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PROBLEM 1: Given two lines tangent to circle (O) at 
B and C from a common point A, show that the 
circle passes through the incenter of triangle ABC.1 
 
 
 
 
 
 
 
 
 
 

SOLUTION 1 (JMU):  Since AB and AC are tangents, 
each of the base angles of the isosceles triangle ABC 
measures half of BOC, so the sum of half these 
angles is also half of BOC. Therefore wherever the 
intersection of the bisectors, Q, may be, BQC is 180° 
– BOC/2.   
 
Pick any point P on the arc exterior to the triangle; 
BPC = BOC/2.  Since BPC and BQC are 
supplementary, BQCP must be a cyclic quadrilateral.  
Therefore Q lies on (O).     

 
 
(One can alternatively prove that the midpoint of the arc interior to ABC is the 
incenter.) 
 
 
PROBLEM 2:  What is the relationship between the radii of 
three circles of different size all tangent to the same line 
and each externally tangent to the other two?2 
 
 
 

 
1 Fukagawa & Pedoe 1989, 1.1.4; lost tablet from Ibaragi, 1896; no solution given. 
2 Fukagawa & Pedoe 1989, 1.1.1; well-known; tablet from Gunma, 1824. 
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SOLUTION 2 (F&P):  The hypotenuse of the right triangle is r1 + r2.  Its short leg is r1 – 

r2, so the other leg is the square root of (r1 + r2)2 – (r1 – 

r2)2.  I.e., AB is 212 rr  (twice the geometric mean of the 

radii).   

Likewise, AC =  312 rr  and BC =  322 rr .  Adding and 

dividing through by 3212 rrr , we obtain 

123

111

rrr
+= . 

 
 
PROBLEM 3:  Suppose circles (𝐷) and (𝐸) with diameters 𝑑 and 𝑒 touch one another 
externally and line 𝑙 at 𝐴 and 𝐵, respectively.  Let (𝑃) with diameter p be the circle 
that touches (𝐷), (𝐸), and 𝑙.  Show that the circle (𝑂) that passes through 𝐴 and 𝐵 
and touches (𝑃) internally is the same as for all positive values of 𝑑 and 𝑒.3 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
3 Fukagawa & Pedoe 1989, 1.1.2; lost tablet from Miyagi, n.d.; the hint 𝑂𝐴 = 5𝐴𝐵/8 is given, but no 
solution. 
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SOLUTION 3 (JMU): A quick proof is possible using a lemma about the figure below 
(Casey 1888, III: 6, p. 31):  Let circle (𝑃) with diameter 𝑝,  inscribed in a segment of 
circle (𝑂) with chord 𝐴𝐵, touch 𝐴𝐵 at 𝐶 and (𝑂) at 𝑇. Let 𝑀 be the midpoint of 𝐴𝐵 and 
𝑣 = 𝑀𝐸 be the sagitta of the opposite segment.  Then 𝑝𝑣 = 𝐴𝐶 ⋅ 𝐶𝐵. 
 

Proof:  Because (𝑃) touches 𝐴𝐵 at 𝐶, if 𝐶𝐷 ⊥
𝐴𝐵, then 𝐶𝐷 is a diameter of (𝑃).  (𝑂) and (𝑃) 
are homothetic with respect to 𝑇, so, if 𝑇𝐶 and 
𝑇𝐷 produced cut (𝑂) in 𝐸 and 𝐹, respectively, 
𝐸𝐹 is a diameter of (𝑂) and parallel to 𝐶𝐷; 
therefore, it passes through 𝑀.  Let 𝐶𝐷 meet 
the parallel to 𝐴𝐵 through 𝐸 in 𝐺 .  Because 
∠𝐸𝑇𝐹  and ∠𝐷𝐺𝐸  are both right angles, the 
circle (blue) with diameter 𝐷𝐸 passes through 
𝑇 and 𝐺.  In that circle, by the Crossed Chords 
theorem, 𝑇𝐶 ⋅ 𝐶𝐸 = 𝐷𝐶 ⋅ 𝐶𝐺.  In (𝑂), 𝑇𝐶 ⋅ 𝐶𝐸 =
𝐴𝐶 ⋅ 𝐶𝐵.  Thus, since 𝐶𝐷 = 𝑝 and 𝐶𝐺 = 𝑀𝐸 =
𝑣, we have 𝐴𝐶 ⋅ 𝐶𝐵 = 𝑝𝑣.  
 

In the problem, the position of 𝐶 on 𝑙 and length of 𝑝 depend on 𝑑 and 𝑒, but as 

explained in Solution 2, we always have 𝐴𝐶 = √𝑑𝑝 and 𝐶𝐵 = √𝑒𝑝. Hence 𝐴𝐶 ⋅ 𝐶𝐵 =

𝑝√𝑑𝑒.  Let 𝑀 be the midpoint of 𝐴𝐵 and say that 𝑀𝑂 cuts 𝐴𝐵⏜  remote from 𝑃 in 𝑁.  

Applying the lemma, 𝐴𝐶 ⋅ 𝐶𝐵 = 𝑝 ⋅ 𝑀𝑁. Immediately, 𝑀𝑁 = √𝑑𝑒 = 𝐴𝐵.  Since 𝐴 and 
𝐵 are fixed, so are 𝑀 and 𝑁. As only one circle passes through three points (here 
𝐴, 𝐵, 𝑁), the size and position of (𝑂) is independent of 𝑑 and 𝑒.  
 
The fact that 𝑂𝐴 = 𝑂𝐵 = 5𝐴𝐵/8 (see note 3), which is to say that △𝑂𝑀𝐴 and 
△𝑂𝑀𝐵 are 3:4:5 right triangles, follows from the case of 𝑑 = 𝑒, in which 𝐴𝐶 = 𝐶𝐵. 
The wasanka almost certainly solved the problem by proving this fact first, as 
Fukagawa and Pedoe imply and is illustrated here.  
 
PROBLEM 4: 
 
Given two 
unequal 
circles with 
concurrent  
diameters 
AB and CD 
as shown, 
tangents 
from A 
(resp. D) to 
(O2) (resp. 
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(O1)), and circles tangent to B (resp. C) and the two tangents from A (resp. D), prove 
that the radii of these two circles are equal.4 
 
SOLUTION 4 
(F&P):   
 
From AT1O1 ~ 
AT2O2, it 
follows that 
 
 

2

2
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rAB
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=
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
 

 
and so  
 
r1(AB + BC + CO2) = r2(AB – r1).  Hence  
 
2r1r1 + r1BC + r1r2 = 2r1r2 – r2r1 
2r1r1 + r1BC + 2r1r2 = 2r1r2 
r1(2r1 + BC + 2r2) = 2r1r2 

21

21
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22

2

rBCr

rr
r

++
= . 

 
This is algebraically symmetrical:  we would have arrived at the same right-side 
expression for r2 if we had started at the other end of the figure.  Thus r1 = r2.    
 
 

PROBLEM 5:  (O1), (O2), and (O3) 
all have radius r, centers in line 
m, and form a chain as shown.  
Line l passes through O2 and is 
tangent with O1 and O3 on 
opposite sides of m.  Circle (O)r 
is internally tangent to (O1) and 
(O3), and is cut by l in P and Q.  
Prove that PQ =  r + 3r. 5

 
4 Fukagawa & Pedoe 1989, 1.3; lost tablet from Aichi, 1842; solution given. 
5 Fukagawa & Pedoe 1989, 1.3.3; tablet from Ibaragi, 1871; no solution given. 
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SOLUTION 5 (JMU):  The trick is 
to superimpose the simplest 
case on the general case.  Start 
with O coincident with O2:  P′Q′ 
= 6r = r′ + 3r.   
 
Now move O off O2 along the 
perpendicular to m.  The net 
change in r′ is r′ – 3r.  
Measured along l, this is PP′ – 
QQ′.  Since P′Q′ is a diameter of 
(O2), P′Q′ = 6r.  Therefore PQ = 
(r′ – 3r) + 6r = r′ + 3r.   
 
Notice that, measured along 
the perpendicular to m, the net 
change in r′ is b – a where a 
and b (red segments) are half 
the distance between the 
circumferences of (O2) and (O).  
The dashed circles help one 
see that PP′ = b and QQ′ = a.   
 
A trigonometric solution and a generalization are posted elsewhere on the web.  
 
 
 
 
 

 
 
 
 
PROBLEM 6:  Given right triangle ACB and its 
circumcircle (O1)r1, construct circle (O2)r2 
tangent externally to legs a and b and 
internally to (O1).  Prove that r2 = a + b – c.6 
 
 
 
 
 
 

 

 
6 Fukagawa & Pedoe 1989, 2.2.7; lost tablet from Hyōgo, n.d.; no solution given.   
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SOLUTION 6:  Let C = (0, 0). Then O2 = (r2, r2) and 
O1 = (b/2, a/2).  Since O1O2 extended cuts both 
(O2) and (O1) where they touch, O1O2 = r1 – r2 = 
c/2 – r2.  But as the hypotenuse of the small right 
triangle, (O1O2)2 = (b/2 – r2)2 + (r2 – a/2)2.   
 
Therefore,  
 
c2 – 4cr2 + 4r22 = a2 + b2 – 4ar2 – 4br2 + 8r22.   
 
Since we can subtract c2 = a2 + b2, this equation reduces quickly to r2 = a + b – c.7  
 
COROLLARY:  In any triangle with semiperimeter s = (a + b + c)/2,  the distance from C 
to the point where the incircle touches a or b is s – c.  So in a right triangle such as 
ACB with incircle (O3)r3, r3 = s – c = (a + b – c)/2.  Therefore  r2 = 2r3.8   
 
 
PROBLEM 7:  Right triangle ACB is partitioned into two triangles by the altitude CH as 
shown.  Prove that this altitude is the sum of the radii of the three incircles.9 
 

 
 
SOLUTION 7 (JMU):  All 
three triangles are right.  
We use the corollary just 
stated to calculate 2r1 = a 
+ b – c, 2r2 = BH + CH – a, 
and 2r3 = AH + CH – b.  
Adding these equations, 
we get 2r1 + 2r2 + 2r3 = 
AH + BH + 2CH – c = 2CH.   
 
So r1 + r2 + r3 = CH.  
 
 

 
 

 
7 See also Okumura & Watanabe 2001 for a theorem that handles this problem as well as Problems 
18 and 19 below. 
8 Protasov (Exercise 5) points out that the same relation holds for the radius of the excircle on side 
𝐴𝐵, which is 𝑠, and the radius of the circle tangent to the legs extended and to the excircle externally.  
9 Fukagawa & Pedoe 1989, 2.3.2; tablet from Iwate, n.d.; no solution given. 
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PROBLEM 8:  Given two circles of equal radius inscribed as shown below, prove 

)( assAP −= .10 

 
 
SOLUTION 8 (JMU):  In the figure above, r is the inradius of ABC, s is its semiperimeter; 
ABP and ACP have semiperimeters s1 and s2, respectively, but the same inradius k.  
Using x for AP, observe that s1 + s2 = s + x.  Consequently, 𝑟𝑠 = 𝑘𝑠1 + 𝑘𝑠2 = 𝑘(𝑠 + 𝑥) 
and 𝑘 = 𝑟𝑠/(𝑠 + 𝑥).  Now, by similar triangles,  
 

xs
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r
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bs

−

−
==

−

−

21

. 

 
Thus 𝑘(𝑠 − 𝑏) = 𝑟(𝑠1 − 𝑥)  and 𝑘(𝑠 − 𝑐) = 𝑟(𝑠2 − 𝑥) .  Adding, 𝑘𝑎 = 𝑟(𝑠 − 𝑥) .  
Substituting the foregoing 𝑟𝑠/(𝑠 + 𝑥) for 𝑘, 𝑎𝑟𝑠 (𝑠 + 𝑥)⁄ = 𝑟(𝑠 − 𝑥) or 𝑎𝑠 = 𝑠2 − 𝑥2.   

Therefore 𝑥 = √𝑠(𝑠 − 𝑎). 

 
 
 

COROLLARY:  If, in ABC, vertex A is a right angle, then 
cbaab

ab
k

+++
=

2
.11   

 
10 Fukagawa & Pedoe 1989, 2.2.5; surviving tablet from Chiba, 1897; no solution given. 
11 This is Fukagawa & Pedoe 1989, 2.2.3; lost tablet from Miyagi, 1847; equation given, no solution 
provided. 
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PROOF:  We have Δ = k(b + BP + AP)/2 + k(c + CP + AP)/2 = k(a + b + c + 2AP)/2, so 

APcba

ab
k

2+++
= .  In a right triangle, s – a = r, so AP2 = s(s – a) = rs = Δ = ab/2.  That 

is, 4AP2 = 2ab or abAP 22 = .  

 
 
 
 
 
 
 
PROBLEM 9:  ABCD is a square with side a and diagonal AC.  The incircles of ACN and 

BCN are congruent.  What is their radius r 
in terms of a?12 
 
SOLUTION 9 (JMU):  Because BCN is a right 
triangle, r = (BC + BN – CN)/2 (see 
problem 6).  The congruence of the two 
incircles implies 𝐶𝑁2 = 𝑠(𝑠 − 𝐴𝐵), where 
s is the semiperimeter of ABC (proven in 
problem 8).     
 

We know 𝐴𝐶 = 𝑎√2, so 𝑠 =
𝑎√2

2
+ 𝑎.  

Hence 𝐶𝑁2 = (
𝑎√2

2
+ 𝑎)

𝑎√2

2
=

𝑎2(√2+1)

2
   

and 𝐶𝑁 = 𝑎√√2+1

2
.   

 
 
 

Now, since 𝐵𝑁2 =
𝑎2(√2+1)

2
− 𝑎2 =

𝑎2(√2−1)

2
 , we also have 𝐵𝑁 = 𝑎√√2−1

2
.  

 

So 𝑟 =
1

2
(𝑎 + 𝑎√√2−1

2
− 𝑎√√2+1

2
) =

𝑎

2
−

𝑎

2
√√2 − 1.  

 
 
 
 
 
 

 
12 Fukagawa & Pedoe 1989, 3.1.7; surviving tablet from Hyōgo, 1893; the solution is given in the form 

𝑟 =
1

2
(1 − √√2 − 1) 𝑎. 
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PROBLEM 10:  A square with one 
diagonal is cut by a line from a third 
vertex to the midpoint of an opposite 
side.  A circle is inscribed in the 
resulting triangle opposite the 
midpoint.  What is its radius?13 
 
SOLUTION 10 (a posted solution):  
Imagine completing the figure as 
shown below. 
 
 
 
 
 
By congruent 
triangles, it is easy 

to see that the top of the square bisects the sides of the large right 
triangle.  Hence the two crossing lines within the square are 
medians of the large right triangle.  The apex of the small triangle 
containing the incircle is its centroid, and divides the two lines within the square in 
the ratio 1 : 2.  For the same reason, if the side of the square is a, the altitude of the 

small triangle is a
3
2

 (imagine a line parallel to the top and bottom of the square 

through the apex of the triangle).     

Now the diagonal of the square is 2a  and line crossing it is 
2

5a
.  The sides of the 

small triangle are 3

2
 of these lengths, respectively.  But in any triangle with altitude 

h on base a, perimeter p, and inradius r, 2Δ = pr = ha.  Consequently, 
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13 Fukagawa & Pedoe 1989, 3.1.3; surviving tablet from Miyagi, 1877; solution given in the form  
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PROBLEM 11:  A right triangle has 
three circles tangent to its legs and 
internally tangent to its 
circumcircle:  (O1) is tangent to 
both legs; (O2) and (O3) are tangent 
to legs AC and BC at their midpoints 
M and N, respectively.  Show that 
r12 = 32r2r3.14 
 
SOLUTION 11 (JMU):   The diameters 
of (O2) and (O3) are the sagittae of 
chords AC and BC:  vb = 2r2 and va = 
2r3.   
 
Lemma:  In any right triangle, the 

inradius r = bavv2 .  Proof: 

 
va = R – b/2  vb = R – a/2  
2va = c – b  2vb = c – a  
 4vavb = ab – c(a + b – c) 
 4vavb = ab – 2cr 
 2vavb = ab/2 – cr 
 2vavb = rs – cr = r(s – c) = r2.  
 
But r1 = 2r (problem 6), so r2 = r12/4 = 8r2r3.  Thus r12 = 32r2r3.  
 
PROBLEM 12:  In ΔABC, AB = BC. If one chooses D on AB and J on CD such that 
AJ ⊥ CD and the incircles of ΔACJ, ΔADJ, and ΔBCD all have radius r, then r = 
AJ/4.15 
 

SOLUTION 12 (JMU):  
 
Given AD, it is easy to construct ΔCAD, 
(𝐾)𝑟, (𝐿)𝑟, and a third circle (𝑂)𝑟 that 
touches CD and AD extended.  The 
second tangent to (𝑂)  through C 
meets AD in B.  As one moves 𝐽 along 
the semicircle with diameter 𝐴𝐷, OB 
cuts 𝐴𝐶 at different points, passing 
through the midpoint 𝑀 of 𝐴𝐶 for just 
one choice of 𝐽.  With that in mind, 

 
14 Fukagawa & Pedoe 1989, 2.4.6; surviving tablet from Iwate, 1850; no solution given. 
15 Fukagawa & Rothman 2008:194–96, 212–16; slightly edited version available at http://www.cut-
the-knot.org/pythagoras/Ch6Pr3Sangaku.shtml. 
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that, I showed that if 𝑟 = 𝐴𝐽/4, then AJC and AJD are 3:4:5 right triangles and 𝑟 =
2𝐷𝑁  (https://www.cut-the-knot.org/pythagoras/Ch6Pr3Unger.shtml, 2009).  Then 
I showed that, if (𝐾), (𝐿), and (𝑂) have radius 𝑟 and 𝑟 = 2𝐷𝑁, then AJC and AJD are 
3:4:5 right triangles.  This only indirectly proves the problem theorem; N. Dergiades 
posted a simpler and more concise direct proof in 2017 (http://www.cut-the-
knot.org/pythagoras/Ch6Pr3Dergiades.shtml), using Stewart’s theorem, which 
avoids references to segment 𝐷𝑁.   
 
Another proof, by M. Cabart (2010), uses trigonometry (http://www.cut-the-
knot.org/pythagoras/Ch6Pr3Cabart.shtml).  (The reader should note that “∠𝐷𝐴𝐽” 
and “∠𝐴𝐷𝐽” in the beginning should be ∠𝐷𝐴𝐽/2 and ∠𝐴𝐷𝐽/2.)   
 
 
 
The following is perhaps the sangaku result most celebrated outside Japan. 
 
PROBLEM 13:  Prove that the sums of the radii of the incircles in both triangulations 
of a (convex) cyclic quadrilateral are equal.16   
 
 
 
 
 
 
 
 
 
 
SOLUTION 13 (JMU):  There are many ways to prove this theorem.  I have put together 
the following sequence of results on the basis of hints from several different 
sources.17 
 

Lemma 1: The bisector from one vertex of a triangle, 
extended, cuts the circumcircle at the midpoint of 
the arc subtended by the opposite side of the 
triangle, which is the center of the circle defined by 
the other two vertices and the incenter. 
 
Proof: BIF = BAI + ABI, that is, half the sum of 
the vertex angles at A and B. IBF = CBI + CBF = 
CBI + CAF, the same sum. So BIF = IBF and 
ΔBFI is isosceles. By similar reasoning, so is ΔCFI. 
Hence BF = IF = CF. Moreover, since the BAF and 

 
16 Fukagawa & Pedoe 1989, 3.5(1); lost tablet from Yamagata, 1800. 
17 Most helpful is Ahuja, Uegaki, and Matsushita 2004. 
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CAF, which subtend arcs BF and CF, respectively, are equal, F turns out to be the 
midpoint of arc BC.  □ 
  
If we add another point D on the circumcircle as 
shown, it immediately follows that DJ and AI, 
extended, concur at F and that all four line 
segments BF, IF, JF, and CF are equal. 
 
Complete the quadrilateral ABCD and construct 
the eight bisectors that meet at E, F, G, and H, the 
midpoints of arcs AB, BC, CD, and DA, respectively. 
(The diagonals of the quadrilateral have been 

omitted.) It is 
easy to prove that 
EH and FG are perpendicular: 
 
Lemma 2: If a circle is partitioned into four sectors, 
the lines joining the midpoints of the opposing pairs 
of arcs are perpendicular. 
 
Proof: By hypothesis, 2 = 2 + 2 + 2 + 2. Add 
auxiliary line GH. GHE = ½( + ). FGH = ½( + 
). So GSH =  – ½( +  +  + ) =  – /2 = /2. □ 

 
This leads to the last lemma, which is an impressive theorem in its own right: 
 
Lemma 3: The incenters of the four triangles formed by the sides of a convex cyclic 
quadrilateral and its diagonals are the vertices of a rectangle with sides parallel to 
the lines joining the midpoints of the arcs subtended by the sides of the 
quadrilateral. 
 
Proof: In the figure, DEH and HEC subtend equal 
arcs, so EH bisects DEC. Lemma 1 assures that EI 
= EL. Thus ΔEIL is isosceles with base IL 
perpendicular to EH. Applying the same reasoning 
at H, we conclude that JK is perpendicular to EH, 
and therefore parallel to JL. Likewise, IJ and LK are 
parallel and perpendicular to FG. Since EH and FG 
are themselves perpendicular (Lemma 2), IJKL is a 
rectangle.  □ 
 
 
We are now ready to prove the original theorem, which states: 
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The sums of the radii of the incircles in both triangulations of a (convex) cyclic 
quadrilateral are the same. 
 
 
 

PROOF: If we draw lines through L 
and J parallel to AC (left) and 
through I and K parallel to BD 
(right), the perpendicular distances 
between each pair of lines will be 
the sum of the radii of the 
corresponding pairs of incircles. To 
prove these sums are equal, it 
suffices to show that the 

parallelogram produced by superimposing the two sets of parallel lines is a 
rhombus, because the two altitudes of a rhombus are equal.  
 

To that end, observe that ACG = 
DBG because they subtend equal 
arcs. BGF = CGF for the same 
reason. Hence, BUG ~ CVG with 
BUG = CVG.  That is, AC and BD 
cut GF at the same angle in 
opposite directions. 
Since EH and FG are 
perpendicular (Lemma 2), AC and 

BD likewise cut EH at W and X at the same angle in opposite directions. Hence all 
lines parallel to the diagonals of the quadrilateral cut the axes of rectangle KLMN 
(Lemma 3) at the same angles. So the four triangles based on the sides of the 
rectangle that, together with it, make up the parallelogram, are all isosceles, and we 
have a rhombus (four sides equal). (Another necessary and sufficient condition for a 
parallelogram to be a rhombus is that its diagonals be perpendicular: the diagonals 
of this rhombus lie on EH and FG.)  □ 
 
 

COROLLARY:  The sums of the inradii 
in any of triangulation of a (convex) 
cyclic polygon are all the same. 
For example, here are two of 
triangulations of the same cyclic 
hexagon. There are many others. 
Yet the sum of the radii of the 
incircles is the same for all of them. 
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PROOF: The previous theorem establishes this theorem for cyclic quadrilaterals. 
Assume it holds for cyclic n-gons. Every cyclic polygon of n + 1 sides can be analyzed 
as a cyclic n-gon plus a triangle by selecting three adjacent vertices of the starting 
polygon for the triangle and regarding all the vertices other than the middle one of 
these three as a cyclic n-gon. Since the same triangle is added to every triangulation 
of the cyclic n-gon, the theorem holds for the larger polygon too.  □ 
 
This corollary is frequently described as a theorem by itself. 
 

PROBLEM 14:  In square ABCD, CE is 
tangent to semicircle BO1D.  (O2) is 
the incircle of ACE.  The tangent to 
(O1) and (O2) meets the sides of the 
square in F and H and intersects CE 
in G.  (O3) is the incircle of CGH.  
Prove that r2/r3 = 3/2.18 
 
 
 
 
 
 
 
 
 

SOLUTION 14 (JMU):  First, we prove CE ⊥ FH.  Extend BD, CE, and FH and draw the 
normals KO1 and LO1 as shown below.  Mark equal angles noting where parallels are 
cut by transversals, complementary acute angles in known right triangles, vertical 
angles, and equal angles in 
similar triangles.  There 
are two kinds of acute 
angles in each right 
triangle.  Both kinds are 
found at O1; since they are 
complementary, KO1L 
must be a right angle.  All 
the right triangles 
containing both kinds of 
acute angle are similar, 
and, by the lemma proved 
presently, have sides in 
the ratio 3:4:5.  
 
 

 
18 Fukagawa & Pedoe 1989, 3.2.5, lost tablet of 1838 from Iwate prefecture; no solution given. 
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Let s be the side of square ABCD and t = s/2 be 
the side of square GLO1K.  Note pairs of tangents 
from the same points to the same circles:  BE = 
EK, CD = s = CK, and DH = HL.  Because of this 
last pair, if we extend LO1 to meet CD in M, HLM 
 HDI.  For later convenience, say that a, b, and c 
are the lengths of DI = LM, DH = HL, and HI  = 
HM, respectively, noting that a:b:c :: 3:4:5. 
 
We now prove the key lemma.  In the auxiliary 
figure below, we extend KO1 to meet AB in N, 
and add lines EO1 and CO1.  EO1 and CO1, which 
form congruent triangles with radii of and equal 

tangents to circle O1, bisect supplementary angles, so CO1E = 90o and KO1 is the 
altitude to the hypotenuse of right ΔCO1E. Hence KO12 = CK·EK, or t2 = s·EK = 2t·EK. 
Therefore EK = t/2 = BE.  Observe that this implies AE = ¾ AC, so ACE is a 3:4:5 right 
triangle.   
 
Now, returning to the figure above, in ΔACE, AE + AC – CE = 2r2 =  (s – BE) + s – (s + 
EK) = s – 2BE = t (by the lemma).  Thus r2 = t/2.  In ΔCGH, CG + GH – CH = 2r3 = (s – t ) 
+ (t + HL) – (s – DH) = 2b.  Thus r3 = b.   
 
But c/b = 5/4, so b + c = 9b/4. In ΔDO1M, t/(b + c) = 4/3.  Thus 3t = 9b, or r3 = t/3, 
r2/r3 = 3/2.  □ 
 
PROBLEM 15:  In circumscribed triangle ABC, 
let M´ and M be the midpoints of, 
respectively, chord and arc BC.  Then va = 
M´M is the SAGITTA of the chord a.  Prove that 
the square of the distance from a vertex of a 
triangle to its incenter is four times the 
product of the sagittae to the adjacent 
sides.19 
 
SOLUTION 15 (F&P modified): 
 
We write a′ for s – a, etc. for convenience. 
 
Square Heron’s Formula and divide by s:  r2s 
= a′b′c′ or a′b′c′ = r2(a′ + b′ + c′).   
 
  

 
19 Fukagawa & Pedoe 1989,  2.2; lost tablet of 1825 from Musashi; much lengthier traditional solution 
provided. 
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AM bisects A because angle bisectors in circumscribed triangles pass through the 
midpoints of the arcs they subtend.  MAB = BCM (both subtend arc BM) = CAM, 
so a′/r =  CM′/M′M = (½CB)/va =  (b′ + c′)/2va.  That is, 2vaa′ = (b′ + c′)r.  Likewise, 
2vbb′ = (a′ + c′)r and 2vcc′ = (a′ + b′)r.   
 
Multiply these last two equations together and use the foregoing relationship to 
simplify: 
 
4vbvcb′c′ = (a′ + c′)(a′ + b′)r2 = b′c′r2 + a′(a′ + b′+ c′)r2 = b′c′r2 + a′2b′c′. 
 
Now divide by b′c′:  4vbvc = r2 + a′2. From the definition of a′, a′2 + r2 = AI2.  □ 
 
COROLLARY 1:  since 4vbvc = AI2, 4vavc = BI2, and 4vavb = CI2, 43(vavbvc)2 = (AI·BI·CI)2, or 
8vavbvc = AI·BI·CI. 
 
COROLLARY 2:  if ACB is a right angle, CI2 = 2r2, so (AI·BI)2 = 16vavbvc2 = 8r2vc2.  But vc is 
the radius of the circumcircle when ACB is a right angle, so 4vc2 = AB2. Therefore, in a 
right triangle, 2ABrBIAI = .20 
 
PROBLEM 16:  Triangle ABC has incircle (I)r, to which (O), passing through B and C, is 
internally tangent. Circle (P)p is tangent to AB and AC and externally tangent to (O). 
Circle (Q)q is internally tangent to (O) and tangent to BC at its midpoint M.  Show 
that r2 =4pq.21  
 
 
 
 
SOLUTION 16 (JMU)22:   

Construct the two common internal tangents of (I) 
and (P), and label them as shown.  AB′C′ is the 
reflection in AI of AB′′C′′; both triangles share 
incircle (P) and excircle (I).   
 
In (I) as excircle, DIG = EIH = B′ = B′′ and DIH = EIG = 
C′ = C′′.  Hence GIH = C′ – B′.   But in (I) as incircle, FI 
⊥ BC, so DIF = π – B and EIF = π – C.  That is, DIF – EIF 
= C – B. 

 
20 This is Fukagawa & Pedoe 1989 problem 2.2.1 (Fukushima, n.d.); no solution given. 
21 Fukagawa & Pedoe 1989, 2.4.2. 
22 This solution supersedes the one offered in Unger 2010. 
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Now construct E′, the reflection of E in IG.  On 
the one hand, DIF – EIF = DIF – E′IF = E′ID.  
On the other, IG bisects E′IE and DIG = EIH, so 
E′ID = GIH.  Thus C – B = C′ – B′.  But  C + B  = 
π – A = C′ + B′.  Adding and subtracting 
equations, C = C′ and B = B′.  Therefore BC || 
B′C′ and ABC ~ AB′C′. 
 
Consequently, if s is the semiperimeter of 
ABC, then the semiperimeter of AB′C′ is s – a.  
Hence p/r = (s – a)/s, or 4qr(s – a)/s = 4pq.  
So 4pq = r2 is equivalent to 4q(s – a) = rs.  But 
rs is the area of ABC, which equals 4q(s – a) if 
and only if the radius of the excircle to ABC 
on side BC is 4q.  We now show that it is. 
 
 
 

 
 
Note that CF = s – c.  Place J on BC so that 
BJ = CF, and draw l ⊥ BC  through J; line l 
passes through the center of the relevant 
excircle (K) (in fact, K = l ∩ AI.)   Notice too 
that JM = FM since M is the midpoint of BC.   
 
Let N be the point diametrically opposite 
M in (Q), and say that L is the point of 
contact of (I) and (O).  These circles are 
homothetic with respect to L, so LIF ~ LON.  
LO is the locus of centers of other circles 
homothetic to (I) and (O), and LN is the 
locus of the points where those circles 
intersect lines parallel to IF and ON.  Thus, 
for O′ = l ∩ LO, (O′) with radius O′K is 
homothetic to (I) and (O), and L, F, N, and 
K are collinear.  Hence FJK is a right 
triangle (FNK is a straight line) with 
median MN.  Therefore JK = 2MN = 4q.  □  
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COROLLARY23: In the case of two triangles, ABC and 
BCD, if the radii of the two circles tangent to BC 
are r1 and r2 and the radii of the two small circles 
at A and D are r1′ and r2′, then r1r2 = (r1′r2′/2BC)2. 
For if the diameter perpendicular to BC measures 
d1 above BC and d2 below, 2d1r1 = r1′2 and 2d2r2 = 
r2′2. Multiply these equations together, noting 
that d1d2 = (BC/2)2. □ 
 
 
 
 
 
 

 
 
 
 
PROBLEM 17:   
 
Let the semiperimeter of triangle ABC 
with inradius r (below left) be s, and the 
sagitta to side BC be v.  Circle (O) passes 
through B and C.  Let circle (Q)q be 
tangent to AB, AC, and (O) internally.  
Prove that  
 

as

csbsv
rq

))((2 −−
+= .24 

 
N.B. A can be anywhere on the plane, but 
the problem is presented with A inside 
(O). 
 
SOLUTION (JMU):   
 
In Solution 16, we showed that, if (I) touches (O) internally, then r = 2v(s – a)/s.  We 
now add (Q)q touching AB, AC, and arc BC. (Q) and (I) are homothetic with respect to 
A, and AID ~ AQD′ (see the figure below, where ID = r and QD′ = q are marked in red). 
By similar triangles, 
 
 

 
23 Fukagawa & Pedoe 1989, 2.5.5. 
24 Fukagawa & Pedoe 1989, 2.2.8 (1781, n.pl.), “a hard but important problem.” This is an edited 
version of the solution in Unger 2010. 

 A 

 B  C 

 D 

B 

A 

O 
I 

Q 

C 

N 

M 

v 

r 

q 



–19– 

 
𝑞 − 𝑟

𝑟
=

𝐴𝐷′ − 𝐴𝐷

𝐴𝐷
=

𝐷𝐷′

𝐴𝐷
. 

 
But 𝐴𝐷 = 𝑠 − 𝑎. Therefore,  
 

𝑞 − 𝑟 = 𝑟 ⋅
𝐷𝐷′

𝑠 − 𝑎
=

2𝑣(𝑠 − 𝑎)

𝑠
⋅

𝐷𝐷′

𝑠 − 𝑎

=
2𝑣 ⋅ 𝐷𝐷′

𝑠
, 

 

and  
2𝑣⋅𝐷𝐷′

𝑠
=

2𝑣(𝑠−𝑏)(𝑠−𝑐)

𝑎𝑠
  provided that 

 
𝐷𝐷′

𝑠 − 𝑏
=

𝑠 − 𝑐

𝑎
. 

 
Since BD = s – b and CL = s – c, this last proportion is true if BLD′ ~ BCD. To prove 
that, it suffices to show that LD′ || CD because D′ lies on BD and L lies on BC. 
 
Extend AL to cut (Q) in L′, and let B′C′, as shown, be the tangent to (Q) through L′. 
Since (Q) and (I) are homothetic, BC || B′C′ and ABC ~ AB′C′. (Q) is the incircle of 
AB′C′, so the corresponding sides of the intouch triangles DEL and D′E′L′ are parallel. 
In particular, EL || E′L′.  
 
Since the line joining any two intouch points of a triangle is perpendicular to the line 
joining the third with the opposite vertex, C′D′ || CD. But EL || E′L′ also implies that 
right triangle C′KE′ is similar to C′LE (their hypotenuses coincide). Hence the point 
where C′D′ and EL meet (there can only be one) is L. Since L lies on C′D′, LD′ || CD. 
 
To get the general case, we imagine moving O 
along OM to a new location O′ (blue lines in the 
adjoining figure). Notice that we still have AID ~ 
AQ′D″, LE || L″E″, and C″D″ || CD, so 
 

𝐷𝐷′′

𝑠 − 𝑏
=

𝑠 − 𝑐

𝑎
 

 
as before, which means that  
 

𝑞 − 𝑟 =
2𝑣(𝑠 − 𝑏)(𝑠 − 𝑐)

𝑎𝑠
 

 
as claimed. □ 
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Remarks: 
 
1. Notice that the foregoing proof does not require the Sawayama Lemma.25   

 
2. For a different analysis, see Fukagawa & Rigby 2002: 32, 97.  They attribute 

Problem 17 and a related one, with A outside (O) and (Q) externally tangent to 
(O), to Ajima Naonobu (1732–1798) but do not give the name of their source.  
The only explicit Japanese proof of which I am aware is by Aida Yasuaki (1747–
1817). 

 
3. Fukagawa and Rigby sketch what they say is the traditional solution of Problem 

17, ending up with the quadratic equation  
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where Δ is the area of ABC).  They assert that this leads to 
as

csbsv
rq

))((2 −−
+=  

and that the solution of the related 
problem in remark 5 below “is similar.” 
 
4. Fukagawa and Rigby also observe 

that, in the adjoining figure,  
 

as

r

−
=

2
tan


 

 
and, if δ is the angle CBN = BCN = 
CZN, then 

2/
tan

a

v
= . 

 
Therefore, if we use Heron’s formula in 

the form ))()((2 csbsassr −−−= , we 

obtain 
as

r

a

v

as

csbsv

−
=

−− 22))((2
.  This 

amounts to saying that the problem is equivalent to proving that 


tan
2

tanrrq =− .  

This is not hard to do provided that one can prove IEQ = δ, or, equivalently, only if 
CG, isogonal to CZ  with respect to angle ACB, is parallel to IE.  Let E be the point 

 
25 Ayme (2003).  Y. Sawayama, an instructor at the Central Military School in Tōkyō published the 
lemma in 1905 coincidental to solving another problem.  The algebraic solution by “yetti” posted on 
MathLinks, 1 January 2005, does require the Sawayama Lemma. 
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where (Q) touches AC, and F be the foot of the perpendicular from I to EQ.  Then DI || 
EQ and IEQ = DIE.  We immediately have EQ – EF = q – r = FQ = IF tan (α/2) = (EF tan 
IEF) tan (α/2)  = r tan δ tan (α/2). IEQ = δ can be proven independently, but the 
proof is no simple  matter (see Protasov 1992, 1999).  In any event, the Japanese did 
not use trigonometric functions, and arrived at the equivalent of Solution 17 
algebraically. 
 
5. The related problem mentioned in 

remark 3 above is the following: 
 
If A is outside (O), then, 

vs

csbsa
rx

2

))(( −−
−= .26 

Note that 


cot
2

tan
2

))((
r

vs

csbsa
=

−−

for the reasons previously stated.  Thus 
this problem is equivalent to proving 

that 


cot
2

tanrxr =− . 

6. When A is outside (O), there is 
another variation that Fukagawa 
and Rigby do not mention, but 
which can be solved using more or 
less traditional sangaku methods. 

 
A second circle (Q0)q0 that, like (Q)q, is 

internally tangent to (O)R and 
tangent to AB and AC.  The Japanese 

knew that ))(( 02

22

qRqR
x

Rk
−−= ,  

where k = HQ0 = SS0, and x = TT0.  A 
laborious proof this using just 
algebra appears in Nakayama 2008.  
It can be simplified with an easy use 
of the Law of Cosines as follows:   
 
Place G on OT0 such that (G)q 
touches (O) at T0, and let t = QG = 
UT0.  

 

26 Fukagawa & Rigby 2002 (p. 32) incorrectly write 
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In △QGQ0, we have QQ02 = t2 + (q – q0)2 – 2t(q – q0) cos (π/2 + GOQ/2).  Hence  
 

QQ02 = t2 + (q – q0)2 + 2t(q – q0) sin (GOQ/2).  
 
But in right △QHQ0, we have QQ02 = k2 + (q – q0)2.  Therefore,  

k2 = t2 + 2t(q – q0) sin (GOQ/2). 
 
Since x/2 = R sin (GOQ/2), this is equivalent to k2 = t2 + xt(q – q0)/R, or  

k2 = t[t + x(q – q0)/R]. 
 

And since 
R

qR

x

t −
= , we can replace t to get 
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

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22
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22
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−= . □ 

 
An even quicker way to a formula for q0 follows from the theorem of Menelaus:   
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Here are four problems that can be solved with the aid of the theorem inferred from 
Solution 17. 
 
PROBLEM 18:27  Given ABC inscribed 
in (O), AC = A′C, (I′)r′ the incircle of 
A′BC, and mixtilinear circle (Q)q in 
A′BC as shown, prove that 2r′ = q. 
 
SOLUTION 18 (JMU):  We know that  
q = r′ + r′(tan BA′C/2)(tan BOC/4).   
 
But BOC/4 = BAC/2 = AA′C/2 (since 
it is given that ACA′ is isosceles) = 
π/2 – BA′C/2 (since AA′C and BA′C 
are supplementary), so we have tan 
BOC/4 = cot BA′C/2.  Hence (tan 
BA′C/2)(tan BOC/4) = 1.   

 
27 Fukagawa & Pedoe 1989, 2.3.4 (1857, Miyagi); no solution given. 
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PROBLEM 19:28  Suppose that, for a 
point A inside (O), there are 
chords BD and CE such that ABDF 
and ACEG are squares.  Let (I)r be 
the incircle of ABC and (Q)q the 
mixtilinear circle shown.  Prove 
that 2r = q. 
 
SOLUTION 19 (JMU):  Note that, 
given one square, say ABDF, the 
other is uniquely determined:  C = 
AD ∩ (O) and E = (O) ∩ AB.  DE is a 
diameter of (O); both BE and CD 
are straight lines.  Since BEC = BDC 
= π/4. BOC = π/2 and BAC = 3π/4.   
 
Therefore (tan BAC/2)(tan BOC/4) 
= (tan 3π/8)(tan π/8).  But 3π/8 

and π/8 are complementary, so tan 3π/8 = cot π/8.  Thus (tan BAC/2)(tan BOC/4) = 
1, and, once again, q = 2r.   
 
PROBLEM 20:29  ABC, an isosceles 
triangle with sides b = c and base 
a, has incircle (I)r,  circumcircle 
(O).  M is the midpoint of BC.  
(Q)q touches AM, MC, and (O) as 
shown.  Prove that r = q. 
 
SOLUTION 20 (JMU):  Let N be 
midpoint of the arc AC remote 
from B, r′ be inradius of AMB or 
AMC, and k = a/2 for convenience.  
We know that 
 
q = r′(1 + tan AMC/2 tan CAN).  
 
Since AMC is a right angle, this is  
q = r′(1 + tan CAN). 
 
Since (O) circumscribes ABC, BIN is a straight line and CBN = CAN. But tan CBN = r/k 
= r′/(k – r′).   

 
28 Fukagawa & Pedoe 1989, 3.2 (1799, Musashi); longer solution given.  F&P imply that DE being a 
diameter of (O) is a necessary condition, but Okumura & Watanabe 2001 show that it is not. 
 
29 Fukagawa & Pedoe 1989, 2.3.5 (1901, Fukushima); no solution given. 
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Thus q = r′[1 + r′/(k – r′)] = kr′/(k – r′) = r.   
 
PROBLEM 21:  Given two similar triangles ABC and A′B′C′ in (O)R formed by the 
diagonals and opposite sides a and a′ of a cyclic quadrilateral, prove that q/q′ = 
va′/v′a, where v and v′ are the sagittae of the triangles. 
 
SOLUTION 21:30   
 
Let BCM (= CBM) = δ and  
B′C′M′ (= C′B′M′) = δ′.  Note that  

BC′C (= BB′C) = 2δ,  
B′CC′ (= B′BC′) = 2δ′, and  
2δ + 2δ′ = A (= A′),  

That is, δ + δ′ = A/2. 
 
To facilitate the calculation, we want 
to express q and q′ as products of like 
factors as nearly as possible.  To that 
end, note first that  
 
cos δ′ = cos A/2 cos δ + sin A/2 sin δ,  
cos δ = cos A/2 cos δ′ + sin A/2 sin δ′.   
 
Therefore,  
 

(cos δ′)/(cos A/2 cos δ) = 1 + tan A/2 tan δ, 
(cos δ)/(cos A/2 cos δ′) = 1 + tan A/2 tan δ′.  

 
Next, a = r(cot B/2 + cot C/2).  Using cot x = cos x/sin x, and noting that  
 

cos B/2 sin C/2 + cos C/2 sin B/2 = sin (B/2 + C/2) = cos A/2,  
 

this becomes a = r(cos A/2)/(sin B/2 sin C/2).  Therefore  
 

r = a(sin B/2 sin C/2)/cos A/2, and so too  
r′ = a′(sin B/2 sin C/2)/cos A/2. 

 
Finally, a = 2R sin 2δ = 4R sin δ cos δ.  Likewise, a′ = 4R sin δ′ cos δ′.  Therefore  
 

r = (4R sin δ cos δ sin B/2 sin C/2)/cos A/2, and 
r′ = (4R sin δ′ cos δ′ sin B/2 sin C/2)/cos A/2. 
 

Hence the equations q = r(1 + tan A/2 tan δ) and q′ = r′(1 + tan A/2 tan δ′) become  
 

 
30 Solution sketched in Fukagawa & Rigby 2002 (p. 97). 
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q = (4R sin δ sin B/2 sin C/2 cos δ′)/(cos2 A/2), 
q′ = (4R sin δ′ sin B/2 sin C/2 cos δ)/(cos2 A/2). 

 
Thus q/q′ = tan δ / tan δ′.  Since tan δ = 2v/a and tan δ′ = 2v′/a′, we have q/q′ = 
va′/v′a.   
 
Remark:  This is virtually the same problem as one described as “exceedingly 
difficult”31 that asks for a proof, in the same figure, that 1/q + 1/r′ = 1/q′ + 1/r.  This 

is equivalent to 1/r′ – 1/q′ = 1/r – 1/q or 
qr

rq

rq

rq −
=



+−
.  That is, 

q

A

q

A  tan2/tantan2/tan
=



+
 , which is what was just proved.   

 
PROBLEM 22: 32   Circles 
(O1)r and (O2)r are 
inscribed in corners A 
and D of square ABCD, 
which has side a.  CE is 
tangent to (O1); CF is 
tangent to (O2).  (O3)r′ is 
tangent to CE, CF, and AD 
at G.  Prove that, if r′ = r, r 
= a/6.   
 
SOLUTION 22 (JMU):   
 
(O3) is easily constructed:  
it is the excircle on side 
EF of triangle CEF.    
 
 

 
 
Consider the square AB′C′D′ and rectangle HIJK in the general case (next figure).  
Note that KO3 = GO3 and LO2 = D′L. 
 
Siuce HK = IJ = r + r′ and JK = HI = 2r′, in the special case of r′ = r, HIJK will be a 
square.  Hence GO3 = D′L, and so LO2 = KO3.  But O3 is the midpoint of JK, so L must 
now be the midpoint of HI.  That is, if and only if r′ = r do we have G ≡ D′, O3GLC′ a 
straight line, and H ≡ O2. 
 

 
31 Fukugawa & Pedoe 1989 1.4.7, (1844, Aichi). 
32 Fukagawa & Pedoe 1989, 3.2.2 (1893, Fukushima).  They stipulate r < a/4, but one finds 
empirically that E and F coincide for r < a/4.37. 
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Therefore, when r′ = r, IO2 = HI = 2r and IM = 3r.  If we repeat the whole construction 

using vertex B rather than C at the start, we 
obtain the same I because the resulting 
figure is a reflection of the one above in the 
horizontal axis of square ABCD.   
 
Thus IM = a/2, so r = a/6.  
  
 
 
 
 
 

 
PROBLEM 23:33  Given square ABCD, with M, N the 
midpoints of AB, CD, inscribe a circle in kite QRSM 
and in triangle APQ.  Prove that the radius of the 
larger circle is twice that of the smaller. 
 
SOLUTION 23:  Note that the incircle of the kite is 
also the incircle of DMQ.  Let L be the midpoint of 
AC; then  the yellow right triangles are similar, 
and DBM is a dilation of ALP by a factor of 2.  The 
green triangles are similar because AN || DM.  
Since DM = 2AP, DMQ is a dilation by 2 of AQP.  So 
their inradii have the same ratio.   

 
33 Fukagawa & Pedoe 1989, 3.1.5 (1835, Miyagi); no proof given.   
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PROBLEM 24:34  In square ABCD, P is 
the apex of  equilateral triangle CPD.  
BP meets AC in Q.  Show how to find R 
on CD such that BQR is also 
equilateral.  Then prove that the 
inradius of CSR is twice the inradius 
of BDT. 
 
SOLUTION 24 (JMU):  As for part 1, any 
two lines isogonal to angle ABD 
cutting AC in Q and CD in R define an 
isosceles triangle BQR with CQR = CRQ 
= 45°.  Let M be the midpoint of QR; 
BC is its perpendicular bisector.  If we 
select CBQ = CBR = 30°, we therefore 
have BQ = 2MQ = 2MR = BR = MQ + 
MR.  That is, BQR is equilateral.   

 
Knowing the location of some 45° and 60° angles, we can calculate all the rest and 
find that the four blue triangles are similar, with angles of 45°, 60°, and 75° at the 
corresponding vertices.  Moreover, we can prove that CSR is a dilation of RDT by a 
factor of 2. 
 
Let a be the side of ABCD,  b be the side of BQR and c be AQ = DR.  Say the extension 
of altitude GS of CSR cuts AD in E and AB in F.  Since AFE is isosceles with 45° base 
angles, AF√2 = EF√2 = AE.  Select Q′ on AC such that Q′E ⊥ FG or, which is the same 
thing, Q′E || AF.  Since CAE = FAE = 45° = AEQ′, AQ′E is isosceles and hence congruent 
to AFE .  I.e., Q ≡ Q′, AFEQ is a square of side c, and c√2 = AE.  Thus CG = c, and, 
because CSG = 30°, CS = 2c.   
 
Using this fact and setting c = 1, we can compute the length of other segments in the 
figure.  We can then use the fact that the area of a triangle is the product of its 
inradius and semiperimeter to calculate (with some effort) the ratio of the inradii of 
CSR and BDT.   
 
A quicker method is based on Problem 8 above, the solution of which shows that the 

incircles of DRT and BDT are equal if and only if )( bssDT −= , where s is the 

semiperimeter of BDR.  To make use of this theorem, it suffices to note that DR  = 1, a 
= BD = 2 + √3, b = BR = √2 + √6, and DT = (1 + √3)/2.  A little arithemetic then 
shows that s(s – b) = (2 + √3)/2, which is DT2, and we are done.  Moreover, since 
BDR is a right triangle, we could use the corollary to Problem 8 to compute the 
length of inradius if we wish.  
 

 
34 Fukagawa & Pedoe 1989, 3.1.6 (1881, Yamagata); no proof given. 
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Yet another solution has been posted elsewhere on the web. 
 

 
PROBLEM 25:  In rectangle ABCD, (I)r is 
the incircle of triangle CDE, (O)u is 
tangent to AB, BC, BD, and DE.and (J) is 
tangent to BD and DE.  If (J) also has 
radius r, prove that AB = (6/7)AC.35 
 
SOLUTION:  Because (I) and (J) have the 
same radius, DCE and DFE are 
congruent, and CDEF is a rectangle.   
 
Let EG = FH = t. 
 
Since DE is tangent to (O) at L, OL ⊥ DE, 
EGO  ELO, DHO  DLO, and DOE is a 
right triangle.  All these right triangles 
and JKO are similar. 

 
Comparing the legs of EGO ~ JKO, we have t/u = (u – r)/(t + r).  This is obviously 
satisfied by u = t + r.  (That is, EGO and JKO are not just similar but congruent.)   
 
Substituting u for t + r in (t + r)2 = (u + 
r)2 – (u – r)2 = 4ur (in JKO), we have u2 = 
4ur or u = 4r.  And substituting t + r for u 
in this equation, we get t = 3r.  That is, 
JKO is a 3:4:5 right triangle. 
 
Since DHO is similar, DH = 4x and HO = 
3x for some unit x.  Hence BD = 7x and 
GH = 6x.  Thus AB/AC = 6/7.  
 
 
 
 
 
 
 
 
 
 
 
 

 
35 Fukagawa & Pedoe 1989, 3.4.4; posed differently in Fukagawa & Rothman 2008, pp. 256, 278–80. 
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Here’s an elegant geometric shortcut.  Reflect 
the original figure in the axis through J as 
shown and apply the result of Problem 2.  
Immediately we get 4r = u.  As before, EGO ~ 
OKJ together with this implies t = 3r.  The rest 
follows as before. 
 

 
 
The solution in Fukagawa & Rothman, based on Japanese sources, involves solving a 
cubic equation and discarding two roots.  Given the shortcut, that is a particularly 
striking piece of evidence of the Japanese preference for algebra at the expense of 
geometric reasoning. 
 
 

PROBLEM 26:  Rectangle ABCD 
contains two large circles of 
radius r, two smaller circles of 
radius s, and one yet smaller 
circle of radius t situated as 
shown.  Prove that AB = BC

5 .36 

 
SOLUTION (JMU):  AB = 2r + 2d 
where d = EF.  But EF = r + t 
and FG = r = 2s + t.   Eliminating 

t from these equations, d = 2r – 2s.  Squaring, d2 = 4r2 – 8rs + 4s2.  Since (H) and (K) 
touch each other and CD, d2 = (r + s)2 – (r – s)2 = 4rs (see Solution 2).  Eliminating d2, 

0 = r2 – 3rs + s2, which leads to r = s(3 + 5 )/2 and s = r(3 – 5 )/2.  Replacing s in 

d = 2r – 2s, d = 2r – r(3 – 5 ) = r(–1 + 5 ). Thus AB = 2r + 2r(–1 + 5 ) = 2r 5  = 

BC 5 .   

 
 
 
 
 
 
 

 
36 Fukagawa & Pedoe 1989, 3.4.5 (1820, Iwate); no proof given. 
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PROBLEM 27:  Circle 
(𝑂)  touches the 
chord and the arc 
of a semicircular 
segment at their 
respective 
midpoints, 𝐹 and 𝑀.  
The second 
tangents to (𝑂) 
through the 
endpoints of the 
chord cut the arc in 
two points, which 
are joined to the opposite endpoints.  What are the diameters of the circles (yellow 
and green) that touch both of these joining lines and (𝑂)?  Assume that the diameter 
𝑑 of (𝑂) is known.37 
 
SOLUTION 27:  Start with the yellow circle.  Notice (figure below) that, if 𝐷 is the point 
where (𝑂) touches 𝐴𝐵, then 𝐷𝑂 ∥ 𝐴𝐶.  

 
Extend 𝐷𝑂 to cut 𝐵𝐶 in 𝐸, and note that 𝐵𝐷 = 𝐵𝐹 = 𝐹𝐶 = 𝑑. Since △𝐵𝐷𝐸~△𝑂𝐹𝐸, 
𝐷𝐸 = 2𝐹𝐸.  Therefore, from △𝐷𝐵𝐸 = △𝐵𝐷𝑂 +△𝐵𝑂𝐸, we obtain 
 

1

2
⋅ 𝑑 ⋅ 2 ⋅ 𝐹𝐸 =

1

2
⋅

𝑑

2
⋅ 𝑑 +

1

2
(𝑑 + 𝐹𝐸)

𝑑

2
. 

 

 
37 Kotera 2013: 134–35.  A tablet dated 1857 in a shrine straddling the border between Nagano and 
Gunma prefectures shows this problem on the Nagano side (where the shrine is called Kumano 
kōdai). Another tablet, dated 1872, on the Gunma side (where the shrine is called just Kumano) 
shows the same problem with corrections. Kotera gives the solution for the yellow circle only. 
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Thus 𝐹𝐸 = 2𝑑/3.  This means that △𝐵𝐷𝐸 is a 3:4:5 right triangle, and hence that 
△𝐵𝐴𝐶 is too.   
Now, label the yellow circle 
(𝐽)𝐹. Since it is homothetic 
to (𝐺)𝐻 , the incircle of 
△𝐵𝐴𝐶 , with respect to 𝐶 , 
△𝐻𝐺𝐶 ~ △𝐽𝐹𝐶, and so  
 

𝐹𝐽

𝐹𝐶
=

𝐺𝐻

𝐺𝐶
. 

 
But 𝐹𝐶 = 𝑑 and  
 
𝐺𝐻

𝐺𝐶
=

(3 + 4 − 5) 2⁄

(3 + 4 + 5) 2⁄ − 3
=

1

3
 

 
(recall the corollary to Solution 6 above).  Therefore the diameter of (𝐽) is 2𝑑/3.  □ 
 
Next, label the green circle (𝐾) and construct the common tangent to (𝐾), (𝑂), (𝐹) 
through 𝑀 as shown below.  Extend 𝐶𝐴, 𝐵𝑉 to meet this line in 𝐿, 𝐿′.  Since (𝐾) is the 
incircle of △𝐿𝑉𝐿′,  𝐾 is the point where the bisectors of ∠𝑉𝐿𝐿′ and ∠𝐿𝑉𝐿′ intersect. 
 

Furthermore, if 
the perpendicular 
to 𝐵𝐶  through 𝐶 
meets 𝐿𝐿′ 
extended in 𝑁 , 
then, since 𝐶𝑁 ⊥
𝐿𝑁  and 𝐿𝑁 ∥ 𝐵𝐶 , 
△𝐶𝑁𝐿  ~ △𝐵𝐴𝐶 , 
and △ 𝐶𝑁𝐿  is 
another 3:4:5 
right triangle.  
Since the sides of 
square 𝐶𝑁𝑀𝐹  are 

𝑑, it follows that 𝐿𝑁 = 4𝑑 3⁄  and 𝐿𝐶 = 5𝑑 3⁄ . 
 
Now the center of the incircle (𝑃)𝑄 of △𝐶𝑁𝐿 lies on 𝐿𝐾 extended, so △𝐿𝑀𝐾 ~ 
△𝐿𝑁𝐶, and  
 

𝑀𝐾

𝐿𝑀
=

𝑃𝑄

𝐿𝑄
. 

 
We can easily compute the lengths of all the segments other than 𝑀𝐾 in this 
proportion: 
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  𝑃𝑄 = 𝑄𝑁 =
𝐶𝑁 + 𝐿𝑁 − 𝐿𝐶

2
=

𝑑

3
, 𝐿𝑄 = 𝐿𝑁 − 𝑄𝑁 = 𝑑, 𝐿𝑀 = 𝐿𝑁 − 𝑀𝑁 =

𝑑

3
. 

 

Thus  
𝑀𝐾

𝑑/3
=

𝑑/3

𝑑
  or 𝑀𝐾 = 𝑑/9.  Therefore, the diameter of (𝐾) is 2𝑑/9.  □ 

 
PROBLEM 28: 38  Suppose in the foregoing configuration we have the incircle (red) of 
△𝑆𝑅𝑆′.  What is its diameter in terms of 𝑑? 
 
SOLUTION 28 (JMU):  
𝐵𝐹 = 𝐹𝐶 = 𝑇𝐹 = 𝑑 , so 
𝑅𝑇 = 𝑅𝐹 − 𝑑  and, 
taking note of similar 
3:4:5 right triangles,   
 

𝐴𝐵 = 6𝑑 5⁄ = 30𝑑 25⁄  
  𝐵𝑋 = 18𝑑 25⁄  

𝐴𝑋 = 24𝑑 25⁄ . 
 
Thus 𝑅𝐹 =
𝐴𝑋 ⋅ 𝐵𝐹 𝐵𝑋⁄ = 4𝑑 3⁄  
and 𝑅𝑇 = 𝑑 3⁄ = 4𝑑 12⁄ .  
Hence 𝑆𝑇 =
3𝑑 12⁄  and 𝐴𝑅 =
5𝑑 12⁄ .  Since 𝑆𝑇 = 𝑇𝑆′, the area of △𝑆𝑅𝑆′ is 𝑑2/12 and its semiperimeter is 8𝑑/12.  
Therefore, the inradius of  △𝑆𝑅𝑆′ is 𝑑/8, which means the diameter of the incircle is 
𝑑/4. 
 
PROBLEM 29.39  Triangle 𝐴𝐵𝐶 has altitude ℎ = 𝐴𝐻. Its midpoint is 𝑂.  (𝑂)𝐻 cuts 𝐴𝐵 in 
𝐷 and 𝐴𝐶 in 𝐸.  (𝐼)𝑟 is the incircle of 𝐴𝐷𝐸.  Express 𝑟 in terms of 𝑎, 𝑏, 𝑐, and ℎ.  

 
SOLUTION 29 (JMU):  Let 𝐴𝐷 =
𝑒, 𝐴𝐸 = 𝑑  and 𝐷𝐸 = 𝑓 . Using the 
inradius and circumradius 
formulae for the area of 𝐴𝐷𝐸, we 
have  

𝑟
𝑑 + 𝑒 + 𝑓

2
 =

𝑑𝑒𝑓

4𝑂𝐻
 

or  

𝑟 =
𝑑𝑒𝑓

2𝑂𝐻(𝑑 + 𝑒 + 𝑓)
. 

 
38 Fukagawa & Pedoe 1989, 2.3.1 (1891, Fukushima); no solution given, or any mention of the clearly 
related Problem 27. 
39 Fukagawa & Pedoe 1989, 2.2.6 (1805, Toyama); answer given, but without a proof. 
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But ℎ = 2𝑂𝐻, so 𝑟 =
𝑑𝑒𝑓

ℎ(𝑑+𝑒+𝑓)
.  Our goal is to rewrite this with 𝑎, 𝑏, 𝑐 instead of 𝑑, 𝑒, 𝑓.   

 
Since 𝐴𝐻 is a diameter of (𝑂), 𝐴𝐷𝐻 and 𝐴𝐸𝐻 are right angles.  Since 𝐵𝐶 touches (𝑂) 
at H, AHC ~ AEH, so ∠𝐴𝐶𝐵 = ∠𝐴𝐻𝐸.  But  ∠𝐴𝐻𝐸 = ∠𝐴𝐷𝐸 because they subtend the 
same arc, so ∠𝐴𝐶𝐵 = ∠𝐴𝐷𝐸.  Likewise,  ∠𝐴𝐸𝐷 = ∠𝐴𝐵𝐶. Hence, 𝐷𝐸 is antiparallel to 
𝐵𝐶, and 𝐴𝐷𝐸 ~ 𝐴𝐶𝐵.   
 

Given altitude g = AG in ADE, this similarity implies 
𝑏

ℎ
=

𝑒

𝑔
,

𝑐

ℎ
=

𝑑

𝑔
, and 

𝑎

ℎ
=

𝑓

𝑔
 .  

Therefore,  
𝑑𝑒𝑓

ℎ(𝑑 + 𝑒 + 𝑓)
 =

𝑑𝑒𝑓

𝑔(𝑎 + 𝑏 + 𝑐)
. 

 

Now because ∠𝐴𝐻𝐸 = ∠𝐴𝐷𝐸 , 𝐴𝐺𝐷 ~ 𝐴𝐸𝐻.  Hence, 
𝑑

𝑔
=

ℎ

𝑒
, or 𝑑𝑒 =  𝑔ℎ.  But 

𝑏𝑐

ℎ2 =
𝑑𝑒

𝑔2 , 

so  

𝑏𝑐𝑑𝑒 =
ℎ2𝑑𝑒

𝑔2
𝑔ℎ =

𝑑𝑒ℎ3

𝑔
 =  ℎ4. 

 

Rearrange 𝑏𝑐𝑑𝑒 = ℎ4 as 
𝑑𝑒

ℎ
=

ℎ3

𝑏𝑐
, and multiply its left and rights sides by  

𝑓ℎ

𝑔
 and 𝑎, 

respectively. (Recall that 
𝑎

ℎ
=

𝑓

𝑔
 .)  The result is 

𝑑𝑒𝑓

𝑔
=

𝑎ℎ3

𝑏𝑐
.  Plugging this into 𝑟 =

𝑑𝑒𝑓

𝑔(𝑎+𝑏+𝑐)
,  we obtain 

𝑟 =
𝑎ℎ3

𝑏𝑐(𝑎 + 𝑏 + 𝑐)
 . 

  
 
 
 

Problem 30:40  Suppose that the centers of three circles, 
each touching the other two externally, lie at the vertices 
of a right triangle, and that a fourth circle touches all 
three internally.  Prove that the largest diameter is the 
sum of the other three. 
 
Solution 30 (JMU):  Let the diameters of (𝐴), (𝐵), (𝐶), (𝑂) 
be 𝑎, 𝑏, 𝑐, 𝑑, respectively.  Let 𝐷 be  the fourth vertex of 
the rectangle determined by 𝐴, 𝐵, 𝐶.   
Here is the proof in Nakamura 2008, slightly elaborated. 

Say that (𝐴), (𝐶) touch (𝑂) at 𝑃, 𝑄, respectively. 𝑃𝐴 and 𝐶𝑄 meet at 𝑂.  If ∠𝑃𝑂𝑄 is a 

 
40 Fukagawa & Pedoe 2.4.5 (Tochigi, 1853; tablet lost but problem mentioned in Sanpō jojutsu).  No 

solution given. 
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right angle, i.e. if 𝑂 ≡ 𝐷 in the figure, then by 

inspection 
𝑑

2
=

𝑎

2
+

𝑏

2
+

𝑐

2
.  If 𝑂 ≢ 𝐷 , then 

either 𝑂 doesn’t lie on 𝐷𝐴 or it doesn’t lie on 
𝐷𝐶.  Without loss of generality, assume the 
latter. Then in right triangle 𝑂𝐷𝐶,   
 

(
𝑑

2
−

𝑐

2
)

2

= (
𝑎

2
+

𝑏

2
)

2

+ (
𝑑

2
−

𝑎

2
−

𝑏

2
−

𝑐

2
)

2

. 

 
Simplifying, (𝑎 + 𝑏)(𝑎 + 𝑏 + 𝑐 − 𝑑) = 0.  Since 
𝑎 + 𝑏 ≠ 0, it must be that 𝑑 = 𝑎 + 𝑏 + 𝑐.   
 
This solution comes close to begging the 
question, and it sheds no light on why (𝑂) should touch (𝐵) internally, or, more 
generally, how to construct the figure.  It is worth knowing that (𝐴), (𝐵) touching at 
𝑁 determine 𝐶, 𝑂 uniquely, apart from which side of 𝐴𝐵 we choose to put them on.  
 

Construct the external bitangent 𝐾𝐿, 
which meets 𝐴𝐵  at the homothetic 
excenter 𝑀.  Draw the perpendicular 
to 𝐴𝑀 through 𝑀, and say that (𝑀)𝑁 
cuts it in 𝑄 . Then 𝐶  is the fourth 
vertex of the rectangle determined by 
𝐵, 𝑀, 𝑄, and 𝑂 is the fourth vertex of 
the rectangle determined by 𝐴, 𝑀, 𝑄. 

Proof:  Since △𝐴𝐾𝑀 ~ △𝐵𝐿𝑀, 
𝑎

𝑏
=

𝐾𝑀

𝐿𝑀
 

or 
𝑎−𝑏

𝑏
=

𝐾𝐿

𝐿𝑀
=

2√𝑎𝑏

𝐿𝑀
; therefore 𝐿𝑀 =

2𝑏√𝑎𝑏

𝑎−𝑏
 and 𝐾𝑀 =

2𝑎√𝑎𝑏

𝑎−𝑏
.   

 
Algebraically, their geometric mean is 

2𝑎𝑏

𝑎−𝑏
 ; constructively, it is 𝑀𝑁 (△𝐾𝑁𝑀 ~ △𝑁𝐿𝑀). But 𝑀𝑁 = 𝑀𝑄 = 𝑏 + 𝑐. Thus 𝑐 =

𝑀𝑁 − 𝑏 =
2𝑎𝑏−𝑏(𝑎−𝑏)

𝑎−𝑏
=

𝑎𝑏+𝑏2

𝑎−𝑏
.  On the other hand, since 𝐴𝐵𝐶 is a right triangle, 

(𝑎 + 𝑐)2 = (𝑎 + 𝑏)2 + (𝑏 + 𝑐)2; solving for 𝑐, again 𝑐 =
𝑎𝑏+𝑏2

𝑎−𝑏
, so (𝐶) touches both 

(𝐴)  and (𝐵)  externally.  Furthermore, 𝐴𝑀 = 𝑎 + 𝑏 + 𝑐 = 𝑂𝑄 .  Since 𝑂, 𝐶, 𝑄  are 
collinear, (𝑂)𝑄 touches (𝐶) internally. Since 𝑂𝐴 = 𝑄𝑀 = 𝑏 + 𝑐 and (𝐴) has radius 𝑎, 
(𝑂)𝑄  touches (𝐴)  internally (at 𝑃 ).  Likewise, since 𝑂𝐵 = 𝐶𝐴 = 𝑐 + 𝑎  by 
construction and (𝐵) has radius 𝑏, (𝑂)𝑄 touches (𝐵) internally.  
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