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A B S T R A C T   

Understanding crop responses to climate change is crucial for ensuring food security. Here, we reviewed ~230 
statistical crop modeling studies for major crops and summarized recent progress in estimating climate change 
impacts on crop yields. Evidence was strong that increasing temperatures reduce crop yields. A 1 ◦C warming 
decreased the yields by 7.5 ± 5.3% (maize), 6.0 ± 3.3% (wheat), 6.8 ± 5.9% (soybean), and 1.2 ±5.2% (rice) 
across the world, but spatial heterogeneity was noticeable, due partly to asymmetric nonlinear crop responses to 
temperature (e.g., warming-induced gains in cold regions). Yield responses to precipitation were not consistent 
across the studies or geographical areas. On average, climate explained 37% of yield variability. We also 
observed a methodological shift from linear regression to machine learning (e.g., explainable AI and interpret-
able machine learning), which on average reduced predictve errors by 44%. Furthermore, we discussed the 
opportunities and challenges facing statistical crop modeling, such as ensemble modeling, physics-informed 
machine learning, spatiotemporal heterogeneity in crop responses, climate extremes, extrapolation under 
novel climates, and the confounding from technology, management, CO2, and O3.   

1. Introduction 

Global demand for food has been on the rise, driven by a growing 
population, rapid urbanization, and changing diet preferences. To keep 
pace with the future demand, global agricultural productivity needs to 
grow at an annual rate of at least 1.75% (Global Harvest Initiative, 
2017). However, attaining this rate faces challenges from future climate 
conditions, which are expected to be warmer with more frequent 
extreme weather events. The novel climate increases variability and 
vulnerability in crop yields, threatening food security (Ray et al., 2015; 
Najafi Ehsan et al., 2018). To mitigate and adapt to future climate, 
extensive research efforts have been conducted to enhance our under-
standing of how climate changes affect crop yields and to improve 
characterizing yield-climate relationships. 

Scientific methods for investigating crop yield responses to climate 
change fall roughly into three categories: field experiments, process- 
based modeling, and statistical modeling. Field experiments directly 
observe the effects of interest. Process-based modeling leverages the first 
principles from multiple disciplines such as biophysics, plant sciences, 
and agronomy to build computer models and simulate crop growth. 
Statistical modeling explores historical observations to find correlative 
relationships between crop yield and climate. Of the three, field exper-
iments are limited in spatial footprints and often constrained by logistic 
costs; process-based modeling has fewer constraints, finding wide use 
under both real and hypothetical climate scenarios across scales (Chal-
linor et al., 2009). There are several reviews focused on progress and 
challenges in using process-based models to estimate climate change 
impacts on crop yields (Kang et al., 2009; White et al., 2011; Hansen 

* Corresponding author. 
** Corresponding author. 

E-mail addresses: Xuesong.Zhang@usda.gov (X. Zhang), zhao.1423@osu.edu (K. Zhao).  

Contents lists available at ScienceDirect 

Environmental Modelling and Software 

journal homepage: www.elsevier.com/locate/envsoft 

https://doi.org/10.1016/j.envsoft.2024.106119 
Received 3 June 2024; Accepted 13 June 2024   

mailto:Xuesong.Zhang@usda.gov
mailto:zhao.1423@osu.edu
www.sciencedirect.com/science/journal/13648152
https://www.elsevier.com/locate/envsoft
https://doi.org/10.1016/j.envsoft.2024.106119
https://doi.org/10.1016/j.envsoft.2024.106119
https://doi.org/10.1016/j.envsoft.2024.106119
http://crossmark.crossref.org/dialog/?doi=10.1016/j.envsoft.2024.106119&domain=pdf


Environmental Modelling and Software 179 (2024) 106119

2

et al., 2006; Challinor et al., 2009). The focus of this review is on sta-
tistical modeling. 

Statistical models have long been applied to infer crop-climate re-
lationships, dating back to more than a century ago (Blair, 1919). Their 
applications recently have seen a rapid surge, driven primarily by the 
rising concerns over climate change and the concomitant need to assess 
climate impacts on agriculture. The popularity was also fueled by the 
growing availability of data analyticsand statistical tools. On one hand, 
historical climate and agricultural records have been made more 
accessible via the internet; on the other hand, new data are being 
constantly generated with the accelerated use of sensor networks and 
commercial technologies. The past decades also witnessed substantive 
advances in data analytics. Earlier studies relied mostly on linear 
regression to relate crop yields to climate. Now, the trend is shifting to 
favor machine learning or artificial intelligence (AI), such as support 
vector machines, neural networks, random forests, XGBoost, and deep 
learning (Crane-Droesch, 2018; Lobell, 2017; Roberts et al., 2017; Ciscar 
et al., 2018; Hu et al., 2023). Machine learning models are capable of 
unraveling complex and nonlinear crop-climate relationships. 
Compared to classical regression, they demonstrated superior predictive 
performances but had lower interpretability—a drawback being 
addressed by new waves of machine learning research on explainable AI 
(Hu et al., 2023). The body of recent literature on statistical or AI-based 
crop modeling for climate change assessments has been increasing 
exponentially, but a comprehensive review of recent progress is lacking. 

Here, we reviewed recent studies and advances in statistical crop 
modeling, with attention to both empirical findings and modeling 
techniques used. We summarized common practices, strengths, limita-
tions, and issues in applying classical regression models or machine 
learning for insights into crop yield responses to climate changes. We 
also identified ~230 case studies conducted across the globe in the past 
two decades (details in Section 3) and synthesized the empirical findings 
for four major staple crops—maize, soybean, wheat, and 
rice—concerning their responses to temperature and precipitation 
(Section 4). In what follows, we first provided an overview of statistical 
modeling as contrasted to field experiments and process-based 
modeling. We then synthesized the results from the case studies in 
terms of study regions, crop types, model techniques, and empirical 
findings. As a path forward, we identified the existing challenges and 
future opportunities in the use of statistical modeling to understand 
complex relationships between climate factors and crop yields. 

2. Overview 

Statistical models come in a myriad of forms. The nomenclature 
pertinent to statistical crop modeling is not consistent in the literature. 
To clarify, here we consider the many terms–statistical models, empir-
ical models, regression models, machine learning, artificial intelligence 
models (AI), data-driven models, data analytics, and data mining– 
roughly synonymous, although machine learning is not always statisti-
cal models. One reason for the inconsistent terminology is the sheer 
diversity of data analysis tools available. These models, for example, can 
be inferential or heuristic, probabilistic or deterministic, parametric or 
non-parametric, linear or nonlinear, frequentist-based or Bayesian, and 
black-box or explainable. Another reason is that the endeavors to 
characterize crop-climate relationships have been pursued by re-
searchers with different domain backgrounds (e.g., geography, envi-
ronmental sciences, agronomy, biological engineering, ecology, 
economics, and climate sciences). Irrespective of their technical spe-
cifics, these models are broadly understood as any analytical or nu-
merical procedures to uncover an empirical relationship between crop 
yield and climate variables from observations, which is in stark contrast 
to the other two research paradigms—field experiments and process- 
based modeling. 

2.1. Field experiments, process-based models, and statistical models: Not 
rivals but allies 

Of the three major approaches —field experiments, process-based 
modeling, and statistical modeling, field experiments provide direct 
observations and generate the most realistic insights into the impacts of 
climate change (Ainsworth et al., 2008). Field-based methods involve 
manipulating climate and environmental variables, such as elevated 
CO2, increased temperature, enhanced precipitation, and augmented 
nitrogen deposition, within controlled systems or sites. The experiments 
can focus on one or multiple climate factors (e.g., the Giessence Free-Air 
Carbon Dioxide Enrichment Study and the Jasper Ridge Global Change 
Experiment) (Obermeier et al., 2017). Despite their self-evident 
strengths, they are laborious, time-consuming, and resource intensive. 
Additionally, their physical footprints (e.g., number of sites) are often 
limited, making it difficult to generalize findings to other geographic 
regions. 

In contrast, models—either process-based or statistical—treat crop 
yields as a function of various drivers (Fig. 1a), including climate, 
agricultural management, soil properties (e.g., soil quality and water 
content), and technological innovations (e.g., new cultivars). The two 
types of models operate differently. By statistical models, we mean those 
purely data-driven or empirical models with no explicit representation 
of physical processes. Statistical models prioritize the impacts of climate 
and strive to isolate its effects from other influencing factors. They often 
rely on historical data to capture the empirical relationship between 
climate variables and crop yields. By process-based models, we mean 
those involving first-principled equations to describe biophysical or 
biogeochemical processes for crop growth. Process-based models are 
characterized by complex functional forms, involving numerous equa-
tions and parameterizations borrowed from multiple disciplines (e.g., 
soil science, plant physiology, and hydrology). They are developed 
based on mechanistic biophysical and biochemical processes that govern 
crop growth, such as soil water transport and photosynthesis. Statistical 
models take simpler forms, often without explicitly representing phys-
ical processes. Regardless of their differences, both process-based and 
statistical crop models have important roles to play in the latest iteration 
of farming and agricultural practices known collectievely as Agriculture 
5.0, with its hallmark being the adoption of modern digitial technologies 
such as AI and big data analytics. 

Of the two modeling approaches, process-based models require 
extensive data inputs and parameters, such as soil properties and man-
agement practices, which may not be readily available. Statistical 
models are less resource-intensive and easier to apply, typically 
providing rapid estimates of the yield-climate relationships. Given the 
relative ease with statistical models and the wide availability of histor-
ical climate and crop yield data, statistical modeling has been applied to 
a wide range of crops across many parts of the world, even for those 
crops (e.g., millet) that lack explicit physiological or mechanistic models 
(Knox et al., 2012; Lobell, 2017). Comparative studies have demon-
strated that results from statistical and process-based models are 
generally consistent (Blanc, 2017; Liu et al., 2016; Lobell, 2017) if done 
carefully. In addition, given the complexity of process-based models, 
realistic uncertainty analysis remains challenging, but uncertainties in 
model parameters and structures are often straightforward to estimate 
using standard statistical techniques (Lobell, 2013). 

The distinction among the three approaches is not always dichoto-
mous. Rather, they complement each other (Shahhosseini et al., 2021; 
Eini et al., 2023). For example, process-based crop growth models are 
sometimes considered as a core part of a digital twin of physical systems 
(NASEM, 2024). When phenomena are unobservable or direct mea-
surements are impractical, models come to the rescue. The models in the 
digital twin enable scientists and decision-makers to replicate real-world 
agroecosystems, simulate complex processes, address numerous factors 
simultaneously, and gain insights for large-scale applications. Devel-
opment of such process-based models relies heavily on knowledge 
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gained from field experiments, with many equations directly parame-
terized from field data: If not informed collectively by field experiments 
of all kinds, the implementation of process-based models for the digital 
twin is unlikely successful. 

Speaking differently, the three approaches are not rivals but allies 
(Zhang et al., 2023). Their niches of applications differ in temporal and 
spatial scales. Their combined use leverages independent data and 
knowledge to provide a more comprehensive understanding of crop 
growth processes. The independent insights from the alternative ap-
proaches can inform each other. When there is a lack of mechanistic 
understanding, empirical relationships from field data or historical data 
are often incorporated into process-based models (Zhang et al., 2008). 
These empirical components greatly enhance the applicability of 
process-based models beyond the geographic areas or scenarios wherein 
the original empirical relationships were fitted (Schlenker and Roberts, 
2009). As another example, with the latest development of machine 
learning and statistical modeling, a hybrid modeling paradigm arises to 

explicitly combine the relative strengths of process-based and statistical 
modeling—a class of approaches sometimes called physics-informed 
machine learning or explainable artificial intelligence (Hu et al., 2023). 

2.2. The nature of statistical crop modeling: To predict or to explain? 

The use of statistical/empirical models is ubiquitous in all scientific 
disciplines, but their purposes differ subtly. The primary goal of statis-
tical crop modeling is not hypothesis testing (Long et al., 2006; Lobell 
et al., 2011). We know from first-principled knowledge that climate 
matters to crops; therefore, the modeling purpose here is not to test a 
contrived scientific hypothesis about whether a climate factor affects 
crop growth or whether there are statistically significant correlation 
between crop yield and climate. (No statistically significant correlation 
between rainfall and yields doesn’t mean that rainfall doesn’t matter to 
crops.) Rather, the purpose is to derive empirical relationships between 
climate and crop yields and apply them to quantify to what degree 

Fig. 1. (a) Crop yield as a function of multiple drivers. (b) Characteristics of three common approaches–field experiments, process-based, and empirical modeling–for 
evaluating climatic impacts on crop yield. These approaches are applied typically at contrasting spatial and temporal scales (i.e., colored boxes in the temporal-spatial 
scale plot). 
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climate affects crop yields. 
More formally, there are two major roles of statistical crop models: 

To explain or to predict (Fig. 2). The two roles are subtly different. To 
predict, the interest lies in leveraging a fitted statistical model to esti-
mate crop yields under certain climate conditions, especially under 
novel climates in the future (Blanc, 2017; Liu et al., 2016; Lobell, 2017). 
To explain, the interest is in deriving a statistical model that is close to 
the theoretically unknown true relationship. Predictive power doesn’t 
equal explanatory power(Zhao et al., 2013). A deep neural network 
model can incorporate thousands of covariates to predict crop yields 
with impressive accuracies, but the fitted relationships often remain 
opaque and even wrong (van Klompenburg et al., 2020; Hu et al., 2023). 
In the crop modeling literature, the distinction between predictive and 
explanatory models are not always articulated, but the difference is 
apparent (Lobell and Burney, 2021; Shook et al., 2021): When using 
machine learning to estimate crop yields in the future, modelers 
emphasize predictive power; when using linear models to examine the 
temperature effect on crop yields, modelers emphasize explainability. 
Ignoring the distinction or confusing one with another is detrimental 
(Molnar et al., 2020; Zhang et al., 2022). 

The differences between explaining and predicting can also be un-
derstood in terms of the correlative nature of statistical models. Statis-
tical crop models seek to fit relationships to correlate variabilities in 
crop yields with those in climate covariates. Given that both crop yields 
and climate data exhibit temporal and spatial variations, the variability 
may arise from one year to another at the same location, as well as from 
heterogeneity among different sites within the same time period, or even 
from both temporal and spatial sources, which often determines whether 
time-series regression model or panel regression model are used (Lobell 
and Burke, 2010). When predicting, the goal is to maximize the per-
centage of observed spatial and/or temporal variabilities in crop yields 
that can be explained away by the variability in climate. Therefore, the 
larger the percentage of variability explained, the better the predictive 
power. When explaining, the goal is not purely about higher correlation 
or lower mean squared errors but more about understanding the origin 
and mechanisms driving the observed variability in crop yields, which is 
more of a model selection problem. Often enough, machine 
learning-based crop models (e.g., black-box models) have better pre-
dictive accuracies but for wrong reasons: Their derived functional re-
lationships are not always mechanically correct. 

A dilemma related to extrapolation is inevitable when using 

statistical crop models as predictive tools. Statistical models are cali-
brated using historical climate data but often applied to estimate future 
outcomes under novel climate scenarios (Challinor et al., 2014; Zam-
pieri et al., 2019)—an extrapolation problem. Extrapolating beyond the 
range of observed data is cautioned against (Hawkins, 2004). It can lead 
to unreliable projections, particularly when the overlap between his-
torical and future climate is narrow. Irrespective of the application 
scenarios, the farther the extrapolation extends from the historical 
climate regime, the greater the errors and biases of predictions. This 
extrapolation issue essentially defeats the original forecasting purpose 
when novel climates see a large shift from the current climate (Hawkins, 
2004; Hu et al., 2023). Equally important, the extrapolation issue cannot 
be resolved solely by refining the statistical model itself because the root 
cause lies with the data used to fit the model: Extrapolation is not a 
problem about models but about data. 

Another dilemma related to model selection is inevitable when using 
statistical crop models as explanatory tools to infer true climate-crop 
relationships. The problem is related to which models to trust and 
how to validate the truthfulness of the inferred empirical relationships. 
Practical applications of statistical models are knowingly subjective. At 
least, multiple models could be built for the same datasets, based on 
alternative statistical techniques and assumptions. More often than not, 
the different models can give inconsistent or contradictory findings, 
which represents both a challenge and a promise. On one hand, there is 
no consensus on how to reconcile the inconsistency or determine the 
“best” model; on the other hand, inconsistency often highlights funda-
mental weaknesses and paves an avenue for further model scrutiny and 
new studies (Hu et al., 2021; Zhao et al., 2019a,b). Instead of finding the 
"best" model, an alternative strategy is to embrace all the models alto-
gether in the inference–a class of methods known as ensemble modeling 
(Hossard et al., 2017; Zhao et al., 2013). 

3. Literature survey 

To summarize the most recent progress and findings in modeling 
climate impacts on crop yield using both classical and advanced statis-
tical techniques, we conducted a literature search in the Web of Science 
(https://apps.webofknowledge.com) using terms “crop yield”, “climate 
change”, “statistical models”, and “machine learning” as article topics. 
Initial filtering was based on the titles, then the abstracts. A total of 423 
papers published between 2000 and 2020 were identified and screened 
based on their relevance to our research topic. Subsequently, 189 of 
these papers were selected for further review, and their full texts were 
carefully analyzed with criteria in Table S1. Additionally, 37 more pa-
pers were found by cross-referencing citations from the original articles 
using Google Scholar. Hence, the total sample size of our review com-
prises 226 publications. The complete list of articles can be found in 
Supplementary Material 2. 

The reviewed studies vary greatly in terms of data preparation, study 
area, crop types, model development, and research objectives. Some 
studies aim to determine the overall impacts of global warming (e.g., a 
1.5 ◦C warming) on future crop yields (Challinor et al., 2014; Lobell 
et al., 2011; Tebaldi and Lobell, 2018a,b). Others focus on yield vari-
ability caused by mean climate changes or extreme events (Roberts 
et al., 2013; Zhu et al., 2019; Zipper et al., 2016). There are also many 
studies investigating interactions between climate factors or examining 
spatiotemporal variations in yield responses to climate (Leng et al., 
2016; Li et al., 2019). In this section, we summarized these studies based 
on study regions and crop types, data sources, and model techniques. 
The empirical findings are synthesized in Section 4. 

3.1. Study regions and crop types 

Our literature review showed that empirical studies on crop yields 
were conducted across various geographical regions but with a strong 
disparity in their geographic distribution. About 50% of the research 

Fig. 2. Tradeoff between predictive and explaining power for common statis-
tical and machine learning techniques: Black-box models such as neural net-
works and random forests tend to have better predictive accuracies but with 
less model interpretability, thus urging for new generations of data-driven 
models such as explainable AI and interpretable machine learning that have 
both good predictive and explaining power. 
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focused on the United States (U.S.) and Europe (Fig. 3 and Table S2). 
China and India–the highest populations in the world–accounted for 
only 10% and 8% of the studies, respectively. Africa and South America 
were studied in 9% and 4% of them, respectively. The majority of 
research efforts were concentrated on developed countries where food 
security is of lesser concern. Unfortunately, much less attention was 
given to food-insecure regions or densely populated areas in Africa, Asia, 
and South America. This finding aligns with a recent text-mining study 
of 16000 abstracts from the food security literature (Cooper et al., 
2020). We therefor call for the research community to pay more atten-
tion to crop yields in food-insecure countries with high population or 
low incomes, given that these areas are particularly vulnerable to food 
supply disruptions under climate change (Müller et al., 2011). 

The reviewed empirical studies have focused primarily on four major 
crops—maize, wheat, rice, and soybean. The four crops were the subject 
of 199 out of 226 publications. Maize was the most studied crop and was 
examined in about 59% of the surveyed literature (Table S2), followed 
by wheat (~42%), soybean (~24%), and rice (~6%). Many studies 
focused on maize production because it is the world’s most grown and 
heavily traded cereal crop in international markets (Tigchelaar et al., 
2018; Xiong et al., 2016). The four crops also feature prominently in 
studies employing process-based models (Kang et al., 2009). The need 
for more future research on other crops (e.g., nonfood crops such as 
cotton) are apparent. Statistical models have the potential to expand this 
scope and examine more crop types, particularly for those where 
established process-based models are lacking due to a scarcity of 
crop-specific parameters (e.g., millet). Going beyond the four major 
crops to include more will provide a better picture of future global food 
availability under climate change. 

3.2. Climate datasets and predictors 

The reviewed studies also differ greatly in the choices of data sour-
ces, data processing, and forms of predictors. Climate data are obtained 
from either meteorological stations or gridded data products. 

Meteorological stations provide the most accurate measurements and 
have been used primarily for local studies at site or field levels (Franz 
et al., 2020; Ramankutty et al., 2013). A freely available station-based 
dataset is the World Meteorological Organization’s archive (WMO) 
that provides daily weather data from stations across the globe. Despite 
the global extent of the WMO dataset, its spatial footprints are sparse, 
additionally with large temporal gaps; therefore, it is not always possible 
to access station-based data for a particular research area. 

Gridded climate datasets are the dominant sources for statistical crop 
modeling over large geographic areas. A common way to generate 
gridded climate variables is to interpolate station-based observations to 
fill the spatial and temporal gaps. Spatial regression is also used to 
combine station-based weather measurement and auxiliary spatial data 
(e.g., elevation and remote sensing data) for estimating climate vari-
ables continuously across space. In the United States, one well-known 
example is the Parameter-elevation Regressions on Independent Slop 
Model (PRISM, 2016), offering daily and monthly climate estimates at a 
spatial resolution of 4 × 4 or 0.8 × 0.8 km for the contiguous US. On the 
global scale, a widely used dataset is from the Climatic Research Unit 
(CRU), providing monthly gridded datasets at multiple spatial resolu-
tions (e.g., 0.5 × 0.5◦) (Harris et al., 2014). The PRISM and CRU datasets 
have been frequently used for statistical crop modeling to represent 
historical climate due to their extensive spatial coverage and long-term 
temporal data spanning (usually more than 30 years). 

Another common method for generating gridded climate data are 
model-based reanalysis, which combines observational data and 
weather models (e.g., global circulation models). Compared to 
interpolation-based methods, reanalysis methods can provide climate 
variables for regions where observational data are poor or unavailable; 
more importantly, they generate not only historical data but also future 
climate projections. Reanalysis climate data have been used for statis-
tical crop modeling (Ortiz-Bobea et al., 2019; Schlenker and Lobell, 
2010), but their adoption is not yet widespread, partly because rean-
alysis data are sensitive to the climate models of choice and are 
considered less accurate than station-based observations or 

Fig. 3. Numbers of studies employing empirical models conducted in different geographical areas and for different crops.  
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interpolation-based gridded products. 
Given a climate dataset, there was no consensus on what climate 

metrics or variable should be included into statical crop models. Myriads 
of choices are possible. Examples include but are not limited to raw 
climate variables (e.g., daily or monthly temperature), climate statistics 
(e.g., mean temperature, and 90-th percentiles of rainfall), detrended 
climate variables (e.g., temperature anomaly), physics informed metrics 
(e.g., growing degree days), and model-based variable selection (e.g., 
optimal predictors via stepwise regression). Even for the same climate 
metrics, the fashions in computing them varied a lot. For instance, a 
metric of mean temperature can be calculated as average daily values, 
average monthly values, average daily minimum, average daily 
maximum, average anomaly temperature, averages over a fixed period, 
averages over growing seasons, spatial average of temporally averaged 
values, or temporal average of spatially averaged values, to name a few. 
Aside from temperature and precipitation, other climate variables such 
as soil moisture and vapor pressure deficit have also been considered in 
some empirical studies (Table 1). In the reviewed studies, we found that 
the authors rarely justified their choices of climate predictors. And how 
to reduce the subjectivity in constructing climate predictors remains a 
challenge to address. 

3.3. Crop yield datasets 

Yield data used for statistical crop modeling are predominantly from 
historical observations and occasionally from synthetic data generated 
by process-based crop model. Historical data are typically collected 
through field surveys or agricultural census, reported on an annual basis 
for a given region. The majority of the studies considered coarse-scale 
yield data at the levels of political units (e.g., county, state, and coun-
try). Field-level crop yield data were also examined but their availability 
to the research community is limited, partially because such data are 
often commercial or proprietary. In contrast to historical observations, 
synthetic data were used not to infer the true climate effects but mostly 
to test and evaluate alternative statistical modeling techniques. 
Regardless of the data sources, one of the most important practices is to 
log-transform crop yields for mitigating potential heteroskedasticity: 
The use of log-transformed yield as the response variable can homoge-
nize the model errors to better meet the assumption of Gaussian errors in 
regression models (Urban et al., 2015). 

Historical crop yields as time-series data were driven by both cli-
matic and non-climatic factors (e.g., soil, management, and technology 
advances). To isolate the climate effects, the majority of the reviewed 
studies pre-processed yield data before feeding them into statistical 
models. A simple but popular method used is to detrend the crop yield 
time series in the hopes to remove the contributions from technological 
innovations. The trends were often fitted as linear, quadratic, poly-
nomial, or spline-based models and sometimes were removed by first- 
order differences (Lobell and Field, 2007; Verón et al., 2015). Because 
of the subjectivity and imperfection in estimating the technological 
trends, the detrending in the first stage inevitably introduces some 

incorrigible biases that will be populated into the regression models in 
the second stage. As recently argued and exemplified, an alternative 
approach is to estimate the technological trends and climate effects 
jointly and simultaneously in a single stage (Hu et al., 2023), thus cir-
cumventing the needs of pre-processing crop yield data. 

3.4. Statistical modeling techniques 

Common statistical techniques for crop modeling can be divided into 
two major categories: classical regression and machine learning. Their 
strengths and weaknesses are summarized in Table 2. The most 
commonly used classical technique is general linear models, which 
include but are not limited to simple linear regression, multiple linear 
regression (MLR), and quadratic regression (Das et al., 2018). For 
example, MLR was used in 133 of the 226 reviewed publications 
(~60%). Other variants of classical regression (e.g., mixed models, and 
ANCOVA) were used in 66 of the reviewed studies (Sexton et al., 2016). 
The popularity of MLR is attributed largely to the ease with its imple-
mentation and interpretability. 

MLR allows accounting for non-linear relationships between climate 
factors and yields by incorporating quadratic or higher-order terms 
(Lobell and Field, 2007; Liu et al., 2016; Tebaldi and Lobell, 2018). 
Despite this potential for nonlinear regression, their analytical forms 
may be too restrictive to adequately capture complex climate-yield re-
lationships. For example, MLR commonly incorporates a quadratic term 
to represent non-linear yield responses to climate variables, which re-
sults in a symmetrical concave relationship. Such symmetric responses 
are unlikely true because in most cases, crops respond to temperature or 
rainfall asymmetrically around the optimum (Blanc, 2017). As another 
example, interactive effects of climate variables on crop yields are 2D or 
multi-dimensional response surfaces that are difficult to model by a MLR 
model unless enough prior knowledge about the interaction is available 
to inform the model parametrization (Li and Troy, 2018). 

In recent years, machine learning (ML) models, such as Random 
Forest and Neural Networks, have been increasingly used to model 
climate-yield relationships (Crane-Droesch, 2018; Arrieta et al., 2020). 
Thirty-four of our reviewed studies (~15%) employed ML models, and 
17 of them considered both ML and classical regression methods. A 
significant distinction between ML and classical regression models lies 
in their focus and inference approach. ML models emphasize prediction 
and pattern extraction from data without explicit parametric forms 
whereas classical regression models stress statistical inference with 
parametric equations based on certain assumptions (Bzdok et al., 2018). 
Because of the less constraints on model forms, ML methods generally fit 
a better predictive relationship with lower root mean square errors 
(RMSE) than classical regression models. 

The better predictive accuracies of ML are exemplified in the 17 
studies that evaluated both ML and classical regression models (Fig. 4). 
On average, the RMSEs of the ML models were 44% lower than those of 
classical regression models. Some studies reported comparable perfor-
mance between the two, especially when fitted to data aggregated at 
coarse spatial or temporal resolutions (Matsumura et al., 2015). This 
scale dependence is expected because the spatial aggregation can 
smooth out local nonlinearity and make the climate-yield relationships 
more linear (Lobell and Asner, 2003; Zhao et al., 2009): The coarser the 
scales, the more likely the climate-yield relationships will be linear. ML 
methods generally work better when data are more fine-grained and 
there is a larger set of predictors or when climate-yield relationships are 
complex. 

Despite their stronger predictive power, ML methods are known to be 
black-box models with poor model interpretability; therefore, their use 
has been criticized for the opaque representation of causal links between 
crop yields and climate variables. This drawback provides a plausible 
explanation on why classical regression models still remain popular 
(199 out of 226 reviewed studies). To help unwrap the black box, new 
data analytics tools such as partial dependence plots (PDP) have been 

Table 1 
Common variables used as a proxy for the climate in the reviewed literture  

Climate proxy Description 

Tmin Minimum temperature 
Tmax Maximum temperature 
Tmean Average temperature 
TP Total precipitation 
AP Average precipitation 
GDD Growing degree days are an accumulation of heat during a period 
VPD Vapor pressure deficit 
SM Soil moisture 
SR Solar radiation 
CO2 Carbon dioxide concentration in the atmosphere 
ET Evapotranspiration  
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introduced and used to improve the interpretability of ML models 
(Fig. 5). But such tools treat the symptoms but not the root cause because 
they do not change the black-box nature of the model itself. As 

exemplified in Fig. 5, the inferred PDP relationships from a ML model 
may be useless or wrong. 

4. Synthesis of empirical findings 

4.1. Climate-driven yield variability 

What percentage of observed variability in crop yields is explained 
by climate variations? This is an important question but has not been 
directly answered in most of the studies we reviewed. Some of the 
studies reported only error metrics such as RMSE. Many studies reported 
R2-like statistics, but their models comprised non-climatic predictors or 
their customized data pre-processing precludes a meaningful interpre-
tation consistent with other studies. As a result, we were able to find 
only 25 publications that have explicitly reported yield variability 
explained by climate factors (Fig. 6). 

Crop yield variability explained directly by climate factors is highly 
variable across regions. On the global scale, climate factors explained 
approximately 34% of inter-annual yield variability for all four crops. In 
the US, the percent of explained inter-annual yield variability averaged 
29.8% whereas Europe, China, and Africa had higher percentages at 
40.5%, 45.0%, and 50.0%, respectively. In Fig. 6, both Russia and 
Canada showed a relatively high climate-explained variability. How-
ever, it is cautioned that only one publication explicitly reported such 
results for these two regions (Zampieri et al., 2017). Overall, climate 
factors (primarily temperature and precipitation) explained approxi-
mately 38% of yield variability when averaged across all crops and re-
gions. Future research is needed to provide more detailed examination 
of yield variability in other regions such as Europe, Central and South 

Table 2 
Commonly used modeling techniques in the reviewed publications focused on climatic impacts on crop yield.  

Common Techniques Yield 
Detrending 

Strengths Weaknesses 

Classical 
Regression 

Simple Linear 
Regression 

Yes Simplicity: Easy to implement Limited complexity: Assumes a linear relationship between a 
climate variable and yield, which may not always hold true 

Interpretability: Highly interpretable Limited applicability: Suitable for investigating impacts of a single 
variable 

Multiple Linear 
Regression 

Yes/No Flexibility: Allows for complex relationships 
between multiple climate variables and crop 
yield. 

Assumptions: Assumes linear relationships between multiple 
climate variables (or terms) and yield, as well as no 
multicollinearity which may not be true. 

Interpretability: Provides insights into impacts 
of each climate variable on crop yield 

Overfitting: Risks of overfitting to the training data 

Non-linear Regression No Flexibility: Allows for more flexible modeling 
compared to linear regression 

Complexity: Can be complex and difficult to interpret 

Non-linearity: Captures complex and non-linear 
relationships between climate variables and 
yields 

Overfitting: Risks of overfitting if a model is too flexible or not 
properly regularized 

Machine 
Learning 

Neural Network No High flexibility: Models a wide range of 
problems with large amounts of data. 

Complexity: Requires large amounts of data and computational 
resources to train models. 

Non-linearity: Captures complex non-linear 
relationships between climate variables and 
yield. 

Interpretability: Difficult to interpret and understand because of 
complex structures. 

Random Forest No High accuracy: Provides accurate predictions 
due to ensample nature in general 

Interpretability: Difficult to interpret 

Robustness: Handles large amounts of data and 
less sensitive to outliers 

Overfitting: Less prone to overfitting but still could overfit noisy 
data 

Support Vector 
Machine 

No Effective in high-dimensional data: Works well 
with large number of data with various 
dimensions 

Choice of kernel: Can be challenging to select an appropriate kernel 

Robustness: Less sensitive to nosiy data points Computation requirement: Computationally expensive, especially 
for large datasets, for training SVMs can be 

Boosted Trees No High accuracy: Hands complex relationships 
with strong predictive power 

Interpretability: Difficult to interpret because of black-box nature 

Robustness: Less prone to overfitting Computation requirement: Computationally expensive and time- 
consuming for training and evaluating boosted trees 

Multivariate Adaptive 
Regression Splines 

No Flexibility: Captures complex, non-linear 
relationships without relying on a predefined 
function form 

Complexity: Can become complex and difficult to interpret with 
high-dimensional data or interactions 

Interpretability: Provides interpretable 
relationships between variables 

Robustness: Can be sensitive to outliers and noisy data  

Fig. 4. Comparison of classical regression techniques and machine learning 
based on 17 reviewed studies. Machine learning improved over classical 
regression with an average reduction error by 44%. Detailed information 
including crops and references is provided in Table S3. (RF: random forests; 
SNN: semiparametric neural network; ANN: artificial neural network; GLM: 
generalized linear model; SVM: support vector machines). 
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Fig. 5. An example to illustrate the diverging results of classical regression, machine learning, and explainable AI models fitted on a sample climate-yield time series 
dataset over Ohio, USA for inferring the functional relationship Log (Yield) = f (Year, Temperature, Precipitation). Depicted here are one-way and 2D partial 
dependecne plots for (a) yield responses to individual predictors (i.e., time, temperature, and precipitation) and (b) yield responses to interactions between tem-
perature and precipitation. 

Fig. 6. Yield variability explained by changes in climate factors (mainly temperature and precipitation) for different crops and geolocations as reported in 25 
publications (see Supplementary Materials). 
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America, Asia, and Africa in order to gain a more comprehensive un-
derstanding of regional-specific climate impacts on yield variability. 

4.2. Marginal effects of temperature and precipitation on yields 

Most of the reviewed studies showed that crop yields decrease with 
temperature, and a fraction of the studies in cold regions showed the 
opposite relationship. More specifically, a total of 170 studies we 
reviewed explored marginal effects of temperature, and 133 of them 
(75%) found negative relationships between yields and temperature: 
Increasing temperatures will reduce yields. There exist optimal growth 
temperatures for crops (Fig. 5a), explaining why crops respond to 
warming positively at some locations but negatively at other locations. 
Extremely high or low temperatures from the normal climatic conditions 
to which crops have been adapted to will increase the risks of yield loss. 
For example, maize is at higher risk of yield loss at temperatures of 35 ◦C 
or above (Ortiz-Bobea et al., 2019), and wheat faces increased vulner-
ability at temperatures of 34 ◦C or above (Lobell et al., 2012). 

In particular, increasing temperatures have adverse impacts on crop 
productivity through soil water deficits or heat stress. Guo et al. (2017), 
for example, demonstrated that the global warming intensified drought 
conditions with longer drought periods and number of consecutive 
drought days, thereby harming maize yield in China. Leng and Hall 
(2019) highlighted substantial risks of yield losses for wheat, maize, 
rice, and soybean in the presence of warming-induced drought events. 
Zipper et al. (2016) found that drought explained 13% of overall crop 
yield variability. Implementing irrigation practices to alleviate soil 
water deficits was shown to mitigate negative impacts of drought on 
maize and soybean in the central United States (Zhang et al., 2015). 

The reported relationships between yields and precipitation on crop 
yields are location-specific, showing strong regional heterogeneity. 
Some studies estimated a concave relationship between precipitation 
and crop yields, suggesting there was a precipitation level for optimal 
crop growth (Gammans et al., 2017; Schlenker and Roberts, 2009). In 
particular, a few studies concluded that current precipitation levels were 
optimal for most crops (Challinor et al., 2014) and future increases in the 
frequency and intensity of rainfall will be harmful to crops. For example, 
in the central US, extreme wetness during planting may lead up to a 10% 
reduction in maize and soybean yields (Urban et al., 2015). Several 
other studies found precipitation did not have a significant relationship 
with crop yields (Ortiz-Bobea et al., 2019; Parkes et al., 2019). 

The reviewed studies often attributed the complicated relationships 
between yield and precipitation to three factors. The first one is great 
uncertainty and geographical heterogeneity in precipitation. Often 
enough, the spatial scales at which models are fitted are too coarse to 
resolve strong local heterogeneity (Fishman, 2016). The second factor 
concerns the use of monthly average precipitation or growing-season 
total precipitation in the statistical models. These precipitation indices 
might not accurately represent actual soil water moisture conditions of 
soils, thus being a poor proxy of total water available for crop usage. 
Precipitation can be a poor predictor of crop yields where irrigation is 
practiced. A third factor is the complicated indirect effects of precipi-
tation. For example, increased precipitation may heighten the risks of 
pests and diseases, cause delays in planting, or damage crops at early 
stages (Ierna and Mauromicale, 2020). These indirect impacts are 
challenging to represent in statistical models. 

4.3. Interactive effects of climate factors on yields 

Effects of temperature and precipitation on crop yields are unlikely 
independent and additive (Fig. 5b), but previous studies focused pri-
marily on assessing marginal impacts of individual climate factors, with 
limited attention given to exploring interactive impacts of climate var-
iables. Only 5 out of the 226 reviewed publications examined the 
interactive effects. Although all the machine learning-based studies also 
implicitly considered interactive effects in the overall climate-yield 

relationships, these models were black boxes and none of the ML-based 
studies attempted to decompose the overall relationships for isolating 
main and interactive effects. 

Evidence is strong and consistent that the interactive effects of 
temperature and precipitation were non-negligible (Fig. 5b) and any 
failure to incorporate these impacts may cause biases or lead to systemic 
errors. Although the addition of interaction terms increases model 
complexity and may not always fit a model with lower predictive 
RMSEs, the inferred relationships proved more realistic (Challinor et al., 
2014; Schlenker and Roberts, 2009). Carter et al. (2018), for example, 
showed that the yield responses to high temperature and low precipi-
tation conditions are consistent with physiological responses of maize 
only when interaction terms were included. In some empirical models, 
incorporating interactive terms could exacerbate projected damages of 
climate on yields, with the results significantly different from those 
models without the interaction terms (Ortiz-Bobea et al., 2019). 
Increasingly, the community has urged for more emphasis on quanti-
fying interactions within models. One line of evidence is that high pre-
cipitation could buffer the impacts of high temperatures on crops (Carter 
et al., 2016; Kukal and Irmak, 2018; Troy et al., 2015). Additionally, the 
negative impacts of warming can be exacerbated under dry conditions. 
Matiu et al. (2017) projected that increasing temperature could decrease 
the global maize yield by an average of − 7.8% but the decrease could 
reach − 11.6% under drier conditions. As suggested by Lobell (2017), 
more work is needed to include interactions between climate variables 
in models, especially under extreme conditions such as drought (Feng 
and Hao, 2020). 

4.4. Projected yields under a 1 ◦C warming 

On average, global warming was reported to have negative impacts 
on agricultural production. We synthesized the projections of yield 
change for maize, wheat, soybean, and rice under a 1 ◦C warming sce-
nario from the reviewed studies. The estimated yield changes were 
either explicitly reported in the publications or derived from the re-
ported model coefficients (Fig. 7). Averaged across all the chosen 
studies, crop yields are expected to decrease 7.5 ± 5.3% for maize (n =
54), 6.0 ± 3.3% for wheat (n = 23), 6.8 ± 5.9% for soybean (n = 12), 
and 1.2 ± 5.2% for rice (n = 12). These findings align with tie results 
obtained from field experiments and gridded global crop process-based 
models (Wang et al., 2020). In general, warming shows negative impacts 
on maize, wheat, and soybean whereas the impact on rice yields remains 
highly uncertain. 

4.5. Impacts of elevated CO2 and O3 

The rising atmospheric CO2 level is known to benefit crop growth to 
some degree, especially for C3 crops, but we found many empirical 
studies did not represent the impacts of CO2 on crop yields. Only 19 of 
the 266 reviewed studies incorporated the impacts of elevated CO2. We 
identified two main reasons from the reviewed literature for the limited 
inclusion of CO2 impacts. One is that atmospheric CO2 concentrations 
exhibit a gradual upward trend over time with minimal year-to-year 
variability, making it challenging to disentangle the CO2 impacts from 
technology advancements (Liu et al., 2016; Lobell et al., 2011; Schlenker 
and Roberts, 2009). Another one is that for C4 crops such as maize, the 
effect of CO2 is expected to be negligible because the photosynthetic 
pathway for C4 crops is independent of ambient CO2 in well-moisturized 
conditions (Lobell et al., 2011). Of the 19 studies that included the CO2 
effects, 14 of the studies didn’t identify any conclusive findings about 
the CO2 effects; only 5 of them reported explicit relationships between 
CO2 and yields (Sakurai et al., 2014; Tebaldi and Lobell, 2018a,b; 
Shindell et al., 2019). For example, Blanc and Sultan (2015) found a 
concave relationship between CO2 and yields based on synthetic data 
from process-based models; Luo and Wen (2015) used site-based ob-
servations to show a positive, non-linear relationship between CO2 and 
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yields for wheat, barley, and oat. 
Elevated O3 concentrations can harm crop yields, as reported in both 

field experiments (Mills et al., 2011) and simulations (Avnery et al., 
2011). The significance of O3 impacts is increasingly recognized and 
considered comparable to those of climate variables. Thus, many studies 
started to consider O3 concentrations in process-based models (Ember-
son et al., 2018). But due to a lack of high-quality data, we did not 
identify any statistical models that have explicitly included O3 impacts. 
Previous reviews and inter-method comparisons on climate impacts on 
crop yields have also emphasized the need to incorporate impacts of 
elevated O3 into statistical models (Challinor et al., 2009). 

5. Challenges and perspectives 

Although statistical models have gained popularity over the last two 
decades, they face several challenges in unraveling the complex mech-
anistic yield-climate relationships. Here, we discussed the many chal-
lenges and perspectives for future research to consider. In essence, we 

recommend leveraging multi-source data, high-resolution observations, 
interpretable machine learning, ensemble algorithms, and spatial sta-
tistics, fusing statistical and process-based models (e.g., physics- 
informed machine learning), and considering indirect effects of 
climate change. 

5.1. Integrating multiple sources of data 

Current empirical studies relied mainly on gridded weather datasets 
to investigate the crop yield responses to climate change. Consideration 
of only climate-based predictors is insufficient for disentangling the 
complex yield-climate relationships or fully explaining inter-annual 
yield variability (Fig. 6). For example, about 38% of yield variability 
was explained by climate factors across regions and crops at a global 
scale. Thus, we recommend future research, on one hand, to incorporate 
multi-source/type data to improve model performance, and on the other 
hand to balance the predictive and explanatory power of models to 
inform policies for agriculture under climate change. By incorporating 

Fig. 7. Impacts of 1 ◦C warming on crop yields (%) for each of those studies with reported values. Uncertainty is presented as error bars (one standard deviation of 
the values reported in each of the reviewed studies). Some error bars are not available because in those studies the changes in yield were derived based on coefficients 
of a regression model and uncertainty of the coefficients was not reported. n is the number of publications. 
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multi-source data, we mean to fuse different types of data that are 
related to crop growth, such as data related to soil conditions, water 
availability, or plant physiology from various sources. Examples of such 
sources include but are not limited to remote sensing, reanalysis, and 
economic datasets (Ribeiro et al., 2019). 

Remote sensing data could provide unique information regarding 
crop growth and yields with varied spatial, temporal, and spectral di-
mensions. They have been successfully combined with artificial intelli-
gence (AI) algorithms to improve field yield prediction in the agronomy 
community (Trevisan et al., 2019). Evidence has shown that including 
remote sensing data (e.g., Enhanced Vegetation Index) could improve 
prediction over those models with only climate variables (Peng et al., 
2018). The potential is vast in leveraging the rich set of remotely sensed 
data, such as solar radiation, soil moisture, and Spectral Induced Fluo-
rescence (SIF). 

Model-based reanalysis data provide a full set of biophysical char-
acteristics rather than just temperature and precipitation; therefore, 
they sometimes are more suitable as model inputs than commonly used 
station- or grid-based climate variables. Precipitation does not fully 
capture the water availability in soils. Soil moisture is a good replace-
ment for precipitation in empirical modeling because it could reflect 
how much water is available to crops during growth and represent water 
stress to crops. But soil moisture is highly variable across space and large 
networks of soil moisture observations are not always available. In such 
cases, reanalysis soil moisture data can serve as a viable alternative. 

Economic data provide an alternative and valuable angle to look at 
the climate impacts on crop yields (Bakker et al., 2005; Perry et al., 
2020). Increases in historical crop yield have been primarily driven by 
non-climate technological factors such as applications of fertilizer, 
improved genetics, and agricultural practices (Sadras and Calderini, 
2014). These non-climate factors are closely related to farmers’ financial 
investments, which could vary significantly across different regions, 
especially between developed and developing countries. In this regard, 
economic indicators such as variables reflecting economic conditions (e. 
g., GDP) can serve as useful proxies to capture the non-climatic contri-
butions to yields. Instead of simply modeling the historical yield increase 
as a linear or quadratic temporal trend, incorporating economic vari-
ables can provide a more comprehensive representation of the factors 
driving the changes of crop yields across space and over time, especially 
for studies across large scales. 

5.2. Leveraging explainable AI and interpretable machine learning 

To model yield-climate relationships, we need a model to have good 
predictive power in projecting yield changes as well as good explanatory 
power in capturing direct linkages between yield responses and climate 
variables so that we can make adaptations according to these responses. 
Our review showed that the current methods for tackling the yield- 
climate relationships could either have high predictive power or high 
interpretability/explainability but seldom have achieved both (Fig. 2). 
The tradeoff between predictive power and explanatory power-
—predictive accuracies vs model interpretability—is long known and 
has been an active topic for decades (Hu et al., 2023; Shmueli, 2010). 
But for crop modeling, modelers probably have an implicit purpose in 
mind without articulating the distinctions (Lobell and Asner, 2003; 
Shook et al., 2021): emphasize interpretability when using linear models 
to test the directional temperature effect on crop yield; emphasize pre-
dictive accuracies when using machine learning to predict future crop 
yields. 

An avenue worth exploring is the integration of multiple alternative 
models via ensemble algorithms such as Bayesian model averaging (Hu 
et al., 2023). Another more exciting avenue is the development of 
explainable or interpretable AI models for crop yield modeling. 
Although there has been a growing interest in developing explainable AI 
techniques to shed light on the decision-making process of machine 
learning models in various fields such as health care and criminal 

justice, these new AI approaches have remained largely unexplored for 
crop yield modeling. By focusing on explainable AI for crop yield 
models, we strive to uncover the relationships and mechanisms that 
contribute to the model’s predictions. This would enable us to better 
understand the factors driving crop yield outcomes and provide 
actionable insights to inform stakeholders and policymakers. Advance-
ments in explainable AI techniques specific to crop yield modeling can 
enhance transparency, accountability, and trust in the models, leading 
to more informed and responsible decision-making in the agricultural 
context. Overall, AI and machine learning have been recoginzed as a key 
for precision agriculture in the era of Agriculture 5.0 or beyond. 

5.3. Integrating statistical and process-based models 

Both statistical and process-based models have weaknesses in 
exploring the impacts of climate change on crop yields. However, there 
is great potential in combining these two types of models to overcome 
their respective limitations (Pylianidis et al., 2022). One simple example 
is developing emulators based on simulated yields from process-based 
models. Many more sophisticated techniques have been successfully 
used in Earth System Models. Examples include physics-guided machine 
learning (Tsai et al., 2021) and digital twin methodologies (Bauer et al., 
2021), with their potential to be tapped for crop modeling. 

Integration of statistical and process-based models can help fill 
important gaps difficult to tackle by using either alone. One area is 
assessing the effects of CO2 or O3 effects on crop yields. To account for 
elevated CO2 and O3 in statistical models, one promising approach is to 
introduce multiplication factors (e.g., a fertilization factor for CO2) to 
adjust the estimated yields. Crop-specific fertilization factor can be 
derived separately by process-based models. Fig. 8a shows examples of 
process-based model derived fertilization factors using CO2 at 330 ppm 
as a reference. This approach allows for the differentiation of CO2 im-
pacts on C3 and C4 crops without increasing the complexity of statistical 
models. Likewise, a penalty factor for O3 impacts could be derived and 
applied to reflect the extent of yield reduction associated with varied 
levels of O3 exposure (Fig. 8b). Another area where model integration 
helps is concerning climate extremes, as discussed next. 

5.4. Climate extremes 

Most of the current studies have focused on the impacts of climate 
factors under normal conditions. The interest has been increasing in 
addressing the effects of extreme weather events (Ewert et al., 2015; 
Troy et al., 2015; Waldhoff et al., 2020). The shift in focus is driven by 
the anticipated rise in the frequency of extreme weather events, such as 
heatwaves, drought, and heavy precipitation in future. Despite the in-
terest, the inference for extreme climates is inherently challenging, if not 
impossible, because extreme events are rare and not well represented in 
the training sample—a data problem not curable by statistical tech-
niques themselves. One strategy to overcome this is to integrate process 
-based and statistical models because process-based models enable 
generating sufficient synthetic data under any climate conditions. 
Another strategy is to expand the scope of climate predictors from mean 
statistics to extreme metrics (e.g., percentiles); strictly speaking, the use 
of extreme metrics as model predictors cures only the symptoms not the 
root cause models (Tebaldi et al., 2020, 2021). For example, extreme 
metrics may enter the models as useful predictors merely because of 
their inter-correlation with other mean climate statistics. 

Good metrics of weather extremes should be able to capture the 
temporal scales at which extreme events influence crop growth. For 
example, extremely high temperatures usually occur at a sub-daily level 
and might not last long but can cause severe crop damages. In this 
context, variables reflecting the duration of exposure to high tempera-
ture (e.g., numbers of days when the temperature goes above a crop- 
specific threshold) during the growing season hold the potential to ac-
count for heat stress. Drought is more of a creeping phenomenon that 
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slowly ramps up to affect crop growth over a prolonged period (Zang 
et al., 2020). Indicators of drought at a monthly resolution could be 
more helpful than those aggregated over the whole growing season 
because the monthly data could help identify when the drought begins 
to exert influences on crops. 

Modeling the impacts of climate extremes also requires novel tech-
niques to represent the relationships between extreme metrics and crop 
yields. Traditional empirical studies often relied on linear correlation to 
establish a deterministic model of climate factors and yields. However, 
these correlations assume a constant relationship throughout the dis-
tribution of the data, which may not hold true for extreme climate 
indices. Studies found that many climate extreme indices such as 
maximum five-day precipitation affect yields with a threshold behavior: 
Yield first increased with the maximum five-day precipitation and then 
started to decrease when the index exceeded a location-specific value 
(Troy et al., 2015; Zampieri et al., 2017). Thus, novel approaches such as 
probabilistic estimates of climate influence on crop yield and graphic 
techniques (e.g., density plots) could provide greater flexibility in 
assessing yield losses and describing the yield-climate relationships. No 
matter what techniques are used, modeling climate extremes with 
empirical models could be questionable when climate anomalies fall 
outside the range of historical data. As a possible remedy, combining 
both historical observations and model projections of climate anomalies 

to train a model could help extend the climate regimes of training data. 

5.5. Incorporating human-related factors 

Climate change and variability exert their influences on crop yields 
through a combination of direct biophysical and physiological pro-
cesses, as well as indirect human-related processes (Fig. 9). These factors 
interact and shape the overall impacts on agricultural productivity. For 
example, farmers’ management practices and decision-making depend 
on weather and climate (Gurgel et al., 2021), and those management 
choices can affect crop yield to varied degrees. At the immediate and 
seasonal time scales, weather conditions are a key determinant of 
farmers’ field operation decisions (e.g., planting date, timing and rate of 
fertilization application, subsurface drainage control, and harvesting), 
all of which impact crop growth (Smit and Skinner, 2002). Although 
frequent rainfall events may boost crop growth biologically, they may 
also interfere with field operations, resulting in decreased crop yields 
over a certain period (Urban et al., 2015). On longer timescales, farmers’ 
concerns about long-term weather patterns and climate risks often dic-
tates their choices for certain management practices (e.g., new crop 
cultivars, unconventional tillage, diverse crop rotations, increased 
drainage tile, cover cropping, or irrigation) (Arbuckle et al., 2015; 
Chatrchyan et al., 2017; Findlater et al., 2019; Haden et al., 2012; 

Fig. 8. (a) Fertilization factor for CO2 concentrations for C3 and C4 crops (based on Tebaldi and Lobell, 2018b) and (b) yield responses to Ozone concentrations for 
wheat, soybean, maize, and rice (based on Mills and Harmens, 2011). The equations related to Ozone factor in (b) are based on dose-responses function data from 
field-based chamber experiments with Ozone concentration exposure at the average of the highest 7 h of each day. 

Fig. 9. A schematic representation of main pathways that climate change influences crop yields. Crop modeling including both process-based and empirical models 
mainly focused on the biophysical impacts (black solid lines) with less attention to how crop yields would be affected by climate change through influencing human 
behaviors (black dash lines), such as management decisions (e.g., choices and timing of inputs) andreduction of workable field days due to changing climatic 
conditions. (T: temperature, P: precipitation, R: radiation) 
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Roesch-McNally et al., 2017). Similarly, these management choices, as 
driven indirectly by climate change and variability, entangle with the 
direct climate-plant pathways to affect crop growth. 

However, no existing statistical crop models explicitly capture these 
distinct pathways (e.g., biophysical vs. sociological) affecting crops. 
Instead, the fitted models represent an overall relationship that lumps all 
the climatic effects as observed in long-term crop yield data (Rötter 
et al., 2018). In other words, the effects of climate-induced changes in 
management practice are likely to be captured, but not identifiable from 
the direct climate-induced impacts. Without separately parameterizing 
the distinct processes, statistical models are bound to be biased when 
used to predict future crop yields, regardless of how well the models fit 
observed historical patterns. A useful step is to explicitly formulate the 
indirect and direct climate effects, perhaps by incorporating farmer 
behavior and management data to differentiate the biophysical impacts 
from the human-related pathways. 

Recent advances in social and behavioral sciences point to some 
promising directions to disentangle indirect climate-induced changes in 
management and direct climatic biophysical impacts. Many theoretical 
and modeling frameworks, such as the theory of planned behavior and 
agent-based models, have been used to simulate farmers’ attitudes and 
adaptive behaviors in response to socio-ecological and climate changes 
(Grilli and Notaro, 2019; Sun et al., 2017). Some of these behavioral 
frameworks have also been used to estimate drought risk (Schrieks et al., 
2021). 

Despite the potential and promise, the fusion of farmer behavior/ 
decision models and statistical models is not straightforward, due to the 
incompatibility in model inputs and structures (Rötter et al., 2018). One 
possible initial step for improving crop modeling is to leverage the 
outputs from farmer behavioral models (e.g., farmers’ preferences to 
various management options in face of climate changes) as additional 
predictors in empirical crop modeling (Damalas, 2021). Nevertheless, 
the explicit characterization of indirect climate-induced management 
changes is a hurdle that should be overcome in order to confidently 
project crop production under future climate. This task seems more 
feasible for process-based crop models than data-driven statistical 
models (Janssen and Ostrom, 2006), because the former are flexibly 
structured to allow inclusion of theoretical sociological and human de-
cision processes whereas the latter is a black-box or parametric model 
hard to train without sufficent high-quality observations. 

6. Summary 

We reviewed 226 studies that used statistical models to characterize 
the impacts of climate change on crop yields. We elaborated on the 
constrating nature of statistical models in disentangling the complicated 
yield-climate relationships, which is used to predict or explain. We also 
discussed common issues related to the use of statistical models, such as 
strong assumptions that may not hold, inconsistencies among models, 
and the extrapolation dilemma associated with predicton under novel 
climates. Although model prediction accuracy can be improved via 
advanced algorithms such as machine learning, classical regression 
models such as multivariate linear regression are still favored in the 
majority of our reviewed studies due to its good model interpretability. 
We also summarized the reported yield responses to climate changes and 
found that increasing temperature would have negative impacts on crop 
yields in most regions, but the impacts of precipitation on crops were 
uncertain. Climate variability explained about one-third of the inter- 
annual variation in observed crop yields at the global scale for the 
four major crops examined here. Also, we discussed many challenges 
facing the applications of statistical models, such as spatiotemporal 
heterogeneity in crop responses, climate extremes, extrapolation under 
novel climate, and the confounding from technology, fertilization, CO2, 
and O3. As a path forward, we recommend leveraging multi-source data, 
high-resolution observations, interpretable machine learning, ensemble 
algorithms, and spatial statistics, fusing statistical and process-based 

models, and considering indirect effects of climate change. Unargu-
ably, statistical crop models, including AI and machine learning, are a 
key pillar for climate-smart agriculture in the era of Agriculture 5.0 and 
beyond. 
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Gammans, M., Mérel, P., Ortiz-Bobea, A., 2017. Negative impacts of climate change on 
cereal yields: statistical evidence from France. Environ. Res. Lett. 12, 054007 
https://doi.org/10.1088/1748-9326/aa6b0c. 

Global Harvest Initiative, 2017. A World of Productive Sustainable Agriculture. 
Washington, D.C. 

Grilli, G., Notaro, S., 2019. Exploring the influence of an extended theory of planned 
behaviour on preferences and willingness to pay for participatory natural resources 
management. J. Environ. Manage. 232, 902–909. https://doi.org/10.1016/j. 
jenvman.2018.11.103. 

Guo, E., Liu, X., Zhang, J., Wang, Y., Wang, C., Wang, R., Li, D., 2017. Assessing 
spatiotemporal variation of drought and its impact on maize yield in Northeast 
China. J. Hydrol. 553, 231–247. https://doi.org/10.1016/j.jhydrol.2017.07.060. 

Gurgel, A.C., Reilly, J., Blanc, E., 2021. Challenges in simulating economic effects of 
climate change on global agricultural markets. Clim. Change 166, 29. https://doi. 
org/10.1007/s10584-021-03119-8. 

Haden, V.R., Niles, M.T., Lubell, M., Perlman, J., Jackson, L.E., 2012. Global and local 
concerns: what attitudes and Beliefs Motivate farmers to mitigate and adapt to 
climate change? PLoS One 7, e52882. https://doi.org/10.1371/journal. 
pone.0052882. 

Hansen, J.W., Challinor, A., Ines, A., Wheeler, T., Moron, V., 2006. Translating climate 
forecasts into agricultural terms: advances and challenges. Clim. Res. 33, 27–41. 
https://doi.org/10.3354/cr033027. 

Harris, I., Jones, P.D., Osborn, T.J., Lister, D.H., 2014. Updated high-resolution grids of 
monthly climatic observations – the CRU TS3.10 Dataset. Int. J. Climatol. 34, 
623–642. https://doi.org/10.1002/joc.3711. 

Hawkins, D M, 2004. The Problem of Overfitting. J. Chem. Inf. Comput. Sci. 44, 1–12. 
Hossard, L., Bregaglio, S., Philibert, A., Ruget, F., Resmond, R., Cappelli, G., Delmotte, S., 

2017. A web application to facilitate crop model comparison in ensemble studies. 
Environ. Model. Softw. 97, 259–270. https://doi.org/10.1016/j. 
envsoft.2017.08.008. 

Hu, T., Myers Toman, E., Chen, G., Shao, G., Zhou, Y., Li, Y., Zhao, K., Feng, Y., 2021. 
Mapping fine-scale human disturbances in a working landscape with Landsat time 
series on Google Earth Engine. ISPRS J. Photogramm. Remote Sens. 176, 250–261. 
https://doi.org/10.1016/j.isprsjprs.2021.04.008. 

Hu, T., Zhang, X., Bohrer, G., Liu, Y., Zhou, Y., Martin, J., Li, Y., Zhao, K., 2023. Crop 
yield prediction via explainable AI and interpretable machine learning: dangers of 
black box models for evaluating climate change impacts on crop yield. Agric. For. 
Meteorol. 336, 109458. 

Ierna, A., Mauromicale, G., 2020. How moderate water stress can affect water use 
efficiency indices in potato. Agronomy 10, 1034. https://doi.org/10.3390/ 
agronomy10071034. 

Janssen, M., Ostrom, E., 2006. Resilience, vulnerability, and adaptation: a cross-cutting 
theme of the international human dimensions programme on global environmental 
change. Glob. Environ. Change 16, 237–239. https://doi.org/10.1016/j. 
gloenvcha.2006.04.003. 

Kang, Y., Khan, S., Ma, X., 2009. Climate change impacts on crop yield, crop water 
productivity and food security – a review. Prog. Nat. Sci. 19, 1665–1674. https:// 
doi.org/10.1016/j.pnsc.2009.08.001. 

Knox, J., Hess, T., Daccache, A., Wheeler, T., 2012. Climate change impacts on crop 
productivity in Africa and South Asia. Environ. Res. Lett. 7, 034032 https://doi.org/ 
10.1088/1748-9326/7/3/034032. 

Kukal, M.S., Irmak, S., 2018. Climate-driven crop yield and yield variability and climate 
change impacts on the U.S. Great plains agricultural production. Sci. Rep. 8, 3450. 
https://doi.org/10.1038/s41598-018-21848-2. 

Leng, G., Hall, J., 2019. Crop yield sensitivity of global major agricultural countries to 
droughts and the projected changes in the future. Sci. Total Environ. 654, 811–821. 
https://doi.org/10.1016/j.scitotenv.2018.10.434. 

Leng, G., Zhang, X., Huang, M., Yang, Q., Rafique, R., Asrar, G.R., Ruby Leung, L., 2016. 
Simulating county-level crop yields in the Conterminous United States using the 
Community Land Model: the effects of optimizing irrigation and fertilization: 
improving crop yield simulations in clm. J. Adv. Model. Earth Syst. 8, 1912–1931. 
https://doi.org/10.1002/2016MS000645. 

Li, X., Troy, T.J., 2018. Changes in rainfed and irrigated crop yield response to climate in 
the western US. Environ. Res. Lett. 13, 064031 https://doi.org/10.1088/1748-9326/ 
aac4b1. 

Li, Y., Guan, K., Yu, A., Peng, B., Zhao, L., Li, B., Peng, J., 2019. Toward building a 
transparent statistical model for improving crop yield prediction: modeling rainfed 
corn in the U.S. Field Crops Res. 234, 55–65. https://doi.org/10.1016/j. 
fcr.2019.02.005. 

Liu, B., Asseng, S., Müller, C., Ewert, F., Elliott, J., Lobell, D.B., Martre, P., Ruane, A.C., 
Wallach, D., Jones, J.W., Rosenzweig, C., Aggarwal, P.K., Alderman, P.D., 
Anothai, J., Basso, B., Biernath, C., Cammarano, D., Challinor, A., Deryng, D., 
Sanctis, G.D., Doltra, J., Fereres, E., Folberth, C., Garcia-Vila, M., Gayler, S., 
Hoogenboom, G., Hunt, L.A., Izaurralde, R.C., Jabloun, M., Jones, C.D., 
Kersebaum, K.C., Kimball, B.A., Koehler, A.-K., Kumar, S.N., Nendel, C., O’Leary, G. 
J., Olesen, J.E., Ottman, M.J., Palosuo, T., Prasad, P.V.V., Priesack, E., Pugh, T.A.M., 
Reynolds, M., Rezaei, E.E., Rötter, R.P., Schmid, E., Semenov, M.A., Shcherbak, I., 
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