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Forecasting the behavior of high-dimensional dynamical systems using machine learning requires efficient methods
to learn the underlying physical model. We demonstrate spatiotemporal chaos prediction using a machine learning
architecture that, when combined with a next-generation reservoir computer, displays state-of-the-art performance with
a computational time 103− 104 times faster for training process and training data set ∼ 102 times smaller than other
machine learning algorithms. We also take advantage of the translational symmetry of the model to further reduce the
computational cost and training data, each by a factor of ∼10.

Modeling and predicting high-dimensional dynamical sys-
tems, such as spatiotemporal chaotic systems, continues to
be a physics grand challenge and require efficient methods
to leverage computational resources and efficiently pro-
cess large amounts of data. In this work, we implement
a highly efficient machine learning (ML) parallel scheme
for spatiotemporal forecasting where each model unit pre-
dicts a single spatial location. This reduces the number
of trainable parameters to the minimum number possible,
thus speeding up the algorithm and reducing the data set
size needed for training. Moreover, when combined with
next-generation reservoir computers (NG-RCs), our ap-
proach presents state-of-the-art performance with a com-
putational cost and training data dramatically reduced in
comparison to other machine learning approaches. We
also show that the computational cost and training data
set size can be further reduced when the system display
translational symmetry, which is commonly present in
spatiotemporal systems with cyclic boundary conditions.
Although many real systems do not have such symmetry,
our results highlight the importance of symmetry address-
ing when it is present in the system.

I. INTRODUCTION

Many nonlinear systems display temporal dynamics that
depend on spatial location, such as the heart,1 optical
devices,2 and fluid flow.3 These systems may displays spa-
tiotemporal chaos, which has finite spatiotemporal correla-
tions, a loss of long-term predictability,4 and the appear-
ance of coherent structures.3 Also, these systems often dis-
play multi-scale behavior, where information and energy flow
across scales. Modelling spatiotemporal chaos is difficult for
these reasons and continues to be a physics grand challenge.

One approach to this problem is to use machine learn-
ing, which may speed up prediction by learning only vari-
ables of interest, such as the macroscale behavior,5–7 or
improve the prediction accuracy by fusing model predic-
tions and experimental observations.8–13 Some researchers

use ML algorithms, such as deep learning,6,14 time embedding
techniques15–17 or sparse system identifiers,18 to learn the un-
derlying ordinary or partial differential equations, but this
subsequently requires precise numerical methods for model
integration. Another approach is to learn the system flow,
which allows for one-step-ahead prediction using a coarser
spatiotemporal grid, likely leading to faster prediction. The
next-generation reservoir computer (NG-RC), for example,
excels at this task,17 and is mathematically equivalent to a tra-
ditional reservoir computer (RC) but has an optimal form.19

In typical ML approaches, the spatial variable is discretized
at L points with step size δL, assumed one-dimensional for
exposition simplicity, and time is discretized with step size
δ t. During supervised training, blocks of data with Nin spatial
points and k time steps are fed into the artificial neural network
(ANN) used to predict the behavior at Nout locations at one or
more temporal steps. Often, Nin = Nout = L and kδ t is longer
than the correlation time,6,20 which is problematic because it
causes the model to focus on unrelated observations. Also, the
ANN is large, which increases the number of trainable param-
eters and hence increases the required computer resources and
training data set size. Recently, a parallel reservoir computing
scheme21 was introduced with Nout < Nin < L to reduce the
computational cost.

Here, our primary contribution is to demonstrate a new al-
gorithm for learning spatiotemporal systems. It makes pre-
dictions of the temporal dynamics of the system at a single
spatial location based on data drawn from a small spatiotem-
poral neighborhood of the point. Prediction over all spatial
points is realized using parallel machines. Quantitatively, we
take Nin < L and Nout = 1, where NinδL is less than or com-
parable to the spatial correlation length, and take k so that kδ t
is less than the correlation time. Hence, we use L parallel
ANNs for one-step-ahead prediction. We apply our method to
a heuristic atmospheric weather model using the NG-RC17 as
the core learning machine, which reduces the computational
complexity and the data set size required for training while
displaying state-of-the-art accuracy. Accounting for the trans-
lational symmetry of this model further reduces the training
computational time and data. Figure 1 illustrates our scheme.

We highlight that addressing symmetries has proven to be
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FIG. 1. Learning and predicting spatiotemporal chaos using our par-
allel scheme. (a) Learning Mode: The NG-RC is trained to predict
the next time step tm+1 at the lth spatial location using training data
from the current tm and previous steps tm−1 and tm−2 (k = 3), and
the Nin = 5 neighbors. (b) Prediction mode: Autonomous operation
of L parallel NG-RCs where the output feeds the input to predict the
next step of all spatial locations x = [x1,x2, . . . ,xL].

important for improving other ML approaches.22–26 Further-
more, ML algorithms can reveal hidden symmetries, such as
translational invariance present in a simple 1D uniform mo-
tion or black hole dynamics,27 even if their presence is not
obvious.

The rest of the paper is organized as follows. In Sec. II,
we formally describe the high-dimensional dynamical system
used as the learning system to train our ML approach for spa-
tiotemporal chaos prediction. In Sec. III, we describe our par-
allel scheme of ML models where each model unit predicts
a single discretized spatial location represented by a system
variable. In Sec. IV we introduce the theoretical background
of the NG-RC, followed by brief descriptions of the training
procedure and prediction mode. Section V is dedicated to the
results. Here, we use our parallel scheme of NG-RCs to fore-
cast high-dimensional chaos from the model equations intro-
duced in Sec. II. We compare the cases where the parallel
NG-RCs are trained independently to the case where a trans-
lational symmetry is taken into account to improve the perfor-
mance. Finally, we apply our approach to a lower dimensional
case of Lorenz96 model system and to an even lower dimen-
sional case where fine-scales variables are not present. Lastly,
we present a discussion comparing our results to other works
and our conclusions in Sec. VI. We also include details on
Ridge regression parameter optimization and computational
complexity in the appendix.

II. EXTENDED LORENZ96 MODEL

We demonstrate our approach using numerically generated
data from a heuristic atmospheric weather model introduced
by Lorenz4,28 and extended by Thornes et al..29 It has an un-
specified macroscopic scalar variable xl on a discrete grid (po-

sition l) representing the observations around a latitude circle.
To represent some convective-scale quantity across spatiotem-
poral scales, this variable is driven by a finer-scale variable
y j,l , which is coupled to the macroscopic variable as well as
the finest scale variable zi, j,l representing, for example, indi-
vidual clouds in the atmosphere.

The model is described by a set of coupled differential
equations given by

ẋl = xl−1(xl+1− xl−2)− xl +F− hc
b

Syl ,

ẏ j,l =−cby j+1,l(y j+2,l− y j−1,l)− cy j,l +
hc
b

xl−
he
d

Sz j,l ,

żi, j,l = edzi−1, j,l(zi+1, j,l− zi−2, j,l)−gezi, j,l +
he
d

y j,l , (1)

where the indices l = 1, . . . ,L, j = 1, . . . ,J and i = 1, . . . , I
are mod(l,L), mod( j,J), and mod(i, I), respectively, to repre-
sent cyclic boundary conditions. The terms Syl =∑

J
j=1 y j,l and

Sz j,l = ∑
I
i=1 zi, j,l represent the couplings between the different

spatiotemporal scales.
Here, F = 20 is a spatially homogeneous, large-scale forc-

ing term, h = 1 is the coupling strength between the different
spatial scales and the parameters b = c = d = e = g = 10 set
the magnitude and time scale of the fast variables. With these
parameters, there is a factor of 100 difference in spatiotem-
poral scales from the finest (z) to the coarsest (x) scale. For
future reference, we specify time in model time units (MTU),
where 1 MTU corresponds approximately to 5 atmospheric
days.4 We take L = 36 to set the number of coherent struc-
tures appropriate for the Earth’s weather and J = 10.4 For the
fastest variable, we take I = J following previous studies.6,7

There are L ∗ J = 360 fine-scale and L ∗ J ∗ I = 3,600 finest-
scale variables and hence there are L[1+ J(1+ I)] = 3,996
total variables.

We focus on learning and predicting only the slow
macroscopic variables xl without observing the finer-scale
dynamics.6,7,30 Because of the fast time scale of yl, j and zi, j,l
in comparison to xl , Syl acts as a noise-like term in driving xl .
It is known that many ML algorithms, including an NG-RC,17

can learn in the presence of large noise and hence we expect
that we can make accurate predictions as demonstrated below.

III. THE PARALLEL ML SCHEME

Our goal is to learn the one-step-ahead dynamics at a single
location xl based on using Nin = (2Nnn +1) spatial points and
k temporal points, illustrated by the dashed boundary shown
in the middle panel of Fig. 1a, shown for Nnn = 2, Nin = 5,
and k = 3, values we use in the results section below. We
seek an ML model that predicts xl at time step tm+1 based on
this input data. Thus, there are L independent ML models to
predict the dynamics at all spatiotemporal points. Our scheme
can work with a variety of ML algorithms but we use an NG-
RC because of its proven ability to make accurate predictions
with limited data and low computational resources.17
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IV. THE NG-RC

We operate the NG-RC in two modes shown in Fig. 1: train-
ing and forecasting. In both cases, we create a feature vector

Ol,total(tm) = c
⊕

Ol,lin
⊕

Ol,nonlin (2)

composed of linear and nonlinear parts, respectively, where c
is a constant and

⊕
is the concatenation operator. The linear

part is formed by the current and previous k−1 values of the
variable xl and its Nnn nearest neighbors of each side of this
location. Hence, the dimension of Ol,nonlin is dlin = kNin = 15
for our choice of parameters.

We take the nonlinear part to be the unique second-order
monomials of Ol,lin, which is appropriate for this problem be-
cause Eqs. 1 contains only quadratic nonlinear terms. For
the unique quadradic monomials, the dimension of Ol,nonlin
is dnonlin = dlin(dlin +1)/2 = 120 so that the total feature vec-
tor Ol,total has dtotal = 1+ dlin + dnonlin = 136 components,
which is also equal to the number of trainable parameters for
each NG-RC. Minimizing dtotal is one important metric for
reducing the computational resources during training. As an
aside, we mention that other nonlinear functions can be used
in the NG-RC, such as higher-order polynomials or radial ba-
sis functions, but are not needed here.

During training, data from the solution to Eqs. 1 with Nin
spatial points and M temporal points (ttrain = Mδ t training
time) is fed into each NG-RC (L total) in an open-loop manner
as illustrated in Fig. 1a. Here, the goal is to have the one-step-
ahead prediction xl(tm+1) of the NG-RC equal to the model
prediction xl(tm+1), where tm+1 = tm +δ t. That is, we seek a
solution to

xl(tm+1) = WlOl,total(tm) (3)

that minimizes ||xl − xl ||2 + α||Wl ||2 over all M temporal
points. Here, Wl is found using regularized regression with
regularization parameter α (see appendix A for α optimiza-
tion). For our parameters, Wl is a (1× dtotal) = (1× 136)
matrix. For future reference, the computational complexity
of training a single NG-RC scales as Md2

total and hence as
LMd2

total for all L NG-RCs.
After finding Wl , we switch to prediction mode, where the

training data is no longer input. The output of each NG-RC
is sent to the input in a closed-loop manner and used to cre-
ate Ol,total(t) for each NG-RC as shown in Fig. 1b. The par-
allel NG-RCs now form an autonomous spatiotemporal dy-
namical system. Here, the ‘warm up’ of the NG-RC requires
k previous time steps as the initial conditions, which is often
available if we immediately switching to the forecasting mode
from the training mode.

V. RESULTS

To test the accuracy and speed of our new algorithm, we
generate spatiotemporal data by integrating Eqs. 1 using a
fourth order Runge-Kutta method with fixed step size of 0.001
MTU, where we save data at steps of δ t = 0.01 MTU. We use
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FIG. 2. Spatiotemporal dynamics prediction with a non-parallel
scheme with a single NG-RC. (a) Actual and (b) predicted dynamics
for the extended Lorenz96 model. (c) Difference and (d) NRMSE be-
tween actual and predicted dynamics. The vertical dashed line indi-
cates the prediction horizon. Parameters: k = 3, Nin = Nout = L = 36
and α = 10−2.

initial conditions x1 = F +0.01, xl 6=1 = F and y j,l = zi, j,l = 0,
integrate for 10 MTU to dissipate transients and discard this
data. We integrate for an additional 11,000 MTU to generate
the data from which we select an interval ttrain (M = ttrain/δ t)
to use as training data set. After integration, we normalize
the data to have zero mean and unit standard deviation. After
training, we select k consecutive time steps to warm up the
NGRCs for the prediction mode and select the following test-
ing time interval to generate the ground-truth test data (data
never seen by the NG-RCs during training), an example of
which is shown in Fig. 2a.

A. Single NG-RC

As a baseline, we first predict the extended Lorenz96 sys-
tem using a non-parallel architecture formed by a single NG-
RC. The model receives all L variables as input and is trained
to perform one-step ahead prediction at all spatial locations;
i.e., Nin = Nout = L. Here, the dimension of Ol,nonlin is dlin =
kNin = 108 when k = 3 as used here. Thus, the feature vector
Ol,total has dtotal = 5,995 components. The large number of
features causes the model to focus on unrelated observations
outside of the spatial correlation length and the single NG-RC
fails to predict the spatiotemporal dynamics after a short pe-
riod. Figure 2b shows the NG-RC-predicted spatiotemporal
dynamics of the extended Lorenz96 model using a relatively
small training data set size ttrain = 10 MTU (M = 1,000). As
we show in the next sections, the performance of this approach
can be improved using a much larger large training data set,
which helps the model learn the appropriated features and to
filter out the uncorrelated ones.

To quantify the prediction quality, we determine the nor-
malized root-mean-square error over all spatial locations
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FIG. 3. Spatiotemporal dynamics prediction with parallel NG-RCs
using L independent Wl’s. (a) Actual and (b) predicted dynamics
for the extended Lorenz96 model. (c) Difference and (d) NRMSE
between actual and predicted dynamics. The vertical dashed line
indicates the prediction horizon. Parameters: k = 3, Nnn = 2 and
α = 10−2.

given by

NRMSE(t) =

√
1
L

L

∑
l=1

(xl(t)− xl(t))2. (4)

The right-hand side of Eq. 4 is already normalized because xl
has unit standard deviation.

As shown in Fig. 2d, the NRMSE for the single NG-RC
prediction increases from nearly zero, eventually reaching a
saturated value. We define a prediction horizon as the time
where NRMSE=0.3 (vertical dashed line), which is equal to
0.1 MTU for the single NG-RC prediction realization shown
in Fig. 2. When averaged over 100 predictions for different
initial conditions, the prediction horizon is equal to 0.01 ±
0.03 MTU, or approximately 0.05 ± 0.14 atmospheric days
for the extended Lorenz96 model.

B. L independent NG-RCs

In this section, we implement our scheme that uses smaller
NG-RCs operating in parallel. We train L = 36 NG-RCs, each
with dtotal = 136. In terms of computational complexity, train-
ing the L parallel NG-RCs is around 50 times less expensive
than training the single NG-RC used in section V A, as the
NG-RC computational complexity scales as O(Md2

total) as we
discuss later. Furthermore, we choose Nin = 5 so that each
parallel NG-RC focuses on data from nearby spatial locations
within the spatial correlation distance. Figure 3b shows the
NG-RC-predicted spatiotemporal dynamics of the extended
Lorenz96 model using ttrain = 10 MTU (M = 1,000), the
same training data set as in the previous example. The differ-
ence between ground-truth and prediction are initially small
(Fig. 3c), but eventually diverge because the chaotic nature
of the system will amplify small difference between the two.
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FIG. 4. Spatiotemporal dynamics prediction with parallel NG-RCs
using a single W that respects translational symmetry. (a) Actual
and (b) predicted dynamics for the extended Lorenz96 model. (c)
Difference and (d) NRMSE between actual and predicted dynamics.
The vertical dashed line indicates the prediction horizon. Parameters:
k = 3, Nnn = 2 and α = 10−2.

Even though long-term prediction is lost, the predicted behav-
ior has coherent structures that are visually similar to the ex-
tended Lorenz96 model. Here, the prediction horizon is equal
to 0.92 for the single prediction realization shown in Fig. 3.
When averaged over 100 predictions for different initial con-
ditions, the prediction horizon is equal to 0.66 ± 0.15 MTU,
or approximately 3.2± 0.7 atmospheric days for the extended
Lorenz96 model. We comment on the accuracy of our predic-
tion in the discussion section below.

C. Using translational symmetry

We further decrease the training data set size by taking into
account the translational invariance of the extended Lorenz96
model given in Eq. 1, which arises from the cyclic bound-
ary conditions and the spatially-independent model parame-
ters. Because of this symmetry, Wl should be independent of
l in the asymptotic limit ttrain→ ∞. To quantify the indepen-
dence for the finite ttrain used here, we measure the similarity
of the Wl’s by defining a correlation coefficient

C =
1

L(L−1)

L

∑
l

L

∑
l′ 6=l

WT
l ·WT

l′

||Wl ||2
, (5)

where T is the transpose operation, · is the dot product opera-
tion, and C = 1 (C = 0) indicates (un)correlated matrices. For
the case presented in Fig. 3, we find that it is equal to 0.96, in-
dicating that the NG-RC does a reasonable job of discovering
this symmetry even with short ttrain.

We force translational symmetry by training a single W
and use it for all spatial locations l. Operationally, we con-
catenate all Ol,total to create a data structure that has dimen-
sion LMdtotal and hence the training computational complex-
ity scales as LMd2

total , the same as in the previous scheme.
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This procedure relies on the fact that each spatial location has
identical behavior - in a statistical sense - and hence all the
data is produced by the same underlying dynamical flow. Ef-
fectively, it increases the training time to Lttrain for an obser-
vation time ttrain of the spatiotemporal dynamics. A similar
approach has been used recently when using a traditional RC
for forecasting spatiotemporal dynamics.31

Accounting for the translational symmetry somewhat im-
proves the prediction horizon for the same training data size,
i.e., the same value of M, as seen in Fig. 4, which displays a
prediction horizon of 1.04 for the same initial condition used
in Figs. 2 and 3. The mean prediction horizon for 100 differ-
ent initial conditions increases by∼29% to 0.85± 0.17 MTU.

D. Prediction accuracy comparison

As seen in Fig. 5, the single NG-RC approach shows a
mean prediction horizon near zero (poor prediction ability) for
ttrain up to ∼ 60 MTU where it starts to improve and reaches
the value of 0.82 ± 0.15 MTU for ttrain = 1,000 (the maxi-
mum ttrain we explore in this work). For the L independent
NG-RCs, the prediction horizon is near zero, begins to im-
prove for ttrain & 2, and saturates above ttrain & 40, obtaining a
similar value the single NG-RC approach with a training data
set 25 times smaller. This makes the L independent paral-
lel NG-RCs to have a computational complexity ≈ 1.4× 103

smaller than the single NG-RC. On the other hand, we ob-
tain reasonable performance when respecting the translational
symmetry for the smallest training time shown in the plot, and
we obtain nearly the same prediction performance as the other
approaches for ttrain & 1. Thus, we see that we can reduce the
observation time and computational cost by ∼ 1/L, which is
expected because the effective training time is L times longer.
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FIG. 5. Scaling of the mean prediction horizon with training time
for the non-parallel model with a single NG-RC (green stars) and for
the parallel NG-RCs using L independent Wl’s (blue square) and us-
ing a single Wl that respects translational symmetry (orange circles).
Symbols represent the mean prediction horizon for 10 different train-
ing sets. For each training set we make predictions for 10 different
initial conditions, total 100 predictions per point in the plot. Error
bars represent the standard deviation of the mean over the 100 pre-
dictions. Parameters: k = 3, Nnn = 2 (for the parallel approaches)
and α is optimized for each ttrain (see appendix A).
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FIG. 6. Mean prediction horizon for Lorenz96 system with L = J =
I = 8 as function of training steps M for the non-parallel model with
a single NG-RC (green stars) and for the parallel NG-RCs using L
independent Wl’s (blue square) and using a single Wl that respects
translational symmetry (orange circles). (a) Circle, square and star
symbols represent the mean prediction horizon for 10 different train-
ing sets. For each training set we make predictions for 10 different
initial conditions, totaling 100 predictions per point in the plot. The
error bars represent the standard deviation of the mean over the 100
predictions. (b) Circle, square and star symbols represent the mean
prediction horizon for the training set (out of that 10 used in (a)) that
returns the best prediction horizon. In both, the red down triangles
represent Chattopadhyay et al.’s results using a single RC. Parame-
ters: k = 3, Nnn = 2 and α is optimized for each M.

E. Lower dimensional cases for the Lorenz 96 model

Here, we apply our model to lower dimensional cases of the
extended Lorenz96 model and compare our results to previous
research that use these simplified models.

1. Parallel NG-RC model for L = J = I = 8

First, we apply our parallel NG-RC approach (Nin =
5,Nout = 1) to the extended Lorenz96 system with L = J =
I = 8 and compare our results to our baseline method (single
NG-RC) and to previous works. Figure 6a shows the mean
prediction horizon as function of the number of training steps
M for these cases. Here, we use training steps M rather than
training time ttrain as the horizontal axis for a direct compari-
son to other works. For our previous results presented above,
the conversion is ttrain = Mδ t.
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Learning Spatiotemporal Chaos Using Next-Generation Reservoir Computing 6

When using a single NG-RC (green stars), we obtain a
mean prediction horizon of 1.03± 0.39 MTU for M =& 104

(ttrain & 100 MTU) where it starts to saturate. Here, the fea-
ture vector has dtotal = 325 components. On the other hand,
when using L independent NG-RCs (blue squares), our model
obtains a mean prediction horizon of 1.05± 0.38 MTU with
M = 4,000 corresponding to a training time of ttrain = 40
MTU. Here, each one of the L parallel NG-RCs is trained in-
dividually with M training points from the respective region
using dtotal = 136 features, which results in a computational
cost∼ 2 times smaller than the single NG-RC. Unsurprisingly,
the single NG-RC performs very similar to the L parallel NG-
RCs, as the number of spatial variables is low (L = 8) and the
single NG-RC input dimension Nin = L contains fewer unre-
lated variables than the higher dimensional case shown in Fig.
5. Finally, when using a single W that respects the translation
symmetry (orange circles), we obtain a similar result (with no
statistical difference) for M = 400 (ttrain = 4 MTU), reducing
the training time by a factor of ∼10 (∼ L) and a similar re-
duction in the computational cost. This reduction is expected
because data from all L spatial locations are concatenated to
form a single training data set in this method with an effective
size is L times longer than ttrain = 4 MTU. Figure 7 shows
typical predictions for the three cases discussed above.

Chattopadhyay et al.6 also predict the dynamics of this sim-
plified extended Lorenz96 system using Nin = Nout = L = 8
using a traditional RC with dtotal = 5,000 nodes (equal to
the size of their feature vector) with M = 1× 104− 2× 106

training steps. Their results are shown in Fig. 6a (red trian-
gles). Their approach shows an improvement in performance
when increasing M to 5×105, where the mean prediction hori-
zon is similar to our NG-RC approaches. We highlight that
our parallel NG-RCs that respect translation symmetry (or-
ange circles) presents similar results with a computational cost
∼ 2.1× 105 smaller than their RC trained with M = 5× 105

data points (see Appendix B for more details in computational
complexity comparisons).

Intriguingly, Chattopadhyay et al.’s results show a step-like
improvement when increasing the training steps to M ≥ 106.
They do not know the reason for this step and leave it for fu-
ture investigations. It is important to notice that they use a
single training data set in their work, whereas we average our
results over multiple training data sets. One possible hypothe-
sis for their observation is that the step improvement is related
to the specific details of their training set.

To explore this possibility, we show the mean prediction
horizon of our approaches using the best-performing single
training data set in Fig. 6b. We see that our best-performing
training data set shows similar mean prediction horizon us-
ing less training data than the RC trained with M ≥ 106 data
points. Our results could be coincidental but points out one
issue that may be responsible for explaining their observation.
The one take-away message is that it is important to average
over training data sets to remove possible spurious effects on
the prediction error due to the specific details of the training
data set, which becomes more important for the short set sizes
used here.

As another comparison of our work to past reports, Pyle
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FIG. 7. Typical prediction for the extended Lorenz96 system with
L = J = I = 8 using (a) a non-parallel scheme with a single NG-RC
with ttrain = 100 MTU and α = 10−1, and using our parallel NG-
RC approach with Nin = 5 and Nout = 1 for (b) L independent Wl’s
with ttrain = 40 MTU and α = 10−3 and (c) a single W that respects
translational symmetry with ttrain = 4 MTU and α = 4× 10−2. For
the three panels: (i) Actual and (ii) predicted dynamics, (iii) differ-
ence between actual and predicted dynamics, and (iv) NRMSE. The
vertical dashed line indicates the prediction horizon and k = 3.

et al.7 also predict the same low-dimensional Lorenz96 sys-
tem using a non-parallel ML scheme, except that they use an
approach similar to the NG-RC with k = 1 and all monomi-
als up to quartic order. They use a single training data set of
M = 5×105 training points, the same as Chattopadhyay et al.,
and obtain a mean prediction horizon of 1.60± 0.53 MTU.
In terms of computational cost, our parallel approaches that
does not (does) exploit the symmetry of the model is 2.1×102
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FIG. 8. Mean prediction horizon for Lorenz96 system with (L = 40,
J = I = 0) as function of training steps M for the non-parallel model
with a single NG-RC (green stars) and for the parallel NG-RCs using
L independent Wl’s (blue square) and using a single Wl that respects
translational symmetry (orange circles). For these plots, the sym-
bols represent the mean prediction horizon for 10 different training
sets. For each training set we make predictions for 10 different initial
conditions, totalizing 100 predictions per point in the plot. Error bars
represent the standard deviation of the mean over the 100 predictions.
The purple right triangle and brown up triangle represent Platt et al.’s
results for the same task using parallel RCs and single RC, respec-
tively. The red down triangle represent the Vlachas et al.’s results for
the same task using parallel RCs. Parameters: k = 3, Nnn = 2 and α

is optimized for each ttrain.

(2.1×103) less expensive than their approach.

2. Parallel NG-RC model for the Lorenz96 model without
fine-scale variables with L = 40, J = I = 0

Here, we use our approach to predict the dynamics of a
simpler Lorenz96 model that does not include the fine spa-
tiotemporal variables y j,l and zi, j,l (J = I = 0 - see Eq. 1) with
L = 40.

First, we use our single NG-RC baseline model, a single
NG-RC with dtotal = 7,381 features. Similar to the predic-
tions for the other Lorenz96 models shown in the previous
sections, the single NG-RC only starts to improve its per-
formance for a higher M in comparison to the parallel ap-
proaches, as shown in Fig. 8, which displays the mean pre-
diction horizon as function of the training steps M. The
maximum mean prediction horizon for the single NG-RC is
7.3± 1.3 Λ for M = 105 (ttrain = 1,000 MTU), where Λ =
1/λ = 1/1.68 MTU is the Lyapunov time with L = 40 and
F = 8 (parameters used here).14

When using L independently trained NG-RCs (blue
squares), the performance begins to improve for M & 200
(ttrain & 2) and saturates for M = 6,000 (ttrain = 60), where
the mean prediction horizon is 8.0±1.7 Λ. Each parallel NG-
RC has dtotal = 136 features, which makes the computational
complex of this approach 1.2×103 times smaller than the sin-
gle NG-RC method.

In comparison, using a single W that respects the trans-
lation symmetry (orange circles), results in a mean predic-
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FIG. 9. Typical prediction for the extended Lorenz96 system with
L = 40, and J = I = 0 using (a) a non-parallel scheme with a single
NG-RC with ttrain = 1000 MTU, and using our parallel NG-RC ap-
proach with Nin = 5 and Nout = 1 for (b) L independent Wl’s with
ttrain = 60 MTU and (c) a single W that respects translational sym-
metry with ttrain = 1 MTU. For the three panels: (i) Actual and (ii)
predicted dynamics, (iii) difference between actual and predicted dy-
namics, and (iv) NRMSE. The vertical dashed line indicates the pre-
diction horizon. Parameters: k = 3 and α = 1×10−5.

tion horizon of 7.7± 1.7 Λ with M = 100 (a training time
of ttrain = 1 MTU). That is, we observe a similar prediction
horizon using a factor of 60 smaller training data set in com-
parison to the L independent NG-RCs. Figure 9 shows typical
predictions the three cases.

Vlachas et al.14 use a parallel RC scheme21 to predict the
same Lorenz96 model. They use 20 parallel RCs, each with
dtotal = 3,000 nodes, Nin = 10 > Nout = 2, and M = 100,000.
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Their method obtains a mean prediction horizon of approx-
imately 3.3 Λ, represented by the red down triangle in Fig.
8. When comparing to our approaches, we find that our L in-
dependent NG-RCs model (blue squares) obtains a prediction
horizon 2.4 times longer using a training data set 17 times
smaller and with a computational complexity ∼ 4×103 times
shorter than their result. When considering the translational
symmetry (orange circles), our approach obtains the same 2.4
improvement factor on the prediction horizon, but with a train-
ing data set 103 times smaller and with a computational com-
plexity ∼ 2.4×105 times shorter than their approach.

Recently, Platt et al.32 optimized the parallel RC architec-
ture to obtain a mean prediction horizon twice as long as
Vlachas et al. using Nin = 6 > Nout = 2 with smaller RCs
(each with dtotal = 720 nodes) and training data set (M =
40,000). Their result is represented by the purple right tri-
angle on Fig. 8. Our parallel model with independent NG-
RCs obtains slightly better performance in the mean predic-
tion horizon with a computational complexity ∼ 102 shorter
using∼ 7× less training data than Platt et al.. Considering the
translational symmetry, our model presents a computational
complexity 5.6×103 smaller using 4×102 less training data.
See Appendix B for more details on the computational com-
plexity comparison. Lastly, Platt et al. also use a single RC
with dtotal = 6,000 nodes to predict the same system. While
this model presents a worse performance in comparison to the
three NG-RC approaches presented here, it surprisingly out-
perform the parallel RC model by Vlachas et al., indicating an
important improvement due to the optimizations done by Platt
et al..

VI. DISCUSSIONS AND CONCLUSIONS

We emphasize that parallel machine learning architectures
provide high-efficiency prediction of high-dimensional spa-
tiotemporal dynamical system. Partitioning the learning sys-
tem is small subsystems, each of which can be predicted us-
ing a smaller ML model unit, provides better predictions and
is less computational expensive than using a single model to
predict the entire system.

In our proposed method, we maximize the parallelism and
let each parallel ML model unit predict a single variable of the
system. Thus, there are as many parallel units as the number
of predicted variables in the system (here the slow variables
of the Lorenz96 model). Furthermore, this parallel approach
lends itself to parallelization methods using graphical proces-
sor units or multi-processor computer clusters.

We show that our parallel scheme composed by indepen-
dently trained NG-RCs outperforms a non-parallel model
composed by a single larger NG-RC. For the higher dimen-
sional Lorenz96 system addressed in this work (L = 36, I =
J = 10), the parallelization provides a ∼ 1.4× 103 improve-
ment factor in the computational cost while obtaining simi-
lar prediction accuracy using 25 times smaller training data
set than the non-parallel architecture. We further decrease
both training data and computational cost by another factor of
∼ L by addressing the system translational symmetry, which

is sometimes present in spatiotemporal systems with cyclic
boundary conditions.

We also predict the dynamics of lower-dimensional
Lorenz96-like models to compare our results to previous re-
search. We demonstrate that our method is more accurate, or
can be training with less data and computational cost, or both.
For the extended Lorenz96 with L = I = J = 8, we show that
our parallel approach obtains similar results to a traditional
RC implemented by Chattopadhyay et al.6, but with a compu-
tational cost up to ∼ 2.1× 104 smaller using up to 1.2× 102

less training data. When considering the translational sym-
metry, these numbers improve by another factor of 10. Chat-
topadhyay et al. also implement a deep learning network for
this problem, but the deep learning method demonstrates no
accuracy improvement and requires more computation time.

We also use our approach to predict the Lorenz96 system
for L = 40, I = J = 0, where we obtain better results with a
training data set up to 103 times smaller and computational
costs up to 2.4× 105 smaller than parallel implementations
of traditional RCs implemented by Vlachas et al.14. We also
obtain better results than parallel implementations of tradi-
tional RCs implemented Platt et al.32 using up to 4×102 times
less training data and a computational costs up to 5.6× 103

smaller.

The low computational cost, less training data requirement
and fewer optimizable parameters of the NG-RC in compar-
ison to other ML approaches allow us to implement our par-
allel architecture in a standard desktop computer and obtain
sub-seconds training and prediction times. To give an absolute
scale for the computational cost for our approach, we produce
the results for this paper using Python 3.7.6, NumPy 1.19.15
and scikit-learn 0.24.2 on an x86-64 CPU running Windows
10. For the results presented in Figs. 3 and 4, the computa-
tion time for training all L = 36 NG-RCs with M = 1,000 data
points is 55±1 ms while the runtime for predicting one time
step is 394± 3 µs, or 10.9± 0.1 µs per spatial location per
step.

Future directions of our research include hybrid approaches
using NG-RCs that combine model-generated and experi-
mentally observed data such as those explored using a tradi-
tional RC.9–12 Also, our method should generalize to two- and
three-dimensional fluid dynamics problems where an even
greater reduction in the required data set size is anticipated.
Combined with our approach of one-step-ahead prediction, a
coarser spatiotemporal grid can be used, offering the possibil-
ity of greatly speeding up spatiotemporal simulations.
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Appendix A: Ridge regression Parameter Optimization

We train our model using a supervised learning algorithm
where the input data x and the desired output y are known in
advance for the entire training period. Here, y is evaluated at
time tm+1, whereas x is evaluated at time tm because we are
making a next-step-ahead prediction. We use Ridge regres-
sion to find the matrix of weights W that minimizes

||y−y||2 +α||W||2, (A1)

where y = WOtotal is the model output, Ototal is the feature
vector obtained from the input data x and α is the Ridge pa-
rameter. Here, || · || represents the L2-norm. When α is zero,
Ridge regression reduces to regular least-square regression.
The Ridge parameter adds a penalty term to prevent overfit-
ting.

We use a grid-search procedure to find the optimal α that
maximizes the mean prediction horizon for each case shown
in previous sections. Figure 10 shows the optimization results
for all cases shown in Figs. 5, 6 and 8. For each α , we calcu-
late the mean prediction horizon for 10 different training sets.
For each training set we perform predictions for 10 different
initial conditions, totaling 100 predictions per α . We repeat
this process for different training times ttrain. It is seen that
for L = 36,J = I = 10 (Figs.10a-10c) and for L = J = I = 8
(Figs.10d-10f), the three NG-RC algorithms are not sensitive
to the value of α for higher training times. On the other hand,
for L= 40,J = I = 0 (Figs.10g-10i), the three algorithms show
a trend to have a worse performance for higher values of α .

Appendix B: Computational Complexity

Here, we provide an estimation of the computational com-
plexity our parallel NG-RC approach in comparison to the
other RC-based approaches mentioned above. The main con-
tribution to the computational complexity for both the NG-RC
and the regular RC is performing the Ridge regression, which
scales as O(Md2

total) for M training points and dtotal fea-
tures. The comparison for the extended Lorenz96 system with
(L = 36,J = I = 10), (L = J = I = 8) and (L = 40,J = I = 0)
are shown in Tables I, II and III, respectively. Note that, for
the case where we train a single W respecting the translational
symmetry (first row of each table), the number of training
points is multiplied by the number of spatial locations L to
reflect the training data concatenation as discussed in previ-
ous sections.

In our analysis for the RC complexity, we do not account
for the cost of multiplying the nodes states with the adja-
cency matrix that represent the network because these RC ap-
proaches use neural networks with sparse connectivity (we as-
sume this fact when it is not stated). Also, we do not take into

account special function evaluation costs, such as the hyper-
bolic tangent present in the traditional RC. For the NG-RC, we
do not take into account the computational cost of the feature
vector creation that happens before training.
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FIG. 10. Ridge parameter optimization for the results shown in Figs. 5, 6 and 8. Mean prediction horizon as function of the Ridge parameter
α for different training times (see legend color code) for the Lorenz96 system with L = 36,J = I = 10 ((a)-(c)), L = J = I = 8 ((d)-(f)) and
L = 40,J = I = 0 ((g)-(i)). For each case, optimizations for a single NG-RC, L independent NG-RCs and L NG-RCs using translational
symmetry are presented. The colored area around the curves represent the standard deviation of the mean.

ML model M dtotal Nin Nout Parallel units trained Speed up
Our approach - Respecting symmetry NG-RC 100 × 36 136 5 1 - -

Our approach - L independent NG-RCs NG-RC 4,000 136 5 1 36 40
Our approach - Single NG-RC NG-RC 100,000 5995 36 36 - 5.4×104

TABLE I. Training complexity comparison of different ML approaches for prediction of the extend Lorenz96 system with L = 36,J = I = 10.

ML model M dtotal Nin Nout Parallel units trained Speed up
Our approach - Respecting symmetry NG-RC 400 × 8 136 5 1 - -

Our approach - L independent NG-RCs NG-RC 4,000 136 5 1 8 10
Our approach - Single NG-RC NG-RC 10,000 325 8 8 - 18

Chattopadhyay et al.6 RC 500,000 5,000 8 8 - 2.1×105

Pyle et al.7 NG-RC 500,000 495 8 8 - 2.1×103

TABLE II. Training complexity comparison of different ML approaches for prediction of the extend Lorenz96 system with L = J = I = 8.

ML model M dtotal Nin Nout Parallel units trained Speed up
Our approach - Respecting symmetry NG-RC 100 × 40 136 5 1 - -

Our approach - L independent NG-RCs NG-RC 6,000 136 5 1 40 60
Our approach - Single NG-RC NG-RC 100,000 7381 40 40 - 7×104

Vlachas et al.14 RC 100,000 3,000 10 2 20 2.4×105

Platt et al.32 RC 40,000 720 6 2 20 5.6×103

TABLE III. Training complexity comparison of different ML approaches for prediction of the extend Lorenz96 system with L = 40 and
J = I = 0.
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