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Reservoir computing is a best-in-class machine learning algorithm for processing information

generated by dynamical systems using observed time-series data. Importantly, it requires

very small training data sets, uses linear optimization, and thus requires minimal computing

resources. However, the algorithm uses randomly sampled matrices to define the underlying

recurrent neural network and has a multitude of metaparameters that must be optimized.

Recent results demonstrate the equivalence of reservoir computing to nonlinear vector

autoregression, which requires no random matrices, fewer metaparameters, and provides

interpretable results. Here, we demonstrate that nonlinear vector autoregression excels at

reservoir computing benchmark tasks and requires even shorter training data sets and

training time, heralding the next generation of reservoir computing.
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A dynamical system evolves in time, with examples
including the Earth’s weather system and human-built
devices such as unmanned aerial vehicles. One practical

goal is to develop models for forecasting their behavior. Recent
machine learning (ML) approaches can generate a model using
only observed data, but many of these algorithms tend to be data
hungry, requiring long observation times and substantial com-
putational resources.

Reservoir computing1,2 is an ML paradigm that is especially
well-suited for learning dynamical systems. Even when systems
display chaotic3 or complex spatiotemporal behaviors4, which are
considered the hardest-of-the-hard problems, an optimized
reservoir computer (RC) can handle them with ease.

As described in greater detail in the next section, an RC is
based on a recurrent artificial neural network with a pool of
interconnected neurons—the reservoir, an input layer feeding
observed data X to the network, and an output layer weighting
the network states as shown in Fig. 1. To avoid the vanishing
gradient problem5 during training, the RC paradigm randomly
assigns the input-layer and reservoir link weights. Only the
weights of the output links Wout are trained via a regularized
linear least-squares optimization procedure6. Importantly, the
regularization parameter α is set to prevent overfitting to the
training data in a controlled and well understood manner and
makes the procedure noise tolerant. RCs perform as well as other
ML methods, such as Deep Learning, on dynamical systems tasks
but have substantially smaller data set requirements and faster
training times7,8.

Using random matrices in an RC presents problems: many
perform well, but others do not all and there is little guidance to

select good or bad matrices. Furthermore, there are several RC
metaparameters that can greatly affect its performance and
require optimization9–13. Recent work suggests that good matri-
ces and metaparameters can be identified by determining whether
the reservoir dynamics r synchronizes in a generalized sense to
X14,15, but there are no known design rules for obtaining gen-
eralized synchronization.

Recent RC research has identified requirements for realizing a
general, universal approximator of dynamical systems. A uni-
versal approximator can be realized using an RC with nonlinear
activation at nodes in the recurrent network and an output layer
(known as the feature vector) that is a weighted linear sum of the
network nodes under the weak assumptions that the dynamical
system has bounded orbits16.

Less appreciated is the fact that an RC with linear activation
nodes combined with a feature vector that is a weighted sum of
nonlinear functions of the reservoir node values is an equivalently
powerful universal approximator16,17. Furthermore, such an RC
is mathematically identical to a nonlinear vector autoregression
(NVAR) machine18. Here, no reservoir is required: the feature
vector of the NVAR consists of k time-delay observations of the
dynamical system to be learned and nonlinear functions of these
observations, as illustrated in Fig. 1, a surprising result given the
apparent lack of a reservoir!

These results are in the form of an existence proof: There exists
an NVAR that can perform equally well as an optimized RC and,
in turn, the RC is implicit in an NVAR. Here, we demonstrate
that it is easy to design a well-performing NVAR for three
challenging RC benchmark problems: (1) forecasting the short-
term dynamics; (2) reproducing the long-term climate of a

Fig. 1 A traditional RC is implicit in an NG-RC. (top) A traditional RC processes time-series data associated with a strange attractor (blue, middle left)
using an artificial recurrent neural network. The forecasted strange attractor (red, middle right) is a linear weight of the reservoir states. (bottom) The NG-
RC performs a forecast using a linear weight of time-delay states (two times shown here) of the time series data and nonlinear functionals of this data
(quadratic functional shown here).
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chaotic system (that is, reconstructing the attractors shown in
Fig. 1); and (3) inferring the behavior of unseen data of a dyna-
mical system.

Predominantly, the recent literature has focused on the first
benchmark of short-term forecasting of stochastic processes time-
series data16, but the importance of high-accuracy forecasting and
inference of unseen data cannot be overstated. The NVAR, which
we call the next generation RC (NG-RC), displays state-of-the-art
performance on these tasks because it is associated with an
implicit RC, and uses exceedingly small data sets and side-steps
the random and parametric difficulties of directly implementing a
traditional RC.

We briefly review traditional RCs and introduce an RC with
linear reservoir nodes and a nonlinear output layer. We then
introduce the NG-RC and discuss the remaining metaparameters,
introduce two model systems we use to showcase the perfor-
mance of the NG-RC, and present our findings. Finally, we dis-
cuss the implications of our work and future directions.

The purpose of an RC illustrated in the top panel of Fig. 1 is to
broadcast input data X into the higher-dimensional reservoir
network composed of N interconnected nodes and then to
combine the resulting reservoir state into an output Y that closely
matches the desired output Yd. The strength of the node-to-node
connections, represented by the connectivity (or adjacency)
matrix A, are chosen randomly and kept fixed. The data to be
processed X is broadcast into the reservoir through the input
layer with fixed random coefficients W. The reservoir is a
dynamic system whose dynamics can be represented by

riþ1 ¼ 1� γ
� �

ri þ γf Ari þWXi þ b
� �

; ð1Þ

where ri ¼ r1;i; r2;i; :::; rN;i

h iT
is an N-dimensional vector with

component r j,i representing the state of the jth node at the time ti,
γ is the decay rate of the nodes, f an activation function applied to
each vector component, and b is a node bias vector. For simpli-
city, we choose γ and b the same for all nodes. Here, time is
discretized at a finite sample time dt and i indicates the ith time
step so that dt= ti+1-ti. Thus, the notations ri and ri+1 represent
the reservoir state in consecutive time steps. The reservoir can
also equally well be represented by continuous-time ordinary
differential equations that may include the possibility of delays
along the network links19.

The output layer expresses the RC output Yi+1 as a linear
transformation of a feature vector Ototal;iþ1, constructed from the
reservoir state ri+1, through the relation

Yiþ1 ¼ WoutOtotal;iþ1; ð2Þ
where Wout is the output weight matrix and the subscript total
indicates that it can be composed of constant, linear, and non-
linear terms as explained below. The standard approach, com-
monly used in the RC community, is to choose a nonlinear
activation function such as f(x)= tanh(x) for the nodes and a
linear feature vector Ototal;iþ1 ¼ Olin;iþ1 ¼ riþ1 in the output
layer. The RC is trained using supervised training via regularized
least-squares regression. Here, the training data points generate a
block of data contained in Ototal and we match Y to the desired
output Yd in a least-square sense using Tikhonov regularization
so that Wout is given by

Wout ¼ YdOtotal
T OtotalOtotal

T þ αI
� ��1

; ð3Þ
where the regularization parameter α, also known as ridge
parameter, is set to prevent overfitting to the training data and I is
the identity matrix.

A different approach to RC is to move the nonlinearity from the
reservoir to the output layer16,18. In this case, the reservoir nodes
are chosen to have a linear activation function f(r)= r, while the

feature vectorOtotal becomes nonlinear. A simple example of such
RC is to extend the standard linear feature vector to include the
squared values of all nodes, which are obtained through the
Hadamard product r� r ¼ r21; r

2
2; ¼ ; r2N

� �T18. Thus, the non-
linear feature vector is given by

Ototal ¼ r� r� rð Þ ¼ r1; r2; ¼ ; rN ; r
2
1; r

2
2; ¼ ; r2N

� �T
; ð4Þ

where ⊕ represents the vector concatenation operation. A linear
reservoir with a nonlinear output is an equivalently powerful
universal approximator16 and shows comparable performance to
the standard RC18.

In contrast, the NG-RC creates a feature vector directly from
the discretely sample input data with no need for a neural net-
work. Here, Ototal ¼ c � Olin �Ononlin, where c is a constant
and Ononlin is a nonlinear part of the feature vector. Like a tra-
ditional RC, the output is obtained using these features in Eq. 3.
We now discuss forming these features.

The linear features Olin;i at time step i is composed of obser-
vations of the input vector X at the current and at k-1 previous
times steps spaced by s, where (s-1) is the number of skipped steps

between consecutive observations. If Xi ¼ x1;i; x2;i; ¼ ; xd;i
h iT

is a

d-dimensional vector, Olin;i has d k components, and is given by

Olin;i ¼ Xi � Xi�s � Xi�2s � :::� Xi� k�1ð Þs: ð5Þ
Based on the general theory of universal approximators16,20, k

should be taken to be infinitely large. However, it is found in
practice that the Volterra series converges rapidly, and hence
truncating k to small values does not incur large error. This can
also be motivated by considering numerical integration methods
of ordinary differential equations where only a few subintervals
(steps) in a multistep integrator are needed to obtain high
accuracy. We do not subdivide the step size here, but this analogy
motivates why small values of k might give good performance in
the forecasting tasks considered below.

An important aspect of the NG-RC is that its warm-up period
only contains (sk) time steps, which are needed to create the
feature vector for the first point to be processed. This is a dra-
matically shorter warm-up period in comparison to traditional
RCs, where longer warm-up times are needed to ensure that the
reservoir state does not depend on the RC initial conditions. For
example, with s= 1 and k= 2 as used for some examples below,
only two warm-up data points are needed. A typical warm-up
time in traditional RC for the same task can be upwards of 103 to
105 data points12,14. A reduced warm-up time is especially
important in situations where it is difficult to obtain data or
collecting additional data is too time-consuming.

For the case of a driven dynamical system, OlinðtÞ also includes
the drive signal21. Similarly, a system in which one or more
accessible system parameters are adjusted, OlinðtÞ also includes
these parameters21,22.

The nonlinear part Ononlin of the feature vector is a nonlinear
function of Olin. While there is great flexibility in choosing the
nonlinear functionals, we find that polynomials provide good
prediction ability. Polynomial functionals are the basis of a Vol-
terra representation for dynamical systems20 and hence they are a
natural starting point. We find that low-order polynomials are
enough to obtain high performance.

All monomials of the quadratic polynomial, for example, are
captured by the outer product Olin �Olin, which is a symmetric
matrix with (dk)2 elements. A quadratic nonlinear feature vector
Oð2Þ

nonlinear, for example, is composed of the (dk) (dk+1)⁄2 unique
monomials of Olin �Olin, which are given by the upper trian-
gular elements of the outer product tensor. We define ⌈⊗⌉ as the
operator that collects the unique monomials in a vector. Using
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this notation, a p-order polynomial feature vector is given by

OðpÞ
nonlinear ¼ Olind � eOlind � e¼ d � eOlin ð6Þ

with Olin appearing p times.
Recently, it was mathematically proven that the NVAR method

is equivalent to a linear RC with polynomial nonlinear readout18.
This means that every NVAR implicitly defines the connectivity
matrix and other parameters of a traditional RC described above
and that every linear polynomial-readout RC can be expressed as
an NVAR. However, the traditional RC is more computationally
expensive and requires optimizing many meta-parameters, while
the NG-RC is more efficient and straightforward. The NG-RC is
doing the same work as the equivalent traditional RC with a full
recurrent neural network, but we do not need to find that net-
work explicitly or do any of the costly computation associated
with it.

We now introduce models and tasks we use for showcasing the
performance of NG-RC. For one of the forecasting tasks and the
inference task discussed in the next section, we generate training
and testing data by numerically integrating a simplified model of
a weather system23 developed by Lorenz in 1963. It consists of a
set of three coupled nonlinear differential equations given by

_x ¼ 10ðy � xÞ; _y ¼ xð28� zÞ� y; _z ¼ xy � 8z=3; ð7Þ
where the state X(t)≡ [x(t),y(t),z(t)]T is a vector whose compo-
nents are Rayleigh–Bénard convection observables. It displays
deterministic chaos, sensitive dependence to initial conditions—
the so-called butterfly effect—and the phase space trajectory
forms a strange attractor shown in Fig. 1. For future reference, the
Lyapunov time for Eq. 7, which characterizes the divergence
timescale for a chaotic system, is 1.1-time units. Below, we refer to
this system as Lorenz63.

We also explore using the NG-RC to predict the dynamics of a
double-scroll electronic circuit24 whose behavior is governed by

_V1 ¼ V1=R1 � ΔV=R2 � 2Ir sinhðβΔVÞ;
_V2 ¼ ΔV=R2 þ 2Ir sinhðβΔVÞ � I;

_I ¼ V2 � R4I

ð8Þ

in dimensionless form, where ΔV= V1 –V2. Here, we use the
parameters R1= 1.2, R2= 3.44, R4= 0.193, β= 11.6, and Ir=
2.25 × 10−5, which give a Lyapunov time of 7.81-time units.
We select this system because the vector field is not of a

polynomial form and ΔV is large enough at some times that a
truncated Taylor series expansion of the sinh function gives rise
to large differences in the predicted attractor. This task demon-
strates that the polynomial form of the feature vector can work
for nonpolynomial vector fields as expected from the theory of
Volterra representations of dynamical systems20.

In the two forecasting tasks presented below, we use an NG-RC
to forecast the dynamics of Lorenz63 and the double-scroll sys-
tem using one-step-ahead prediction. We start with a listening
phase, seeking a solution to X t þ dtð Þ ¼ WoutOtotal tð Þ, where
Wout is found using Tikhonov regularization6. During the fore-
casting (testing) phase, the components of X(t) are no longer
provided to the NG-RC and the predicted output is fed back to
the input. Now, the NG-RC is an autonomous dynamical system
that predicts the systems’ dynamics if training is successful.

The total feature vector used for the Lorenz63 forecasting task
is given by

Ototal ¼ c�Olin �Oð2Þ
nonlinear; ð9Þ

which has [1+ d k+(d k) (d k+1)/2] components.
For the double-scroll system forecasting task, we notice that the

attractor has odd symmetry and has zero mean for all variables
for the parameters we use. To respect these characteristics, we

take

Ototal ¼ Olin �Oð3Þ
nonlinear ð10Þ

which has [d k+(d k) (d k+1) (d k+2)/6] components.
For these forecasting tasks, the NG-RC learns simultaneously

the vector field and an efficient one-step-ahead integrator to find
a mapping from one time to the next without having to learn each
separately as in other nonlinear state estimation approaches25–28.
The one-step-ahead mapping is known as the flow of the dyna-
mical system and hence the NG-RC learns the flow. To allow the
NG-RC to focus on the subtle details of this process, we use a
simple Euler-like integration step as a lowest-order approxima-
tion to a forecasting step by modifying Eq. 2 so that the NG-RC
learns the difference between the current and future step. To this
end, Eq. 2 is replaced by

Xiþ1 ¼ Xi þWoutOtotal;i: ð11Þ
In the third task, we provide the NG-RC with all three Lor-

enz63 variables during training with the goal of inferring the
next-step-ahead prediction of one of the variables from the oth-
ers. During testing, we only provide it with the x and y variables
and infer the z variable. This task is important for applications
where it is possible to obtain high-quality information about a
dynamical variable in a laboratory setting, but not in field
deployment. In the field, the observable sensory information is
used to infer the missing data.

Results
For the first task, the ground-truth Lorenz63 strange attractor is
shown in Fig. 2a. The training phase uses only the data shown in
Fig. 2b–d, which consists of 400 data points for each variable with
dt= 0.025, k= 2, and s= 1. The training compute time is <10 ms
using Python running on a single-core desktop processor (see
Methods). Here, Ototal has 28 components and Wout has
dimension (3 × 28). The set needs to be long enough for the
phase-space trajectory to explore both wings of the strange
attractor. The plot is overlayed with the NG-RC predictions
during training; no difference is visible on this scale.

The NG-RC is then placed in the prediction phase; a qualitative
inspection of the predicted (Fig. 2e) and true (Fig. 2a) strange
attractors shows that they are very similar, indicating that the
NG-RC reproduces the long-term climate of Lorenz63 (bench-
mark problem 2). As seen in Fig. 2f–h, the NG-RC does a good
job of predicting Lorenz63 (benchmark 1), comparable to an
optimized traditional RC3,12,14 with 100s to 1000s of reservoir
nodes. The NG-RC forecasts well out to ~5 Lyapunov times.

In Supplementary Note 1, we give other quantitative mea-
surements of the accuracy of the attractor reconstruction and the
values of Wout in Supplementary Note 2; there are many com-
ponents that have substantial weights and that do not appear in
the vector field of Eq. 7, where the vector field is the right-hand-
side of the differential equations. This gives quantitative infor-
mation regarding the difference between the flow and the
vector field.

Because the Lyapunov time for the double-scroll system is
much longer than for the Lorenz63 system, we extend the training
time of the NG-RC from 10 to 100 units to keep the number of
Lyapunov times covered during training similar for both cases.
To ensure a fair comparison to the Lorenz63 task, we set dt=
0.25. With these two changes and the use of the cubic mono-
mials, as given in Eq. 10, with d= 3, k= 2, and s= 1 for a total of
62 features in Ototal, the NG-RC uses 400 data points for each
variable during training, exactly as in the Lorenz63 task.

Other than these modifications, our method for using the NG-
RC to forecast the dynamics of this system proceeds exactly as for
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the Lorenz63 system. The results of this task are displayed in
Fig. 3, where it is seen that the NG-RC shows similar predictive
ability on the double-scroll system as in the Lorenz63 system,
where other quantitative measures of accurate attractor recon-
struction is given in Supplementary Note 1 as well as the com-
ponents of Wout in Supplementary Note 2.

In the last task, we infer dynamics not seen by the NG-RC
during the testing phase. Here, we use k= 4 and s= 5 with
dt= 0.05 to generate an embedding of the full attractor to infer
the other component, as informed by Takens’ embedding
theorem29. We provide the x, y, and z variables during training
and we again observe that a short training data set of only 400

Fig. 3 Forecasting the double-scroll system using the NG-RC. True (a) and predicted (e) double-scroll strange attractors. b–d Training data set with
overlayed predicted behavior. f–h True (blue) and predicted datasets during the forecasting phase (NRMSE= 4.5 ± 1.0 × 10−3).

Fig. 2 Forecasting a dynamical system using the NG-RC. True (a) and predicted (e) Lorenz63 strange attractors. b–d Training data set with overlayed
predicted behavior with α= 2.5 × 10−6. The normalized root-mean-square error (NRMSE) over one Lyapunov time during the training phase is
1.06 ± 0.01 × 10−4, where the uncertainty is the standard error of the mean. f–h True (blue) and predicted datasets during the forecasting phase
(NRMSE= 2.40 ± 0.53 × 10−3).
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points is enough to obtain good performance as shown in Fig. 4c,
where the training data set is overlayed with the NG-RC pre-
dictions. Here, the total feature vector has 45 components and
hence Wout has dimension (1 × 45). During the testing phase, we
only provide the NG-RC with the x and y components (Fig. 4d, e)
and predict the z component (Fig. 4f). The performance is nearly
identical during the testing phase. The components of Wout for
this task are given in Supplementary Note 2.

Discussion
The NG-RC is computationally faster than a traditional RC
because the feature vector size is much smaller, meaning there are
fewer adjustable parameters that must be determined as discussed
in Supplementary Notes 3 and 4. We believe that the training data
set size is reduced precisely because there are fewer fit parameters.
Also, as mentioned above, the warmup and training time is
shorter, thus reducing the computational time. Finally, the NG-
RC has fewer metaparameters to optimize, thus avoiding the
computational costly optimization procedure in high-
dimensional parameter space. As detailed in Supplementary
Note 3, we estimate the computational complexity for the Lor-
enz63 forecasting task and find that the NG-RC is ~33–162 times
less costly to simulate than a typical already efficient traditional
RC12, and over 106 times less costly for a high-accuracy tradi-
tional RC14 for a single set of metaparameters. For the double-
scroll system, where the NG-RC has a cubic nonlinearity and
hence more features, the improvement is a more modest factor of
8–41 than a typical efficient traditional RC12 for a single set of
metaparameters.

The NG-RC builds on previous work on nonlinear system
identification. It is most closely related to multi-input, multiple-
output nonlinear autoregression with exogenous inputs (NARX)
studied since the 1980s21. A crucial distinction is that Tikhonov

regularization is not used in the NARX approach and there is no
theoretical underpinning of a NARX to an implicit RC. Our NG-
RC fuses the best of the NARX methods with modern regression
methods, which is needed to obtain the good performance
demonstrated here. We mention that Pyle et al.30 recently found
good performance with a simplified NG-RC but without the
theoretical framework and justification presented here.

In other related work, there has been a revival of research on
data-driven linearization methods31 that represent the vector field
by projecting onto a finite linear subspace spanned by simple
functions, usually monomials. Notably, ref. 25 uses least-square
while recent work uses LASSO26,27 or information-theoretic
methods32 to simplify the model. The goal of these methods is to
model the vector field from data, as opposed to the NG-RC
developed here that forecasts over finite time steps and thus
learns the flow of the dynamical system. In fact, some of the large-
probability components of Wout (Supplementary Note 2) can be
motivated by the terms in the vector field but many others are
important, demonstrating that the NG-RC-learned flow is dif-
ferent from the vector field.

Some of the components of Wout are quite small, suggesting
that several features can be removed using various methods
without hurting the testing error. In the NARX literature21, it is
suggested that a practitioner start with the lowest number of
terms in the feature vector and add terms one-by-one, keeping
only those terms that reduce substantially the testing error based
on an arbitrary cutoff in the observed error reduction. This
procedure is tedious and ignores possible correlations in the
components. Other theoretically justified approaches include
using the LASSO or information-theoretic methods mentioned
above. The other approach to reducing the size of the feature
space is to use the kernel trick that is the core of ML via support
vector machines20. This approach will only give a computational
advantage when the dimension of Ototal is much greater than the
number of training data points, which is not the case in our
studies here but may be relevant in other situations. We will
explore these approaches in future research.

Our study only considers data generated by noise-free
numerical simulations of models. It is precisely the use of reg-
ularized regression that makes this approach noise-tolerant: it
identifies a model that is the best estimator of the underlying
dynamics even with noise or uncertainty. We give results for
forecasting the Lorenz63 system when it is strongly driven by
noise in the Supplementary Note 5, where we observe that the
NG-RC learns the equivalent noise-free system as long as α is
increased demonstrating the importance of regularization.

We also only consider low-dimensional dynamical systems, but
previous work forecasting complex high-dimensional spatial-
temporal dynamics4,7 using a traditional RC suggests that an NG-
RC will excel at this task because of the implicit traditional RC
but using smaller datasets and requiring optimizing fewer meta-
parameters. Furthermore, Pyle et al.30 successfully forecast the
behavior of a multi-scale spatial-temporal system using an
approach similar to the NG-RC.

Our work has important implications for learning dynamical
systems because there are fewer metaparameters to optimize and
the NG-RC only requires extremely short datasets for training.
Because the NG-RC has an underlying implicit (hidden) tradi-
tional RC, our results generalize to any system for which a
standard RC has been applied previously. For example, the NG-
RC can be used to create a digital twin for dynamical systems33

using only observed data or by combining approximate models
with observations for data assimilation34,35. It can also be used for
nonlinear control of dynamical systems36, which can be quickly
adjusted to account for changes in the system, or for speeding up
the simulation of turbulence37.

Fig. 4 Inference using an NG-RC. a–c Lorenz63 variables during the
training phase (blue) and prediction (c, red). The predictions overlay the
training data in (c), resulting in a purple trace (NRMSE= 9.5 ± 0.1 × 10−3

using α= 0.05). d–f Lorenz63 variables during the testing phase, where the
predictions overlay the training data in (f), resulting in a purple trace
(NRMSE= 1.75 ± 0.3 × 10−2).
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Methods
The exact numerical results presented here, such as unstable steady states (USSs)
and NRMSE, will vary slightly depending on the precise software used to calculate
them. We calculate the results for this paper using Python 3.7.9, NumPy 1.20.2, and
SciPy 1.6.2 on an x86-64 CPU running Windows 10.

Data availability
The data generated in this study can be recreated by running the publicly available code
as described in the Code availability statement.

Code availability
All code is available under an MIT License on Github (https://github.com/quantinfo/ng-
rc-paper-code)38.
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