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Visual Summary. (a) Illustration of application: transmitter delivers power wirelessly to on-body rectenna, 
which activates insulin pump, (b) test bench experiment, (c) wirelessly activated insulin pump arm 

 
Take-Home Messages  

• Power is delivered wirelessly to the body over substantial distance (42 cm) using a new near-field wireless 
powering approach that is position-insensitive. 

• A small rectifying antenna (rectenna), located external to the body, is presented and experimentally validated 
as a means of delivering power up to 1.2 mW. 

• The targeted application is that of wireless power delivery for recharging or activating medical implants (such 
as insulin pumps) using a RF source placed at a sufficient distance from the human body. 

• The significance   of this work lies in the demonstration of near-field antennas to power/recharge wireless 
implants (sensors or stimulators) in an unobtrusive manner.
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Abstract A radiating near-field method of recharging and activating medical implants using a 2.4 GHz rectifying patch antenna 
(rectenna) is designed and tested. Traditional near-field charging uses magnetically coupled coils, but these are highly sensitive 
to misalignments between the transmitter and receiver. In contrast, the proposed design employs the principles of wireless power 
transfer (WPT) using radiating antennas. These antennas provide a misalignment-insensitive power delivery method, even when 
the receive antenna footprint is small (27.5 mm x 19.75 mm). A misalignment analysis is performed up to 15 cm, showing a 
maximum loss of 7.5 dB. As a proof-of-concept demonstration, a rectenna receiver was fabricated consisting of a patch antenna 
attached to a radio frequency (RF) rectifier. This integrated rectifier is a voltage quadrupling circuit that provides RF-DC 
rectification with efficiency of 40% at 0 dBm. For validation, a real-time actuation of a medical drug pump is demonstrated using 
only wirelessly transmitted power with no additional power storage elements. 
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I. INTRODUCTION 
RADITIONALLY, most wearable or implantable 
medical devices (e.g., sensors, pacemakers, etc.) 

necessitate battery replacement [1]. However, this can be 
impractical or infeasible for hospital patients or the elderly. 
An example would be an insulin pump that would be 
embedded underneath the skin; the replacement of such a 
battery would be both an encumbrance to the patient, as 
well as a medical hazard due to the repetitive surgeries it 
would require. As an alternative, a wireless RF system may 
be used to safely and wirelessly transmit power to such a 
medical device [1]. Additionally, such an RF system would 
serve as a sanitary means of medical powering without the 
need for invasive operations.  

Advances in antenna miniaturization, circuit design, and 
biocompatible materials are bringing forward new 
opportunities for unobtrusive diagnosis and patient care 
using wireless implantable devices [2]. It was reported that 
there are several million individuals using implanted 
medical devices like pacemakers [3]. With most of these 
devices, the typical method of powering them is to use 
Lithium batteries, although some use other methods of 
power generation, including piezoelectric, electrostatic, 
ultrasonic transducers, and optical charging [1]. In this 
paper, we propose a different method for powering 
implantable sensors. This method is less sensitive to 
misalignment as it relies on using wireless power transfer 
(WPT) in the radiated near-field to delivery power to a 
device on or in the body. Indeed, midfield wireless power 
transmission has been thoroughly investigated by Poon et 
al., as a viable means of WPT for medical applications [4]; 
however, instead of utilizing spirals and coils as the means 
of power reception, this work utilizes patch antennas in the 

radiating near-field. A comparison of other midfield works 
is presented in Section III. 
 Wireless powering of devices has been extensively 
researched since the early 1990s. Chang et al. developed 
efficient rectenna designs at low powers, achieving 82% for 
a 50-mW rectenna design [5,6]. Popović and Hagerty 
researched the recycling of ambient RF signals, as well as 
developed modern rectenna matching techniques [7,8]. 
Volakis and Olgun demonstrated the wireless powering of a 
sensor using only ambient WiFi energy [9,10]. Costanzo et 
al. has been notable for her work in near-field inductive 
links as well [11, 12]. 

Two approaches have been, generally, considered for 
WPT: 1) near-field coupling, and 2) far-field radiation. 
Near-field coupling operates on the principle of nearby 
magnetically coupled coils that resonate at low frequencies 
(0.3-30 MHz) [1]. Indeed, since the 1960’s, the concept of 
wirelessly powered medical implanted has been explored 
[18]. But although inductive links have been capable of 
delivering high levels of power [19], misalignment and 
sensitivity to coil adjustments has been a major challenge 
[1]. Coil separations of 1-2 diameters tend to maximize the 
coil quality factor [20] and lateral misalignment can cause 
severe degradations, limiting the effectiveness when the 
coils are misaligned.  

Far field radiation is suitable when using opportunistic 
RF signals such as WiFi and television [9]. Key to 
harvesting these ambient RF signals is the introduction of 
high efficiency rectification circuits that turn-on even 
though incoming signals are of very low power, viz. on the 
order of μW. Typically, ambient power from WiFi or 
television range from -20 to -40 dBm [10], depending on 
the distance from the RF source. Several studies have been 
conducted on rectifier efficiencies at the 2.4 GHz range 
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[13], some examples in literature include 57% at 0 dBm 
[14], 66.8% at 10 dBm [15], 70.4% at 0 dBm [16], and 
72.8% at 8 dBm [17].  

However, most of these systems employ a single diode or 
voltage doubler as the rectifier; this work presents a novel 
voltage quadrupler that achieves a maximum efficiency of 
47.7% at 11 dBm and 40% at 0 dBm, which we 
demonstrate to deliver a sufficient voltage to operate an 
insulin pump wirelessly over 42 cm. Additionally, most 
midfield designs thus far have considered only spiral or coil 
antennas for transmission [30-32]; herein we present a 
patch antenna which provides a high tolerance to 
displacement while occupying a small footprint. 
 In this paper, we propose a new method to wirelessly 
power sensor devices from near-field radiating patch 
antennas. The proposed radiating method overcomes 
alignment issues between the exterior transmitter and 
receiver. This is achieved by relying on radiation, rather 
than direct coupling between the device and the RF source. 
To test the operation in the radiating near-field region, a 
patch rectenna is developed and tested at 2.4 GHz. 

II. METHODS AND PROCEDURES 

A. Rectenna Design 
Previous works demonstrated wireless power 

transmission at WiFi frequencies for over-the-air wireless 

power transmission across large distances [21]. Herein, we 
present all components of a rectenna on a single Printed 
Circuit Board (PCB) for operation at WiFi frequencies and 
in the near-field.  

The basic components of the proposed rectenna are 
illustrated in Fig. 1(a). It includes: 

1) Transmitting element. This is typically placed outside 
the body and close to the skin. It is generally a transmitting 
coil, but in our case we use a patch array as the external 
transmitter in order to establish a proper radiating near-
field. 

2) Receiving antenna. This is responsible for receiving 
the electromagnetic energy wirelessly.  

3) Matching network. This transforms the antenna 
impedance to match that of the rectifier. 

4) RF Pass/DC Block element. This allows the RF signal 
to pass to the rectifying elements, but blocks backward DC 
flow (typically modeled with a series capacitor or shunt 
inductor). 

5) Rectification elements. These are ideally diodes, 
whose non-linear response is capable of producing a DC 
component as well as various harmonics that are filtered. 

6) RF Block/DC Pass element. This is responsible for 
passing the DC signal to the load while blocking the RF 
signal (modeled as a series inductor or shunt capacitor).  

7) Output load. This can represent a battery, sensor, 
medical device, etc., and is usually modeled as a resistor. 

 
Fig. 1.  (a) RF chain of the rectenna system, (b) fabricated rectenna circuit showing dimensions (all dimension are in mm), (c) circuit schematic of the equivalent 
voltage quadrupling rectifier 
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The rectenna patch element was designed to operate at 
2.4 GHz. For this proof-of-concept demonstration, it 
occupied a footprint of 27.5 x 19.75 mm2 and was fed by a 
50 Ω source. Though outside the scope of this work, further 
miniaturization of the patch can be performed using high-
permittivity substrates and meandering techniques [22]. For 
example, a similar patch on a substrate with dielectric 
constant εr=12.2 would shrink the overall size roughly 25%. 
When implanting directly beneath the skin, the high 
dielectrics of the body will provide a means of shrinking the 
patch down significantly as well [23]. Additionally, the 
active circuitry may be folded onto the back of the patch, as 
in [24], to reduce the overall size by another 50%.  

The rectification circuit, shown in Fig. 1(c), consists of 
three main components: 1) RF Pass/DC Block series 
capacitors at the input, 2) diode elements for rectification, 
and 3) RF Block/DC Pass shunt capacitors at the output. 
The equivalent circuit of the rectifier is shown as a two-
stage voltage doubling rectifier. 

An RF splitter was further added at the terminal of the 
patch element, to divide the RF signal between a right and a 
left matching branch. The purpose of the two branches was 

for additional fine-tuning made possible by the open 
transmission line stubs. Using these tunable components, 
any frequency offset (due to the narrow bandwidth of the 
patch antenna) can be corrected. We note that this splitter is 
necessary for voltage quadrupling. Another such circuit is a 
Villard quadrupler, as in [25]; however, the Villard rectifier 
necessitates a balun, adding unwanted extra bulk. 

Fig. 2 shows the simulated, measured, and theoretical 
output voltage from a voltage quadrupling rectifying circuit, 
as well as a simulated voltage doubler. The theoretical 
output voltage is simply four times the peak voltage of the 
input signal assuming 50 Ω input power. The simulated and 
measured traces for the quadrupler simply show the DC 
voltage across the output resistor. The simulated voltage 
doubler shows similar performance at lower powers; as can 
be seen, it fails to rectify efficiently at higher powers.  

We remark that the insulin pump in this case requires a 
minimum of 1 V in order to oxidize. Indeed, the voltage 
quadrupler was chosen in order to provide the highest 
possible voltage to the implantable insulin pump. The 
insulin pump polymer, upon oxidation, expels cations 
causing the actuation arm to shrink. The higher the input 
power, the faster the actuation arm turns on. As such, the 
‘turn on’ power of the implantable pump according to Fig. 
2 is approximately 0 dBm. 

The voltage quadrupler was fabricated on a Rogers 
TMM10 substrate having a dielectric constant εr=9.2, and a 
loss tangent tanδ=0.0022. We note that the high dielectric 
permittivity was chosen to help realize a small rectenna 
size. The thickness of the substrate is 60 mil, and 0.1 μF 
was used for every capacitor. Further, the rectifier diodes 
were Skyworks SMS7630 [26]. These diodes offer 
excellent performance for the expected power range [27]. 
The load in this case is a 1.8 kΩ resistor, which was found 
experimentally to be the approximate resistance of the 
insulin pump. 

The rectifier shown in Fig. 1(b) was first fabricated as a 
stand-alone unit and tested to determine its efficiency. The 
rectifier was then fed by a signal generator at various power 
levels to measure the RF-to-DC conversion efficiency. The 
load was always 1.8 kΩ. With minor tuning between the 
simulated and fabricated models, the conversion efficiency, 
calculated as η=DCout/RFin, is shown in Fig. 3. A coaxial-
to-microstrip feed provided the input power for RFin, while 
the voltage across the output resistor provided DCout.  As 
seen, we achieved a maximum simulated efficiency of 55%, 
and a measured efficiency of 47.7% at 11 dBm. 

B. Radiating Near-Field Measurements 
The transmitting patch array measured approximately 

34x33 cm2 while the receiving patch was the same 
dimension as the one shown in Fig. 1(b). The separation 
distance was fixed at 42 cm as shown in Fig. 4(a). This 
distance was chosen because it places the receiving 
rectenna in the radiating near-field, which occurs between 
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Fig. 2.  Simulated, measured, and theoretical output voltage from voltage 
quadrupler, and simulated output from a voltage doubler 
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Fig. 3.  RF-to-DC conversion efficiency of the voltage quadrupling rectifier 
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  (1) 
where D is the longest dimension of the antenna, and λ is 
the wavelength at 2.4 GHz [28]. In this case, D is assumed 
to be the distance from the first patch to the last patch, as 
described in [33]; that is, the cut along which the patches 
are excited. When the receiving antenna is a distance 
outside this range, then it will be in the far-field. 
 The received power from the transmitting array was then 
measured as the receiving patch was swept in the x and y 
directions. Fig. 4(b) shows the loss due to the separation (42 
cm) and lateral misalignments in the radiating near-field. 
When misaligned by 15 cm, an additional 7.5 dB of path 
loss is added. A table with comparison to coil studies (of 
comparable size) found in literature is included in Table I. 
We remark that similar or lower misalignment loss is seen 
for a smaller receiver size, making the radiated near-field 
approach very suitable for on-body medical applications. 

III. RESULTS 
To assess the performance of the given rectenna 

structure, a transmitter and receiver were connected to a 
controllable power supply, as shown in Fig. 5(a). A possible 
clinical application is the case where the patient stands near 
the external transmitter to activate the implanted pump. We 
note that the external transmitter is a linearly polarized 
patch array with a nominal gain of 19 dBi, and the 
transmitting power was set to 16.49 dBm. Thus, the entire 
EIRP was 35.49 dBm. This EIRP level is just below the 
FCC limit for a point-to-point link of 36 dBm [29].  

The receiver rectenna was placed at a distance of 42 cm 

 
(a) 

 
(b) 

 
(c) 

Fig. 5.  (a) Radiating near-field rectenna setup, (b) measured voltage and 
current across 1.8 kΩ load, (c) actuated medical pump 
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Fig. 4.  (a) Illustration of the transmitting and receiving antenna in the lateral 
misalignment test, and (b) lateral misalignment loss as a function of offset 
distance when the vertical separation is fixed to 42 cm 
  TABLE I 

COMPARISONS OF LATERAL MISALIGNMENT STUDIES IN LITERATURE 

Ref. Rx 
Antenna 

Separation 
Distance (cm) 

Tx Size 
(cm2) 

Rx Size 
(cm2) Loss (dB) 

[35] Coil 10 1017.9 7.1 11.3 
[34] Spirals 18 254.5 63.6 4.2 
This 
Work Patch 42 1122 5.4 7.5 
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(see Fig. 5(a)) and optimally angled and positioned to the 
transmitter, reducing the path loss and multipath effects. A 
multimeter was then connected to the output of the 
rectification circuit across the 1.8 kΩ resistor placed in 
series and parallel set-up.  The measurement is shown in 
Fig. 5(b), and the goal was to extract the current and 
voltage across at the output of the rectifier.  We found that a 
constant current of 0.8 mA and voltage of 1.5 V was 
delivered using the wireless transmitter and rectenna 
receiver. As such, the amount of power delivered was 1.2 
mW over this distance. A comparison of this work 
compared to other works in the midfield that deliver power 
to a medical device is shown in Table II.  

The specific implantable pump was intended to squeeze a 
small pouch of insulin when located inside the body. The 
polypyrrole (PPy) actuation arm is shown in Fig. 5(c), and 
is submerged in phosphate buffered saline (PBS) solution, 
which provides cations (mostly Na+) for the actuation. PBS 
is found naturally in the body, and is a conductive fluid in 
the blood stream. The left side of this figure shows the arm 
with no RF illumination, and on the right the actuated PPy 
arm is bending after the successful reception of the near-
zone RF power illumination. 

IV. CONCLUSION 
A radiating near-field RF Harvester (rectenna and 

source/transmitter)  was designed and built, showing up to 
47.7% efficiency at 2.4 GHz. Using a transmitting 
antenna/source located in the radiated near-field zone of the 
rectenna, a total of 1.2 mW was delivered across 42 cm. A 
misalignment analysis was performed showing a maximum 
of 7.5 dB when offset by 15 cm. 

This type of wireless power delivery offers a robust 
alternative to the position-sensitive coils, traditionally used 
for medical wireless power transfer. In the future, this 
rectenna design can be miniaturized even further by placing 
the rectifier behind the rectenna on a multilayer substrate 
and implanting under the skin. The miniaturized rectenna 
circuit could then be embedded onto the insulin pump and 
integrated with all components in a single system-in-
package (SiP) medical device. 
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