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Abstract: In this paper, we present a sequential production setting wherein employing
aggregate measures for performance evaluation prove superior to those constructed
specifically to measure individual activity. In our setting, unverifiable inputs translate into
verifiable measures via two types of shocks: the first is production errors that cause
outputs to deviate from inputs, and the second is measurement errors that result in
outputs themselves being stated imprecisely. Agents are evaluated using either indi-
vidual or aggregate measures, where the former measures the incremental output added
by each link and the latter measures the cumulative output produced at the end of each
stage. Aggregate measures can be preferred to individual measures because they
increase the sample size available to infer upstream agents' unobservable acts and
because they serve as an avenue for measurement errors to cancel.

INTRODUCTION

The use of aggregate measures in performance evaluation is commonplace. Examples include
rewarding team members based on group output, paying bonuses to workers when assembly
line productivity exceeds established standards, and, more broadly, offering managers com-

pensation contracts that are contingent on firm performance.' One reason for not always isolating
each evaluatee's unpolluted output is that such measures are difficult (infeasible or too costly) to
obtain. In this paper, we present another reason for why aggregate measures may be preferred to
individual measures. When agents' inputs are subject to moral hazard and their outputs are subject to
measurement errors, aggregate measures can be efficient because they increase the sample size
available to infer upstream agents' unobservahle acts and because they serve as an avenue for
measurement errors to cancel.

We present our results in the context of a sequential production setting wherein the measurement
question naturally arises: Is it desirable to measure the incremental output added by each link, or is it
better to measure the aggregate output produced at the end of each stage? The output at the end of
each stage is an aggregate number in that it depends on the cumulative effort of all upstream agents
and on accumulated production shocks, i.e., it is the sum of individual (incremental) outputs.

We thank Rick Antle, Stan Baiman, Bala Balachandran, Joel Demski, Shane Dikolli, Ron Dye, Jon Glover. Yuji Ijiri. Pierre
Liang, Brian Mittendorf, Mark Penno, Rick Young, two anonymous referees, and workshop participants at Camegie Mellon
University, Northwestern University, The Ohio State University, and Purdue University for helpful comments.
' Demski (1994) is an excellent example of an accounting text wherein performance evaluation and aggregation are a

constant theme.
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94 Ary a, Fellingham, and Schroeder

If outputs are available for contracting, then tracking either individual or aggregate outputs are
equivalent since they are informationally identical. However, we allow for the possibility that the
contracting variables differ from the outputs because the outputs are themselves subject to measure-
ment errors. For brevity, we refer to the contracting variables in the aggregate (individual) output
case as aggregate (individual) performance measures.

To see the main forces at work, consider a two-stage production chain. In this simple setup,
aggregate measures, in contrast to individual measures, yield multiple observations of the upstream
agent's effort. That is, under aggregation, the measure at the end of each stage is affected by the
upstream agent's act, while with individual measures, the measure at the end of the second stage is
not affected by the upstream agent's act. When measurement errors are uncorrelated, multiple
observations reduce the risk imposed on the upstream agent. When measurement errors are signifi-
cant, this benefit offsets the cost associated with using a more polluted (aggregate rather than
individual) measure for evaluating the downstream agent. Alternatively, when production shocks
dominate, measures of individual outputs, unpolluted by the other individual's activities, do better.

As the correlation in the measurement errors increases, the advantage of aggregate measures in
providing multiple observations (and the related disadvantage of using polluted measures for the
downstream agent) diminishes.^ Now interest shifts to which system is more efficient in canceling
measurement errors. In this case, aggregation is preferred if measurement errors are relatively small,
and the benefit of aggregation is due to the reduced risk premium paid to the downstream agent.
Given the upstream agent's performance, aggregate performance is more informative of the down-
stream agent's effort than his own individual performance. As an extreme case, note that perfectly
correlated measurement errors cancel completely to precisely reveal the downstream agent's output
when aggregate measures are employed. Informativeness depends on conditional controllability, not
controllability (see, for example, Antle and Demski [1988] and Christensen and Demski [2003]).

Conditional controllability is the notion that variables may help in contracting with an individual
even if the individual's actions do not directly affect the variable. This is because of "indirect"
learning—the variable may inform about random shocks thereby permitting construction of a better
proxy for the individual's actions. For example, a student's grade depends not only on his own exam
performance, but also on the exam performance of his classmates. Presumably, relative grading helps
lessen the impact of noise in the evaluation instrument. Similarly, a CEO's bonus is sometimes
conditioned not only on his own firm's stock price, but also on the performance of the market. Again,
the idea is to adjust for the common shock that affects all firms. In this paper, under aggregation,
each agent's act directly impacts the realization of all measures that follow. So, not surprisingly,
downstream measures can be valuable in creating a proxy for the agent's act. Moreover, the aggrega-
tion of production shocks and correlation in measurement errors imply that measures upstream to the
agent may also be informative about the agent's action. It is this possibility of both direct and indirect
learning that makes the analysis in the paper delicate.

Fortunately, the analysis is simplified by the equivalence between optimal linear incentive
contracts and generalized least squares (GLS) estimates of the agents' unobservable acts. The close
connection between statistics and control problems is well recognized. For example, sufficient
statistics and informativeness are equivalent ideas (Holmstrom 1979). In our setting, the connection
is again intuitive. In the control problem, the principal's goal is to come up with the best proxy for the
agents' unobservable acts. In the LEN (linear contract-exponential utility-normal distribution) frame-
work, the simple closed-form GLS estimator is the best proxy.

We note two related observations. First, when aggregate measures are optimal, ex ante identical
agents are treated asymmetrically in that they are offered different contracts. Second, while the LEN

The familiar statistical result that a large sample is associated with increased power is predicated on sample observations
being independent.
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setup allows for a crisp demonstration that neither measurement system always dominates, linearity
does not drive this result as an example illustrates.

This paper augments a recurring theme in accounting on the merits of aggregation. A commonly
cited reason to aggregate information is bounded rationality: limits on information transmission,
reception, and processing can make aggregated information desirable. Benefits to aggregation, even
with fully rational participants, include cancellation of errors in product costing (Datar and Gupta
1994), conveying information via choice of aggregation rule (Sunder 1997), protecting proprietary
information (Newman and Sansing 1991), and substituting for commitment (Demski and Frimor
2000).

MODEL
Consider an n-stage sequential production process with n agents, one for each stage, w a 2. At

stage /, / = 1,...,/J, agent / supplies an unobservable productive input (act), a., chosen from the set
{a, a}, a> a. Also, stage / is subject to a stochastic production shock £,. The output of each stage
serves as an input to the following stage.

The incremental production (individual output) contributed by stage / is denoted x'/, and equals
the sum of agent i's act and the production shock e^.^ The total production at stage / (aggregate
output) is denoted xf, and equals the sum of cumulative upstream acts and production shocks:

x'j =a, + E, and xf ''xf_, + aj + e,.

At the end of each stage, in order to compensate the agents, one measurement is taken of the
output (either individual or aggregate). We refer to measurement of ^, as /w* where m] potentially
differs from .jf due to stage i measurement error e:!^

m* =• x^ + e,; k" I,A.
Substituting for x^^, the system of equations for individual and aggregate performance measures

can be represented in matrix notation as follows:
m^ " a+ e+e, (1)
m'' "la + le + e, (2)

where e = (£j,£2,...,£^) and e = (e[,e2,...,e^) are the (column) vectors of production and measurement
shocks, a = {a^.a2,...,a„) is the vector of acts chosen by the n agents, and L is the n x « lower
triangular matrix of ones.5

The 2n x 1 error vector (c*,e) is multivariate normally distributed with mean 0 and variance-
covariance matrix F ,̂ V^ = E[(e*,c)(e*,£)^.* Then, from Equations (1) and (2), the variance-covari-
ance matrix in the individual and aggregate measurements cases, H, and IT,, are:

One may argue that individual measurements may not even be feasible; however, we show that even if feasible, they may
not be optimal. Feasibility may be less of an issue when the production process has more features of a lateral setup (e.g.,
individual parts are tracked and produced and then assembled in one place). We thank a referee for this example.
In discussing different sources of randomness that heighten incentive problems, Milgrom and Roberts (1992, 207—208)
write about "uncontrollable randomness in outcomes" (e.g., road construction reducing a restaurant's sales) and that
"performance evaluation measures include random or subjective elements" (e.g., due to sporadic monitoring or use of
random samples to evaluate worker performance). Our modeling of production and measurement shocks is consistent
with sueh randomness.
For notational convenience a column vector is sometimes written as an array whose elements are separated by commas.
The i-matrix is a convenient way of representing the fact that production errors accumulate as one moves downstream in
the production process.
With normal distributions one confronts the issue of negative variables. In our setting, an option is to \\ev/x, as
the true quality of output with negative numbers indicating poor quality. In this case, /n, is the measurement of quality,
whieh may differ from true quality due to, say, sampling errors. More broadly, we view the x's as a true but unobservable
underlying trait and m's as the observed measurement of that trait.
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S,- [I 7] V, [I 7]^and 1^ = [/ L] V, [I Lf,
where 7 is the « x « identity matrix. That is, in the individual measures case, the 2« x 2n F^ matrix is
pre-multiplied by a block matrix of size n x 2n (since it consists of two side-by-side identity
matrices) and post-multiplied by the transpose of the same block matrix. Note this yields Sj, the n x
n variance covariance matrix associated with the n-individual measures. In the aggregate measures
case, the only difference is that the block matrix consists of/ followed by L; these are the coeffi-
cients on e and e in Equation (2). Under either system, the variance-covariance matrix is free of the
agents' acts. In contrast, the means of the measurements are act contingent and, hence, denoted
E[iti'\a] and E[m^\a], where E[m'\a] = a and £'[»i- |̂a] = La. Denote the payment the principal makes
to agent / under measurement system khy M^. We assume w/f is linear in /«*, where »i* is the «-length
vector of observables (m*,..., m*):

Note that Y,is the vector of weights used in agent I's variable compensation.' The first subscript in
the scalar Y ,j indicates that agent / is being compensated, the second subscript indicates the weight is
placed on measurement^, and the superscript indicates performance measure system k is employed.
Running the expectations and variance operators, we have:

where // is a vector with each element equal to a.
We assume that agent /'s preferences exhibit constant absolute risk aversion (CARA). In par-

ticular, agent /'s utility function is - e'''''"''"'^., where r^ > 0 is the coefficient of absolute risk aversion.
CARA preferences combine with normally distributed compensation to allow for a convenient
certainty equivalent representation; £[wf]- a. -O.5r-Far[yt^]. Hence, the certainty equivalent of
agent;, given all agents choose effort level a, is

Sf + Yf£[«'* \a]-a-0.5/;.yf l^yf.
The principal is risk-neutral. Her contracting problem under measurement system k is presented

in program (f*). The principal minimizes the total expected payments subject to the following
constraints.* First, agent / receives at least 0., the certainty equivalent associated with his next best
employment opportunity, i.e., the contract is individually rational (IR^. Second, it is in agent i's best
interest to choose a, given all other agents choose a, i.e., the contract is (Nash) incentive compatible
(/cp. '•"• (In (P*), a_y is a /j-length vector whose /th element is a and all other elements are a.)

Program (P''): Min V 6* + y,'''E[/w' | a]

rf£[m*\a]-Si-Yf£[m*\a,]-a V /

' Holmstrom and Milgrom (1987) study a dynamic problem and prove it is equivalent to solving a static problem in which
the agent chooses the mean of a normal distribution and in which the principal is restricted to using linear contracts. That
is, in Holmstrom and Milgrom (1987) the use of linear contracts is without loss of generality.

' We assume the principal's expected benefit from production (the dollar value of the output) is sufficiently large that she
chooses to hire all agents and induces each of them to supply a.

' In writing (/C,), we assume measurements are revealed to the agents only at the completion of the entire production
process, an assumption we later relax. Also, we write the (/C )̂ constraints after dropping the common terms which are
independent of a, from each side.

'" Because the variance term is free of the agents' acts, the Na^h incentive constraints can be costlessly replaced by dominant
strategy incentive constraints. Furthermore, by increasing Y n by any arbitrary small positive amount, the dominant strategy
incentives can be made strict. Hence, in our setting, there is no pressing tacit collusion (multiple equilibria) problem.

Journal of Management Accounting Research, 2004
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fr* k
The solution to program (P') is denoted by 5, and 7,-

RESULTS
The measurement systems are ranked by comparing the optimal objective function values under

(P') and (P'*). Identifying the optimal contract under each program is facilitated by a connection
between the control problem and the GLS problem of estimating the agents' unobservable acts.

The system of equations in (1) and (2) can be succinctly written as:
w* = F''a + F*E + e*, where F'= I a.x\A F'* ^ L.

Plugging a. for agent /'s act and "a for all other agents' acts implies:
m'^^F'^a-F,* a+ Ff' a. + F'^E + c*, where F,* is the /th column of F*.
=> m\sm^- F*a + Fl'a = Ff'a, + F*E+ e\
The left-hand side (LHS) ofthe last equation, consisting only of observables, is denoted m^.

The right-hand side (RHS) implies the variance of m̂ '̂ is X̂ . The GLS estimate for a. then follows
from standard regression results (Greene 1997, 507).

Observation: Under measurement system k, the GLS estimate for agent I's act is ft>, m\,
where:

i4 ^{FfTi^F^YFfx^.
In a moral hazard problem, the principal seeks the most informative proxy for the unobservable

act. The first part of our proposition confirms the intuition that the GLS estimate in the observation is
the best proxy.

The equivalence of compensation weights with GLS weights also allows for a convenient way to
compare the objective function values of (/"O and (P^). The efficiency loss (relative to first-best) is
due to the risk bome by risk-averse agents. For an agent with CARA preferences, the risk premium is
a scalar multiple ofthe variance of his compensation. From the GLS equivalence, the compensation
variance is equal to the variance ofthe estimate ofthe unobservable action. This leads to part two of
our proposition. (All proofs are provided in the Appendix.)

Proposition: (i) Under measurement system k, where k- I, A, the optimal contract is:

(ii) Aggregate measures are strictly preferred if apd only if:

The general form of V̂^ (and, hence, Z^ and E) leads to the mechanical appearance of the
criteria in part (ii) of the Proposition. To provide intuition, we restrict attention in the remainder of
the paper to a specific variance-covariance structure that underscores the role of measurement
errors.

" The domain additivity ofthe utility function translates into a certainty equivalent that is additiveiy separable. Our results
are less dependent on our assumption that the disutility of a, equals a,, rather than c(a,), where c is an increasing convex
function. The optimal y-weights in this more general case would be simply the y-weights we obtain times "- ^ ' , the
marginal cost to the agent of choosing 5 rather than a. On this point, also see Corollary 3.
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Consider a two-stage (« = 2) production process wherein each measurement error term is
associated with variance a^, each production shock with variance o^, and all error terms, except for
ef and e^, are uncorreiated. Let p, -1 < p < 1, denote the correlation in the measurement errors.
Also, let V denote the ratio ofthe measurement error to production shock variances, i.e.,v = o\l o].
In this restricted setting, the proposition reduces to the following.

Corollary 1: Assume two identical agents and correlated measurement errors. Then:
(i) the optimal contract under each performance measurement system is:

Agent 1 1 _ _ P ^ \+{\-p)v {^-P)v
1 + v 1 + 2(1 - p)v 1 + 2(1 - p)v

Agent 2 __pv_ l Upv 1
1 + v "177

(ii) aggregate measurements are strictly preferred if and only if:

-1 <p<0.5 and v> Jf, or / \X / \
(5-4p + | l - 2 p

0.5<p< 1 and V< K:, where/f =-̂^ f i-r i i f p< l .
2 1-pM

= 1 ^ ' i f p = l .
The optimal contract in the two-agent case is essentially the standard "beta" regression coeffi-

cients (recall the GLS connection). With individual measures, the principal puts a weight of 1 (the
marginal cost of effort) on agent J'S own measure and a weight of negative beta ( Coi^fr//,^/^],
the signal, divided \iyFar{m'j\ the noise) on the other agent's measure. The same regression weights
also apply in the aggregate measures case except that the weights are computed and applied to m^
and m(-m^}^

Under aggregate measures, it is optimal to treat even {ex ante) identical agents asymmetrically
by offering them different compensation contracts.'-' Hence, unlike the case of individual measures,
under aggregate measures, one agent bears more risk while the other agent bears less risk. However,
the increased risk for one agent and the decreased risk for the other agent is not symmetric. The
intuition for this result is particularly crisp when measurement errors are uncorreiated.

In the independent errors case (p = 0), the use of aggregate measurements helps ease the control
problem with the upstream agent (agent 1). The measurement at stage 2, m(^ provides information
about the upstream agent's action choice over and above the information provided by the measure at
stage 1. There is both direct and indirect learning. The direct effect is that m^ depends on a^.
Indirect learning occurs because both m'^ and m( depend on the first-stage production shock.
Hence, m^\% informative about a^ Roughly stated, an aggregate system increases the size of the
sample that is used to draw inference about the upstream agent's act.

'̂  In the aggregate case, the (/Q constraints for agent 1 and agent 2 are y i"!" a + y ,f (i7 + 3) - 5 a y,'(' a + y if (a + 5) - a

and )'ii^ + r2!(^ + ")~^^)'2i2+)'22 (" +^) - ^ respectively. Solving these constraints as equalities yields lu •^'in = '
jj - I , respectively. This weighting reflects the fact that while agent 1 's effort affects both measurements, agent 2's

act affects only the second measurement. Of course, this is not to say the first measurement provides no information about
agent 1 's act. Informativeness and conditional controllability (not controllability) go hand in hand.

" When r, * /-j, Corollary 1 is unchanged except that K = [H'-p')^Hi-2(t-p)Jt}H{i-p)/l-\
if p < 1 and If = i? if p < I, where R = r^r^. 2(i-p')
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On the other hand, the use of aggregate measurements complicates the control problem with the
downstream agent (agent 2). Under either individual or aggregate measurements, only the second
observation depends on a^, and hence there is no increased sample size benefit when contracting
with agent 2. Instead, in contracting with the downstream agent, there is a cost associated with using
the less informative aggregate measure. In particular, /w^ reflects production shocks at both stages
while /»2 is subject to only stage 2's production shock.

More precisely, with p = 0 under the optimal contract presented in Corollary 1, the benefit of
aggregate measurements is the reduction in risk premium paid to agent 1:

Note that there is no common error term in the two measurements taken by the individual
system; hence, there is no covariance term. In contrast, agent 1 's production shock is common to
both measurements under the aggregate system; the term 2yj{*y (̂ 'a^ represents this covariance.

The cost of aggregation is the increase in risk premium paid to agent 2:

o'd(y2')\i + V) + ()'2i*)'(2 + V) + 2y,iV,'';]-a,^[(y,^*)^(l + v) + (y(;)^(l + v)] = : j ^ a , ^ >0 .

The difference between the benefit and the cost of aggregate measurements can be simplified as

v̂ + •g'~ A^ ~ ̂ r ^2 where g is the golden ratio.''' The benefit exceeds the cost if and only if v> g.
(l + v](l + 2v)

That is, when p = 0 and v > g, the benefit of using multiple observations to evaluate agent 1
dominates the cost of using a more polluted measurement for agent 2, thereby making aggregate
measures optimal.

Next, consider the other extreme of perfectly correlated measurement errors. With p = 1, the
issue becomes which system is more efficient in canceling measurement errors. The system ranking
reverses as an aggregate system is preferred for relatively small measurement errors, while an
individual system dominates for larger measurement errors. Restating the contract weights in Corol-
lary 1 after substituting p = 1 reveals the intuition for this result:

Agent 1

Agent 2 _L- 1 -1 1
l + v

A negative sign on the other agent's measurement is indicative of the optimal contract's attempt
to cancel measurement errors. Unlike the p = 0 case, with p = 1 the benefit (cost) of using aggregate
measurements arises in contracting with agent 2 (agent 1). With aggregate measures, the weights are
chosen so as to completely adjust for the measurement error and leave only one production error
term in agent 2's evaluation. In particular, the last two column weights in the last row show that agent
2 is evaluated using m2- mf = "2 + ê - However, with individual measurements, if the weights were
similarly chosen to completely eliminate the measurement error for agent 2, the result would be two
production shock terms: m^ - m( =a2-aj + 82-81. The production shock variance would be twice
as much as with aggregate measurements. Hence, with aggregate measures, a lower risk premium is
needed to compensate agent 2.
'̂  The golden ratio is the limit of the ratios of successive Fibonacci numbers as the numbers get large. The golden ratio is

(1 + V5)/2 - 1.61803 .
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In fact, with individual measures, it is never optimal to completely eliminate measurement error
from any one agent but rather to let both agents share some ofthe error (and the associated risk). In
contrast, under aggregate measures, agent 1 alone bears the measurement error. Risk sharing is more
valuable the more significant measurement errors are. Not surprisingly, then, with p = 1, aggregate
measures are preferred only for small v values.

Figure 1 summarizes the result in Corollary 1.
The forces at work at the extreme values of p = 0 and p = 1 are also at work when p takes on

intermediate values." From Corollary 1, y ,"{* + y i"̂* = 1. As p increases, the relative informativeness
of m^ regarding aj diminishes and, hence, Y n decreases. In the extreme, when p = 1, w^becomes
a garbled signal of mf and is useless in providing information on a^, hence, Yu- 0- In short, the
benefit of increased sample sizes diminishes as p increases.

For agent 2, when p = 0, w / is polluted with respect to a^ (compared to / ' /^) . The polluted
component "a^ + e^" can be partially filtered out by assigning a negative weight to mf, i.e., Y2'
< 0. As p increases, | x^ ' | increases, consistent with the fact that benefits due to canceled errors
increase. Thus, aggregate measures can be preferred because of the sample size effect and because
they provide an avenue for measurement errors to cancel.

While the above two-agent discussion has been provided in the context of sequential produc-
tion, there may be other settings to which the result is applicable. For example, in practice, some
firms carefully track performance of a few, but not all, of their divisions. A reason cited for this
practice is that tracking and measuring perfonnance is a costly activity and, hence, it might be more
efficient to carefully scrutinize the performance of only those divisions that are vital to the firm's
operations.

The result in Corollary 1 can be interpreted as suggesting that hierarchical measurements may
also be preferred if the measurement process itself introduces noise. There may be other benefits of

FIGURE 1
Parameter Values Under Which Each Measurement System Dominates
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" We thank a referee for this intuition.
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such measurements, namely, that the use of firm profits in each manager's evaluation may help him
internalize firm-wide implications of his actions (Bushman et al. 1995). More broadly stated, the
creation and use of managerial hierarchies, which is somewhat akin to sequencing, may be beneficial
to a firm as this organizational structure facilitates the natural development of aggregate (hierarchi-
cal) performance measures. Managers at each stage are evaluated based on overall performance as
well as the performance of subordinates working for them and so on.

The arguments provided in the two-agent setting apply to the n-agent case as well. In particular,
the next corollary presents necessary and sufficient conditions under which aggregate measures are
preferred in the uncorrelated and the perfectly correlated measurement errors cases.

Corollary 2: Assume n identical agents. Then:
(i) with uncorrelated measurement errors, aggregate measurements are strictly

preferred if and only if v > K:, where K solves

(ii) with perfectly correlated measurement errors, aggregate measurements are
strictly preferred if and only if v < 1.

EXTENSIONS
Nonlinear Production and Compensation

In the previous section, we confined attention to a linear compensation rule and a linear
production function. However, our basic result that neither system dominates holds even when the
linearity assumptions are relaxed.

Let J(^i, x^i G{:f, "x) , denote the individual (incremental) output contributed by agent /, / = 1,2.
x^f depends on agent i's act and the random productivity parameter e.. We suppress 8. and focus

directly on Pr{x'/\ a), the probability distribution over the output, and consider either individual or
aggregate measures to evaluate the agents. Under either system, m* = x, + e^, where the zero mean
measurement error e* ^{e,e},k = I,A.

Suppose X = 300, x = 600, a =0, 5= 15,Pr{x\a) = 0.8, Pr{x\ a) = 0.5, and d. = 0. Also, let
{s. ,e} = {-150,150}, with each value equally likely. Finally, assume the measurement errors are
independent of each other, and independent of the production shocks. (Despite the binary structure
of the variables and error independence, the optimal contract in the aggregate case requires solving
for ten payments.)

Table 1 presents the principal's expected payments under both perfonnance measurement sys-
tems corresponding to two different sets of agents' risk aversion coefficients. In each case, "*"
denotes the optimal system.

TABLE 1
Optimal Expected Payments under Each Performance Measurement System

and under Alternative Risk Aversion Assumptions

Panel A: r, = 0.01 and r̂  = 0.01
Individual*

Agent 1 18.326
Agent 2 18.326

Total 36.652

* Optimal Measurement System.

Aggregate
17.808
19.027
36.835

Panel

Agent 1
Agent 2

Total

B: r, = 0.06 and r
Individual

65.327
18.326
83.653

J = 0.01
Aggregate*

64.251
19.027
83.278
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As expected, for both sets of risk aversion parameters in Table 1, the multiple observations
provided by the aggregate system reduce the expected cost of contracting with agent 1. Of course,
this benefit must be compared against the increased cost of contracting with agent 2 that results
because the measurement used to infer agent 2's act is more polluted under the aggregate system.
The parameters are identical in the two panels of Table 1 except that agent 1 's risk aversion coeffi-
cient is higher in Panel B, making the control problem with agent 1 more severe in that case. Hence,
aggregate measurements are strictly preferred in Panel B.'*

Continuous Acts
While our earlier Proposition is stated for binary act choice, the paper's results extend in an

analogous manner to the continuous act case. Assume a, is selected from the interval [a, a] and let
a' denote agent i's optimal action. To ensure the optimal acts are interior, assume agent i's personal

cost of choosing a. is c{al), where c is an increasing convex fiinction. In effect, agent i's utility
function is _^-'!("''-'<''')). The next corollary states that the optimal contact is essentially unchanged
in this more general action environment.

Corollary 3: In the continuous action environment, the optimal linear contract is the
same as that presented in the Proposition except that the variable compen-
sation weights (the y-weights) are multiplied by the marginal cost of effort
c'( a'), where a' is the value that solves yfrf - c'(i7,) = 0 •

Timing
So far we have assumed that the agents observe measurements only at the end of the production

process. A final corollary states that the result is unaffected if this assumption is relaxed, i.e., if
measures at each stage become public as soon as the stage is completed.

Corollary 4: Assume agent / observes m*, m^,..., mf_^ prior to choosing his own act.
In this case the optimal linear contract is the same as that presented in the
Proposition (for binary acts) or as that presented in Corollary 3 (for con-
tinuous acts).

CONCLUSION
Performance evaluation when agents' inputs are subject to moral hazard and their outputs are

subject to measurement errors is a delicate exercise. In this paper, we study such a setting and
identify conditions under which individual and aggregate performance measurement systems are
each optimal. Roughly stated, aggregate measurements can be efficient because they increase the
sample size available to infer the upstream agents' unobservable acts and because they provide an
avenue for measurement errors to cancel.

The simultaneous modeling of both moral hazard and measurement errors was necessary for the
aggregate system to be optimal. In the absence of moral hazard, the principal can directly contract on
the agent's input supply. In the absence of measurement errors, the aggregate system is simply a
linear transformation of the individual system.

Accounting systems maintain an archive of historical data; aggregation is a choice variable in
the design of the archive. Furthermore, it is conventional for accountants to engage in data compres-
sion, i.e., to calculate and disseminate a restricted set of possible measures in the form of flow and
stock variables. An extension to this paper would be to evaluate the information and incentive
consequences of such time-aggregated data.

" If the two aggregate measures are interpreted as one firm-wide and one divisional performance measure, then which
division's performance to track becomes an interesting question. Under this interpretation, in our example, the principal
prefers to track the divisional performance of the more risk-averse agent (agent 1). In fact, if instead agent 2's divisional
performance is tracked, then individual measures outperform aggregate measures.
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APPENDIX
Proof of the Proposition

Consider the solution to (P*). The (7C.) constraints can be equivalently rewritten as ŷ  Ff -\& 0.
At the optimal solution, clearly the (7^,) constraint holds as an equality. Solving for expected
payments from the (77?.) constraint yields: £[n^] = 6, + a + 0.5r,Var{yv*]. Hence, the Lagrangian for

^ is as follows, where Aj denotes the multiplier on the {IC^ constraint:
Z = I [0, + 5 + 0.5r,Yfi:,Y* - X,{yfF^ ~ 1)]. (3)

The first-oraer conditions of Equation (3) with respect to yf and Â. are:

From Equation (4), // = ~'^i^\ 2.* . Substituting this in Equation (5) and solving for Aj
yields Â  = r,{Ff IT^F*)'^ • Because A; > 0, it follows that the (7C,) constraints bind. Substituting
this value of A. back into the expression for yf yields fi)f. 6^' is obtained by solving the (IR )̂
constraint as an equality.

The risk premium paid to agent i is Q.5r.Var[ wf]. Substituting the optimal compensation weights
derived above, implies the risk premium is 0.5/;(/} 2^'/'.'*)'' • The Proposition then simply
compares the sum ofthe risk premium paid to the n agents unaer the two measurement systems. •

Proof of Corollary 1
In the two-agent correlated measurement errors case:

" V pv 0 0
pv V 0 0
0 0 1 0
0 0 0 1

The above matrix "(lefmes 2)̂  (see fhe formulas in the model section of the paper). The result then
H

\F''F'^

follows by substituting 2]̂  and r^ = r̂  in the proposition.

Proof of Corollary 2
With uncorreiated measurement errors, IT, = a^F' + O\F' and Z^ = o[F''F'^ + a^

Substituting these expressions in part (ii) of the Proposition, and simplifying, implies aggregate
measures are preferred if and only if:

(6)

Part (i) ofthe corollary then follows from the following (detailed proofs of (a) - (c) are available
from the authors):
(a) Thederivativeof Equation (6) with respect to o\ is positive when evaluated at o\ =0,
(b) Expression (6) is concave with respect to o\ , and
(c) The limit of (6) as al goes to infinity is negative infinity.

Part (ii) of the corollary can be proved by verifying that the optimal contract in the perfectly
correlated is much as in the two-agent case, and therefore part (ii) of Corollary 1 applies. In
particular, with individual measures, the optimal contract for agent / puts a weight of 1 on i's own
measure and - TT—jr~ on all other individual measures. With aggregate measures, the optimal
contract for agent i, i > 1, places a weight of 1 on stage i's measure, -1 on stage i - I ' s measure, and
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0 on all other measures. For agent 1, the optimal contract places a weight of 1 on the first measure
and 0 on all other aggregate measures. H

Proof of Corollary 3
In the continuous act setup, the (/C,) constraint is:
a,. Eargmax £[wf \ {a_,, a,)] - a^ - Far{w*].

o,

Assuming the first order approach is valid, the (/C,.) constraint can be replaced by the following
condition yfF* - d{a^ = 0 . This constraint is the same as the {IC) constraint in Equation (5)
except that the y-weights add to the marginal cost c' (a*) rather than to 1.

Proof of Corollary 4
Consider the contracting problem with agent / if / observes m^ ,..., m,_^prior to choosing a^.

(We provide only the proof for the aggregate case; the individual case follows directly.) The
objective function and (//?,) are the same as before since, at the time of contracting, m is not
known to either party. To consider the effect on (/Cj), partition the measures into {m^,m^, where m^
= /fix /nt\ and The unconditional mean. La, and variance-covariance
matrix, 1., can similarly be partitioned as follows:

and y y
•ii

The distribution of m. conditional on observing m is multivariate normal with mean and
variance-covariance matrix as listed below (Greene 1997,90):

As the conditional distribution is multivariate normal we can continue to use the convenient
certainty equivalent expression used before. Since Var[»ij|mJ (and 8f) is fi-ee ofa,., it drops out of
(/C,) as before. Agent i's own act affects £'[/«^|/«^], but only by its effect on /x̂ ; the second term in
E[m^\m^ is based on the realization m^ and /i^ which are free ofa,. Hence, if agent / chooses a
rather than a, he increases the conditional mean hya-a,. In certainty equivalent terms, by choosing
a rather than g, agent / increases his compensation by yfFf{^ - a) and increases his disutility by
a-a. Hence, (/C,) is the same as before: yfFf a 1 • H
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