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Relaxation oscillations comprise a larglass of nonlineadynamicalsystemsand arise naturally
from many physicakystems such as mechanics, biology, chemistngl engineering. Such
periodic phenomena are characterized by intervatenefduring whichlittle happensijnterleaved
with intervals oftime during which considerable changedke place. In othemwords, relaxation
oscillations exhibit more than ortiene scale.The dynamics of a relaxation oscillator is illustrated
by the mechanicaystem of a seesaw in Figure 1. At one sid¢hefseesaw ighere a water
container which is empty at the beginning; in this situation the other siithe séesaw touches the
ground. Asthe weight of watedripping from atap into the container exceeds that of the other
side, the seesaw flips anthe containerside toucheghe ground. Atthis momentthe container
empties itself, and the seesaw returns quictly to its original position and the process repeats.

/

Figure 1. An example of a relaxation oscillator: a seesaw witater container abne end (adaptefrom

(4)).

Relaxation oscillations were first observed by van der Pol (1) in 1926 when studying properties of
a triode circuit. Such a circuit exhibits self-sustained oscillations. van der Pol discthadred a

certain range of the system parameters the oscillation is adimasbidal, but for aifferent range

the oscillation exhibits abrupthanges. Inthe latter case,the period of the oscillation is
proportional to the relaxatiotime (time constant) of thesystem, hence the ternrelaxation
oscillation van der Pol (2) later gave the following defining properties of relaxation oscillations:

1. The period of oscillations is determined by some form of relaxation time.
2. They represent a periodic autonomous repetition of a typical aperiodic phenomenon.

3. Drastically differentfrom sinusoidal or harmonic oscillationsglaxation oscillators
exhibit discontinuous jumps.

4. A nonlinear system with implicit threshold values, characteristic of the all-or-none law.
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A variety of biological phenomena can be characterized as relaxsifations, ranging from
heartbeat, neuronal activity, to population cycles; the English physiologist A.V. Hill (3) even stated
that relaxation oscillations are the type of oscillations tfmternsall periodic phenomena in

physiology.

Giventhat relaxation oscillations have beeescribed in a wide range dbmains, it would be
unrealistic to provide an up-to-date review of all aspects in this article. Thus, | choose to orient my
description towards neurobiology arthphasizenetworks ofrelaxation oscillatorbased on the
following two considerations (the reader is referred

to (4) for an extensive coverage of relaxatic” by

oscillations). First, as describedtime nextsection, - " —— |-
neurobiology has motivated a great deal of study " —» |-
relaxation oscillations. The second and more /.

important reason isthat remarkablgprogress has T -
been made recently imnderstanding networks c > < e X
relaxation oscillators. In the next sectiorgescribe o/ = <>/

a number of relaxation oscillators, including the v _ -
der Pol oscillatorThe following section is devotec -

to networks ofrelaxation oscillators, where the
emergent phenomena  of synchrony and
desynchrony aréhe majortopics. Then, describe g Ay
applications of relaxation oscillatonetworks to

visual and auditory scenanalysis, which are g
followed by some concluding remarks.

RELAXATION OSCILLATORS

In this section | introducefour relaxation
oscillators.The van derPol oscillator exemplifies
relaxation oscillations, and hatayed an importa °
role in the development of dynamicgystems, i €
particular nonlinearoscillations. The Fitzhugh-

h x
Nagumo oscillator anthe Morris-Lecar oscillator
are well-known models for describing the
conductance-based membrane potential of a nerve
cell. The Terman-Wang oscillatdras underlain a -

number of recent studies on oscillator networks and t
their applications to sceneanalysis. As
demonstrated by Nagumo et al. (5) and Ked6gr

these oscillator models can be readiihplemented
with electrical circuits.

Figure 2. Phase portrait and trajectory of a van der
Pol oscillator.A Phase portrait. The nullcline is
the cubic curveand the y nulicline is they axis.
. . . Arrows indicate phasflows. B limit cycle orbit.
The van der Pol oscillator can be written in the fi The |imit cycle isﬁ)abded asqrs and the;’wowheads
indicatethe direction ofmotion.  Within thelimit
cycle,gr andsp two fastpieces(indicated by double
5 — AN arrowheads) andg)q and rs are slow pieces.C
+X= - = .
X+X= 1= x%)x () Temporal activity of the oscillator. Here the x
activity is shown with respect to time.

van der Pol oscillator
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wherec > 0 is a parameter. This second-ordiffierential equation can beansformed to a two
variable first-order differential equation,

x =c(y - f(x)) (2a)
y=-x/c (2b)

Heref(x) = x + x3/3. Thex nullcline, x = 0, is a cubic curve, whilthey nullcline, y = 0, is the
y axis. As shown in Fig. 2A, the two nullclines intersect along the middle brartble afibic, and
the resulting fixed point is unstable as indicated byflthe field in the phaseplane ofFig. 2A.
This equation yields a periodic solution.

Asc» 1, Eq. (2) yields twdime scales: alow time scalefor they variable and a fagime scale
for thex variable. As a result, Eq. (2) becomes the van der Pol oscilhatijsroduces aelaxation
oscillation. The limit cycle for the van der Pol oscillator is givefrilp 2B, and it is composed of
four pieces, two slow onasdicated bypqg andrs, and two fast onemdicated bygr andsp. In
other words, motion along the two brancheshef cubic isslow compared to fast alternations, or
jumps, between the two branches. Fig. 2C showastivity of the oscillatomwith respect to time,
where two time scales are clearly indicated by relatively slow changesiivity interleaving with
fast changes.

FitzHugh-Nagumo oscillator

By simplifying the classicaHodgkin-Huxley equations (7) famodeling nerve membranes and
action potentiageneration, FitzHugh (8) and Nagumaaét(5) gave thefollowing two-variable
equation, widely known as the FitzHugh-Nagumo model,

x=c(y-f(x)+1) (32)
y=-(x+by-a)/c (3b)

wheref(x) is as defined in Eq. (2),is theinjectedcurrent, anda, b, andc aresystem parameters

satisfying the conditions: 1> 0,c2> b, and 1 >a> 1 — /3. In neurophysiologicaterms, x
corresponds to the neuromakmbrane potential, andplaysthe aggregate role of three variables

in the Hodgkin-Huxley equations. Given that shaullcline is a cubic anthey nullcline islinear,

the FitzHugh-Nagumo equation isathematically similar to thean der Pol equationTypical
relaxation oscillation with two time scales occurs whenl. Because of the three parameters and
the external input, the FitzHugh-Nagumo oscillatohas additional flexibility. Depending on
parametewalues,the oscillator can exhibit a stable steady state or a stable pesiaticWith a
perturbation by external stimulatiotie steady state can become unstable and be replaced by an
oscillation; the steady state is thus referred to asxtigablestate.

Morris-Lecar oscillator

In modeling voltage oscillations in barnacle muddbers, Morris and Lecar (9) proposed the
following equation,

X==gcaMeo (X)(X=1) = gk Y(X =Xk ) = gL (X=X) +1 (4a)
Y= =&Yoo (X) ~ )/ Ty(X) (4b)

where
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Moo (X) =[1+tanh((x = xq) / )] / 2
Yoo (X) =[1+tanh((X = X3) / X4)]/ 2
Ty(X) =1/ cosh[(x - X3)/ (2X4)]

and X1, X2, X3, X4, 9ca 9k, 9L, Xk, andx_ are parametersCa stands for calciumK for

potassiuml for leak, and is the injected current. Thgarametei controlsrelative timescales of

x andy. Like Eqg. (4), the Morris-Lecar oscillator is closely related to the®dgkin-Huxley
equations, and it is used adveo-variable description of neuronal membrane properties or the
envelope of an oscillating burst (10). Theariable corresponds tbe membrane potential, agd
corresponds to the state of activation of ionic channels.

The x nullcline of Eq. (4)resembles a cubic and tlyenulicline is a sigmoicturve. When € is
chosen to be smalihe Morris-Lecar equatioproducestypical relaxationoscillations. From the
mathematical point of view, the sigmajichulicline marks the major difference between the Morris-

Lecar oscillator and the FitzHugh-Nagumo oscillator.

Terman-Wang oscillator

Motivated by mathematicabnd computational
considerationsTerman and Wangl1) proposed
the following equation,

(5a)
(5b)

x=f(x)-y+I
y=¢e(9(x)-y)

wheref(x) = 3x =x3 + 2, g(x) = a (1 + tanhk
1B)), and| representsexternal stimulation to the
oscillator. Thusx nulicline is a cubic and the
nullcline is a sigmoid, wherea and [ are
parameters. Wheni« 1, Eq. (5)defines atypical
relaxation oscillator. Wheh> 0 and with ssmall
B, the two nuliclines intersect only at a point alo
the middle branch of the cubic and the oscilla
produces a stable periodic orbit (see Fig. 3A). ~
periodic solution alternates betwestent (low x)
and active (high x) phases ofnear steady-statt
behavior. As shown in Fig. 3Ahe silent and the
active phases correspond the left branch (LB)
and the right branch(RB) of the cubic,
respectively. Il <0, the two nullclines of Eq. (5
intersect at a stable fixed point along thedt
branch of the cubic(see Fig. 3B), and the
oscillator is in the excitablstate.The parametea
determines relative times that the periosidution
spends in these two phases. A largeesults in &
relatively shorter time in the active phase.

The Terman-Wang oscillator is similar to 1
aforementioned oscillatormodels. It is much
simpler than the Morris-Lecaoscillator, anc
provides a dimension dfexibility absent in the

A y=0
\XZO
LB RB
2
1 o
| \e x
2 1 0 1 2\
B
y
A .
y=20

Figure 3. Nullclinesandtrajectories of arerman-

Wang oscillator. A Behavior of a stimulated
oscillator. Thex nullcline is a cubicand the y

nullcline is a sigmoid. Théimit cycle is shown
with a bold curve,andits direction of motion is

indicated by arrowheads. L&hd RBdenotethe left

branch and the right branch of the cubic,

respectively. B Behavior of an excitable
(unstimulated) oscillator. The oscillatapproaches
the stable fixed poirf,.
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van der Pol and FitzHugh-Nagumo equations. In neurterahs, the x variable in Eq. (5)
corresponds to the membrane potential,\aife state for channel activation or inactivation.

NETWORKS OF RELAXATION OSCILLATORS

In late eighties,neural oscillations about 40 Hz were discovered ttheén visual cortex12-13).

The experimental findings can be summarized as the following: (1) neural oscillations are triggered
by appropriatesensory stimulationand thusthe oscillations are stimulus-dependef#) long-

range synchrony with zero phase-lag occutkef stimuli appear tiorm a coherenobject;(3) no
synchronization occurs the stimuli appear to benrelated. These intriguing observations are
consistent withthe temporal correlationtheory (14), which stateghat in perceiving a coherent
object the braidinks variousfeature detectingeuronsvia temporal correlation among the firing
activities of these neurons.

Since thediscovery of coherent oscillations the visual cortex and other braareas,neural
oscillations and synchronization of oscillateetworkshave been extensiveltudied. Most of

these models arfgased on sinusoidal or harmonic oscillators and relglleto-all connectivity to

reach synchronization across tetwork. In factaccording to théMermin and Wagner theorem

(15) in statistical physics, no synchrony exists in one- or two-dimensional locally coupled isotropic
Heisenberg oscillators, which are similar to harmascillators. Howeverall-to-all connectivity

leads to indiscriminatesynchrony because thenetwork is dimensionless and losestical
information aboutopology. Thus, such networkse severeljlimited in addressingoerceptual
organization and scene analysis - th&n motivationsbehind computationatudies of oscillatory
networks - that appear to require topological relations.

Somers and Kopell (16) andlvang (17) first Ay
realized that there is qualitative difference betwe
sinusoidal and non-sinusoidal oscillators
achieving emergergynchrony in docally coupled
network. Specifically, Somers and Kopell usin ¢
relaxation oscillators and Wangsing Wilson- ,
Cowan oscillators (18¢ach demonstrated that ¢
oscillator networkcan synchronize with justocal
coupling. Notethat Wilson-Cowan oscillators in %j
their normal parameter regime are neither sinuso o) )
7

0,(0)

ey LK
nor relaxation-type. o)

-2 -1 0 1 2

Two oscillators: Fast threshold modulatior

Figure 4. Fastthreshold modulationC and Cg
When analyzing synchronization properties ¢ indicate the uncoupled and the excited cubic,
pair of relaxationoscillators, Somers anBopell respectively. The two oscillatos ando, start at
(16) introduced the notion offast threshol time 0. Wheno, jumps up att = t;, the cubic
modulation Their mechanisnworks for genera corresponding tw, is raisedfrom C to Cg. This
relaxationoscillators, including those describec
the previous section. Consider @air of identica
relaxation oscillators excitatorily coupled in a v _ _
mimicking chemical synapses.The coupling i loweredfrom Cg to C. This allowso; to jump
between thedfast variables ofthe two oscillators down aswell. In the figure, LKand RK indicate
and can be viewed dsinary, resulting in the sc the leftkneeandthe rightknee ofC, respectively.
calledHeaviside couplingThe two oscillators ar LKg and Rk indicatethe leftkneeandright knee
uncoupled unless one tfem in the activephase of Cg, respectively.

allows o, to jump up as wellWhen o, jumps
down att =t,, the cubiccorresponding too; is
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and in this case the effect of the excitatory coupling is to raise the cubic of the other oscillator by a
fixed amount.

Let us explain the mechanism of fast threshold modulation using the Terman-Wang oscillator as an
example. The two oscillators are denotedby (x4, y1) ando, = (X5, Y»), which are initially in

the silentphase and close &ach othewith o4 leading theway asillustrated inFig. 4. Figure 4

showsthe solution ofthe oscillatorsystem inthe singularlimit € — 0. The singular solution
consists of several pieces. The first piece is when both oscillators move alonghéBuricoupled
cubic, denoted &S. This piece lasts unttl; reaches théeft knee ofC, LK, att =t;. Thesecond

piece begins wheo, jumps up toRB, and the excitatory couplingom 0, to 0, raisesthe cubic
for o, from C to Cg as shown inthefigure. Let LKg and RKkg denote the lefand right knees of
Ce. If ly1 - yo| is relativelysmall, theno, lies below LKz and jumpsup. Since these interactions

take place irfast time,the oscillators are effectivelgynchronized in jumpingip. As aresult the
cubic foro, is raised tcCg as well. The thirdpiece iswhen both oscillatorie on RBand evolve

in slow time. Notethat theordering in whichthe two oscillatorstrack along RB is reversed and
now o, leads the way. The thingiecelastsuntil o, reaches RK att = t,. Thefourth piecestarts

wheno, jumps down to LB. Witho, jumping down, the cubic far; is lowered taC. At this time,
if 0, lies above RK, as shown in Fig.ad},jumps down as well and both oscillators are now in the
silent phase. Once both oscillators are on LB, the above analysis repeats.

Based on the fast threshold modulation mechan®&mers and Kopell further provedrseorem
that the synchronous solution in the oscillator pair has a domain of attraction intimhigpproach
to synchrony has geometric(or exponential) rat€16). The Somers-Kopeltheorem isbased on
comparing the evolution rates of tilséow variable right before and after jamp, which are
determined by the vertical distances of an oscillator tg thdicline (see Fig. 4).

A network of locally coupled oscillators

In the same papeBomers and Kopell suspectéioht their analysis extends to a network of
relaxation oscillators, and performed numerical simulatwitis one-dimensionalings to support
their suggestion. In a subsequent study,elstendingSomers and Kopelhnalysis,Terman and
Wang proved a theorem that for an arbitrary networlocdlly coupled relaxation oscillators there
is a domain of attraction in which the entire network synchronizes at an exponential rate (11).

In their analysis,Terman and Wang employed thlime metric todescribe the distance between
oscillators. When oscillators evolve either in the silent phasgeeoactivephase their distances in
y in the Euclidean metric changspwever,their distances in theme metric remairconstant. On
the otherhand, wheroscillators jump at the santgne (in slow time), their y distancesemain
unchanged while their time distances change. Terman and Wang also intritducedditionthat
the sigmoid for thg nullcline (again consideghe Terman-Wang oscillator) igry close to a step
function (11), which isthe casevhen 3 in Eq. (5) is chosen to beery small. Thiscondition
implies that in the situatiowith multiple cubics therate of evolution of &low variabledoes not
depend on which cubic it tracks along.

LEGION networks: Selective gating

A natural and special form dahe temporal correlation theory igscillatory correlation (19),
whereby each object is represented by synchronization of the osaitatgr corresponding to the
object and different objects in a scene are represented by different osgilaips which are
desynchronized froneachother. There ardwo fundamental aspects in the oscillatory correlation
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theory: synchronization and desynchronization. Extentheg results on synchronizintpcally
coupled relaxatiomscillators,Terman and Wangsed aglobal inhibitory mechanism tachieve
desynchronization (11)Yhe resultingnetwork iscalled LEGION, to stand fotocally Excitatory
Globally Inhibitory Oscillator Networks (19).

The original description of LEGION is based on Terman-Wasgllators, and basic mechanisms
extend to other relaxation oscillator models. Each osciliasadefined as

X = f(x)-yi++§+p (6a)
yi = €(9(x)-Vi) (6b)

Heref(x) andg(x) are as given irEq. (5). The parametep denotesthe amplitude ofGaussian
noise; to reduce the chance of self-generating oscillations the mean of noise ipséh taddition

to testrobustness, noise playise role ofassisting desynchronizationThe termS; denotes the
overall input from other oscillators in the network:

S= Y WiHX—6)-W,H(z-6) (7)
KON()

where W, is the dynamicconnection weight fronk to i, and N(i) is the set of theadjacent
oscillatorsthat connect to. In a two-dimensional (2-D) LEGIOMetwork, N(i) in the simplest
case containfour immediateneighborsexcept
on boundaries where no wrap-aroundugsed,
thus forming a2-D grid. This architecture is
shown in Fig. 5.H stands forthe Heaviside @  / £ <4 <L ...
function, defined asH(v) = 1 ifv>=0 and  / &4 45 S5 ...
H(v) = 0 if v < 0. 6 is a threshold above REEERTITEE -
which an oscillator can affect iteeighbors.W, SS S —

is the weight of inhibitionfrom the global
inhibitor z, whose activity is defined as

z2=¢(05-2 (8)

wheregis a parameteiThe quantityg,, = 1 if Figure 5. Architecture of atwo dimensional

: . . _ LEGION networkwith nearestneighbor coupling.
X 2 0;for atleast one oscillator, andde, = 0 " giopa) inhibitor is indicated by the blackcle,

otherwise. Hence 6, (see also Eq. (7)) and it receivesexcitation fromevery oscillator of
represents a threshold. the 2-D grid and feedsback inhibition to every
oscillator.

The dynamionveightsW;'s are formed on thieasis ofpermanentveightsT;,'s according to the

mechanism of dynamic normalization (20-21), which enstiv@seach oscillatdnasequal overall
weights of dynamic connectiondf, from its neighborhood. According teference(11), weight

normalization is not aecessary conditiofor LEGION to work, but it improvesthe quality of
synchronization. Moreover, based emternal inputW;, can be determined at the start of

simulation.

To illustrate how desynchronization between blocks of oscillatorsachieved in a LEGION
network, let us consider axamplewith two oscillatorsthat are couplednly throughthe global
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inhibitor. Each oscillator is meant to correspond Ay
an oscillator block thatepresents gattern in a

scene.The same notations introduced earlier s
used here. Again, assurti@t both oscillators are
in the silent phase and closedach othewith y;

<Yy, as shown in Fig. 6. The singular solution

the system consists aeveralpieces, where the
first one lasts untib; reaches LK at = t;. When

both oscillatorsare onLB, z = 0. Thesecond
piece starts wheno; jumps up, and wheno;
crossesd,, g, switches fromOto 1, and - 1
on thefast time scale.When z crossesf,, the
cubic correspondl_ng_t(_) bOtkD.l and 02. Iowers Figure 6. Selective gating with two oscillators
from C to C, the inhibitedcubic. The thirdpiece coypled through a global inhibitor.C and C,

is wheno, is the activephase while 0, is in the jngjcate the uncoupled and the inhibited cubic,
silent phase. The parameters are chosen s€hi respectively. The two oscillators; ando, start at
intersects witlthe sigmoid at a stable fixed poi time 0. When o, jumps up att = t;, the cubic
Pz along LB asshown in Fig. 6.This guarante¢ corresponding to both; ando, is loweredfrom C
thato, — Pz, ando, cannot jump up as long ¢ to C,. This prevent®, from jumping up untilo,

01 is on RB,which lastsuntil o; reach the righ! jumps down att = t, and releaseso, from the
knee ofC; att = t,. Thefourth piecestarts wher! inhibition. LK and RK indicate the left knee and the
01 jumps down to LBWheno; crossesd,, z - right knee of C, respectively.P, denotes a stable
0 in fast time. Whenz crosses@z, the cubic fixed pointat an intersection poirtietweenC, and
corresponding to botle; and o, returns toC. the sigmoid.

There are now two cases to considenJfiies belowLK, as shown in Fig. 6theno, jumps up
immediately. Otherwise botty ando, lie on LB, with o, leading thewvay. This newsilent phase
terminates when, reaches LK and jumps up.

The aboveanalysis demonstratéise role of inhibition indesynchronizinghe two oscillators:o;
ando, are never in the active phase simultaneously. In general, LEGION exhibéshanism of
selective gatingwhereby an oscillator, say;, jumping to itsactive phase quicklyactivates the

global inhibitor, which selectively preventshe oscillators representing differebtocks from
jumping up, without affecting;'s ability in recruitingthe oscillators of the same block because of
local excitation. With the selective gatinghechanism;Terman and Wangrovedthe following
theorem. For &EGION networkthere is a domain of parameters amtlal conditions in which

the network achieves both synchronization within blocks of oscillators and desynchronization
between different blocks in no greater tidncycles of oscillations, wherl is the number of
patterns in an inpuscene. Inother words, both synchronization and desynchronization are
achieved rapidly.

The following simulation illustrateghe process of synchronization and desynchronization in
LEGION (19). Fourpatterns - twoO's, oneH, and onel, forming theword OHIO - are
simultaneously presented to a 20x20 LEGION networkhasvn in Figure 7AEach pattern is a
connectedregion, but no two patternsare connected to eaabther. The oscillatorsunder
stimulation become oscillatory, while those without stimulatemain excitable. The paramejer

is set to represent 10% noise compared to the external input. The phases of all the oscillators on the
grid are randomly initializedFig. 7B-7F showsthe instantaneouactivity (snapshot) of the
network at various stages dynamicevolution. Fig. 7B shows a snhapshottloé network at the
beginning of thesimulation, displayinghe randominitial conditions. Fig. 7C shows a snapshot
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shortly afterwards. One can clearly see the effect of synchronization and desynchroriltdkien:
oscillators corresponding the leftO are entrained and have larggtivity; at the saméime, the
oscillators stimulated by the other three patterns harg small activity. Thus the left O is
segmented fronthe rest ofthe input. Figure 7D-Fshows subsequent snapshotstha network,
where different patternseach the activgphase and segment frothe rest. This successive
"popout” ofthe objects continues in an approximately peridaéhion as long athe inputstays

on. To provide a complete picture of dynamic evolutieig, 7G showsghe temporal evolution of
every oscillator. Synchronization withieach objectand desynchronization betwedémem are
clearly shown in just three oscillation periods, which is consistent with the theorem proven in (11).

G
o LN
M
rettern| WM
Inhibitor
I Frvyvyrvrvuvrvvyirv

Time

Figure 7. A A scene composed of foymatterns whichwere presented (mapped) t028x20 LEGION
network.B A snapshot of the activities of the oscillagptd atthe beginning oflynamicevolution. The
diameter of each black circle represdhisx activity of thecorrespondingscillator.C A snapshotaken
shortly after the beginnind® Another snapshot taken shortifter C. E Another snapshot taken shortly
afterD. F Another snapshot taken shortifter E. G The upper foutracesshow thecombined temporal
activities of the oscillator blocks representing the four patterns, respectwelihe bottomtrace shows
the temporal activity of the global inhibitor. Therdinate indicateshe normalizedx activity of an
oscillator. Since the oscillaton®ceiving no externainput are excitable duringthe entire simulation
process, thewre excludedrom the display. The activity of the oscillators stimulated éaghobject is
combined into a single trace in the figure. The differential equations were solved using a fourth-order Runge-
Kutta method. (from (19))
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Time delay networks

Time delays in signal transmissi@me inevitable irboththe brain and physicalystems. Inocal
cortical circuits, for instancethe speed of nerve conduction fsssthan 1mm/mssuch that
connectecheurons 1 mnapart have dme delay of more than 4% of the period of oscillation
assuming 40 Hz oscillations. Sinsmall delays may completeglter thedynamics of differential
equations, it is aimmportant to understantiow time delays change thbehavior, particularly
synchronization, of relaxation oscillator networks.

Recently, Campbell and Wang (22) studiechlly coupled relaxation oscillatovgith time delays.
They revealed the phenomenon lobse synchrony in such networks. Loose synchrony in
networks with nearest neighbor coupling is definedolews. Coupled oscillators approagach
other so that theitime difference islessthan or equal to théime delay betweerthem. They
analyzed a pair of oscillators in teegularlimit £ — 0, and gave a precise diagranparameter
space that indicataggions of distincdynamicalbehavior,including looselysynchronous and
antiphase solutions. The diagram points that loose synchrony exists for a wide range of time delays
and initial conditions.Numerical simulationshow that thesingular solutions derived bthem
extend to the case 0 &« 1. Furthermore, througtxtensive simulations they conclutihat their
parameter diagram for a pair of oscillators says much ateutorks oflocally coupled relaxation
oscillators. In particularthe phenomenon dbose synchrony exists in @milar way. Figure 8
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Figure 8. Loose synchrony in a chain of 50 relaxation oscillators (from (22)). This neteobikves
loose synchrony and stability by the third period of oscillation.

10
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demonstrates loosely synchronous behavior in a chain of 50 oscillators with a time delay that is 3%
of the oscillation period between adjacent oscillators. The phase relations between the oscillators in
the chain become stabilized by the third cycle.

Two other results regarding relaxation oscillatetworks withtime delays arevorth mentioning.
First, Campbell and Wang (22) identified a rangénaifal conditions in whichthe maximumtime
delays between artyvo oscillators in docally couplednetwork can becontained. Secondhey
found that in LEGION networks withtime delay coupling betweenscillators, desynchronous
solutions for different oscillator blockae maintainedThus, the introduction otime delays does
not appear to impact the behavior of LEGION in terms of synchrony and desynchrony.

APPLICATIONS TO SCENE ANALYSIS

A natural scene generally contamsiltiple objects,each ofwhich can be viewed as group of
similar sensory features. Major motivation behingtudies on oscillatoryorrelation is scene
analysis, othe segmentation of a scene into a set of cohetgetts.Scene segmentation, or
perceptual organizatiomlays acritical role in theunderstanding of naturacenes.Although
humans perform it with apparemtase,the general problem of scene segmentation remains
unsolved in sensory and perceptual information processing.

Oscillatory correlation provides an elegant and unique way to represent results of segmentation. As
illustrated in Fig. 7, segmentation is performetinme after segmentatioreach segmengops out

at a distinctime from the network and different segmerdfternate intime. Onthe basis of new
insightsinto synchronization and desynchronization properties in relaxation oscilletaorks,

several recent studies have directly addressed the scene segmentation problem.

Image segmentation

Wang and TermafR1) have studied LEGIONor segmenting reaimages. In order to perform
effective segmentation, LEGION needs to be extended to handle imagesewh regions.
Without such extension, LEGION would treat each region, no matter how sisalbg aseparate
segment, and result imany fragments. Alarge number of fragments degrade segmentation
results, and a more serious problem is that it is difficult for LEGION to produce more than several
(5 to 10) segments. In general, wit’

fixed set of parameters, LEGION ¢ A B

segment only alimited number of
patterns(11). This number depend§s
on the ratio of the times that a sing }
oscillator spends inthe silent andf®
active phases; see, faxample,Figs. &%
3 and 7. Thislimit is called the
segmentation capacity of LEGION
(21). Noisy fragments therefor

competewith majorimageregions fore}
becoming segments,and the major a

segmentsmay not be extracted as
result. To address thiproblem of

fragmentation, they introduced . , .
) ' . F | f 2170.A -level
notion of lateral potentialfor eact igure 9. Image segmentation (from (218.A gray-level image

. : ~ consisting of 160x160 pixel& Result of segmenting the image in
oscillator, which allowsthe network A gachsegment isndicated by adistinct gray level. Theystem
to distinguish betweemajor blocks produces 23 segments plusackgroundwhich is indicated by the
and noisy fragments. The basilea is black scattered regions in the figure.

11
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that a major block must contain at least one oscillator, denoted as a leader, whicthéeseinter
area of a large homogeneous image region. Such an oscillator receivdatémed@xcitatiorfrom

its neighborhood, and thus its latepaltential is chargedigh. A noisyfragmentdoes notcontain
such an oscillator.

More specifically, a new variabf®, denoting the lateral potential for each oscillate introduced
into the definition of the oscillatacf. (6)). p; - 1 if i frequently receives a high weighted sum
from its neighborhood, signifying thais a leader, anthe value ofp; determines whether or not
the oscillatori is a leaderAfter an initial timeperiod, the only oscillators whichcan jump up
without lateral excitation from other oscillators are the leaders. When a |Jaagesup, it spreads
its activity to otheroscillators within itsown block, sathey canalso jumpup. Oscillators not in
this blockare preventedrom jumping up because dfie globalinhibitor. Without aleader, the
oscillators corresponding to noisy fragmentsnot jump up beyondhe initial period. The
collection of all noisy regions is called thackgroundwhich is generally discontiguous.

Wang and Terman have achieved a numbergofous resultzoncerning the extendaetrsion of
LEGION (21). The main analyticatesult stateshat theoscillators with lowlateral potentials will
become excitable after a beginning period, and the asymptotic behavior of each oscillator belonging
to a major region is precisely the same asribvork obtained by simply removiral noisy
regions. Given the Terman-Wang theorem on original LEGION, this implies that after a number of
cycles a block of oscillators corresponding tmaor regionsynchronizeswhile anytwo blocks
corresponding to different major regions desynchronize. Atteonumber operiods required for
segmentation is no greater than the number of major regions plus one.

For gray-levelimages,each oscillatocorresponds to a pixel. In simple schemdor setting up
lateral connections, two neighboring oscillatoase connectedvith a weight proportional to
corresponding pixel similarity. To illustratgpical segmentationesults, Fig. 9A displays gray-
level aerial image to be segmented. To speed up simulation with large number of oscillators needed
for processing real imaged/ang and Termaalso abstracted an algorithtimat follows LEGION
dynamics(21). Fig. 9B showshe result of segmentation by thégorithm. The entire image is
segmented into 2B2gions,each ofwhich corresponds to different intensity level in thdigure,
which indicates the phases of oscillatorstiasimulation, different segments rapidly popped out
from the image, assimilarly shown in Fig. 7. Agan beseen fromFig. 9B, most ofthe major
regions were segmented, including the central lake, major parkways, and varioud fieltiéack
scatteredegions inthe figure represent theackgroundhat remaingnactive. Due to theuse of
lateral potentials, all these tiny regions stay in the background.

Auditory segregation

A listener in a real auditory environment is generabyposed to acoustic energy from different
sources. In order to understaifig auditoryenvironment,the listenermust first disentangle the
acoustic wave reaching the ears. This process is referrecataliésry scenenalysis or auditory
segregation. According to Bregman (23), auditory scene analysispiakesintwo stages. In the
first stage,the acoustic mixture reaching tlears is decomposed into callection of sensory
elements. Secondlglements that are likely to haegisen fromthe samesourceare grouped to
form a stream that is a perceptual representation of an auditory event.

Auditory segregatiorwas first studied fronthe oscillatory correlation perspective bgn der

Malsburg and Schneid€t4). They constructed a fully connected oscillat@twork with an ad
hoc oscillatormodel, eachrepresenting a specific auditoigature. Additionallythere is a global
inhibitory oscillator introduced to segregate oscillaggoups. With a mechanism of rapid

12



D.L. Wang Relaxation oscillators and networks

C
Oscillator activity Segregated /ah/ Segregated /er/

4000
3026 -|
2277 |
1700 -|
1256 -|
914 -
651

AN oy
YOOI
AN ET VA

3026 |
2277
1700
1256 - |

\

A
914 4 \\.
651 - N
448 -
292
172 4

292
172 4
80 -

Channel Centre Frequency [Hz]
Channel Centre Frequency [Hz]
Channel Centre Frequency [Hz]

Autocorrelation Lag Autocorrelation Lag

Figure 10. Double vowel segregatiotadaptedfrom (25)). The input mixture consists of two
simultaneous vowels /ah/ (FO = 100 Hz) and /er/ (FO = 126 Alahows the two oscillator groups that
arequickly formed in an array of 64scillators, each ofwhich corresponds to a peripheraéquency
channel. The activity of eachoscillator isdisplayedwith respect totime. B Segregated correlogram
channels thatlefinethe formants of the vowel /ahC Segregated correlograohannels thatlefine the
formants of the vowel /er/These correlogram channeatsrrespond tathe frequency channels in the
oscillator array. Correlogram activity is shown with respect with time lags.

modulation of connectiostrengthsthey simulated segregation based on osgathrony,i.e.,
oscillators simultaneously triggerey a stream) synchronize witleach other, and these
oscillators desynchronize with those representing another stream presented at a different time.
However,due to global connectivitthat is unable to encode topological relati¢ese Sect. 3),

their model cannot simulate the basic phenomenon of stream segregation.

By extending LEGION to the auditordomain, Wang proposed anoscillator network for
addressing stream segregation (24)e basic architecture is a 2-D LEGIOntwork, where one
dimension representsme and another one represeritequency. It haseen shown that this

network, plussystematic delaylines, can group auditory featurento a stream by phase
synchronization and segregate different streams by desynchronization. The network demonstrates a
set of psychological phenomena regarding auditory seeadysis, including dependency on
frequency proximity and temporgbroximity, sequential capturing, andcompetition among
different perceptual organizations (23).

Recently, Brown and Wang (25) used an array of relaxation oscillators for moihelipgrceptual
segregation of doubleowels. It iswell documented that the ability diteners to identify two
simultaneously presented vowels is improved by introducing a difference in fundamental frequency
(FO) between the vowels. Prior to the oscillatory array, an audiodyre isprocessed by well
established auditory peripheral model that may be regarded as a bank of bandpass filters (peripheral
channels), which decompose acoustic signal into a number of frequeriegnds. Following
peripheral modeling is periodicity detection, which identifies the periodicity present in each channel
by computing a correlogram, which is a runnawgocorrelation of simulated auditory nerve firing

in each peripherathannel.Each oscillator in the array receives an excitatory ifpoin its
corresponding frequency channel. In addition, each oscili&iodsexcitation to a global inhibitor

which in turn feeds back inhibitior.he global inhibitorensureghatweakly correlatedjroups of
oscillators desynchronize to form different streams. Figure 10 shows an example of separating two
concurrentvowels (25),/ah/ (FO = 100 Hz)and/er/ (FO = 126 Hz). Fothis mixture with a FO
difference of four semitones, listeners performell in identifying both vowels. Sixty-four
peripheral channels atesed inthe simulation. FigureélOA showsthe activity of the array of 64
oscillators. Asindicated in thdigure, the array quickly segregates tiwo synchronizedyroups,

within each of whichthe activephases othe oscillators overlapignificantly. Eachsynchronized

group corresponds to a setanfrrelogram channelbhat define the formant of wwel; seeFigs.

10B and 10C.
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Brown and Wang have performed systematic simulations on a vowetedtin psychophysical
studies,and confirmedhat theresults produced bgtheir oscillator array qualitativelynatch the
performance of human listeners; in particwawel identification performance increases with
increasing difference iR0. Asillustrated inFig. 10, aconcept emerging from thestudy is the
use ofrelaxation oscillators agates" ontheir corresponding auditory channels. Specifically, the
activity in a channetontributes to the percept ofsmund source only whethe corresponding
oscillator is in its active phase.

CONCLUDING REMARKS

Relaxation oscillations are characterized by more thantiome scale, andexhibit qualitatively

different behavior than sinusoidal or harmonic oscillatio8sich distinction is particularly
prominent in synchronization and desynchronizationetworks ofrelaxationoscillators. These

unique properties in relaxation oscillators have lechdav and promisingpplications to neural
computation, especially sceaealysis. It should beoted thainetworks ofrelaxation oscillations
often lead tovery complex behaviors other thapnchronous andntiphasesolutions.Even with

identical oscillators and nearest neighbaoupling, traveling waves and other complex
spatiotemporal patterns can occur (26).

Relaxation oscillations with a singulgrvarameter lend themselves tmalysis by singular
perturbation theory(27). Singular perturbation theory in turn yieldsgaometric approach to
analyzing relaxation oscillatiosystems, adlustrated inFigs. 4and 6. Also based on singular
solutions, Linsay and Wang(28) recently proposed a fastethod to numerically integrate
relaxation oscillatonetworks.Their technique called thesingularlimit method, isderived in the
singularlimit € — 0. A numerical algorithm is givefor LEGION network, and it produces
remarkablespeedup compared to commonlgedintegration methodsuch asthe Runge-Kutta
method. The singular limit method makes it possible to simulate largerstalerks ofrelaxation
oscillators.

Computation using relaxation oscillator networks is inherently parallel, where each single oscillator
behaves fully inparallelwith all the other oscillators. Thigeature is particularly attractive in the
context that an image generatipnsists ofmany pixels(e.g. 512x512)and current computer
technology carsupport massivearallel computationsThe network architecturesuch asthe one
shown in Fig. 5 performs computations based on only connectionssaitidtory dynamics. The
organizational simplicityplus continuous-time dynamics renders oscillat@tworks particularly
feasible for VLSI chip implementation. Withits computational propertieplus biological
plausibility, oscillatory correlation promises to offer a general computational framework.
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