orientation type of fk and of gk are the same
for each 1 ≤ k ≤ n. Then there is an is a diffeotopy of M bringing each fi to gi.

Proof. As before, the case of open disks suffices. By the above there is a diffeotopy
bringing f1 to g1, call the resulting diffeomorphism H1. This diffeotopy keeps the
closures of the fi and the gi respectively disjoint. By modifying the proof of the isotopy
extension theorem we are using, using the fact the closures of the disks are disjoint, we
can construct a diffeotopy of M taking H1 f2 to g2 while keeping the closure of g1(Dn)
fixed. This repeats. We may have to retract into the interior of N first but this is no
problem.

E Tubular Neighborhoods

Definition 41

A tubular neighborhood of a submanifold M ⊂ N is a vector bundle E → M of
rank dim N − dim M and a smooth commutative diagram

M E

M N

0

i

with i an embedding and 0 is the zero section. It is sometimes easier to think of a
tubular nbhd as a subset of N equipped with extra structure.

A closed tubular neighborhood of a submanifold M ⊂ N is a disk bundle
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E → M of rank dim N − dim M with structure group O(dim N − dim M) and a
smooth commutative diagram

M E

M N

0

i

with i an embedding and 0 is the zero section. It is sometimes easier to think of a
tubular nbhd as a subset of N equipped with extra structure.

Remark. When ∂M = Ø, a closed tubular neighborhood is a submanifold with bound-
ary with closed image. This is because the interior of each disk (thus, the interior of the
disk bundle viewed as a manifold) is a Euclidean space and the structure group pre-
serves the interior. Hence, it may be equipped with the structure of a vector space (per-
haps after fixing once and for all a diffeomorphism of the interior with Rdim N−dim M

which thus gives a tubular neighborhood in the preceding sense. When M as bound-
ary, it has corners.

Definition 42

A proper tubular neighborhood of a submanifold M ⊂ N is a tubular nbhd ob-
tained by a shrinking of another.

Remark. Closed and proper tubular nbhds correspond in a certain sense.

Proposition 12

If a closed tubular nbhd is the disk bundle of some tubular nbhd, then the interior
of that closed tubular nbhd is a proper tubular nbhd. A proper tubular nbhd is
always interior of a closed tubular nbhd obtained by taking its closure.

Restricting to closed tubular nbhds that arise as disk bundles of tubular nbhds,
closed tubular nbhdds and proper tubular nbhds correspond. Here we restrict to
M ⊂ Int N and those closed tubular nbhds of M that do not intersect the boundary
of the ambient manifold.

Remark. One might think we need to restrict to proper tubular nbhds whose closure
does not intersect the boundary of the ambient manifold, but any such tubular nbhd
is not proper to begin with because it cannot properly extend—the boundary point is
necessarily a limit in the fibers away from the zero section since each point of M has
an open nbhd not intersecting ∂N (since every point of N satisfies the same). Thus
this cannot properly extend. Similarly, closed tubular nbhds will not intersect the
boundary of N in this set up because they too must extend.

Proof. We may as well suppose ∂N = Ø. It is clear that the closure of a proper tubular
nbhd T gives the structure of a closed tubular nbhd since a proper tubular nbhd is
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precisely a shrinking of a tubular nbhd and there its closure in N is its closure in the
image of the total space E in N since dim E = dim N and T ⊂ E is a fiberwise proper
subset has the structure of an open-disk bundle, by definition.

Conversely, given a closed tubular nbhd of the sort above, there is an implicit met-
ric floating around for which its interior is precisely a proper tubular nbhd. These
procedures are manifestly inverse to each other on the class considered.

The situation is better when M is compact.

Proposition 13

If M ⊂ Int N is a compact submanifold, then any closed tubular nbhd extends to
a tubular nbhd. Hence, every proper tubular nbhd extends.

Proof. Let π : E → M be a disk bundle with structure group O(n− m) as in the def-
inition of a closed tubular nbhd. Let p : E′ → M be the associated bundle with fiber
Rn−m so that E is (at the very least up to isomorphism) the unit disk bundle of E′ for a
choice of metric on the bundle.

Let ρ(t) be a bump function R→ R that is 0 for t ≤ 0, 1 for t ≥ 1 and increasing on
(0, 1). Given a closed tubular nbhd i : E ↪→ N, let H : E× R→ N be

H(v, t) = i(1− ρ(t)/2)v).

This is indeed an isotopy since the scaling map is an embedding, clearly.
Since E is compact, this extends by the isotopy extension theorem to a strong dif-

feotopy h : N × R→ N.
Let λ : R→ R be a smooth function with λ < 1 everywhere, dλ/dt > 0 everywhere

and λ(t) = t/2 for t ∈ [0/1]. For example,

λ(t) =
1
2

∫ t

0
(1 + (e−x − 1))ρ(x− 1) dx.

Now we extend the embedding H1/2 to a tubular nbhd by letting ψ be

ψ : E′ → N

by
ψ(v) = i(λ(∥v∥)v/∥v∥).

This is an embedding because i is, once we know that

v 7→ λ(∥v∥)v/∥v∥
is a well-defined embedding E → E, note that, near the 0 element, λ(∥v∥) = 1/2∥v∥,
so that the zero vector maps to itself in the limit so that this is well-defined, under-
stood suitably. To see that it is an embedding, one simply notes that it is an injective
map of constant (full) rank and so a local diffeomorphism that is injective and so a
diffeomorphism.

Finally, one easily verifies that

j = h−1
1/2 ◦ ψ,

is the extended tubular nbhd.
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Theorem 35 (Existence, I)

Let M ⊂ N be a submanifold where ∂N = Ø or M ∩ ∂N = Ø.

(a) The exponential map restricted to νN M is defined on an open nbhd of the
zero-section of the normal bundle νN M in N and furthermore exp is an em-
bedding on this nbhd onto a submanifold of N containing M as a submani-
fold M (in particular, as the zero section).

(b) When ∂M = Ø, this submanifold is in fact open in N.

(c) In particular, tubular nhbds exist in the cases considered, even for submani-
folds with corners.

Remark. When the codimension of M in N is 0, then the normal bundle of M in N has
rank 0 and thus is the unique rank 0 vector bundle over M up to diffeomorphism.

Proof. Identify νN M as a subbundle of TN|M. One shows exp has full rank on the
zero section of νN M and thus in a nbhd of the zero-section. Then one applies the
tubular neighborhood trick—this requires either one of the assumptions ∂N = Ø or
M ∩ ∂N = Ø. For the latter case we can just as well suppose ∂N = Ø. When ∂M = Ø,
this nbhd is open since then νN M is manifold without boundary and so the invariance
of domain applies.

Corollary 30

If f : M→ N is an embedding with the relation between M and N as above (∂N =
Ø or M ∩ ∂N = Ø). Then f extends to an embedding of νN M (strictly speaking,
the normal bundle to the immersion f ) in N and when ∂M = Ø this is an open
nbhd of f (M) in N.

Proof. Let ε be a suitable shrinking function taking νN M into itself as in the ε-shrinking
procedure such that the image of this shrinking is contained in the nbhd of the zero
section upon which the exponential map is defined.

Lemma 33 (Hadamard’s Lemma)

Let U ⊂ Rm be a convex (or even star convex) open nbhd about a point p ∈ Rm

and f : U → R a smooth function. Then

f (x)− f (0) = ∑
i

ai(x)(xi − pi)

for smooth functions a1(x), . . . , am(x) with

ai(p) =
∂ f
∂xi (p).
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In particular, when p = 0,

f (x) = ∑
i

ai(x)xi ai(0) =
∂ f
∂xi (0).

Proof. By the chain rule and the fundamental theorem of calculus (integrating a 1-
dimensional line),

f (x)− f (0) =
∫ 1

0

d
dt

f (tx + (1− t)p) dt =
∫ 1

0
∑

i

∂ f (tx + (1− t)p)
∂xi (xi − pi) dt

= ∑
i

(∫ 1

0

∂ f (tx + (1− t)p)
∂xi dt

)
(xi − pi).

So set ai(x) =
∫ 1

0
∂ f (tx + (1− t)p)

∂xi dt. The last part now follows by differentiating.

Remark. This lifts to manifolds by taking charts with convex image. When the man-
ifold has boundary or corner, then a smooth function f : M → R in a corner chart
extends to an open subset of Rm and open subsets of Rm are locally convex and so up
to a suitable modification the same is true.

This next result implies that the vector bundle structure on tubular nbhds is unique
for ∂M = Ø and, moreover establishes that any two tubular nbhds are isotopic.

Theorem 36 (Uniqueness, I)

Let M ⊂ N and suppose ∂M = Ø. Let F1 be a tubular nbhd of M in N and let
F0 → M be a bundle of rank k ≤ dim N − dim M. Then there is an isotopy G
of the inclusion F0 ⊂ N such that Gt(p) = p for p ∈ M and G1 is a linear map
F0 → F1 of rank k on each fiber.

We view these as submanifolds of N throughout and as vector bundles over M inter-
changeably throughout the proof.

Proof. We start with a claim.

Claim. There is a ε-shrinking of F0 to a bundle E0 such that for every p ∈ M there is
a nbhd U in M and a trivializing chart V ⊂ M for F1 such that E0

U ⊂ F1
V (this denotes

the restriction of each bundle viewed as subsets of N).

Fix choices of metrics for both bundles F0 and F1.
Let V be a trivializing chart for F1 in M, say a submanifold chart perhaps by shrink-

ing (where we mean that the restriction FV is trivial) about p ∈ M. Let U be a nbhd
with compact closure contained in V and containing p. Giving F0 a metric, there is an
εp > 0 such that all εp-discs in the fibers of F0 over U are contained in F1

V by a compact-
ness argument and, critically, by using that F1

V is open in N—here we are viewing this
containment inside of N and we remark that it is not necessarily a fiberwise inclusion.
F1

V is open in N since F1 is open in N by a preceding result as M has no boundary.
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Remark. If F1
V were not open (e.g., in certain cases where ∂M ̸= Ø) then this would

fail miserably—just draw a picture in the case of a 1-dimensional submanifold with
boundary sitting in R2 with the vector spaces over a boundary point orthogonal to
each other! Something slightly different is true however and we will show that next.

Now, cover M by such charts and WLOG assume it is locally finite and the charts of
this open cover {Uα}α∈Λ have corresponding numbers εα. Taking a partition of unity
subordinate to this open cover say {ρα}, with a little bit of effort, say by replacing each
εα by

ε′α = (min
{

εβ : Uα ∩Uβ ̸= Ø
}
)/(#

{
β ∈ Λ : Uα ∩Uβ ̸= Ø

}
+ 1),

we can construct a smooth positive function ε : M→ R+ such that ε(p) < εα whenever
p ∈ Uα by setting ε = ∑ ε′αρα. Then a ε-shrinking of F0 results in a bundle E0 satisfying
the properties of the claim.

The shrinking map is itself isotopic to the inclusion F0 → N so it suffices to con-
struct an isotopy of the inclusion ι : E0 → F1 to a linear non-degenerate map E0 → F1.
Note that ι : E0 → F1 is now an embedding since it is an embedding into N with image
contained in the submanifold F1.

For t ̸= 0, define

Gt(v) =
1
t

ι(tv).

When t = 0, we define G0 as follows. If U and V are as in the claim, then ι : E0
U → FV

1
is given in local (bundle) coordinates by

v = (x, y) 7→ ( f (x, y), g(x, y)) ∈ Rm × Rn−m (x, y) ∈ Rm × Rk

where f (x, 0) = x and g(x, 0) = 0. WLOG we may suppose that these coordinates are
a convex open set (when M has boundary, which are not supposing, we can still do this
by extending the function on the corner piece). Then in these coordinates (or at least
locally in these coordinates), by Hadamard’s lemma, we may write g = (g1, . . . , gn−m)
with

gi(x, y) = ∑
j

ai
j(x, y)yj where ai

j(x, 0) =
∂gi

∂yj (x, 0).

for each i = 1, . . . , n−m and j = 1, . . . , k. Therefore, canceling ts

Gt(x, y) = ( f (x, ty), ∑
j

a1
j (x, ty)yj, . . . , ∑

j
an−m

j (x, ty)yj)

which is now very manifestly smooth, even in consideration of the boundary coming
from the interval I, and also now well-defined for all t since the ys are part of the fiber
coordinates.

Now G0 maps the fiber of E0 at x into the fiber of F1 at x by a linear map given by
the matrix J = (ai

j(x, 0)). The Jacobian J(ι) has rank m + k, being an embedding and
for p ∈ M ⊂ E0, it has the form (in bundle coordinates)

J(ι) =

Im ∗

0 J
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so J must be of rank k and thus that G0 is as desired. It is clear by construction that
this is stationary on M.

Remark. In the case of boundary, we have to extend things appropriately to apply
the preceding lemma. This is involved, but ultimately works out as we shall see. The
easier generalization is for collars, which we do next.

Corollary 31

Every two tubular nbhds of a submanifold M ⊂ Int N with ∂M = Ø are isomor-
phic as bundles and have isotopic embeddings in N.

There is also a version that applies to collars.

Theorem 37 (Uniqueness of Collars, I)

Let M = ∂N where N may have corners and let F0 and F1 be two open collars
of M. Then F0 is isotopic to F1 by an isotopy that is stationary on M. In particu-
lar, this shows that Im(F0) is diffeomorphic to Im(F1) by an embedding fixed on
∂M and hence that the smooth structure on ∂M× R≥0 making it a manifold with
corners is unique.

Proof. Open collars of M = ∂N are in particular open subspaces. Multiplication by
non-negative numbers is allowed in R≥0, so the proof goes through without change—thinking
about collars as a sort of trivial “half” tubular nbhd—and yields an isotopy G(p, s) for
(p, s) ∈ M× R≥0 where G1 is the inclusion of F1 and G0 is the inclusion of F0 except
scaled by first mapping (p, s) 7→ (p, a(p)s) where a(p) is a smooth positive function
on M (i.e., the shrinking)—this last map is isotopic to the inclusion of F0.

The only thing that needs verification is that the we can find a shrinking function
ε : ∂M → (0, 1]R>0 which is suitably smooth for the smooth structure given to the
collar when M has corners, by which we mean that we require

(p, t) 7→ (p, ε(p)t) ∂M× R≥0 → ∂M× R≥0

to be smooth for the smooth structure inherited from its collar map C : ∂M× R≥0 →
M.

For this, it is enough to assume the collar has a particular and convenient form, we
claim. This follows essentially because we can the cocatenate isotopies.

For this, note that we may WLOG suppose the collar F0 arose from a vector field
X. By modifying the construction of the inwards pointing vector field suitably, it is
possible to assume that, for some choice of complete metric on M, that |X| is bounded.
For instance, choose a covering of ∂M by charts (xi, Ui) in which each point p of

⋃
i Ui is

in at most m + 1 charts. This is possible to arrange because the covering dimension of
an m-dimensional manifold is the same as its dimension. Then construct an inwards
pointing vector field as usual and in each chart (xi, Ui) modify the vector field Xi
constructed so that |Xi| < 1 in Ui. This is possible to do using a suitable scaling
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function that is smooth. Using a partiton of unity to piece together the Xi, it is easy
to see that the resulting vector field X has |X| bounded above for this covering. By
standard arguments, this means the flow of X is global in a suitable sense for manifolds
with corners. In particular, the flow map ΦX is already defined on ∂M×R≥0. One can
then easily verify that ΦX

∣∣ ∂M×R≥0 is a homeomorphism onto its image by showing
that it is an open map; one shows that by showing that it sends sufficiently small open
sets to open sets. The argument is entirely analogous to how we showed the collar
map is an open map for manifolds with corners—namely, one invokes invariance of
domain in coordinates after suitably extending things.

Note that for this flow, the domain of the flow contains M × R≥0. We claim that
the map M× {t} → M sending (p, t) 7→ ΦX(p, t) is a diffeomorphism onto its image.
It is certainly smooth, so we wish to verify it is a topological embedding and thus a
smooth embedding and therefore diffeomorphism onto its image. This is essentially
a consequence of Corollary 5 and the fact that for t > 0, the map has image in the
interior of M and for t = 0 the map is the identity.

With these details out of the way, we claim that we can find a smooth ε-shrinking
of this particular collar using the smooth structure coming from its image. For this,
note that we may use the flow to flow backwards smoothly. Thus, cover the image of
the collar C(M×R≥ 0) by a locally finite collection of open subsets {Ui} such that for
each open subset there is a smooth function εi : Ui → R≥0 such that for each p ∈ Ui,
ΦX(p,−εi(p)) ∈ F1. By an argument similar to the one given above, we may find a
smooth function ε : M → R≥0 such that ΦX(p, ε(p)) ∈ F1 for all p ∈ F0. Using this
collar

that it is possible to construct such a ε : ∂M → [0, 1) which is the restriction of a
smooth map M → [0, 1). We claim that the above composite then must be smooth.
notice that we may first construct ε

Suppose we have constructed a shrinking function that is at least continuous. This
can be done as above. Since the collar is homeomorphic to its image, we may equip
them both with a product metric where ∂M inherits a metric from M and R gets its
usual metric. By a suitable application of the Whitney approximation theorem,

observe that it is possible to construct this function in such a way that it is locally
the restriction of a smooth function defined on an open nbhd of M. This requires an
argument similar to the one given in the Theorem B about local flows, but this can be
done.

We claim this means it is smooth with respect to the structure the collar inherits
from its image in M and for this, all that is required is that we show the assignment

(p, t) 7→ C(p, ε(p)t)

is smooth with respect that structure smooth. It is at least continuous. Note that C∗(∂t)
is a smooth vector field on the open submanifold Im(C) and that its flow Φ restricts
precisely to the map C. Hence, this assignment is locally in Im(C)×R≥0 the restriction
of a smooth function. This forces the assignment to be smooth

To see that this is so, note that the collar C This is so because we have required
collars of manifolds with corners to be smooth in the sense that the collar embedding
C : ∂M×R≥0 → M is locally the restriction of a smooth map defined in an open nbhd
U of (p, t) in M×R≥0; ε may be supposed, perhaps after shrinking to a open rectangle
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V ×W, to be smooth on U = V ×W by the formula (p, s) 7→ (p, ε(p)s), and this is
indeed smooth since ε admits a smooth extension. This means the assignment above
is smooth since

This result, as mentioned, can be extended with some effort to submanifold that
have boundary. The point as that as long as the manifold with boundary is a sub-
manifold of a submanifold without boundary, then it admits a tubular nbhd with an
extension that is an open subset of N (and thus say Int N) and therefore the shrinking
trick above will still work.

Theorem 38

Let j : M× R≥0 → N be an embedding where M and N have corners and where
Im(j) ⊂ Int(N). Then j extends to an embedding of M in an open nbhd V of M×
R≥0 into Int N. In particular, this open nbhd V is diffeomorphic to M× (−1, ∞)
by a map that is the identity on M× R≥0.

As usual, we assume M and N are path-connected. The idea is to construct a suitable
vector field and use its flow to find the embedding.

Proof. Since Im(j) ⊂ Int N, we may as well suppose WLOG that ∂N = Ø. If Im(j) ∩
∂N ̸= Ø, then certain nbhds in Int N of Im(j) would not be nbhds of Im(j) in N and
things would go wrong.

Let
d
dt

be the evident vector field on M× R≥0. Then since j is an embedding, we

get a vector field on the subset M× R≥0 given by j∗
d
dt

. We can arrange to extend this
to a vector field X having support in an open subset of M×R≥0 by a partition of unity

argument such that X = j∗
d
dt

on M× R≥0, we claim.
The idea is to take any locally finite open cover of M × R≥0 say by submanifold

charts {Ui}i∈I whose image is an open rectangle of the appropriate type (see below)
and appending an open set U to this cover such that U∩M×R≥0 = Ø and such that
(
⋃

Ui)
c ⊂ U. Running the usual partition of unity argument, if we through away the

function ρU associated to U, then we obtain a vector field X̃ that is X on M×R≥0 and
vanishes outside of an open nbhd of M×R≥0 such that no integral curve of X̃ starting
at a point p ∈ j(M× {0}) has closure a loop. We must only construct suitable vector
fields on suitable nbhds of M× R≥0 at this point.

Keep X as above. Take a submanifold chart (x, U) about p ∈ M× R≥0 ⊂ N with
path-connected U, x(U ∩M×R≥0) = x(U)∩Rm+1−k ×Rk

≥0× 0. Then in coordinates

Y = X|(U∩M×R≥0)

is always tangent to this submanifold of Euclidean space. Since x(U) ⊂ Rn is open
(since this is the interior of N), it contains an open rectangle. Thus, WLOG, we may
suppose each chart in this open cover satisfies that x(U) = V1 × V2 with V1 and V2
path-connected where V1 ⊂ Rm+1 × 0 is such that x(U ∩ M × R≥0) ⊂ V1 sits as a
quadrant and is thus path-connected. Working in these coordinates, since Y is smooth,
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it extends to an open nbhd of x(U)∩Rm+1−k ×Rk
≥0× 0 ⊂ V1 in Rm+1 where it is non-

zero (this also requires the evident continuity argument). WLOG suppose it is all of
V1. Now extend Y to all of x(U) = V1 ×V2 by defining Y(a,b) = X(a,0) (it only depends
on the Rm+1 coordinate). This is smooth since it is the composite of smooth functions

V1 ×V2
pr−→ V1

Y−→ Rm+1—note that V1 and V2 are path-connected.
Covering M×R≥0 by such charts, we may WLOG assume this collection is locally

finite. Then, running the associated partition of unity argument described above, we
then have a smooth extension X̃ of X. We claim that the vector field X̃ has integral
curves starting at p ∈ j(M × {0}) whose closure (of their image on their maximal
domain) is not a loop.

To see this, first set
M0 = j(M× 0)

for convenience and take p ∈ M0. Observe that X̃p = Xp which is an inward pointing
vector by construction and thus that the integral curve γX̃

p (t) has time derivative Xp an
inward pointing vector. Since

⋃
supp ρi = supp ∑ ρi (by local finiteness) is contained

in
⋃

Ui (and contains Im j), this integral curve does not have closure a loop we claim.
If it did, then limt→∞ γX̃

p (t) ∈ M0, but then some thought shows that the chart we used
to construct X̃ about p must also intersect M0 and M× [s, ∞) for all s > 0 and this will
contradict the assumption that the component V1 of this chart is connected.

Now, the flow of X̃ as a vector field on N is defined on an open nbhd of N ×
0 in N × R. Moreover, for each p ∈ M0 and t ≥ 0, ΦX̃(p, t) = j(p, t) and so in
particular the flow domain AX̃ contains at least the interval [0, ∞) about each p ∈
M0. By our construction, the integral curves for points p ∈ M0 for the vector field
−X̃p have maximal intervals (ap, bp) such that γ−X̃

p ([0, bp)) is contained in a compact
set, by construction and thus have a limit point by continuity and compactness, call
it b. If −X̃b ̸= 0, then there is an integral curve through this γ−X̃

b and these two
integral curves may be concantenated smoothly since local existence and uniqueness
about b implies that this integral curve agrees with γp after adjusting domains and this
contradicts maximality. Hence, it must be that −X̃b = 0 and that b ∈ ∂(supp X̃).

In any case, there is an open nbhd

V ⊃ M0 × {0}

of
M0 × {0}

in the flow domain AX̃ such that each time interval in V about p ∈ M0 is of the form
(−bp, ∞).

Since integral curves are either the same or disjoint, we know that (p, t) 7→ ΦX̃(p, t)
is an injective immersion on V. We must show it is also an embedding and so we show
it is an open map onto its image and for this, since it is injective, it suffices to check
that it is open on small enough basis elements for the topology.

Let U1×U2 be an open nbhd of (p, t) ∈ V where U1 is open in M and U2 open in R.
Then U1 is the intersection with M of some open subset U′1 ⊂ N and we may suppose,
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perhaps by shrinking, that AX̃ ⊃ U′1×U2 where AX̃ is the flow domain of X̃. Suppose
we know that we may suppose ΦX̃ is injective on U′1 ×U2 by shrinking if necessary.
Then ΦX̃ restricted to U′1×U2 is a diffeomorphism onto its image since U′1 is open and
for appropriate t (perhaps shrinking) we know that p 7→ ΦX̃(p, t) is a diffeomorphism
from U′1 onto its image with inverse p 7→ ΦX̃(p,−t) by the properties of flows. Indeed,
this implies that each image is open and therefore the union of its images are open.
One then verifies that ΦX̃(U1 × U2) ∩ ΦX̃(U′1 × U2) = ΦX̃(U′1 × U2) ∩ ΦX̃(V) and
therefore U1 × U2 maps to an open set and, in particular, all sufficiently small open
rectangles about each point (p, t) in V map open subsets of the image and thus this is
an open map.

Now, there exists by the usual arguments (such as in my proof of the collar nbhd
theorem) a shrinking function ε : M → (0, 1] such that M × (−1, ∞) → V is a dif-
feomorphism onto an open subset of M × R≥0 in V extending the evident inclusion
M× R≥0 → V. WLOG, suppose ε lands in

ε : M→ (0,
1
2
].

We construct such an ε as in the collar nbhd theorem so that (p, t) 7→ (p, ε(p)t) ∈ V
as usual. By a suitable and obvious algebraic modification we can just as well write
this as (p, t) 7→ (p, t− ε(p)t) (in other words replace the ε(p) in this new equation by
(1− ε(p)) for ε(p) as in the old equation). Then mollify this function to fix it on R≥0
by using some modification of the smooth function x 7→ l(x), call it L(x), constructed
as in Spivak’s book. The function L(x) satisfies the following properties.

(a) L(x) is 0 for all x ≤ −1;

(b) L(x) is 1 for x ≥ 0;

(c) L(x) is increasing and positive on (−1, 0).

To see what this needs to be, let L(p, t) be some function and let us demand that for
t ∈ (−1, 0],

t− L(p, t)(1− ε(p))t ≤ t− (1− ε(p))t

This becomes for t ̸= 0
L(p, t) ≥ 1

and we impose the additional obvious constraint that for t ̸= 0,

L(p, t) <
1

1− ε(p)

which checks out since by our assumptions
1

1− ε(p)
> 1 always and so we want

1 ≤ L(p, t) <
1

1− ε(p)
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and we should hope additionally that as t→ 0, L(p, t)→ 1
1− ε(p)

. Since

1
1− ε(p)

= 1 +
ε(p)

1− ε(p)

this suggests we take

L(p, t) = 1 + L(t)
ε(p)

1− ε(p)

with L(t) = L(x) as above. Then certainly this is always ≥ 1 and it is also always

≤ 1
1− ε(p)

since 0 ≤ L(t) ≤ 1 on the relevant interval. It is well-defined because we

assumed ε < 1/2 always and it is clearly smooth.
In particular then, we obtain a diffeomorphism

M× (−1, ∞)→ V (p, t) 7→(p, t−
(

1 + L(t)
ε(p)

1− ε(p)

)
(1− ε(p)) t)

= (p, t− (1− ε(p) + L(t)ε(p))t).

with everything in the right slot denoting multiplication, we claim. Note that since
ε(p) > 0 always, this makes sense and is smooth and we have arranged as above that
this maps into V so we are good. This simplifies further of course to

(p, t) 7→ (p, ε(p)(t− L(t)t)).

That this assignment M × (−1, ∞) → V a diffeomorphism onto its image in V and
that its image is open follows easily.

Corollary 32

If i : M → N is an embedding with Im i ⊂ Int N and ∂M ̸= Ø, then there is a
smooth manifold M containing M as a submanifold such that ∂M = Ø and an
embedding j : M→ Int(N) extending i.

As usual we will conflate embeddings with subsets and so on.

Proof. Once again, WLOG ∂N = Ø. Let ι : ∂(M)× R≥0 → M be a collar nbhd. Then
we can extend i| ∂M× R≥0 to an embedding i : ∂M× (−1, ∞) → N. An easy modifi-
cation—with a little bit of thought about the definition of submanifold charts—of the
proof above (namely the construction of locally finite collection of submanifold charts)
allows us to assume that for each point (p, t) ∈ ∂M× (−1, 0) has an open nbhd U in
N such that U ∩ (M \ (∂M× R≥0)) = Ø in N.

Exercise 41

Verify this. [Hint: This argument is similar to the one given above that no integral curve
starting at a point in the boundary has closure a loop.]
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Construct a new submanifold of N and call it M as M = Im(i) ∪ Im(i). The con-
struction above—with the same little bit of thought about the definition of submani-
fold charts—allows us to assume that there are submanifold charts about each (p, t)
in the extended collar of Im(i) which do not intersect M \ (∂M × R≥0). For points
p ∈ ClM(∂M×R≥0), there are submanifold charts intersecting only M in N (otherwise
this contradicts the above construction). Finally for points in M \ (∂M×R≥0) there are
submanifold charts intersecting only M (otherwise we obtain the same contradiction
in the preceding sentence). This shows that the subset M ⊂ N is a submanifold. It has
empty boundary since every point belongs to Int(M) ⊂ N (a diffeomorphic image)
or to ∂M × (−1, ∞) (a diffeomorphic image) and so the submanifold charts have no
boundary (we may have to shrink them for Int(M) but we can do this say by using a
metric and arguing about balls).

Corollary 33 (Uniqueness, II(a))

Let M ⊂ N and suppose ∂M ̸= Ø and M has no corners. Let M be a submanifold
without boundary extending the inclusion of M into N. Let F1 be a tubular nbhd
of M in N and let F0 → M be a bundle of rank k ≤ dim N − dim M. Then there is
an isotopy G of the inclusion F0 ⊂ N such that Gt(p) = p for p ∈ M and G1 is a
linear map F0 → F1

∣∣M of rank k on each fiber as bundles over M.

Proof. WLOG ∂N = Ø. The tubular nbhd of M is open in N, so we can shrink the
fibers of a tubular nbhd of M into it as before. The same argument now goes through,
taking care to address boundary charts by extending functions to convex sets to apply
the lemma needed.

Corollary 34 (Uniqueness, II(b))

Let M ⊂ Int N and suppose ∂M ̸= Ø and M has no corners. Let F0 and F1 tubular
nbhds of M in N. Then there is an isotopy G of the inclusion F0 ⊂ N such that
Gt(p) = p for p ∈ M and G1 is an isomorphism of bundles F0 → F1.

Proof. Fix a tubular nbhd F of M. Then F|M is a tubular nbhd of M. There is then an
isotopy between the inclusion F0 → N and an isomorphism ϕ : F0 ∼= F

∣∣M and simi-
larly an isotopy between F1 ⊂ N and an isomorphism ψ : F1 ∼= F

∣∣M. Concatenating
these and smoothing them into [0, 1] = I gives the result since the over all composite
at the end F0 → F1 is simply ψ−1ϕ which is a linear isomorphism.

Theorem 39 (Uniqueness, III)

If M is compact, M ⊂ Int N, and F0 and F1 are either both proper or closed tubular
nbhds of M in N both arising from existing tubular nbhds, then there is a strong
ambient isotopy Ht of the identity map of N that keeps M fixed and such that
H1| F0 is an isomorphism F0 → F1. If F0 and F1 have metrics, we may suppose in
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addition that H1| F0 is an isometry.
Here, we give F0 and F1 the metrics induced by their ε-shrinkings in the proper

case and in the closed case we that the map at the end is a morphism of bundles
with the same orthogonal group as their structure group.

Proof. Let F0 and F1 be proper and ε-shrinkings of E0 and E1 respectively WLOG into
the unit disk bundles of E0 and E1 (if these are not the unit disk bundles, that’s fine,
nothing changes actually). From the above, there is an isotopy H of E0 ⊂ N to an
isomorphism H1 : E0 → E1. We have seen that all such bundle maps are themselves
strongly isotopic to isometries so there is a strong isotopy Gt of H1 to an isometry G1.
Let K be H followed by G smoothly concatenated. The unit disk bundles of E0 and
E1 are compact since M is compact and so K restricted to this subset of N admits an
extension to an isotopy of the identity map of N. This then gives an isometry of F0

and F1 in their induced metrics in the proper case and also gives a morphism of the
corresponding unit disk bundle that is a morphism of bundles with structure group
O(n−m).

As for strong-ness of this isotopy, the isotopy extension theorem constructs an iso-
topy with compact support and thus is strong as we have seen.

There is also an analogous result for collars.

Theorem 40 (Uniqueness of Collars, II)

If M = ∂N is compact and we have two open collars of M that are proper in the
obvious sense, then they are ambient isotopic and strongly so.

Proposition 14

If M ⊂ N is neat, then ν∂N∂M ∼= νN M| ∂M naturally.

Definition 43

We suppose M and N have no corners. A tubular neighborhood of a neat sub-
manifold M ⊂ N is said to be a neat tubular neighborhood if F ∩ ∂N is a tubular
nbhd of ∂M in ∂N and F is a tubular nbhd of M in N.

Proposition 15

A neat tubular neighborhood is an open set and a neat submanifold.

Proof. We claim F ⊂ N is a submanifold of the same dimension which is moreover
neat. Indeed, viewing this as an embedding of the normal bundle of M into N, we
know what its boundary is and neatness follows very simply by observing that since
for each p ∈ F ∩ ∂N = ∂F (as a submanifold), thus since the embedding F → N has
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full rank, in coordinates, this looks like a smooth map of full rank between Hn → Hn.
Extending this to a map of full rank (open condition) Rn → Rn, this becomes an open
map since it is then a local embedding and we can use invariance of domain. Therefore
its restriction Hn → Hn must have been an open map to begin with, some thought
shows. In particular, this since Int(F) → N is an open map, this shows that nbhds of
the boundary of F also map to open sets and hence that F ⊂ N is an open map and
hence that F ⊂ N is open in N. Knowing this, neatness is automatic because for any
p ∈ ∂F, there a boundary chart of N whose domain lies entirely in F by openness and
so it is therefore a neat submanifold chart as desired.

Theorem 41 (Existence, II)

Every neat submanifold of a manifold with boundary N has a neat tubular neigh-
borhood.

Proof. Give N a Riemannian metric on N that is a product metric in a collar neighbor-
hood ∂N×R≥0 of ∂N. This means that if νM| ∂N is identified with the normal bundle
of ∂M in ∂N, then geodesics corresponding to normal vectors of ∂M and issued at
points of ∂N will stay in ∂N (because M intersects the boundary of N transversely
by neatness). Therefore the same sort of argument in the usual tubular neighborhood
theorem still works without change. It will yield a neat tubular nbhd of M in N.

Definition 44 (Tubular Nbhds of Submanifolds of the Boundary)

Let M ⊂ ∂N where N has no corners and M may have corners. Note that

νN M ∼= ν∂N M⊕ ν∂N N ∼= ν∂N M⊕ R.

A tubular neighborhood of M ⊂ ∂N in N is an embedding ν∂N M × R≥0 → N
extending an embedding of ν∂N M → ∂N witnessing ν∂N M as a tubular nbhd of
M in ∂N. The definition of a proper tubular nbhd of this sort is unchanged.

Theorem 42 (Existence, III)

If M ⊂ ∂N where N has no corners and M boundary but no corners, then M has
a tubular nbhd.

Proof. Let C : ∂N × R≥0 → N be a collar. Given ν∂N M → ∂N a tubular nbhd of M in
∂N, this extends by the embedding C| (ν∂N M× R≥0).

Theorem 43 (Uniqueness, IV)

If M is compact neat submanifold of N with boundary and F0 and F1 are either
both neat proper or neat closed tubular nbhds of M in N both arising from existing
neat tubular nbhds, then there is a strong ambient isotopy Ht of the identity map
of N that keeps M fixed and such that H1| F0 is an isomorphism F0 → F1. If F0
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and F1 have metrics, we may suppose in addition that H1| F0 is an isometry.
Here, we give F0 and F1 the metrics induced by their shrinking maps in the

proper case and in the closed case we that the map at the end is a morphism of
bundles with the same orthogonal group as their structure group.

Proof. First we apply the proof of the third uniqueness result to the tubular nbhds
resulting by intersecting the boundary and then extend this to a diffeotopy of all of N
by the isotopy extension theorem. Thus, WLOG, F0

∣∣ ∂M ⊂ F1 is a linear subspace.
One then applies the proof of the third uniqueness result again to the interior of

N and the interior of the resulting tubular nbhds to conclude. Strictly speaking, we
would concatenate the diffeotopies if we forgot about the WLOG above.

F Transversality and Regular Value Theorems

F.1 Regular Value Theorems for Manifolds With Boundary

Before we begin with the regular value theorem, let us introduce an auxiliary
lemma and use it to prove a proposition.

Lemma 34

Let M be a smooth manifold without boundary and let g : M → R be smooth.
Suppose g has regular value 0 and g−1(0) ̸= Ø. Then g−1([0, ∞)) is a submani-
fold with boundary g−1(0) and dimension equal to that of M. In particular, the
submanifold charts for g−1(R≥0) can be chosen in such a way that g−1(R≥0) sits as
Hm ⊂ Rm without further straightening—these submanifold charts would exhibit
g−1(R≥0) as a neat submanifold in a different context.

Proof. Since 0 is a regular value of g, g−1(0) is a codimension one submanifold of M
by the usual constant rank theorem. We have that g−1((0, ∞)) is an open submanifold
being open in M. We only need to check that there is a smooth structure on this and
that we have submanifold charts. Really the only issue is with the boundary. Each
p ∈ g−1(0) admits a submanifold chart for g−1(0) and we must show we can make
this a submanifold chart for g−1(R≥0).

A submanifold chart exists for each p ∈ g−1(0), say (x, U), such that U ∩ g−1(0) =
x−1(Rm−1 × {0}). We want to show that g−1((0, ε)) ∩U sits in this chart as Hm. With
respect to the given chart, since g| g−1(0) is constant and g−1(0) ⊂ Rm−1 × {0}, g has
trivial derivatives in the directions lying in the Rm−1 × {0} subspace. Hence, in these
coordinates, for each p ∈ g−1(0), g∗p = (0, . . . , 0, v) for some v ̸= 0, v ∈ R—and so
in any chart, v > 0 or v < 0 since by the IVT it will otherwise be 0 somewhere—since
0 is a regular value, forcing v ̸= 0. Therefore suppose in our chart v > 0. Then our
coordinates, each q ∈ x(U), q = (q1, . . . , qm), with qm > 0 has g(q) > 0. Hence,
U ∩ g−1(R≥0) ⊂ x−1(Hm) as desired. This is a submanifold chart because the bound-
ary of g−1(0) already sits neatly in the chart and we do not need to do any more
straightening.
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Lemma 35

Let M have boundary but no corners and let f : M → N be smooth, dim M = m,
dim N = n. No point q ∈ ∂N can be a regular value for both f and f | ∂M unless
f−1(q) = Ø or n = 0.

Proof. Suppose this is not the case; that is, suppose q ∈ ∂N is a regular value for both
f and f−1. We will see in Proposition 4 of the appendix that f−1(q) ⊂ ∂M is forced
if q is a regular value for f so we might as well assume this; the idea is that (c) of the
constant rank theorem only forces us to modify coordinates in the domain and so in
coordinates the image of f remains unchanged and a point-set argument implies that
its image then lies in the interior of N in suitable coordinates coming from the constant
rank theorem. We will show that this is contradicted under our assumption.

Now, f∗p surjects TpM → TqN and so has kernel dimension m − n ≥ 1 (with
the inequality following from our assumption that f | ∂M has q as a regular value so
that m − 1 ≥ n). We claim that this implies there is a vector v ∈ TpM for which
f∗p(v) = 0 but v /∈ Ker f | ∂M∗p; indeed, this follows by dimensional considerations
since dim Ker f∗p = m − n whereas dim(Ker f | ∂M∗p) = m − 1 − n. Therefore v is
an outward or inward pointing vector—that is, it has a component in the outward or
inward direction.

Working in coordinates (x, U) and (y, V) and extending f to a function of maximal
rank on an open nbhd about x(p) = 0 in Rm, there is a coordinate system (x′, U′),
x(p) = 0 ∈ U′ of Rm by (c) of the constant rank theorem for which f looks like a
projection Rm → Rn, say projecting onto the first m − n coordinates. We casually
identify vectors for these Euclidean spaces with vectors in the naive sense. Let w be
the image of the vector v in this coordinate system. In these coordinates, f∗ is the
block diagonal matrix that is Im−n×m−n in the upper-left corner and 0 everywhere else.
Hence, for f∗ to have vanishing derivative in the direction of w, w must be a linear
combination of the last n coordinates of Rm and therefore, in particular, f (rw) = 0 for
all sufficiently small r ∈ R for which rw remains in U′ (since open subsets of Euclidean
spaces are locally convex and since f is a projection).

Claim. It is not hard to see that for small enough r with one of either r ≥ 0 or r ≤ 0, rw
remains in the image of x(U) under the diffeomorphism taking us to the coordinates
in which f is a projection.

This is because the open half-ball x(U) has interior an open subset of Euclidean
space and so contains all points sufficiently close to x(p) = 0 in the upper half-
plane and thus all points sufficiently close to x(p) with last coordinate positive (i.e.,
an inward pointing component, under the casual identification of points of Rn with
vectors). Hence, f−1(0) must contain points not lying in ∂M and this is a contradic-
tion.

Exercise 42

Can this be generalized to when M has corners? [I’m virtually certain the answer is
the affirmative but I didn’t write the proof with that case in mind so I have not not thought
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about it and do not want to think about it.]

We can get a feel for what’s going on here by the following corollary, which essen-
tially implies that what goes wrong is dimensional when q is a regular value of f but
not the restriction f | ∂M.

Corollary 35

Let M have boundary and no corners as above. If q ∈ ∂N is a regular value for f ,
then for each p ∈ f−1(q), Ker f∗p ⊂ Tp∂M.

Remark. We will see in C of the appendix that f−1(q) ⊂ ∂M is forced if q is a regular
value for f ; we are using that here.

Proof. Suppose Ker f∗p ⊈ Tp∂M and let V = Ker f∗p ∩ Tp∂M. Since q is a regular value
for f , f∗p has rank n = dim N and dim Ker f∗p = m − n and dim V ≤ m − n − 1.
Working in a boundary chart, one deduces V = Ker( f | ∂M)∗p ⊂ Tp∂M ⊂ TpM. By the
rank-nullity theorem, dim V + rank( f | ∂M)∗p = m− 1 and therefore

rank( f | ∂M)∗p = m− 1− dim V ≥ m− 1−m + n + 1 = n

but also rank( f | ∂M)∗p ≤ n since dim TqN = n so in fact

rank( f | ∂M)∗p = n

so q is a regular value for f | ∂M. This contradicts the above lemma.

Theorem 44 (Improved Regular Value Theorem)

Let M and N be smooth manifolds with boundary but no corners of dimension m
and n, respectively and let f : M → N be smooth. If q ∈ N is a regular value of
both f and f | ∂M, then f−1(q) is a neat submanifold of M of codimension n (i.e.,
dim f−1(q) = m− n).

Remark (Improvement). This theorem is an improvement over the usual regular value
theorem because of the boundaries. In the usual regular value theorem, we con-
sider only manifolds without boundary, and the theorem is essentially an immedi-
ate consequence of the constant rank theorem. Namely, in the usual case, for ev-
ery point p ∈ f−1(q), the constant rank theorem guarantees that there are charts
(x, U) and (y, V) about p and q respectively for which f looks like standard projec-
tion pr : Rm → Rn onto the last (or first, it doesn’t matter by rearranging things) n
coordinates. This proves that pr−1(0) = x( f−1(q) ∩U) = Rm−n × 0 which means x is
a submanifold chart for f−1(q).

Remark (Additional Comments). For q ∈ N to be a regular value of f means that for
all p ∈ f−1(q), rank(d fp) = dim N, and this forces dim N ≤ dim M. We must throw
out the vacuous case in this theorem which is why we additionally stipulated that
f−1(q) ̸= Ø.
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For our assumptions, it will turn out that for q /∈ ∂N, dim N ≤ dim M− 1 if ∂N ∩
f−1(q) ̸= Ø and dim N ≤ dim M if ∂N ∩ f−1(q) = Ø. For q ∈ ∂N it will turn out
we only need dim N ≤ dim M because f−1(q) ⊂ ∂M in this case and it is furthermore
not possible for q to be a regular value of both f and f | ∂M. This follows from the
preceding lemma.

Proof. Note that WLOG we may assume that m ≥ n. We may suppose that n ≥ 1 since
when n = 0, N is a disjoint collection of points and so f−1(q) is simply a component
of M. Now consider the case dim M = dim N. Then f−1(q) is necessarily a collection
of isolated points. Indeed, in coordinates, after extending f while keeping it maximal
rank (an open condition), we could write the extension of f in yet another set of coor-
dinates as the identity map by the constant rank theorem. This means that f must be
injective in a nbhd of p. We may therefore assume m > n. In particular, this means we
may suppose m > n and n ≥ 1 and so m > n ≥ 1. We have seen that for q to be a
regular value of both f and f | ∂M, under our hypotheses, it must be that q ∈ Int N, so
we may assume this.

We begin by supposing p ∈ f−1(q) is not in ∂M. Then f−1(q) is a submanifold
in a nbhd of p. This is because, in coordinates, we may write this locally as a projec-
tion from an open subset of Rm onto Rn, say killing off the first m − n coordinates,
with no other words needed. Hence, if p = (a1, . . . , am) in this coordinate system,
then this is clearly a submanifold chart for f−1(q) about p since all points of the form
(x1, . . . , xm−n, am−n+1, . . . , am) are sent to the image of p under f in these coordinates.

This takes care of the points not in the boundary of M. Next, we must consider
points in the boundary of M and verify neatness as well.

Now consider the case p ∈ ∂M ∩ f−1(q). Pick charts (x, U0) and (y, V0) such that
x(p) = 0 and y(q) = 0 and set

x(U0) = U y(V0) = V.

We have a smooth map U → Rn, the coordinate form of f , with U open in Hm the
upper half-space which we may extend to an open subset Ũ ⊂ Rm and get f̃ : Ũ → Rn.
Since max rank is an open condition, we may suppose this extension has max rank. It
follows that f̃−1(0) is a submanifold of Rm of codimension n (i.e., of dimension m− n).
WLOG suppose U is an open unit coordinate ball in Hm and Ũ is the completion of
it to a full open unit coordinate ball in Rm—we can arrange for this by shrinking; the
point is that we want f̃ to agree with f on the boundary ∂Hm ⊂ Rm.

Let π : f̃−1(0) → R be the projection onto the m-th coordinate and recall that this
coordinate for any boundary chart is the outward/inward pointing direction. We
claim this has regular value 0—i.e., f̃−1(0) has non-trivial tangent vectors in the xm-
direction.

Suppose this was not the case. Then the tangent space to f̃−1(0) at 0 (i.e., x(p))
would lie completely in some collection of n of the direction ∂

∂xi where i ̸= m and so
f̃−1(0) lies in a subset of the first m− 1 coordinates. But, restricting to these coordi-
nates, one easily verifies that (abusing notation)

( f | ∂Hm) = ( f | ∂M)−1(0) = ( f̃
∣∣∣ ∂Hm)−1(0)
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as a consequence of how we constructed Ũ and U (see above). Hence, we have (work-
ing in coordinates) ( f | ∂Hm)−1(0) = f̃−1(0) ∩ ∂Hm (i.e., those points with xm = 0).
Since q is a regular value for f | (U ∩ ∂M) (and in fact for f | ∂M), this submanifold
must have dimension m− n− 1; but if 0 is not a regular value of the m-th coordinate
projection map, then in fact T0( f | ∂M)−1(0) ⊂ T0∂Hm and therefore it is a submanifold
of dimension m− n. This is a contradiction.

Now, f−1(0) = π−1(R≥0) and by the Lemma, π−1(R≥0) is a submanifold of
f̃−1(0) ⊂ Ũ contained in U with boundary π−1(0)—that is, f̃−1(0) ∩ U = f−1(0).
Thus, f−1(0) admits reasonable submanifold charts in f̃−1(0) and has codimension 0
therein. We also know that f−1(0) is a submanifold of U since U is a submanifold of
Ũ for the obvious reasons (consider how we constructed U and Ũ). It remains to show
that it is in addition neat.

The only trouble arises for points in π−1(0), so let (α, Uα) be a submanifold chart
for π−1(0) in f̃−1(0). Then (after rearranging) Uα ∩π−1(0) = α−1(0×Rm−n−1×{0}).
Since i : f̃−1(0) → Ũ is an embedding between manifolds without boundary, (d) of
the constant rank theorem guarantees that there is a chart (β, Vβ) such that (after rear-
ranging) βiα−1(a1, . . . , am−n) = (0, . . . , 0, a1, . . . , am−n). The reasoning of the preceding
Lemma shows us that π−1(R≥0) must sit as the collection of points in the image hav-
ing the form (0, . . . , 0, a1, . . . , am−n−1, v) where either v ≥ 0 for all such ai or v ≤ 0 for
all such ai.

Remark. This proof can be simplified.

F.2 Transversality

Here is the basic concept of transversality.

Definition 45

Let K, L and N be manifolds with corners and let f : K → N and g : L → N
be smooth maps. Then we say that f is transversal to g, denoted by f ⋔ g, if
whenever we have f (k) = g(l) = p, we have f∗TkK + g∗Tl L = TpN. We can also
say that f and g are transverse.

More generally, given f : M → N and a submanifold P ⊂ N and a subset C
of X, we say that f is transversal to P on a subset C of X if the transversality
condition

f∗TpM + Tf (x)P = Tf (x)Y

is satisfied for every p ∈ C ∩ f−1(P). We write this as f ⋔ Z on C or, maybe even
more concisely, as f ⋔C Z.

Remark. If f (K) ∩ g(L) = Ø, then transversality holds vacuously.

Remark. The only way, it seems, to get good results for transversality, at least with
little effort, is to assume neatness in some places. Essentially, the issue is that the
regular value theorem, as we know how to prove it, is insensitive to the corners or
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boundaries. Basically, the argument one wants to use relies upon not having extra
structure floating around on M. It is possible to compensate for this by imposing
additional constraints on the map f to get an analogous result for manifolds with
boundary. A neat submanifold is assumed to only have corner points of depth k match
up with the corner points of depth k in the ambient manifold, and this assumption
eliminates the extra data needed to make certain arguments go. Another issue is that
the regular value theorem only makes sense in the category DIFF and if M has corners
then ∂M is not smooth.

Lemma 36

Let f : K → M and g : L→ M be smooth. Then f ⋔ g iff f × g : K× L→ N× N is
transverse to the diagonal ∆N ⊂ N × N.

Proof. This is simply a matter of unraveling definitions and a small computation.

The proof of the following theorem is adapted from Hirsch’s book—the picture
below is likewise adapted from Hirsch.

Theorem 45

Let Mm and Nn be smooth manifolds with boundary of dimension m and n, re-
spectively. Let A ⊂ N be a k-dimensional neat submanifold of N. If f : M → N
is smooth and f ⋔ A and f | ∂M ⋔ A, then f−1(A) is a neat submanifold of codi-
mension n− k (i.e., dimension m− n + k) with ∂ f−1(A) = f−1(A) ∩ ∂M.

Remark. If A has no boundary, A is not automatically neat. If ∂M = Ø, then the
condition f | ∂M ⋔ A is vacuously true. One can say something about normal bundles
but we defer that to the proposition below.

Proof. Either ∂A = Ø or A ∩ ∂N = ∂A. First consider the interior points of A. These
are points which, by definition, also lie in the interior of N. In particular, A \ ∂A is
a smooth boundary-less manifold and N \ ∂N is too. Since A ∩ ∂N = ∂A, we may
choose our submanifold chart about for each q ∈ A \ ∂A ∩ Im( f ) to be an interior chart
of N and, perhaps by shrinking, we may suppose our submanifold chart (y, W) about
q has image a product nbhd y(W) = U × V ⊂ Rk × Rn−k such that y(A ∩W) =
U × 0. Pick coordinates, (x, Z) about p ∈ f−1(q) in M with Z so small that f (Z) ⊂W,
so we don’t have to worry about intersecting things. To avoid breaking into cases,
suppose x(Z) ⊂ Hm is open but we do not specify whether (x, Z) is a boundary chart
or not. Transversality of f to A then becomes transversality of y ◦ f ◦ x−1 to U× 0 and
transversality of f | ∂M to A then similarly becomes transversality of y ◦ f ◦ x−1

∣∣ (Z ∩
∂M) to U × 0. The first of these is equivalent to the assertion that the composite

g : Hm ⊃ x(Z)
f ◦x−1

−−−→W
y−→ U ×V

pr−→ V ⊂ Rn−k

has regular value 0 and the latter that g| ∂Hm has regular value 0. Transversality of
f | ∂M to A then becomes transversality of y ◦ f ◦ x−1

∣∣ (Z ∩ ∂M) to U × 0.
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This shows that g−1(0) is a neat submanifold of x(Z) having codimension n − k
(i.e., dimension m − n + k) as a consequence of the regular value theorem proved
above. But x is a diffeomorphism from Z onto
x(Z), so f−1(A ∩W) must be a submanifold
of f−1(W) ⊂ M. Now suppose q ∈ ∂A and
so by neatness of A, q ∈ A ∩ ∂N. Since A is
neat, we may replace our target chart (y, W) by
a neat submanifold chart for q ∈ A ∩ ∂N. Then
the same argument above goes through after re-
placing V by an open V ⊂ Hn−k intersecting
the boundary and switching the roles of U and
V (we like the last coordinate to be positive for
boundary charts).

This shows that every point in f−1(A) has a submanifold chart. To see the assertion
about the boundary of f−1(A) and neatness, one simply unpacks the notation and
cases above.

Warning. The situation is not so nice when we ask about the general case. The follow-
ing extremely simple example is due to Lars Tyge Nielsen in his paper Transversality
and the Inverse Image of a Submanifold With Corners.

Let M = H2, N = R2 and A =
{

x ∈ R2 : ∥x∥ ≤ 1
}

the unit disk and f : M → N is
the inclusion. Then f ⋔ A, f ⋔ ∂A, ∂ f ⋔ A and even more ∂ f ⋔ ∂A, but f−1(A) is a
manifold with corners, being the set of points

{
(x, y) ∈ R2 : ∥(x, y)∥ ≤ 1, y ≥ 0

}
and

thus we leave the category of manifolds with boundary but no corners.

Remark. A more refined sort of notion of transversality is needed to generalize the
preceding theorem. A nice treatment of such a generalization is given in the preceding
paper. Another such generalization may be found in Pavel Hájek’s master’s thesis, On
Manifolds with Corners. The upshot of this discussion is that you really don’t want to
have to think about such cases unless you absolutely have to.

Here is a different proof reproduced from Kosinski’s book.

Proposition 16

Let V ⊂ N be a neat submanifold of dimension r and f : M → N smooth. If
f ⋔ V and f | ∂M ⋔ V, then W = f−1(V) is a neat submanifold of M such that
codimM(W) = codimN(V) and νMW ∼= f ∗νNV.

Proof. Let p ∈ W and q = f (p). Given a neat submanifold chart (y, Z) about q for A,
we may suppose y(Z) = A× B with B open in Rr

≥0 with 0 ∈ A. Then the composite

h : Z
y−→ A× B A−→⊂ Rn−r

is a submersion with h−1(0) = Z ∩ V. Then f−1(Z) = f−1h−1(0) and (h f )∗ and
(h f | ∂M)∗ are surjective from our assumptions. It follows that W is a neat submanifold
of M of the stated codimension by Theorem A.2.9.
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The normal bundle of V in N, νNV, be identified with the quotient TN|V/TV.
Let π : TN|V → νNV be the quotient map and consider the composite g = π ◦
f∗| (TM|W); let d = dim Ker g and note that since g is surjective, m− d ≥ codim V
and so d ≥ dim W, but since TW ⊂ Ker g, d ≥ dim W and so d = dim W and so di-
mensional considerations force Ker g = TW. Hence, f : W → V induces a map bundle
map TM|W/TW ∼= νMW → νNV ∼= TN|V/TV covering the map f : W → V. By the
pullback theorem for bundles, this forces νMW ∼= f ∗νNV as desired.

Corollary 36

Let Mm have boundary and no corners and let K, L ⊂ M be neat submanifolds
of dimensions k and ℓ, respectively. If K ⋔ L and ∂K ⋔ L, then K ∩ L is a neat
submanifold of M of dimension k + ℓ−m. Moreover, K ∩ L is a neat submanifold
of both K and L of dimension k + ℓ−m and the boundary of K ∩ L is ∂K ∩ ∂L.

Remark. Since K and L are submanifolds, dim K, dim L ≤ m (k, ℓ ≤ m) and since
they are transverse, dim K + dim L ≥ dim M (k + ℓ ≥ m) because for all p ∈ K ∩ L,
TpK + TpL = TpM. When K and L both have boundary, then this inequality tightens to
k + ℓ− 1 ≥ m because we assumed ∂K ⋔ L.

Proof. Let f : K → M be the embedding of K into M. Since f ⋔ L and f | ∂K ⋔ L,
it follows by the the preceding that f−1(L) is a neat submanifold of K of dimension
k − m + ℓ = k + ℓ− m (i.e., of codimension m− ℓ). Similar reasoning with f simply
an embedding of K in the general case shows that f−1(L) is a submanifold of K of
dimension k−m + ℓ = k + ℓ−m with boundary f−1(∂L) ∪ (∂K ∩ f−1(L))—since f is
an inclusion, f−1(∂L) = K ∩ ∂L and ∂K ∩ f−1(L) = ∂K ∩ K ∩ L = ∂K ∩ L.

We only have to show in the first case that the neat embedding f restricts to a neat
embedding f : K ∩ L→ M.

The result now follows from the following claim, whose proof is exemplary of the
utility of thinking locally.

Claim. If A ⊂ B ⊂ C and B is neat in C and A is neat in B, then A is neat in C (neatness
forces dim A ≥ 1 when ∂A ̸= Ø). In particular, there is a neat submanifold chart for A
in C which is also a neat submanifold chart for B in C.

Say dim A = i, dim B = j and dim C = k. We make some reductions. Consider the
boundary first. Pick a neat submanifold chart for B in C, call it (y, V), and suppose a ∈
∂A ∩V. Using this chart, we may reduce to the Euclidean case where we suppose, in
particular, that C = Hk, B = 0×Hj and A ⊂ B is neat—we may make this assumption
by shrinking to a subset diffeomorphic to the open unit half-ball in Hk via our chart
and then using the evident radial diffeomorphism. We have thus reduced to the case
that A ⊂ 0k−j ×Hj ⊂ Hk with A neat in 0×Hj.

Suppose WLOG 0 ∈ A is our new a. Pick a neat submanifold chart (x, U) for A
about 0 in 0×Hj and suppose U is an open half-ball in Hj about 0 of radius ε. Then
x : U → Hj is an embedding for which x(U ∩ A) = x(U) ∩ 0j−i ×Hi ⊂ Hj.

We can now extend this to a chart for Hk having domain Bε the open half-ball of
radius ε in Hk about 0 as follows. For a = (a1, . . . , ak−j, ak−j+1, . . . , ak) ∈ Bε, we define
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a chart (z, Bε) by a 7→ (a1, . . . , ak−j, x(ak−j+1, . . . , ak)). Since z = (pr, x) on its domain,
where pr is the projection onto the first k− j coordinates, it is clearly a diffeomorphism.
The inverse is z−1 = (pr, x−1) which is likewise smooth. Thus, this is a chart and
moreover z(V ∩ A) = y(U ∩ A) = x(U ∩ A) = x(U) ∩ 0k−i ×Hi ⊂ Hk as desired.

When a ∈ Int A and thus is likewise an interior point of B and C, the procedure is
the same, mutatis-mutandis.

Proposition 17

Let K, L and M be manifolds where only K may have boundary. If f : K → M
and g : L → M satisfy f ⋔ g and f | ∂K ⋔ g, then K ×M L is a smooth manifold
with boundary ∂K ×M L satisfying the evident universal property in the smooth
category and, in particular, it is a smooth submanifold of K× L.

Proof. We give the proof when ∂K = Ø. The graphs G( f ) and G(g) of f and g are
submanifolds of the evident space and thus so too is their product. One notes that
G( f )× G(g) ⋔ {(a, p, b, p) ∈ K×M× L×M} so that

G( f )× G(g) ∩ {(a, p, b, p) ∈ K×M× L×M}

is a submanifold by the preceding theorem. Then since the projection K × M × L ×
M→ K× L is a smooth open map and since its restriction to

G( f )× G(g) ∩ {(a, p, b, p) ∈ K×M× L×M}

is an injective immersion, it follows that this map is a embedding and thus the sub-
manifold assertion follows. The universal property is easily verified.

Remark. The case when ∂K ̸= Ø proceeds similarly invoking the same theorem.

The following is adapted from Bredon’s book. It makes more precise the intuition
that transversal submanifolds intersect generically.

Theorem 46

Let Nn, Ss ⊂ Mm be neat submanifolds with N ⋔ S. If m ≤ n + s, then there is a
chart (x, U) about each p ∈ N ∩ S such that either U ∩N is represented by the first
n coordinates and U ∩ S by the last s coordinates or U ∩ N is represented by the
first n− 1 coordinates and the last coordinate and U ∩ S by the last s coordinates,
depending on whether or not p ∈ ∂M.

Proof. Let P = N ∩ S which, by the above, is a neat submanifold. Let p ∈ P. We
can find (perhaps by shrinking) charts x : U → Hm, y : U → Hm and z : U → Hm

about p exhibiting N, S and P, respectively, as neat submanifolds of M (we make no
assumptions yet about the images of these charts in the upper half-plane to avoid
breaking into cases as much as possible). In particular, then, by projecting, there are
maps (submersions, even) f : U → Rm−n, g : U → Rm−s such that f−1(0) = U ∩ N,
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g−1(0) = U ∩ S and similarly a smooth map h : U → Hn+s−m projecting onto N ∩ S
such that h−1(0) = U ∩ P. This is essentially Theorem A.2.9.

Consider the map

φ : U → Rm−n×Rn+s−m×Rm−s ⊃ Rm−n×Hn+s−m×Rm−s q 7→ ( f (p), h(p), g(p)).

A computation shows that for p ∈ U ∩ P, φ∗p is surjective and thus by dimensional
considerations an isomorphism.

If p /∈ ∂M, then φ is a local diffeomorphism at p and thus perhaps by restricting the
desired chart. If p ∈ ∂M, φ is still a local diffeomorphism and so gives us the desired
chart after shuffling the copy of R≥0 to the end.

F.3 Homotopy and Transversality

The power of transversality lies in its genericness among smooth maps. We will
approach this through the notion of stability to avoid defining smooth function spaces
for the moment. If we were to define the weak Whitney topology (i.e., the smooth
compact-open topology) and prove the genericness theorem for those function spaces,
then the following would be an immediate consequence since for compact domain,
the weak and strong Whitney topologies agree.

Theorem 47 (Submanifold Stability)

Fix smooth manifolds K, L and M of dimensions k, ℓ and m, respectively where all
manifolds are connected. Suppose L ⊂ M is a neat submanifold which is a closed
subset. Let f : K → M such that f ⋔ g.

(a) If K is compact, then for any smooth homotopy of H : K× I → M of f , there
is a sufficiently small ε > 0 such that for all 0 ≤ δ < ε, Hδ : K → M is such
that Hδ ⋔ L.

(b) If K is compact and we assume additionally that K and L have no corners
and ∂ f ⋔ L, then we may suppose in addition that ∂Hδ ⋔ L in this interval.

(c) Compactness of K may be dropped in (a) and (b) if we only require a pertur-
bation to exist on an open say connected nbhd U of K × 0 ⊂ K × I. In this
case, Kt = {k ∈ K : (k, s) ∈ U for all 0 ≤ s < t} is an open submanifold of K
and for each 0 ≤ s < t, Hs|Kt ⋔ L.

Proof. (a) We note that transversality of f with a (boundary-less) submanifold L is a
local condition—about each point p ∈ L, there is a nbhd U of M and a submersion
by σ : (U, p) → (Rm−ℓ, 0) such that σ| (U ∩ ∂M) is also a submersion and such that
σ−1(0) = U ∩ L by Theorem A.2.9. Transversality of f to L at p implies that σ ◦ f has
regular value 0 (vacuous when p /∈ Im( f )). In other words, transversality translates
locally into a submersion condition.

Let H be any smooth homotopy of f . Since K is compact, it suffices to prove that
every point (k, 0) ∈ K × I has a nbhd U in K × I such that for all (k, t) ∈ U, (Ht) ⋔
L at k or Ht(k) /∈ L. The set H−1(M \ L) is open since L is closed and it contains
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K \ f−1(L)× {0}, so for each k ∈ K, there is a nbhd U = UK ×UI (WLOG a product
open set) of k in K× I such that H(U) ∩ L = Ø. So we consider the points k ∈ K that
do intersect L in some nbhd of (k, 0).

By neatness of L, each q ∈ L has a nbhd V in M of q and a submersion σ : (V, q)→
(Rm−ℓ, 0) such that σ−1(0) = V ∩ L by Theorem A.2.9 (choose a neat submanifold
chart and shrink it to product to project off of the slice V ∩ L). Transversality of f to
L at q implies that σ ◦ f is a submersion at p whenever f (p) = q (and by assumption
q ∈ Im f ). The condition of being a subermsion is an open condition, so there is a nbhd
U (once again WLOG a product open set say by shrinking) of (p, 0) for which H is a
submersion on U.

Finally, by compactness of K, we may cut down this collection to a finite subcollec-
tion then take the smallest interval length from 0 appearing, say [0, ε).

(b) Repeat the argument above all the way up to the end of the third paragraph.
The extra assumptions mean that each q ∈ L has a nbhd V in M of q and a submersion
σ : (V, q) → (Rm−ℓ, 0) such that σ−1(0) = V ∩ L is a submersion by Theorem A.2.9 as
above. Transversality of f to L at q implies that σ ◦ f is a submersion at p whenever
f (p) = q (and by assumption q ∈ Im f ). The condition of being a subermsion is an
open condition, so there is a nbhd Up = UK ×UI (once again WLOG a product open
set say by shrinking) of p for which H is a submersion on U; if p ∈ ∂K, we assume
that UK = U∂K ×U0 in the coordinates of a collar nbhd WLOG. Transversality of ∂ f
to L means that σ ◦ ∂ f is a submersion at p whenever p ∈ ∂M and f (p) = q; since
transversality is open condition, there is a nbhd U′p = U′∂K × U′I of (p, 0) in ∂M × I
(WLOG a product nbhd again) such that ∂H is a submersion on U′. For each p ∈ ∂K,
replace Up by (U∂K ∩ U′∂K) × (UI ∩ U′I). Running the same argument as above, we
build the desired interval.

(c) Simply run the same arguments as above to produce a covering of an open
nbhd of K × {0} which WLOG is connected. Then the preimage of [0, t) under the
projection K× I → I maps U to an open set (projections are open maps) and therefore
the preimage of the restriction to U is an open subset of K× I contained in U consisting
of all points (k, s) where H is defined on [0, t) for the point k. The projection of this
preimage to K is then open subset (hence, open submanifold) of K which we called Kt
(projections are open maps). The two assertions about transversality are clear by the
construction.

This implies the following stability result.

Corollary 37 (Map Stability)

Let K, L and M be manifolds where we assume ∂M = Ø and all manifolds are

connected. Let K
f−→ M

g← L be smooth maps such that f ⋔ g.

(a) If K is compact, then for any smooth homotopy H of f , there is a ε > 0 such
that for all 0 ≤ δ < ε, Hδ ⋔ g.

(b) If K is not compact, then the same conclusion is true in an open say con-
nected nbhd of K× 0 ⊂ K× I.
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Proof. Replacing M by M× L, we may replace L by the neat embedding (g, id) : L →
M × L (its graph); if ∂M ̸= Ø, then (g, id) would not be a neat embedding. Ob-
serve that Im((g, id)) is a closed subspace of M × L since the graph of any contin-
uous function is closed. Finally, replace K by the compact manifold K × L and f by
f × id : K× L→ M× L. Then f ⋔ g becomes transversality of f × id with the neat sub-
manifold L = Im((g, id)). Since ∂M = Ø, ∂(M× L) = M× ∂L. Therefore Im((g, id))
is a neat submanifold of M× L (this fails if ∂M ̸= Ø).

Let H be a homotopy of f . Then we may consider H̃ a homotopy of f × id by
letting H̃ : K× L× I → M× L be the homotopy (k, l, t) 7→ (H(k, t), l). Even if K is not
compact, the hypotheses of the preceding theorem are met.

By the theorem, there is an open nbhd U of K × L × 0 in K × L × I (WLOG con-
nected) upon which H̃ preserves transversality (K × L)t (which is an open submani-
fold of K× L by the arguments made in the preceding theorem, we recall) to Im((g, id)).
Consider the following commutative diagram

K× I K× L× I

K× {0} M× L

M M

(id,q)×id

H̃

f

( f ,q)

prM

and call the resulting composite map H : K× I → M.
Now, U ∩ K × {q} × I is an open nbhd of K × 0 ⊂ K × I. If K is not compact, we

are done. Indeed, consider the open submanifold of Kt consisting of all point k ∈ K
for which (k, t) ∈ U ∩ (K × {q} × I). A simple argument shows that for s ∈ [0, t),
Hs|Kt ⋔ g. Otherwise, if K is compact, then the tube lemma then implies that this open
set contains a tube K× [0, ε) and once again a simple argument shows that Ht ⋔ g for
all 0 ≤ t < ε.

Remark. The following results are taken from Guillemin and Pollack’s book. There are
likely formulations for neat submanifolds too and maybe even more general setups.

Theorem 48 (Transversality Theorem)

In this theorem, no manifold is permitted to have corners.
Let F : X × S → Y is smooth where only X has boundary and Z ⊂ Y is a

submanifold without boundary. If F and F| ∂(X × S) are transversal to Z, then
for almost every s ∈ S, F(−, s) and F(−, s)| ∂X are transversal to Z. More gen-
erally, if g : Z → Y is any map where we again assume ∂Z = ∂Y = Ø, then if
F and F| ∂(X × S) are transversal to g, then for almost every s ∈ S, F(−, s) and
F(−, s)| ∂X are transversal to g.
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Theorem 49 (Transversality Homotopy Theorem)

In this theorem, no manifold is permitted to have corners.
For any smooth f : X → Y where ∂Y = Ø and any boundary-less submanifold

Z of Y, there is a smooth map g : X → Y such that both g ⋔ Z and g| ∂X ⋔ Z
and f is smoothly homotopic to g. More generally, given a map g : Z → Y where
∂Z = ∂Y = Ø, there is a smooth map h : X → Y such that both h ⋔ g and h| ∂X ⋔ g
and f is smoothly homotopic to h.

Proof. Embed Y in Rm and let νY be its normal bundle therein and let r : νY → Y be
the retraction (or bundle projection, depending on you think about it) onto Y. Define
h : νY → Rm by h(y, v) = y + v. Then h is regular at every point of Y ⊂ νY as the zero
section and maps Y onto itself diffeomorphically. The tubular nbhd trick shows that
this is then true in an open nbhd of Y ⊂ νY and thus we use this (plus perhaps a sort
of ε-shrinking argument similar to what we have done in previous proof) to build a
nice ε-nbhd of Y in Rm where ε is a smooth function on Y; call this Yε. Then we define
with S the open unit ball in Rm, F : X × S → Y by F(x, s) = r( f (x) + ε( f (x))s). Then
F(x, 0) = f (x) and for fixed x, s 7→ f (x) + ε( f (x))s is a submersion S → Yε and so
s 7→ F(x, s) is a submersion. Both F and F| ∂(X × S) are submersions then. It follows
that F and F| ∂(X × S) are transversal to any boundary-less submanifold Z of N and
hence for almost all s ∈ S, F(−, s) and F(−, s)| ∂X are transversal to Z. Finally, f is
homotopic to each such map by the evident straight-line homotopy which is clearly
smooth. The same proof will work for the latter version as well.

Theorem 50 (Extension Theorem)

In this theorem, no manifold is permitted to have corners.
Let Z ⊂ Y be a closed subset and a submanifold without boundary of N where

∂N = Ø, let C ⊂ X be a closed subset of X and let f : X → Y be a smooth map
with f ⋔ Z on C and f | ∂X ⋔ Z on C ∩ ∂X. Then there exists a smooth map
g : X → Y smoothly homotopic to f such that g ⋔ Z, g| ∂X ⋔ Z and on a nbhd of
C we have g = f . The same assertion is true if we only assume that h : Z → Y is a
map for which h(Z) is closed in Y, in which the conclusion is that g ⋔ h, g| ∂X ⋔ h
and on a nbhd of C we have g = f .

The idea is to use the preceding theorem. Since ∂X is always closed in X, we also have
the following corollary.

Corollary 38

In this corollary, no manifold is permitted to have corners.
Given f : X → Y such that ∂ f : ∂X → Y is transversal to a submanifold Z

which is closed in Y and ∂Z = ∂Y = Ø, then there is a smooth map g : X → Y
smoothly homotopic to f such that ∂g = ∂ f (in fact g = f on a nbhd of the
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boundary) and g ⋔ Z.

For the next corollary, see here.

Corollary 39

Consider only boundary-less manifolds. If f , f ′ : X → Y are homotopic smooth
maps with f ⋔ g and f ′ ⋔ g where g : Z → Y has closed image, then the pullback
by f and g and the pullback by f ′ and g are bordant.

Proof. We may assume the maps are smoothly homotopic by standard approximation
theorems, call this F : X × I → Y. Then there is a smoothly homotopic homotopy
F′ : X × I → Y which is transversal to g for which the pullback by F′ and g is the
desired bordism as consequence of the extension theorem.

F.4 Construction of Perturbations From Tubular Nbhds

Proposition 18

Let f : M → E where π : E → B is a smooth fiber bundle with typical fiber F. If
Fq = π−1(q), then f ⋔ Fq iff q is a regular value of π f .

Proof. This isn’t hard to see working in a local trivialization about q.

Corollary 40

If f : M → W × V is smooth, then there is a dense set of points q ∈ V such that
f ⋔ W × {q}.

Proof. This follows from the above along with Sard’s theorem.

Corollary 41

Let π : E → B be a smooth fiber bundle. Let V ⊂ E be a submanifold. Then V is
a smooth section of the bundle iff V intersections every fiber Fq transversely in a
single point s(q).

Proof. (⇒) This is clear. (⇐) There is the evident map s : B→ E inverse to π|V. By the
above, π∗| TV is surjective and so since dim V = dim B this map is an isomorphism.
It follows from the constant rank theorem that the inverse s of π|V is smooth (namely
one shows it is a local diffeomorphism).
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Lemma 37

All smooth vector bundles over smooth manifolds are stably trivial. That is, if ξ is
a smooth vector bundle over a manifold M, then there is another vector bundle η
such that ξ ⊕ η is isomorphic to the trivial vector bundle over M.

Proof. Suppose rank ξ = k. This is an application of Hirsch’s globalization theorem to
find an embedding of ξ in a trivial vector bundle M× Rs where s ≥ k + dim M. Then
one defines η to be the evident orthogonal complement.

Lemma 38

Consider a fiber bundle ζ and projection π : E→ B. Let f : M→ B and g1 : V → E.
Then in the commutative diagram

E( f ∗ζ) E(ζ) V

M B

f1

π1 π

g1

g

f

where g = πg1. If f1 ⋔ g1, then f ⋔ g.

Remark. It may not appear obvious but this does hold for smooth manifolds with
corners.

Proof. Suppose f (p) = g(q). There is a point p1 ∈ E( f ∗ζ) such that f1(p1) = g1(q)
and π1(p1) = p. Apply π∗ to the transversality condition. note that π∗ and (π1)∗ are
surjective and use commutativity of the square to deduce that

Tf (p)E = π∗Tf1(p1)
E(ζ) = (π f1)∗Tp1 E( f ∗ζ) + (πg1)∗TqV = f∗Tπ1(p1)

M + g∗TqV,

as desired.

Theorem 51

Let ξ be a vector bundle over V with total space E(ξ) = E and projection p : E →
V. Let f : M → E = E(ξ) be a smooth map. Then there is a (smooth) section
s : V → E such that f ⋔ s. In particular, s may be arbitrarily close to the zero
section (but not necessarily the zero section).

Remark. This likewise works for any class of smooth manifolds. The assumption that
the fiber is a vector space may not be able to be removed since we are using stable
triviality of such bundles.
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Proof. If ξ is trivial, say V × Rk, then as we have seen there is a dense set of points
q ∈ Rk such that f ⋔ V×{q}. In particular, this set is non-empty so choosing any such
q, the section s : V → E sending v 7→ (v, q) proves the theorem for trivial bundles.

In general, let η be a complement to ξ so that ζ = ξ ⊕ η is trivial, say E(ζ) ∼=
V × RN. There is then a natural projection π : E(ζ) → E which is a vector bundle
projection. This gives the square of the diagram in the preceeding lemma. Since E(ζ)
is trivial, we may find a section g1 transverse to f1. Indeed, as we have seen, since
f1 : E( f ∗ζ) → V × RN, there is a dense set of points q ∈ RN such that f1 ⋔ V × {q}.
We thus let g1 : V → E(ζ) ∼= V × RN be the section v 7→ (v, q) for such a q ∈ RN.

At this point, we would be done if we know that g = πg1 is a section of ξ. This
follows since g1 is a section of ζ = η ⊕ η and the commutativity of the diagram

E(ζ) V

E

π

where all maps are projections of vector bundles. This digram commutes since it is the
morphism of vector bundles over V given by the obvious maps

η ⊕ η 0V

η

where 0V = V × R0 ∼= V.
Note that since this set of points in RN is dense, we may take q to be as close to

0 ∈ RN as we like.

The following are now taken from Bredon.

Corollary 42

Let M and V be manifolds, let f : M → N is smooth and g0 : V ↪→ N a neat
submanifold embedding where V and N have boundary and no corners. Then
there is an arbitrarily small isotopy h of the embedding g0 such that f ⋔ h1 and
∂ f ⋔ ∂h1. In particular, this isotopy is strong.

Proof. Let T be a neat tubular nbhd of V in N. This is then open in N, as we have seen.
Hence, W = f−1(T) is an open submanifold of M—such a submanifold is necessarily
neat, we remark, since it has codimension 0 and around any point p ∈ f−1(T) ∩ ∂M it
contains an open nbhd of p.

Now, we only need to deform g0 inside of V to be transverse to f |W : W → T.
Applying the preceding theorem, a section s : V → T exists arbitrarily close to V as
the zero section of T for which f |W ⋔ s. The desired isotopy is then the evident
fiberwise isotopy (v, t) 7→ s(v)t. This isotopy is strong (i.e., the track V × I → T × I is
a level-preserving embedding) for the obvious reasons.
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Corollary 43

Let V ⊂ N be a compact submanifold and U be an open nbhd of V in N and
f : M→ N a smooth map. Then there is a strong isotopy h of N that is the identity
outside of U and such that f ⋔ h1(V).

Proof. By shrinking, we may find a proper tubular nbhd of V in U and a section s of it
transverse to f

Lemma 39

If p : E → B is an orientable vector bundle of rank n ≥ 1 and i : X → B is an
embedding, then the induced bundle i∗p : i∗E → X formed by the pullback is
orientable.

Proof. Since i is an embedding, one easily verifies that there is bundle isomorphism
i∗E ∼= p−1(X) = E|X. This is verified topologically by universal properties and one
then checks that the homeomorphism given is in fact a bundle isomorphism by recall-
ing how the vector space structure is defined on the fibers of i∗E.

We therefore give each fiber p−1(x) the orientation µx is had originally. Fix a trivi-
alizing open nbhd U in B of a point x ∈ X. Then U ∩ X is a trivializing open nbhd in
X. Moreover, one quickly verifies that p−1(X) ⊃ p−1(U ∩ X) ↪→ p−1(U) ∼= U × Rn

is therefore orientation preserving or orientation reversing everywhere, and so i∗E ∼=
p−1(X) is orientable in the obvious way.

It once again helps to know the definition of orientability of a vector bundle over
M.

Theorem 52

Fix n ≥ 1. Let N ⊂ M is be a submanifold of an orientable manifold with corners
M and suppose dim N = dim M − 1 (i.e., a hypersurface). Then N is orientable
iff the normal bundle of N is trivial.

Remark. M being orientable is surely needed since the Möbius band M is not ori-
entable and ∂(M× [0, 1)) ∼= M is not orientable, where dim ∂M = dim(M× [0, 1))− 1.

Proof. (⇐) Suppose the normal bundle of N is trivializable. It follows that TM|N ∼=
TN ⊕ R. Since M is orientable, TM|N = TN ⊕ R is orientable, we claim, and this
follows from the preceding lemma. The other lemma now shows that TN must be
orientable and hence N is orientable. (⇒) Is N is orientable, then TN is orientable.
Hence, 0 → TN → TN ⊕ νN → νN → 0 is a SES of vector bundles and the middle
one is orientable once again because M is orientable and we have an isomorphism
TM|N ∼= TN ⊕ R. Hence, νN must be orientable. But the only orientable line bundle
is trivial, so we conclude.
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G Point-Set Results

G.1 Miscellany

Theorem 53 (May, Thm 7.4.1)

Let p : E → B be a map and U be a numerable open cover of B. Then p is a
Hurewicz fibration iff p : p−1(U)→ U is a Hurewicz fibration for all U ∈ U .

Proof. Omitted. There are two typos in May’s proof. uj should be uj = ∑
j
i=1 γTi(β)/ ∑

q
i=1 γTi(β)

and s(e, β) should be s(e, β)(0) = e.

Corollary 44

Every numerable fiber bundle is a Hurewicz fibration.

Proof. For an element U of a numerable open cover by trivializing open sets, it suffices
to show in the coordinates of the trivialization that U× F → U is a Hurewicz fibration.
Of course, the dashed lift in the following diagram

X U × F

X× I U

i0

( f ,g)

H

always exists and can be taken to be the map (H, g ◦prX). Hence, the previous theorem
allows us to conclude.

Theorem 54

Every fiber bundle E→ B is a Serre fibration.

Proof. Omitted.

Theorem 55 (Lee, A.57)

A proper continuous map to a locally compact Hausdorff space is a closed map.

Proof. We show that for f : X → Y continuous and proper and C ⊂ X closed, f (C)c

is open. Since Y is LCH, each y ∈ f (C)c has an open nbhd V containing y that is
precompact (open set whose closure is compact). So K = f−1(V) is compact as f is
proper and so C ∩ K is a closed subset of the compact space K and so is compact in K
and, hence, also X. Hence, f (C ∩ K) = f (C) ∩ V is compact. Since Y is Hausdorff, it
is also closed. Hence, V \ ( f (C) ∩V) = V \ f (C) is an open nbhd of y not intersecting
f (C).
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G.2 Submanifolds are Locally Closed

Definition 46

Say a subspace A ⊂ X is locally closed if it A is a closed subspace of an open
subspace V of X.

Lemma 40

Let A ⊂ X. TFAE:

(a) A is locally closed.

(b) Each p ∈ A has an open nbhd U ⊂ X such that A ∩U is closed in U.

(c) A is open in its closure A.

Proof. (a)⇒ (b) A ⊂ V ⊂ X. The nbhd if V since V ∩ A = A is closed in V.
(b) ⇒ (c) Let Up be a nbhd of p ∈ A asserted to exist. Then ClUp(Up ∩ A) =

U ∩ ClX(A) since if x ∈ ClUp(Up ∩ A), then every nbhd of x in U contains points
of A and therefore since Up is open x ∈ A, which is the non-trivial inclusion. Since
Up ∩ A is closed in Up, it follows that Up ∩ A = Up ∩ A and so Up ∩ A is a nbhd of p
in the subspace topology on A. Since p was arbitrary, A ⊂ A is open in the subspace
topology.

(c)⇒ (a) Since A ⊂ A is open in the subspace topology, there is an open subspace
U of X such that U ∩ A = A.

Theorem 56

Submanifolds are locally closed.

Proof. Let Nn ⊂ Mm be a submanifold. By (b) above, this is a local problem, so fix
p ∈ N. Then there is a chart (x, U) of M about p which, for convenience, we as-
sume x : U → Rm is a diffeomorphism onto an open subspace of some Rm−k × Rk

≥0 ⊂
Rm and we assume x(U) is an open ball, as well as a straightening diffeomorphism
φ : V → Rm where we may as well assume x(U) ⊂ V, where V is open in Rm. Then
φx(U ∩ N) = φx(U) ∩ 0 × Rn−ℓ × Rℓ

≥0 ⊂ Rm. But this is closed in φx(U) since its
complement is

φx(U)∩ φx(U∩N)c = φx(U)∩ (φx(U)∩ 0×Rn−ℓ×Rℓ
≥0 ⊂ Rm)c = φx(U)∩ (0×Rn−ℓ×Rℓ

≥0)
c

and 0×Rn−ℓ×Rℓ
≥0 is closed so its complement is open, and therefore the intersection

is an open subset in φx(U). This shows that U is an open nbhd of p ∈ N for which
N ∩U is closed in U. We conclude by (b).

Remark. The preceding theorem allows us to throw away the closed hypothesis in
many assertions in the literature. It can be useful to pair this with the corollary of the
following theorem. Note that we phrase it differently from Kosinski, however, because
it seems that his statement is not quite correct.
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G.3 Tubular Neighborhood Trick

In order to prove the following theorem in the smooth case, we need the following
auxiliary lemma.

Lemma 41

If f : M → N is a local diffeomorphism and C ⊂ M is a submanifold for which
f |C is a homeomorphism onto its image, then f (C) is a submanifold of N and
hence f |C is a diffeomorphism onto its image.

Proof. This is an exercise in definitions. Since f |C is a homeomorphism onto its image,
it is a topological embedding. We therefore only need to verify that it is an immersion,
and this follows because the property of being an immersion is local and f is locally a
diffeomorphism.

The following theorem is taken from Daniel Tausk’s notes, Lemma 8.12, where it is
proved carefully.

Theorem 57 (Tubular Neighborhood Trick)

If f : X → Y is a local homeomorphism where Y is hereditarily paracompact and
Hausdorff and f is a homeomorphism on a subspace C ⊂ X, then f is a homeo-
morphism on a nbhd U of C.

This can be upgraded to DIFF as follows. If f : X → Y is a local diffeomorphism
which is a homeomorphism on a submanifold C ⊂ X, then f is a diffeomorphism
on a nbhd U of C.

Since closed subspaces of a paracompact Hausdorff spaces are themselves paracom-
pact, the proof admits minor modifications showing the following.

Corollary 45

If f : X → Y is a local homeomorphism where Y is paracompact Hausdorff and f
is a homeomorphism on a subspace C ⊂ X such that f (C) is closed in Y, then f is
a homeomorphism on a nbhd U of C.

Remark. We have already shown that manifolds are hereditarily paracompact.

Proof. First, let us agree on some ad hoc terminology. For an open subset V of X, we
will call the map f |V a chart for f if f |V is a homeomorphism onto its image. We will
let C′ = f (C). Now, the trickiest part of this is showing that a nbhd of f (C) of the
correct form exists.

Claim. For each point of x ∈ C and nbhd U in X of x, there is a nbhd V ⊂ U of x such
that f (V ∩ C) = f (V) ∩ f (C).
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Since U ∩ C is open in C, f (U ∩ C) is open in f (S). Hence, there is an open subset
A ⊂ Y such that f (U ∩ S) = A ∩ f (S). Let V = U ∩ f−1(A). Then V is an open nbhd
of x contained in U and trivially we have f (V′ ∩ C) ⊂ f (V′) ∩ f (C). On the other
hand,

f (V) ∩ f (C) ⊂ A ∩ f (C) = f (U ∩ C) = f (V ∩ C).

For the last equality, observe that V ⊂ U so V ∩ C ⊂ U ∩ C, while on the other hand,
U ∩C ⊂ f−1(A) (basically just apply f−1 to f (U ∩C) = A∩ f (C)) so that by intersect-
ing both sides of U ∩C ⊂ f−1(A) with U and C, we obtain U ∩C ⊂ U ∩ f−1(A)∩C =
V ∩ C and so f (U ∩ C) ⊂ f (V ∩ C) and therefore have equality.

Note that a local homeomorphism that is injective is a homeomorphism. Therefore
it suffices to find an open set Z ⊂ X containing C such that f | Z is injective. For each
x ∈ C, let

fx = f |U′x : U′x → V′x
be a local homeomorphism. By the claim, we may assume WLOG that f (U′x ∩ C) =
V′x ∩ C. Let Y0 =

⋃
x∈C V′x. Then this is open and paracompact Hausdorff since Y is

hereditarily paracompact and Hausdorff. Therefore {V′x} admits a locally finite open
refinement, say {Vi}i∈I (the family {Vi}i∈I is locally finite in Y0).

For each index i, choose x ∈ C ∩Vi such that Vi ⊂ V′x and set

Ui = f−1
x (Vi) = ( f |U′x)−1(Vi) ⊂ U′x,

which is open since Y0 is open and therefore its open subsets are open in Y. Then

fi = f |Ui : Ui → Vi

is a local homeomorphism and

f (Ui ∩ C) = Vi ∩ f (C).

This latter thing follows because fx is a homeomorphism and therefore

f−1
x (Vi ∩ f (C)) = f−1

x (Vi ∩ fx(C)) = f−1
x (Vi) ∩ f−1

x f (C) = Ui ∩ C.

Since paracompact Hausdorff spaces are normal, the shrinking lemma guarantees
a locally finite open refinement of the Vi on the same index set, say {Wi} with Wi ⊂ Vi
such that ClY0(Wi) ⊂ Vi ⊂ V′x. For each i ∈ I, let

Zi = f−1
i (Wi).

Then Zi ⊂ Ui ⊂ U′x is open in X and, by abuse of notation, fi = f | Zi : Zi → Wi is a
homeomorphism. Once again, since fx is a homeomorphism, we have that

f (Zi ∩ C) = Wi ∩ f (C).

Now we claim that
C ⊂

⋃
i∈I

Zi.
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Indeed, for x ∈ C, there exists i ∈ I such that f (x) ∈ Wi and therefore f (x) ∈ Wi ∩
f (C) = f (Zi ∩ C); it follows that there exists y ∈ Zi ∩ C with f (y) = f (x) but since
f |C is injective, x = y, proving the claim.

For each x ∈ C, let
Ix =

{
i ∈ I : f (x) ∈ ClY0(Wi)

}
.

Since the closed cover
{

ClY0(Wi)
}

is locally finite as W i ⊂ Vi and {Vi} is locally finite
in Y0 so #(Ix) < ∞. Moreover, Ix ̸= Ø from the above.

Keep x ∈ C. If i ∈ Ix, then from what we have shown,

f (x) ∈ ClY0(Wi) ∩ f (C) ⊂ Vi ∩ f (C) = f (Ui ∩ C),

and so since f |C is injective, x ∈ Ui and, in particular

x ∈
⋂

i∈Ix

Ui,

and this holds for all x ∈ C.
Let us find an open nbhd Gx of f (x) in Y0 with the following properties:

(a) for each i ∈ I, Gx ∩Wi ̸= Ø iff i ∈ Ix;

(b) Gx ⊂ f (
⋂

i∈Ix Ui).

Such a set Gx can be defined by

Gx = (Y0 \
⋃

i∈I\Ix

ClY0(Wi))︸ ︷︷ ︸
(a)

∩ f (
⋂

i∈Ix

Ui)︸ ︷︷ ︸
(b)

.

We claim that Gx is open in Y0 (and hence Y). Since f is an open map and #(Ix) < ∞,
f (
⋂

i∈Ix Ui) will be open in Y0 and hence Y. Since
{

ClY0(Wi)
}

is locally finite and the
union of any collection of locally finite sets is closed, Y0 \

⋃
i∈I\Ix ClY0(Wi) is open in Y0

and hence Y—therefore Gx is open in Y0 and hence Y. Note that for any locally finite
collection of sets, the closure operator distributes over the union, which is where the
penultimate assertion comes from.

Let G =
⋃

x∈S Gx and let Z = f−1(G) ∩ ⋃i∈I Zi. Then G is open in Y0 and hence Y
and therefore Z is open in X. Moreover, S ⊂ Z since C ⊂ ⋃i∈I Zi and clearly f | Z : Z →
G. Since Z is open and f is a local homeomorphism, f | Z is a local homeomorphism.
It therefore suffices to show it is injective to complete the proof.

Let x, y ∈ Z with f (x) = f (y). Pick indices i, j ∈ I with x ∈ Zi and y ∈ Zj. Now,
f (x) = f (y) ∈ Gz for some z ∈ C so f (x) ∈ Gz ∩Wi and f (y) ∈ Gz ∩Wj and therefore
i, j ∈ Iz by property (a). Property (b) implies Gz ⊂ f (Ui ∩ Uj) and therefore there
exists p ∈ Ui ∩Uj with f (x) = f (p) = f (y). But since f is injective on Ui and on Uj
individually, f is injective on Ui ∩Uj. Therefore x = p = y.

Observe that everything we did above made no explicit mention of whether we
worked in TOP or DIFF. Indeed, because smoothness is a local property, everything
still goes through in the smooth category.
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H Connections and Differential Geometry

We start with a useful theorem.

Theorem 58

Let E and E′ be total spaces of smooth vector bundles over M. A map f : Γ(E) →
Γ(E′) is C∞(M)-linear iff there exists a smooth bundle map F : E → E′ such that
for any s ∈ Γ(E),

f (s) = F ◦ s.

In particular, it follows that f only depends on the value of the section at a point
and, in fact, given f , F is defined on v ∈ Ep by F(v) = f (ṽ)(p) where ṽ is any
smooth global section of E which is v at p.

The proof of this theorem is an extremely typical argument. As usual, being C∞-
multilinear (multi= 1 in this case) implies that everything is determined pointwise.

Definition 47

Let p : E→ M be a smooth vector bundle. A connection on E is a map

∇ : X(M)× Γ(E)→ Γ(E)

such that for X ∈ X(M) and s ∈ Γ(E),

(a) ∇Xs is C∞(M)-linear in X and R-linear in s;

(b) (Leibniz rule) if f ∈ C∞(M), then ∇X( f s) = (X f )s + f∇Xs or, equivalently,
∇X( f s) = (d f )(X)s + f∇Xs.

We say a section s ∈ Γ(E) is flat if ∇Xs = 0 for all X ∈ X(M).

Remark. Equivalently, ∇ : Γ(E) → Γ(T∗M ⊗ E). Since V∗ ⊗W ∼= Hom(V, W) for
finite-dimensional vector spaces, one can show that this is equivalently ∇ : Γ(E) →
Γ(Hom(TM, E)) and by the preceding, since an element of the bundle Hom(TM, E)
is exactly the same as a map TM → E, it is exactly the same as a C∞(M)-linear map
X(M)→ Γ(E); if we fix x ∈ Γ(E), X 7→ ∇Xs is precisely a C∞(M)-linear map X(M)→
Γ(E), which is why these are equivalent.

In this formulation, a connection is an R-linear map ∇ : Γ(E) → Γ(T∗M⊗ E) such
that ∇( f s) = d f ⊗ s + f∇s.

Exercise 2. Γ(E1 ⊗ E2) ∼= Γ(E1)⊗C∞(M) Γ(E2).

Theorem 59

Connections exist.

Page 144



MORSE THEORY & (HAMILTONIAN) FLOER HOMOLOGY MATT CARR

Proof. Any convex linear combination of connections is a connection. Use a partition
of unity.

Recall the following.

Notation H.1. Let Tk
ℓ (M) denote tensor fields of type (k

ℓ). That is, smooth sections of
(T∗M)⊗k ⊗ (TM)⊗ℓ.

Theorem 60

There is a bijective correspondence between C∞(M)-multilinear maps A: X(M)×n×
X∗×m → C∞(M) and type (n

m) tensor fields. In particular, Adepends only on the
vectors and covectors pointwise.

Corollary 46

C∞(M)-multilinear alternating maps A: X(M)×n → C∞(M) are in natural bijec-
tive correspondence with Ωn(M).

Remark. This theorem implies that for fixed s, we may define∇Xs = p 7→ ∇Xp s since
∇ is C∞(M)-multlinear in X. This allows us to define a connection as a function which
associates to every vector v ∈ TpM and section s ∈ Γ(E) a smooth section ∇vs such
that ∇ is linear over R in v, satisfies that

∇v( f s) = f (p)∇vs + v( f )sp

for f ∈ C∞(M) and is such that if X ∈ X(M), then p 7→ ∇Xp s is a smooth section of E.
In particular, ∇Xs(p) depends only locally on s and pointwise on X.

We construct an analogy of this now.

Definition 48

Let E be a vector bundle over M. Then by an E-valued k-form with mean a section
of (ΛkT∗M)⊗ E. We denote by Ωk(M; E) the collection of such forms.

Theorem 61

C∞(M)-multilinear alternating maps A: X(M)×n → Γ(E) are in natural bijective
correspondence with Ωn(M; E).

Theorem 62

The difference between two connections is a tensor field and in particular an ele-
ment of Ω1(M; End(E)).
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Proof. (∇1 −∇2)( f s) = f (∇1 −∇2)(s) so this is now C∞(M)-multilinear and hence,
∇1 −∇2 is a C∞(M)-linear map Γ(E) → Γ(T∗M ⊗ E). Alternatively, we may view
∇1 −∇2 : X(M)→ Γ(E∗ ⊗ E) ∼= Γ(End(E)) by noting that a multilinear map Γ(E)→
Γ(T∗M)⊗ Γ(E) is which is C∞(M)-linear still and thus corresponds to an element of
Ω1(M; End(E)).

Remark. This says that the space of connections is an affine space for Ω1(M; End(E)).

We are most interested in the case where E = TM.

Proposition 19

Given a connection ∇ TM, there is a unique operator, for each X ∈ X(M),

A 7→ ∇X A

from smooth tensor fields to smooth tensor fields preserving all types such that

(a) ∇X f = X( f ) (differentiation);

(b) ∇XY is the vector field given by the connection ∇;

(c) A 7→ ∇X A is linear over R;

(d) ∇X(A⊗ B) = (∇X A)⊗ B + A⊗ (∇XB) (Leibniz);

(e) For any contraction C, ∇X ◦ C = C ◦ ∇X.

Moreover each ∇X A is C∞(M)-linear in X. Thus, as before, we may show that
this depends only locally on A and pointwise X and therefore define p 7→ ∇Xp A
a smooth tensor field of the same type as A defined by

∇A(p)(X1p, . . . , Xkp, Xp) = ∇Xp A(X1p, . . . , Xkp)

where, by a preceding theorem, it suffices to define this pointwise on vectors.
In fact, if S has type (k

ℓ), then ∇S is a tensor field of type (k+1
ℓ ).

Finally, for any one 1-forms ω, we will have that∇Xω is given on vector fields
Y by

∇X(ω)(Y) = X(ω(Y))−ω(∇XY),

Proof. The point is that for a 1-form ω, we must have

X(ω(Y)) = ∇X(ω(Y)) = ∇X(C(ω⊗Y) = C((∇Xω)⊗Y + ω⊗∇XY),

and this is
∇X(ω)(Y) + ω(∇XY),

and so we must have for any Y

∇X(ω)(Y) = X(ω(Y))−ω(∇XY),
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which by a preceding theorem pins down the 1-form∇Xω precisely. The general case
follow easily from this since a general tensor field is a sum of functiosn times tensor
products of vector fields and 1-forms (covector fields).

Corollary 47

For f ∈ Ω0(M) = C∞(M), ∇ f = d f , where d f is the differential d f : M → T∗M

given in local coordinates by
∂ f
∂xi dxi.

Definition 49

The Levi-Civita connection on a Riemannian manifold M is a connection ∇ on
TM which satisfies the following two properties specifying it uniquely.

(a) ∇ preserves the metric ∇g = 0 or, equivalently, X(⟨Y | Z⟩) = ⟨∇XY | Z⟩+
⟨Y | ∇XZ⟩;

(b) ∇ is torsion-free, meaning the torsion tensor vanishes

[X, Y]−∇XY +∇YX = [X, Y]− (∇YX−∇XY) = 0.

Remark. The first condition has the geometrically pleasing interpretation that it guar-
antees that parallel transport preserves the lengths of vectors.

The second condition is tantamount to saying that the derivatives of two vector
fields along each other commutes as much as possible. The bracket [X, Y] can be shown
to measure the infinitesimal failure of flowing along Y for time h, then X for time h
then Y for a time −h and then X for a time −h to return to the initial point and that, in
fact, this is the complete obstruction for X and Y to commute at some point. Spivak’s
first volume has beautiful discussion on this point in chapter 5.

When two vector fields X, Y commute locally about some point p, they may be

used to locally construct coordinates
∂

∂x1 = X and
∂

∂x2 = Y, and the prototype for
directional derivatives commuting are those coming from coordinates. Hence, the
failure of the covariant derivatives to commute should be precisely the failure for the
two vector fields to commute since otherwise their covariant derivatives along each
other may be identicial but X and Y cannot be used to introduce local coordinates.

Definition 50

Given a connection ∇, define the Hessian of a smooth function f : M → R as
Hess( f ) = ∇∇ f . Since f is a 0-form,∇ f = d f , Hess( f ) is the type (2

0) tensor field
∇d f .
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Exercise 43

If ∇ is the Levi-Civita connection for M a Riemannian manifold, then

Hess( f )(X, Y) = ⟨∇X grad f | Y⟩ = X(Y f )− (∇XY) f .

[Hint: To understand any tensor field of type (k
ℓ), it suffices to understand how it acts on

tuples (X1p, . . . , Xkp, ω1p, . . . , ωℓp) ∈ TpM×k × T∗p M×ℓ. One can compute

∇2 f (X, Y) = ∇X(∇Y f ) = ∇X(∇ f (Y)).

The point is that by compatibility with the metric,

X ⟨grad f , Y⟩ = ⟨∇X grad f | Y⟩+ ⟨grad f | ∇XY⟩

and ⟨grad f | X⟩ = f∗(X) = X( f ) by definition of grad f .]

Lemma 42

The naive way to define higher order partial derivatives for a smooth real-valued
function on M is not, in general, a tensorial construction.

Proof. Suppose we have overlapping charts x and y. The naive way to define partial
derivatives of f in coordinates is as

∂2 f
∂xi∂xj

def
=

∂2( f ◦ x−1)

∂xi∂xj

which denotes the usual mixed partial.

To see how this transforms under a change coordinates, note that
∂ f
∂xi = ∑

∂ f
∂yj

∂yj

∂xi

(with the usual summation convention) by the chain rule and so in particular

∂

∂xi = ∑
∂xi

∂yj
∂

∂yj .

This means the first derivative construction transforms like a tensor.
To compute the change of coordinate for our mixed partial derivative, we follow

the same strategy and we compute

∂([ f ◦ x−1])

∂xi∂xj =
∂([ f ◦ y−1][y ◦ x−1])

∂xi∂xj

according to the chain rule. By the Faa di Bruno formula, this is (being pedantic about
what symbols mean)

∑
k
(

∂( f ◦ y−1)

∂yk
∂2(y ◦ x−1)k

∂xi∂xj ) + ∑
α,β

(
∂2( f ◦ y−1)

∂yα∂yβ

∂(y ◦ x−1)α

∂xi
∂(y ◦ x−1)β

∂xj )
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which we might more typically write as

∑
k
(

∂ f
∂yk

∂2yk

∂xi∂xj ) + ∑
α,β

(
∂2 f

∂yα∂yβ

∂yα

∂xi
∂yβ

∂xj ).

Since f ∈ C∞(M) was arbitrary, this, in particular, means our symbol takes the form

∂2

∂xi∂xj = ∑
k

∂2yk

∂xi∂xj
∂

∂yk + ∑
α,β

∂yα

∂xi
∂yβ

∂xj
∂2

∂yα∂yβ
.

This almost looks right, except the first term has the wrong type! If the construction
∂2

∂xi∂xj is coordinate independent, it can be easily seen that the first term must vanish.

Exercise 44

Fix f : M→ R smooth with critical point p.

(a) Show that
∂2 f

∂xi∂xj as defined above is intrinsically defined at a critical point

p (i.e., gives a well-defined element of the tangent space Tf (p)R).

(b) Show that the naive coordinate definition of Hessp( f ) agrees with definition
given above at p. Then show that at a critical point p, Hessp( f ) may be
defined by sending (X, Y) ∈ TpM × TpM to X(Y( f )) and that this agrees
with the other formulations.
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Index

E-valued k-form, 145
δ-close, 53
H, 37
Hn, 37
Rn
≥0, 37

Rn
k , 37

R+, 37
R≥0, 37
ε-shrinking, 100
f and g are transverse, 126
f is transversal to g, 126
in,k, 38
k-corner subspace, 40
k-th order corners, 40
n-dimensional submanifold, 46
(linear) disk bundle, 83
(linear) sphere bundle, 83

admissible, 22
ambient isotopy, 98

boundary, 40
boundary chart, 39

category, 1
center, 6
closed collar, 57
closed tubular neighborhood, 107
collar, 57
Collar Neighborhood Theorem, 59
commutative, 7
complete, 10
connected sum, 33
connection, 144
Constant Rank Theorem, 123, 124
corner

k-th order, 40
depth, 40

corner chart, 39
corner set, 40
corners of depth k, 40
correspondence, 29
covariant derivative, 18
Cramer’s Rule, 75

depth, 40
dimension, 10
dual space of R-points, 7

equivalence, 4
Equivariant Rank Theorem, 42
exponential map, 91
Extension Theorem, 134

flat, 144
Flow-in theorem, 55, 70
functor, 3

geodesic flow, 90
geometric, 7

Hadamard’s lemma, 106, 110
hereditarily paracompact, 50, 141
Hermitian metric, 93
Hessian, 147
hypersurface, 138

identity map, 2
index, 19
induced orientation, 63
invariance of domain, 58
inward pointing, 57, 123
inward pointing first convention, 64
inward pointing vector field, 58
isomorphism, 2
isotopy, 96

support, 99
isotopy extension theorem, 105

Leibniz formula, 16
Leibniz rule, 144
Levi-Civita connection, 147
locall small, 1
locally closed, 140

space, 140
submanifold, 140

locally ringed spaces, 5
lower semicontinuous, 46

manifold with corners, 38–40
model corner spaces, 39
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model spaces, 39
Morse chart, 19
Morse function, 18
Morse lemma, 19

natural isomorphism, 3
natural transformation, 3
neat submanifold, 47, 57
neat tubular neighborhood, 120
normal bundle of the immersion, 89
normalized isotopy, 97

opposite, 3
orientable

manifold, 63, 138
vector bundle, 63, 138

orientation-preserving, 103
orientation-reversing, 103
outward pointing, 57, 123
outward pointing first convention, 63,

64

polar decomposition, 95
preserves the metric, 147
proper tubular neighborhood, 108

of a submanifold of the boundary,
121

pushout, 30

quotient bundle, 79

Regular Value Theorem
Improved, 124

restriction, 9
restriction homomorphism, 9
Riemannian metric, 94

sequential spaces, 20
SESs of Bundles Splits, 83
shrinking, 100
shrinking function, 62
shrinking lemma, 142
small, 4

smooth, 10, 38
smooth compact-open topology, 131
span, 29
standard isotopy, 106
Stokes’ theorem, 63
strong isotopy, 96
strong Whitney topology, 19
submanifold, 46
submanifold chart, 49
support

isotopy, 99
support of an isotopy, 99

teardrop, 57
Topological Invariance of the

Boundary, 41
torsion-free, 147
transversal

on a subset, 126
transversal to P on a subset C, 126
Transversality Homotopy Theorem,

134
Transversality Theorem, 133
transverse

on a subset, 126
tube lemma, 133
tubular neighborhood, 107, 121

of a submanifold of the boundary,
121

Tubular Neighborhood Trick, 60, 141
type, 28

Uniqueness of Collars, I, 113
Uniqueness of Collars, II, 120
universal property, 31
Universal Property of Submanifolds, 51

weak Whitney topology, 19, 131
Whitney Approximation Theorem, 54,

56
Whitney Approximation Theorem for

Functions, 53
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