
10
secret codes

Secret codes as a way to communicate privately has been an important activity
for centuries. Modern commerce relies on the integrity of large data bases, and a
common method of ensuring integrity is encryption (encoding the data so that it
is meaningful only to someone familiar with the coding technique). Accountants
have as much interest in maintaining data integrity as anyone. Further, given the
skills acquired in the analysis of accounting problems so far, we are well posi-
tioned to study cryptography, the science of secret codes.
A fundamental result for encryption was worked out over 300 years ago by

Pierre de Fermat. Another central result is even older, over 1,000 years from
Euclid.1 But the application to encryption had to await the development of pow-
erful, high-speed computers. Cryptography is an intriguing mixture of old and
new science.

10.1 Fermat’s theorem
Pierre de Fermat was an amateur mathematician who explored the mysteries of
numbers for the pure joy of discovery. It is ironic that some of his results should
turn out to be of such great practical application. The practical use of Fermat’s
theorem is due to the fact that the relationship is true for all numbers, no matter
how big they are. Computer encryption uses extremely large numbers.

Theorem 10.1 Fermat’s theorem

1A discussion of Fermat’s theorem and Euclid’s algorithm is in Ore, 1948.

210 10. secret codes

ap−1 ≡ 1 (mod p)

where p is any prime number, and a is any number not a multiple of p.

Example 10.1 For an easy example, 3 is a prime number. Then checking Fermat

23−1 = 22 = 4 ≡ 1 (mod 3)

Example 10.2 17 is a prime number. Calculate 1216. By Fermat when 1216 is
divided by 17, the remainder is 1.

1216 is already a fairly large number, but fortunately we can verify the example
without actually calculating 1216. We can go in small stages. 122 = 144, and
when 17 is divided into 144, the answer is 8 with a remainder of 8. The remainder
is what we want.

122 ≡ 8 (mod 17)

The next step is to calculate 124.

124 =
/
122
02 ≡ 82 (mod 17) = 64 ≡ 13 (mod 17)

Similarly,

128 =
/
124
02 ≡ 132 (mod 17) ≡ (−4)2 = 16 ≡ −1 (mod 17)

Notice when it came to squaring 13, it was easier to use 13 ≡ −4 (mod 17) and
square -4 instead. One more step gets us to 1216.

1216 =
/
128
02 ≡ (−1)2 = 1 (mod 17)

The last line verifies Fermat for the example.
As Fermat is true for all prime numbers, there are an infinite number of exam-

ples, and it is a good idea to complete several of them. For now, though, it would
be nice to demonstrate Fermat with a little more generality. That can be done,
since the theorem follows directly from the two properties of multiplication using
a prime modulus: there are no zeros and no repeats. For example, consider mod-
ulo 5. Multiply all the numbers less than 5 by 2, and then multiply the answers
together.

(2× 1) (2× 2) (2× 3) (2× 4)
≡ 2× 4× 1× 3 (mod 5)

We know because of no zeros and no repeats, the numbers (1, 2, 3, 4) will return
after multiplying by 2, or indeed any non-zero number in the multiplication table.
Only the order will change.

10.2 an encryption technique 211

We can rewrite the result using the factorial (!) operator.

24 (4!) ≡ (4!) (mod 5)

We can effectively divide out the factorial term.2

24 ≡ 1 (mod 5)

The above algebra verified Fermat for p = 5 and a = 2. The logic for any p
and a is similar. Each step is allowed because of the two properties. The product
never disappears because there are no zeros, and the two expressions are congruent
because they are composed of numbers in the same set without repeats (although
probably in a different order).

10.2 an encryption technique
Fermat’s theorem suggests a secret coding technique. Express the message in
numbers. Encode the message by raising to a high power. That, then, is the
cyphertext sent to the receiver. Decoding is accomplished by raising the cypher-
text to another power until we reach 1, as Fermat guarantees we will. Then mul-
tiply one more time and the message will return.
Denote the message by a, and let p be the prime modulus.

ap−1 ≡ 1 (mod p) (Fermat’s theorem)
a(p−1)n ≡ 1 (mod p)

a(p−1)n+1 ≡ a (mod p)

Encryption involves accomplishing the above in two steps. Let e be an encryp-
tion parameter, so the cyphertext is ae. What is required is a decryption parameter,
d, such that

ae
d

= aed = a(p−1)n+1 ≡ a (mod p)

The designer of the code has the freedom to pick any p and e. But d must
satisfy

ed = (p− 1)n+ 1

Or, in congruence notation, the problem is, given p and e, solve the following
congruence for d.

ed ≡ 1 (mod p− 1)

2Actually, we can’t strictly divide. However, we know (because of no zeros and no repeats) that
there is some number, when multiplied by 4!, the product is congruent to 1 modulo 5.

212 10. secret codes

The problem is actually not a difficult one to solve; a solution is achieved using
Euclid’s algorithm, one of the oldest (perhaps the oldest) algorithm in mathemat-
ics. Euclid’s algorithm is the subject of the next section, so we will temporarily
skip that part. For now, here’s a small numerical example.

Example 10.3 Let p = 67, e = 35, and d = 17. It is easy to verify that e and d
will work as the encryption and decryption parameters.

35× 17 = 595 = 9× 66 + 1 ≡ 1 (mod 66)

With this small code any number less than 67 can be encrypted. The following
tabulates the cyphertext form of messages from 2 to 29.

a ae a ae

2 63 16 55
3 58 17 21
4 16 18 11
5 42 19 26
6 36 20 2
7 18 21 39
8 3 22 15
9 14 23 60
10 33 24 40
11 13 25 22
12 57 26 6
13 32 27 8
14 62 28 20
15 24 29 37

It is not too hard to verify individual entries, and they should be verified. For
example, the calculations for a = 2 and e = 35 follow. (Notice the use of negative
numbers when they are easier to raise to a power.)

28 = 256 ≡ 55 ≡ −12 (mod 67)

216 ≡ (−12)2 = 144 ≡ 10 (mod 67)

232 ≡ (10)
2
= 100 ≡ 33 (mod 67)

235 =
/
232
0 /
23
0
≡ 33× 8 = 264 ≡ 63 (mod 67)

Decoding is accomplished with d = 17.

10.3 Euclid’s algorithm 213

63 ≡ −4 (mod 67)

634 ≡ (−4)4 = 256 ≡ −12 (mod 67)
638 ≡ 144 ≡ 10 (mod 67)
6316 ≡ 100 ≡ 33 (mod 67)
6317 ≡ 33× (−4) = −132 ≡ 2 (mod 67)

And the original message, a = 2, is returned.
The cyphertext, ae, bears no systematic relationship to the message a. Because

of this, it is difficult (probably impossible) to "break" the code, that is, invert from
ae to a. Another way to state the relationship is that there is no information in ae
about a. Indeed, many random number generators work by raising a large number
to a large power and then reporting the remainder. In this sense ae will look to the
bad guys like random numbers, and will prove no use to them.
It will be easier to visualize the randomness in ae when we get to examples

with large numbers. For now, we have some unfinished business: solving for the
decryptor, d.

10.3 Euclid’s algorithm
The problem in the last section was to find a decryptor for the prime modulus,
p = 67, and encryptor e = 35. It was easy to verify d = 17 does the trick. It
satisfied the congruence

ed ≡ 1 (mod p− 1)

Or, in this case,

35d ≡ 1 (mod 66)

or
35d = 66n+ 1

Euclid’s algorithm provides a method to discover the answer in the first place.
The method of Euclid starts with 66 and 35; then divides the smaller into the larger
to get a remainder (here it is 31). Then the division is repeated with the smaller
numbers 35 and 31. And repeated still further until the remainder is as small as it
can get. (For there to be a solution to the congruence, the final remainder must be
1.) The equations are as follows.

66 = 1× 35 + 31
35 = 1× 31 + 4
31 = 7× 4 + 3
4 = 1× 3 + 1

214 10. secret codes

The last equation is in the form we want; we can substitute into that equation
for 3, 4, and 31 to get everything in terms of 66 and 35. The substitutions to use
are restatements of the first 3 equations above.

31 = 66− 35
4 = 35− 31
3 = 31− 7× 4

Now substitute into the last equation for 3, 4, and 31 sequentially.

4 = 3 + 1

4 = (31− 7× 4) + 1
35− 31 = (31− 7× (35− 31)) + 1

35− (66− 35) = ((66− 35)− 7× (35− (66− 35))) + 1

Combining terms to get the coefficients of 66 and 35:

2 (35)− 66 = 8 (66)− 15 (35) + 1
17 (35) = 9 (66) + 1

The last expression is in the form we want; we can see that d = 17 and, also, we
get n = 9 for free.
The algorithm works, but parts of it, especially the substituting part, can get

tedious. It would be cool if there was a parsimonious way to conduct the algo-
rithm, and, indeed, there is. It amounts to keeping three columns of numbers. The
two left hand columns accomplish taking successively smaller remainders (going
down), and the right hand column does the substitution (coming back up). Start
the procedure with the two numbers of interest.

66
35

Divide the smaller number into the larger. The middle column has the number of
time 35 goes into 66, and the remainder is placed in the first column.

66
35 1
31

Repeat the procedure until the remainder is 1.

66
35 1
31 1
4 7
3 1
1

10.3 Euclid’s algorithm 215

Start the third column at the bottom by placing 1there.

66
35 1
31 1
4 7
3 1
1 1

Now work up the third column. Each entry is calculated by multiplying the entry
in the second column times the third column entry one row lower. Then add the
element in the third column two rows lower. For the first calculation there is only
one element in the third column, so the calculation is 1× 1 + 0 = 1.

66
35 1
31 1
4 7
3 1 1
1 1

Repeat. The next calculation is 7× 1 + 1 = 8.

66
35 1
31 1
4 7 8
3 1 1
1 1

The next calculations are 1× 8 + 1 = 9, and 1× 9 + 8 = 17.

66
35 1 17
31 1 9
4 7 8
3 1 1
1 1

This scheme goes pretty fast with a little practice as in another example or two.

Example 10.4 Let the prime modulus p=103 and encryptor e=91. Find d.

The first two columns yield successively smaller remainders.

102
91 1
11 8
3 3
2 1
1 1

216 10. secret codes

The elements in the third column are calculated by multiplying the associated
second column element times the element in the third column down one row, then
add the third column element down two rows.

102
91 1
11 8
3 3
2 1 1
1 1

102
91 1
11 8
3 3 4
2 1 1
1 1

102
91 1
11 8 33
3 3 4
2 1 1
1 1

102
91 1 37
11 8 33
3 3 4
2 1 1
1 1

The verification is 37 × 91 = 3367 = 33 × 102 + 1 ≡ 1 (mod 102). The
example can be further verified by encrypting and decrypting to see if the original
message returns.

Example 10.5 Let p = 103, e = 91, and d = 37. Encrypt and decrypt a = 2.

Encrypt:

29 = 512 ≡ 100 ≡ −3 (mod 103)

254 =
/
29
06 ≡ (−3)6 = 729 ≡ 8 (mod 103)

236 =
/
29
04 ≡ 81 (mod 103)

291 =
/
254
0 /
236
0
(2) ≡ (8) (81) (2) = 1296 ≡ 60 (mod 103)

Decrypt:

602 = 3600 ≡ −5 (mod 103)

608 =
/
602
04 ≡ 625 ≡ 7 (mod 103)

6024 =
/
608
03 ≡ 73 = 343 ≡ 34 (mod 103)

605 =
/
604
0
(60) ≡ (25) (60) = 1500 ≡ 58 (mod 103)

6037 =
/
6024

0 /
608
0 /
605
0
≡ (34) (7) (58) = 13, 804 ≡ 2 (mod 103)

One more example illustrates a potential problem that might arise and its solu-
tion.

Example 10.6 Let p = 103 and e = 29. The regular calculation for d:

102
29 3 7
15 1 2
14 1 1
1 1

In this case things don’t quite work: 7 (29) = 203 = 2 (102)−1 ≡ −1 (mod 102),
but they are easily fixed. Simply change the sign:

10.4 a real example 217

−7 (29) = −203 = −2 (102) + 1 ≡ 1 (mod 102)

d, then, is−7; a negative d is a little bit uncomfortable, so recall−7 ≡ 95 (mod 102),
and d = 95 works fine.

95 (29) = 2755 = 27 (102) + 1 ≡ 1 (mod 102)

10.4 a real example

Sending a meaningful message requires a large prime modulus, which, in turn,
implies use of a computer. A large modulus, encryptor, and decryptor increase the
security of the code, as well. In the example to follow the programming language
is Mathematica, and none of the commands requires more than a second or two to
execute, at least on the machine I am using.
Start with a sample message: "Transfer $1,000,000 to Nish’s account." And

we require the message in numerical form. It is not hard to write a crude routine
which, in this case, changes each symbol into a two digit number.
a1=5828112429161528378265757474747574747437302537521929189329
371113132531243038
"T" is transformed to ’58’, "r" to ’28’, "a" to ’11’, and so forth. Simple substitu-

tion cyphers such as this one are popular in literature: see, for example, "The Gold
Bug" by Edgar Allan Poe and "The Adventure of the Dancing Men" by Arthur
Conan Doyle. They are also common on the puzzle pages of daily newspapers.
In any event, they are not very secure. To access Fermat’s theorem we require
some large numbers. The Mathematica command "Random[Prime,{1,10^100}]"
returns a prime number between 1 and 1 followed by 100 zeros.
p=57656350467772590842968926675632437856669578908091633629232
74645552392498986648935712483504631040643
e=15709770121388900982473516951863122516186766705982763868988
10281172240891679239034775140086266134343
Mathematica’s command for Euclid’s algorithm is ExtendedGCD[p-1,e], and a

decryptor is easily obtained.
d=15658322322815747764012219315548941836749339823780334074029
13173160713796989428801131649044416494831
A patient reader can type the numbers into a computer and verify that ed ≡

1 (mod p− 1). It’s more instructive, and much more fun, however, to use p, e,
and d to encrypt and decrypt some messages. The Mathematica command to
generate a cyphertext is PowerMod[a1,e, p]; in other words, raise a1 to the power
e, and take the remainder using the modulus p. Denote the cyphertext as c1.
c1=2537971453639642635622750110104879189317450917631082084271
781641502958590430167649770860315527660657
To return the message a1, it is simply a matter of running PowerMod once more,

this time with d and c1: PowerMod[c1, d, p]. While it is certainly possible to

218 10. secret codes

verify the example with the numbers given, it would be better to make up different
examples.
The cyphertext, c1, is essentially a random number, and does, indeed, look that

way to an eavesdropper. A way to emphasize its random character is to make a
trivial change in the original message: "Transfer $1,000,000 to Oish’s account."
The numeric version is hardly distinguishable from the original; indeed, it’s hard
to find the single digit at variance.
5828112429161528378265757474747574747437302537531929189329371
113132531243038
Using p and e to generate cyphertext c2, however, results in a sequence with no

apparent relationship to c1.
c2=4117321761273706571604525053743054740759147055954957638538
186298827008076055619317468196994629382843
Even if the bad guys had the original message in both encrypted and unen-

crypted forms, it would be of no help in deciphering cyphertext for a very sim-
ilar message. This is a powerful property of Fermat encryption, and one which
strengthens the security of the codes.
There is, however, one area where Fermat encryption is vulnerable. The vul-

nerability is known as the private key problem. In order to establish a code, it is
necessary to communicate the prime modulus and the encryption number so that
the sender and the receiver can coordinate the transmissions. But this original
communication can not be sent over the derived secure Fermat channel, as the se-
cure channel did not come into existence until after the communication of p and
e (or d). The next section, and the next chapter, are different ways of confronting
the private key problem.

10.5 public key encryption
One way of avoiding the private key problem is to publicly announce the modulus
and the encryptor, but do so in a way that is of no use to people wishing to intercept
coded messages. This is called public key encryption and relies on two things: a
theorem from Euler, and the fact that some problems are hard to solve, even by
high speed computers. First Euler’s theorem.
Fermat’s theorem works only for prime numbers, the logic requiring that there

be no repeats or zeros in the multiplication table. Euler generalizes Fermat’s re-
sult to non-prime numbers, as well, by restricting consideration to rows of the
multiplication table which satisfy the no zeros and no repeats conditions. Recall

10.5 public key encryption 219

the multiplication table modulo 10 from chapter 9 reproduced here.

1 2 3 4 5 6 7 8 9
1 1 2 3 4 5 6 7 8 9
2 2 4 6 8 0 2 4 6 8
3 3 6 9 2 5 8 1 4 7
4 4 8 2 6 0 4 8 2 6
5 5 0 5 0 5 0 5 0 5
6 6 2 8 4 0 6 2 8 4
7 7 4 1 8 5 2 9 6 3
8 8 6 4 2 0 8 6 4 2
9 9 8 7 6 5 4 3 2 1

The rows (and columns) associated with 1, 3, 7, and 9 satisfy the necessary prop-
erties; the other rows do not. The difference is that 1,3, 7, and 9 are relatively
prime to the modulus 10.

Definition 10.1 Two numbers are relatively prime if, when comparing their re-
spective (unique) factorizations into prime numbers, there are no common factors.

The factorization of 10 is 2 × 5. All the numbers less than 10 except for 1,
3, 7, and 9 have either a 2 or 5 in their factorization into prime numbers. Euler
denoted the size of the set of numbers relative prime numbers to m and less than
m as φ (m), called "phi" or the totient.

Theorem 10.2 Euler’s theorem: for any modulus m, and any number a which is
relatively prime to m,

aφ(m) ≡ 1 (modm)

Verifying the theorem form = 10 we have φ (10) = 4 and

34 = 81 ≡ 1 (mod 10)
74 = 2401 ≡ 1 (mod 10)
94 = 6561 ≡ 1 (mod 10)

Euler’s generalization allows for a way around the public key problem. When
the modulus is prime, and the modulus and encoder are known, the bad guys can
solve for the decoder using the congruence ed ≡ 1 (mod p− 1). Because of
Euclid this is an easy congruence to solve. On the other hand, when the modulus
is not prime the congruence to solve for the decoder is ed ≡ 1 (modφ (m)).3 This
is also an easy congruence to solve but only when φ (m) is known. This is the
part that trips up the bad guys: finding φ (m) requires knowing the prime factors
ofm.

3Note that for a prime number φ (p) = p− 1.

220 10. secret codes

Example 10.7 Supposem = r×s, where r and s are both prime numbers. Then
any multiple of r less thanm is not relatively prime tom, since they have common
prime factor r. There are s − 1 multiples of r less than m. Similarly there are
r − 1 multiples of s less thanm. The total of relatively prime numbers φ (m) is

φ (m) = (m− 1)− (r − 1)− (s− 1)
= (rs− 1)− r + 1− s+ 1
= (r − 1) (s− 1)

Finding the prime factors of a large number, say 100 digits or more, is com-
putationally hard and beyond the capacity of present day computers to find in a
reasonable time. Anyone who wishes to receive secret messages can disclose pub-
licly a modulus and an encoder, and be (sort of) confident that the decoder can
not be inferred. The receiver can easily derive their own decoder by constructing
the modulus as the product of large prime numbers. This is the essence of public
key encryption.

Example 10.8 Let r = 911 and s = 1009. also, let the encryptor, e, be 601. The
code modulus,m, then, is

m = rs = 911 (1009) = 919, 199

And the number of relatively prime numbers less than m is

φ (m) = (r − 1) (s− 1) = (910) (1008)
= 917, 280

Finding φ (m), of course, is the difficult part for an outsider unaware of the prime
factors of m. (It is even a little bit difficult for this small example.) But once
φ (m) is known, it is relatively simple to find the decryptor, d, that solves

ed ≡ 1(modφ (m))

The calculations using Euclid’s algorithm are tabulated.

917, 280
601 1, 526 244, 201
154 3 160
139 1 41
15 9 37
4 3 4
3 1 1
1 1

d is computed to be 244,201 and is verified by the calculations.

244, 201 (601) = 146, 764, 801

160 (917, 280) = 146, 764, 800

10.6 infinitude of primes 221

With some computer assistance, the code can be tested. For example,

121e ≡ 405, 061 (mod m)

405, 061d ≡ 121 (mod m)

Technology advances, however, and factoring large numbers might not always
be difficult enough to support public key encryption.

How many computational steps are needed to find the prime fac-
tors of a 300-digit number? The best classical algorithm knownwould
take about 5× 1024 steps, or about 150, 000 years at terahertz speed.
By taking advantage of innumerable quantum states, a quantum fac-
toring algorithm would take only 5×1010 steps, or less than a second
at terahertz speed. (M. Nielsen, Scientific American, May 31, 2003)

The ability to harness quantum processes has already begun. The effect of
quantum capabilities on encryption is the subject of the next chapter.

10.6 infinitude of primes

Encryption techniques use as raw material large prime numbers. Further, the ex-
istence of lots of prime numbers is necessary both for designing a secret code
and ensuring the code does remain, in fact, secret. This section has a couple of
theorems verifying the existence of a sufficient number of large primes; in fact,
there are infinitely many. Besides being relevant to our coding activities, there
is something satisfying about peering into the domain of very large numbers and
identifying the regularities, and even beauty in that domain.
As primes become sparse as the numbers get large (there is, on average, more

and more distance between two primes), the concern might be that we’ll run out
of prime numbers. Fortunately, for coding and a variety of other applications, that
concern is unfounded. The number of primes is infinite, and the proof thereof,
from Euclid, is elegant.4

Theorem 10.3 There is an infinity of prime numbers.

First assume there exists a largest prime number, and then derive a contradic-
tion, thereby showing the original assumption to be false. Suppose the largest
prime number is P . Construct the product of all the primes up to and including
P , and to the product add 1.

Q = (2 · 3 · 5 · 7 · 11 · 13 · 17 · 19 · 23 · · · P) + 1

Q is not divisible by any of the primes used in its construction: the remainder
is always 1. Then Q must itself be prime, or divisible by primes larger than P .

4See G. H. Hardy’s discussion of the proof in A Mathematician’s Apology.

222 10. secret codes

Either way we have a contradiction to the assumption of a largest prime, and that
assumption must then be false.
Another important theorem concerning the behavior of primes is known as the

prime number theorem and was first stated by Gauss. The actual number of primes
less than a particular number, n, is conventionally denoted as PrimePi(n). For
example, PrimePi(10) = 4,and the four prime numbers are 2, 3, 5, and 7.
Gauss’ insight was that PrimePi(n) behaves a lot like n/ lnn.

Theorem 10.4 Prime number theorem:

Limit
t!1

PrimePi(t)

t/ ln t
= 1

The prime number theorem gives another verification of the infinitude of primes,
as the ration t/ ln t is always increasing.

d

dt

t

ln t
=

ln t− 1
(ln t)

2

=
1

ln t
−

1

(ln t)
2 > 0

Furthermore, we can see there are plenty of large primes. Just as 90% of the
numbers below 10t exceed 10t−1, the same is approximately true for primes. 90%
of the primes less than 10100, say, exceed 1099. Doing approximate computations

10100

100 ln 10 −
1099

99 ln 10
10100

100 ln 10

≈
10100 − 1099

10100

= 1− .1 = .9

The computation presumes 99 ln 10 is "close enough" to 100 ln 10; being a little
more careful yields a result of 89.9%.

10.7 cyphertext entropy
A necessary condition of a good secret code is that the cyphertext (that is, the
message that is sent after encryption takes place) should not be useful to the bad
guys. One way to evaluate this characteristic of the cyphertext is to compute its
entropy.
To investigate the entropy of messages in words, consider the name "kyle kerner."

The name is composed of three e’s, two k’s and two r’s, as well as one apiece of
y, l, n, and a space, for a total of 11 symbols. The relative frequency of e, for
example, is 3/11. Using relative frequencies instead of probabilities, applying the

10.7 cyphertext entropy 223

entropy operator yields

Entropy["kyle kerner"]

= −
1
3

11
ln
3

11
+
4

11
ln
2

11
+
4

11
ln
1

11

2

' 1.8462

Here is a quotation which appeared as an encrypted puzzle in the daily newspa-
per, presented for simplicity without upper case and punctuation.

"the details vanish in the birdseye view but so does the birdseye
view vanish in the details william james"

Using the same relative frequency technique as before, the computed entropy
of the quotation is 2.649. Some perspective is added by comparing the actual
entropy to the most the entropy could be . In this case the maximum possible
entropy is ln 27, as there are 27 possible characters (26 letters and a space). And
the ratio of actual to maximum is approximately 80%.
For the puzzle in the newspaper the cyphertext appears as follows.

"axl hladgcj tdvgjx gv axl pgyhjlul tgle pka ji hilj axl pgyhjlul
tgle tdvgjx gv axl hladgcj egccgdf odflj"

"t" in plaintext becomes "a" in cyphertext, "h" becomes, "x", and so forth. The
entropy ratio of the cyphertext is the same 80%, of course. It is instructive to
compute the ratio for a random sequence of symbols of the same length: for this
example there are 103 characters.
A computer simulation experiment generating the ratio for 27 possible numbers

generated randomly in lengths of 103 routinely returns an entropy ratio of about
95%, greater than the 80% entropy ratio in the puzzle. So the codebreaker (or
newspaper puzzler) has a significant advantage just with the relative frequency of
individual symbols. There are, of course, other useful patterns besides individual
letters, including word patterns, letter patterns within words, and so forth.
The next part of the experiment involves a computer, as well. The idea is to

check the entropy ratio for cyphertexts using the encryption systems under con-
sideration in this chapter. Here we generate cyphertext using a prime modulus
and an encryptor of 100 digits. The entropy ratio is computed as the entropy of
the cyphertext divided by ln 10, as there are 10 possible digits. For the cyphertext
the ration is routinely about 98%. For a list of 100 random integers, again the ra-
tion is about 98%. Indeed, many computerized random numbers are generated by
raising a seed number to a very high power, divide by another large number, and
report the remainder: effectively this reproduces the transformation of plaintext to
cyphertext.
So the relative frequency wedge available to the codebreaker with substitution

cyphers does not exist for the "Fermat encryption" secret codes in this chapter. Of
course, as mentioned earlier, there are a variety of other possible patterns. But
they can be checked in a similar fashion, and the interested reader with access to
some computer capability is encouraged so to do.

224 10. secret codes

10.8 summary

The process of sending secret messages, or maintaining the secrecy and integrity
of databases, has changed as technology has changed. Centuries old mathemati-
cal results from Fermat, Euler, and Euclid have become central to secret codes as
computational technology has improved. Technology continues to improve; en-
cryption follows along, and different mathematical results become important. In
the next chapter quantum processes and their effects on encryption are discussed.

10.9 references 225

10.9 references
Doyle, Arthur Conan, "The Adventure of the Dancing Men," in The Return of
Sherlock Holmes, 1903.
Hardy, G. H., A Mathematician’s Apology.
M. Nielsen, Scientific American, May 31, 2003
Ore, Oystein, Number Theory and Its History. McGraw-Hill Book Company,

1948.
Poe, Edgar Allan, "The Gold Bug," 1843.

10.10 exercises
Exercise 10.1 Consider a private key secret code with prime modulus p = 2633
and encoder e = 43. What is the decoder, d? Suppose the received cyphertext is
2477. What is the message? (Use an Excel spreadsheet and the function "mod.")

Exercise 10.2 Using Fermat’s theorem, verify that 7387 is not a prime number.
Consider a multiplication table with modulus equal to 7387. Find some entries
in the multiplication table which are zero. (An Excel spreadsheet will be useful.)
Using what you learned from the position of the zero entries, estimate a value for
Euler’s totient (phi) by eliminating the affected numbers. Use Euler’s theorem to
verify (or disprove) your estimate of phi.

Exercise 10.3 For p = 97 and e = 37, find the decoder, d. Verify that the code
works by encoding and decoding a message, say a = 2. Excel might be useful for
the verification.

Exercise 10.4 Repeat the previous exercise for p = 1009 and e = 97.

Exercise 10.5 Consider modulusm = 33, 277 = (107) (311). The code encryp-
tor is e = 2003. What is the decryptor, d?

Exercise 10.6 The code parameters are p = 79 and e = 41. Compute d. Com-
pute the cyphertext for plaintext a = 2.

Exercise 10.7 From the proof of the infinitude of primes, when the first seven
primes are multiplied together, and 1 is added to the product, the result is either
prime or divisible by some prime number greater than the seventh prime. Which
is it?
How hard would it be to repeat the exercise for the first ten primes?

Exercise 10.8 Consider a secret code modulus m = 221 = (13) (17). Let the
code encryptor be e = 97. Find the decryptor d, and encrypt, and then decrypt,
a few messages. Do you see any weakness(es) with this code? Does the phrase
"fixed point" have any relevance?

226 10. secret codes

Exercise 10.9 Using the prime number theorem, approximately how many prime
numbers are between 10200 and 10201?

Exercise 10.10 What is the relative frequency entropy of "sandy koufax"? "leon-
hard euler"?

