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Time geography 1is a constraints-oriented
approach to understanding human activities in
space and time. Time geography recognizes that
humans have fundamental spatial and temporal
limitations: people can physically only be in one
place at a time and activities occur at a sparse set
of places for limited durations. Participating in an
activity requires allocating scarce available time
to access and conduct the activity. Constraints
on activity participation include the location and
timing of anchors that compel presence (such as
home and work), the time budget for access and
activity, and the ability to trade time for space in
using mobility or information and communication
technologies (ICTs). Time geography is a phys-
ical not a behavioral theory; it highlights the
necessary spatiotemporal conditions for human
activities, but does not explain the sufficient
events that lead to specific activities. But since
these necessary conditions vary by individual and
situation, time geography supports an approach
to understanding human and environmental
systems that recognizes individual histories and
the importance of geographic context.

Time geography is consistent with some core
ideas in fields such as geography, transportation,
urban science, social sciences, and environmental
sciences. These include an integrated perspective
on human and physical phenomena, the need to
build macro-level explanations from micro-level
processing, and situating human activities within

context. Basic time geographic concepts, such
as events being sparsely distributed in time and
space, limited time availability, and trading time
for space to access activities, seem mundane,
since they are common and correspond with
everyday experience. But this is why time geog-
raphy is needed: these seemingly banal but utterly
crucial factors in our scientific explanations of
human behavior should not be neglected. Time
geography provides a framework that demands
recognition of the fundamental constraints
underlying human experience and also provides
an effective conceptual system for keeping track
of these conditions.

Time geography originates from Professor
Torsten Higerstrand (1916-2004), a Swedish
geographer who spent his career at the Univer-
sity of Lund. He nurtured the ideas for a long
time, but time geography emerged dramatically
to the international scientific community with
a now-famous 1969 presidential address to the
Regional Association (Higerstrand
1970). Higerstrand was concerned that human
geography and regional science were neglect-
ing much of what comprises a livable world.
He also wanted to provide a counterbalance
to increasing specialization and fragmentation
in science, technology, and administration by
offering a more holistic view of human activities.
Higerstrand believed in the integrative power of
the regional approach in geography, but felt that
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it needed to be more inclusive and rich. Time
geography upgrades the regional approach by
describing the “bare skeleton” of spatiotemporal
conditions and constraints that emerge from the
interplay of historical and geographical factors.
Time geography is an active and flourishing
research domain one half-century after its initial
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TIME GEOGRAPHY AND SPACE-TIME PRISM

conceptualization in the 1960s. This ranks time
geography among elite and enduring scientific
ideas. Time geography has endured for good
reasons. It is beautiful: the geometry of the
space—time path and prism (discussed below) and
their relationships are intuitive and appealing. It
is elegant: it can help to explain much with few
basic principles. It is robust: it can help us under-
stand a wide range of phenomena in human
and linked human-environmental systems. It
is sensitive: it treats people as individuals and
recognizes social differences across a wide range
of factors (gender, age, socioeconomic status,
culture) as well as geographic context. It is ecolog-
ical: it connects the individual to the aggregate,
balancing nomothetic law seeking with context
and situation, as well as balancing agency and
structure. Finally, it is practical: Hagerstrand was
prescient when thinking about how to keep track
of the basic spatial and temporal existential facts
of human activities. It is now possible to collect,
store, manage, and analyze individual-level data
on mobile objects and human activities with
ease and power that would seem magical from
the perspective of the 1960s.

Classical time geography

Time geography recognizes three major types of
constraints on human activities. Capability con-
straints limit the activities of individuals through
their own physical capabilities and/or available
resources. People need to conduct maintenance
activities such as eating and sleeping; these
require time and place. Also, individuals with
private automobiles can generally travel faster
than individuals who walk or rely on public
transportation. Coupling constraints define where,
when, and for how long an individual has to
join with other individuals for shared activities
such as work, meetings, and classes. Authority
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constraints are fiat restrictions over particular
space—time domains. For example, a shopping
mall or gated community can make it difficult
and illegal to enter at designated times, while a
public street cannot.

Space—time path

Activities such as personal and domestic mainte-
nance, work, shopping, health care, education,
and recreation are sparsely distributed in time
and space; they are available for limited duration
at relatively few locations. Participating in activi-
ties requires trading time for space to access these
locations at their available times. The space—time
path highlights these requirements. Figure 1 illus-
trates a space—time path between activity stations.
Stations are places where activities can occur;
classical time geography treats these as tubes des-
ignating their locations in space and availability
in time (e.g., work hours, operating hours for
a store, appointments, scheduled lectures). The
classical space—time path focuses on physical
mobility and interaction. Virtual interaction via
ICTs is possible; for example, a telephone call
can be represented as a connection between two
space—time paths. However, virtual interaction
is muted relative to physical interaction in the
classic theory.

Time geography also classifies activities based
on their flexibility for an individual. Fixed activ-
ities are those that cannot be easily rescheduled
or relocated (e.g., work, meetings), while flexible
activities can be more easily rescheduled and/or
occur at more than one location (e.g., shopping,
recreation). These categories can be arbitrary;
for example, a software developer can code in
an office or a cafe. Nevertheless, the dichotomy
provides an effective means for understanding
how the location and timing of some activities
condition accessibility to other activities. Fixed
activities act as space—time anchors because other
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Figure 1 A space—time path among activity
stations.

activities must occur at the temporal gaps
between fixed activities.

Space—time prism

The space—time prism (STP) highlights the influ-
ence of space—time anchors on the ability to
participate in flexible activities. The STP is the
envelope of all possible space—time paths between
known locations and times. Figure 2 illustrates
a planar STP. In this case, two space—time anchors
frame a prism. Anchors correspond to known
locations and times for the mobile object. These
are often (but not always) the locations and
times of fixed activities that compel presence.
A maximum travel speed represents the object’s
mobility capabilities; in classic time geography
this is a uniform across space and time. (Time
geography uses the term “velocity,” but this is
incorrect since velocity implies magnitude and
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direction. “Speed” implies magnitude only and
is, therefore, the more appropriate term.) Given
these anchors and the speed limit, the prism
defines the envelope all possible space—time
paths between the anchors. The spatial footprint
of the STP is the potential path area (PPA); this
is the region in space that is accessible to the
moving object.

The prism in Figure 2 is general since it
accounts for stationary activity time and has
two anchors that are spatially separate. A prism
without stationary activity time consists only of
its time-forward cone rooted at the first anchor and
its time-backward cone rooted at the second anchor.
The STP will have a larger volume and PPA,
as no stationary activity means more time to be
mobile. The two anchors may also be coincident
spatially; this prism consists of two right cones
instead of oblique cones as in Figure 2. A prism
may also have only one anchor. An STP with
its first anchor only is a time-forward cone
delimiting all destinations that can be reached
from that origin within a specific time limit.
Conversely, a prism with its second anchor only
is a time-backward cone delimiting all origins
that can reach that destination within a specific
time limit.

The STP measures accessibility: the ability for
an individual to travel and participate in activi-
ties and the amount of time available for activity
participation at locations. An activity at a sta-
tion is not feasible unless that station intersects
with the prism spatially and temporally, the latter
for at least as long as the minimum activity time
required. This delimits the subset of opportuni-
ties in an environment that is available to a person
based on their STP constraints.

The STP provides a dramatically different
image of accessibility than place-based accessi-
bility measures, such as those based on spatial
interaction (“gravity”’) models or simply count-
ing the number of opportunities near a person’s
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home and work location. The locations and tim-
ings of fixed activities vary by age/life cycle stage,
socioeconomic status and culture. For example,
STP-based accessibility measures capture gender
differences in accessibility due to household
organization that are missed by place-based
accessibility measures such as home—work com-
mute length. Place-based accessibility measures
assume everyone at a place, such as home and
work, has the same space—time scheduling con-
straints, while people-based measures derived
from the space—time prims recognize individual
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capability constraints that are masked through
homogenization by place. Time geography
also facilitates understanding how the temporal
organization of service and trading hours can
have differential impacts beyond the locations of

services and businesses.

Bundling and intersections

Time geography recognizes two types of rela-
tionships between paths and prisms. Bundling
refers to the convergence in space and time of
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Figure 2 A planar space—time prism.
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two or more paths. Path bundling is necessary
(although not sufficient) evidence of shared activ-
ities and individuals meshing their space—time
activities to participate in projects. Bundling
can occur when objects are in motion or sta-
tionary; examples of the former include public
transportation and ride-sharing. Intersection is
the condition of two or more time geographic
features sharing some locations in space with
respect to time. Two or more people cannot
physically meet unless their STPs intersect, or a
path is within an STP.

Bundling and intersections are necessary con-
ditions for the emergence of broader space—time
activity systems, such as a university or a city.
Time geography is an ecological theory; it
considers interactions between individuals and
between the individual and the aggregate.
Bundling and intersections require individuals
to synchronize (coordinate over time) as well as
synchrorize (coordinate over space). Coordination
also occurs at multiple scales. Individuals must
conduct projects consisting of sequenced activities
linked by mobility events to meet larger goals
such as hosting a dinner party. Cities and regions
are time systems balancing the supply of available
time and demands on that time. This is a rich
and intricate conceptualization of cities and
societies; Alan Pred memorably referred to a
“ballet of adjustments” as disruptions propagate
through a time system due to activities and
projects changing to meet the new space—time
requirements for participation and interaction.

Analytical time geography

Classical time geography is conceptually rich but
limited analytically. The rise of geographic infor-
mation systems (GIS) motivated renewed interest
in time geography, particularly in relaxing
strict assumptions such as the maximum speed
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constraining an STP being uniform in space
and time. The development and deployment
of location-aware technologies (LATS), such as the
global positioning system (GPS), mobile phones,
and radiofrequency identification (RFID) chips,
have greatly expanded capabilities for collecting
data on mobile objects and have led to the devel-
opment of mobile objects databases and mobility
mining or exploratory analysis of mobile objects
data. These scientific and technological develop-
ments led to the development of analytical time
geography and supporting GIS software.

Path analytics

Location-aware technologies do not generate
space—time paths directly; they generate a tem-
poral sequence of spatial locations that are used
to construct the path. There are several ways
to generate this temporal sequence. Event-based
recording captures the time and location when a
specified event occurs; for example, a person tex-
ting or calling using a mobile phone. Time-based
recording captures mobile object positions at
regular time intervals; this typifies GPS receivers.
In change-based recording a capture occurs when
the position of the object is sufficiently dif-
ferent from a previous location; this includes
dead-reckoning methods as well as some mobile
objects data technologies that avoid recording
locations to manage data volume. Location-based
recording occur when a mobile object comes close
to locations where sensors are located; examples
include stationary radiofrequency identification
and Bluetooth sensors.

The simplest and most common way to
generate a path is linear interpolation: assume
the object followed the straight-line segment
between recorded locations. This works well for
time-based and change-based recording with
high capture frequencies. Event-based recording
creates more issues since events are often not
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very frequent, and the spatial resolution can be
coarse and variable; this is often the case with
mobile phone data resolved only to membership
in a service cell. Even coarser are paths derived
from location-based recording; these are often
simply sequences of visits at the sensor locations.
Space—time paths can also be matched to other
spatially referenced data such as transportation
networks.

The ease of collecting space—time path data
from location-aware technologies often comes
at the expense of path semantics: details about
the moving objects such as the reasons for
mobility behavior. Semantics can be recovered
by overlaying paths with other georeferenced
data. This method can produce errors related
to data inaccuracies and intrinsic ambiguities.
For example, GPS positional error means that
it can be hard to tell if a person is inside or
outside of an activity location, for example, a
coffee house. If the person is inside the coffee
house, what was she doing — dining, working,
socializing, or some combination of the above?
Often, there is no unambiguous link between
locations and activities, especially in an era
with near-ubiquitous access to information and
communication. Methods for recovering path
semantics include decomposing the trajectory

Dimension Primitive

Primary

Instance

Temporal

Interval

Table 1 Measurable primitives and their derivations from movement data.

Duration
Travel time

into a sequence of moves and stops, and anno-
tating these sequences based on map matching
with background geographic information. Also
available are advanced data mining techniques
such as machine learning algorithms.

Table 1 summarizes the fundamental mea-
surements available from space—time paths. The
primitive position allows the derivation of dis-
tance, direction, and spatial extent in the object’s
movement; an example is spatial range meth-
ods. From these primary derivatives the spatial
distribution of the object, changes in direc-
tion, and the path’s sinuosity can be derived.
From the temporal primitives instant and interval
the duration of the object’s movement and its
speed, as well as the temporal distribution of the
object’s movement and changes in duration, can
be derived. Primary derivatives from combining
spatial and temporal intervals include the object’s
speed (a scalar) and velocity (a vector), and corre-
sponding secondary derivatives acceleration and
an approaching rate with respect to a location,
boundary or region.

Prism analytics

It is difficult to analytically describe the entire
STP. However, it is easy to describe its spatial
extent at a moment in time; this can serve as

Derivatives

Secondary

Temporal distribution
Change of duration

Dodge, Weibel, and Lautenschiitz 2008.



the basis for a wide range of prism analytics. STP
parameters are {X;, X;, f;, [;, 5;;, a;} where x;, X; are
the first and second anchor locations with associ-
ated departure and arrival times t;, f; respectively,
s; 15 the maximum travel speed, and a; is the
stationary activity time. At a moment in time
t € (t;,1;), the spatial extent of an STP (denoted
by Z;(f)) is the intersection of three convex spatial
sets: (1) the future disc f(f) comprising all loca-
tions that can be reached from the first anchor
by time #; + f; (ii) the past disc p,(f) encompassing
all locations at time f that can reach the second
anchor by time #; — ; and (iii) the geo-ellipse g
that constrains the prism locations to account for
any stationary activity time:

Zi() = {f(np; (HNg;} (1)
SO = {x} lIx = x|l < (= 1)s; 2)

pi={x}lx=x <@ -0s;  (3)
g = {x}IIx=x; ]| +[lx—x]|

< (t]_ ti_aij)sij “

Figure 3 provides an illustration. This defini-
tion of the STP is not limited to 2-D space. In
1-D space, the sets described by equations (2)—(4)
are line segments. In 2-D space, the discs are
circles and the geo-ellipse is an ellipse. In 3-D
space, the discs are spheres and the geo-ellipse
is a spheroid. There are scalable methods for
calculating these objects and their intersections.
Also, only one or two of the sets are relevant at
any time, since the future and past disc change
in size and may be enclosed by the other two
objects. For example, with a general prism as in
Figure 2, it is only necessary to solve (in the fol-
lowing order) a disc, a disc—ellipse intersection,
an ellipse, a disc—ellipse intersection, and finally
a disc. Similarly, finding path—prism intersections
only requires testing if a point lies within a disc,
ellipse, or a disc—ellipse intersection. Finding
a prism—prism intersection requires solving for
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the intersection of two, three, or four of the
sets based on the prisms’ morphologies at that
moment in time. The worst case is a four-set
intersection involving two discs and two ellipses
(Miller 2005).

Over time, the future disc traces the time-
forward cone with an apex at the first anchor, the
past disc traces the time-backward with an apex at
the second anchor and the geo-ellipse is a cylin-
der. Over time, the prism in space is a lens-like
set that traces the PPA footprint. These dynamics
can be computed at discrete moments in time
using the static construction described above and
reconstruct the corresponding spatiotemporal
region for the prism.

Error and uncertainty in paths
and prisms

Error in space—time paths results from two
sources. Measurement error occurs when the
recording of a mobile object’s location has noise
or uncertainty. The left-hand side of Figure 4
illustrates this for one segment of a space—time
path; the captured locations have some degree
of spatial error. This is equivalent to the prob-
lem of error in line segments and polylines, a
well-established topic in the GIS literature. Sam-
pling error occurs when the captured locations
undersample an object’s movement pattern. This
creates a spatial uncertainty region equivalent
to the STP over time. Therefore, a space—time
path with sampling error can be viewed as a
sequence of linked STPs. The right-hand side
of Figure 4 illustrates this; the black curve is the
actual path of the mobile object, the dashed red
polyline indicates the interpolated movement,
and the blue ellipses indicate the spatial uncer-
tainty region surrounding each paired sample
locations.
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Figure 3 Analytical construction of a planar STP.

Combined measurement and sampling error in
a space—time path is equivalent to an STP with
measurement error. Therefore, if it is possible to
solve the measurement error problem for STPs it
is also possible to solve the problem of combined
measurement and sampling errors in space—time
paths. One strategy is Monte Carlo simulation,
which involves generating multiple prism real-
izations based on sampling from the stochastic
error distributions. Monte Carlo simulation is
effective for theoretical investigations but it is
cumbersome for applications: it is awkward to
run prism error simulations when executing
STP-based mobile objects database queries or
measuring accessibility in a model.

Spatial error propagation theory provides
an analytical strategy for analyzing prism
error. Given a direct geographic measurement
x = p, + €., where p, is the true location vector
and €, is an error vector, it must be determined
how that error propagates through a geographic
operation y = f(x). If f{x) is nonlinear, the error
propagation is approximated using the first-order
partial derivatives of the function. In the case

8

Figure 4 Measurement and sampling error in
space—time paths.

of the analytical prism, the relevant functions
are the intersections of the boundaries of spatial
objects described by equations (2)—(4). These
boundaries are:

Siollx=xll = (t=1)s; =0 ®)

p;- lIx — Xj” - (5 - t)sij =0 (6)

gt llx=x;ll+ |lx—x|
_(tj_ti_aij)sij =0 (7)

A problem is that equations (5)—(7) define these
boundaries implicitly rather than explicitly (that
is, in the form f(x, y) = O rather than f(x) = y),
meaning that solving for the intersection points
requires finding the roots of high order poly-
nomials. This difficulty can be resolved using
implicit function methods that allow calculation
of the required first order partial derivatives with-
out having their explicit functions. This allows
the error propagation from STP parameters to
the constructed STP and to STP intersections to
be estimated analytically. However, some of the
required circle and ellipse intersection cases are



still unsolved and the techniques are not tractable
beyond two STP intersections. Still required are
scalable approximations and heuristics for STP
error based on these analytical techniques. The
analytical techniques can also serve as bounds
for improving the efficiency of simulation-based
techniques.

The methods discussed above estimate error
propagation from measured STP parameters to
the constructed object. Another strategy is to
construct objects that encompass the possible
STP consistent with the prism parameters and
their errors. A rough STP consists of the upper
and lower bounds on an STP. A reliable STP is the
set of space—time locations where an individual
can conduct an activity and meet the second
anchor constraints with a specified probability.

Properties of the prism interior

The STP is traditionally a binary concept; all
locations within the prism interior are consid-
ered to be equally accessible. However, this is
a simple characterization that masks intricate
properties of the prism interior. Intuitively, it
would be expected that the distribution of visit
probabilities would be unequal: locations that
are near the space—time axis connecting the
prism anchors are more likely to be visited than
locations near the prism boundary since there
are more possible paths through the former.
One way to model visit probabilities within a
planar STP is to use the theory of random walks
(RWs). An RW is a stochastic process in discrete
space and time; given a spatial lattice of discrete
locations, an RW involves, at each time step, a
random choice of direction. Results from RW
theory confirm intuition that locations near a
prism anchor in a forward-time or backward-
time cone are more likely to be visited; visit
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probabilities follow a bivariate multinomial
distribution centered on the prism anchor.

However, movement within an STP with two
anchors is not completely random; the object
needs to move from the first prism anchor to
second anchor within the time budget. A directed
random walk (DRW) is an RW process with direc-
tional biases. A DRW process constrained by an
STP requires updating the RW direction biases
at each step to account for the remaining time
to travel to the second anchor given the speed
limit. This suggests a visit probability distribution
similar to a bivariate normal distribution that is
centered on the axis connecting the anchors and
moves along that axis with respect to time.

A technique for modeling directed movement
in continuous time and space is Brownian bridges
(BBs). A BB is a continuous stochastic process
between two known values; it has been applied
widely to model animal movement between
recorded locations. While BB can capture direc-
tionally biased random movement between
prism anchors, is it not constrained by a maxi-
mum speed and, therefore, does not capture the
STP boundary; it is still possible for the object
to travel outside the prism boundary. A fruncated
Brownian bridge (TBB) imposes a maximum
speed on a BB process, fully representing STP
constraints. Figure 5 illustrates visit probabili-
ties at a moment in time within the PPA of a
planar STP based on a TBB process. Figure 5
shows the two prism anchors with the spatial
projection of the space—time axis connecting the
anchors. The gray area is the PPA for the STP:
these locations have zero probability of being
occupied at this moment in time. The blue,
yellow, orange and red colors show increasing
probability that the locations may be occupied
by the object at that moment in time. These
results are also consistent with the assumption
of a bivariate random distribution whose center
moves with time along the axis connecting the
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anchor points; however, rather than assumed it is
derived from fundamental movement principles.

Another strategy for estimating visit prob-
abilities within planar STPs is to use spatial
interpolation to infer unknown object locations
from the known locations at the prism anchors.
This assumes that the most likely locations are
along the axis between the anchors, but as
seen above this assumption is consistent with
theory. Time-geographic density estimation (TDE)
integrates kernel density estimation with the
constraints imposed by an STP. This method can
generate the fine-grained movement patterns
of objects between anchors derived from sparse
tracking data.

Other types of space—time prisms

A planar STP has interesting properties and is
useful for applications where it can be assumed
that objects move in constrained space with a
uniform maximum speed. However, in some
applications the assumptions of unconstrained
space and uniform maximum speed are unre-
examples include vehicles within a
transportation network or movement across
terrain. In addition, the STP assumes unrealistic
motions such as infinite rates of acceleration and
deceleration.

A network time prism (NTP) is a prism subject
to network routes and allowable speeds that vary
by network arc and, possibly, time. Figure 6
illustrates an NTP for a network embedded in
2-D space with time along the third orthog-
onal dimension (Kuijpers and Othman 2009).
The green subportion of the network arcs is
the potential network area (PNA), the network
analog of the planar PPA; these are the accessible
locations within the network. The red polygon
comprises the full NTP; this is the envelope of
possible space—time paths between the anchors
constrained by the network.

alistic;

Figure 5 Visit within  a
space—time prism’s potential path area at a moment

in time.

probabilities

planar

Calculating an NTP involves three steps.
A precomputation step uses the planar PPA
as an upper bound on the NPA; this speeds
computation by eliminating network nodes that
cannot possibly be in the NPA. It then solves
for the shortest path tree in this subnetwork
twice: once for travel from the first anchor and
a second time for travel to the second anchor.
The procedure assigns the earliest arrival time
and latest departure time at each node. The
second step builds the spatial footprint of the
NTP by testing if only one of an arc’s end nodes
is included in the NPA and (if so) solving for
the NPA boundaries within the edge. The third
step computes the full spatiotemporal region of
the NTP based on the earliest arrival times and
latest departure times at network vertices. These
arrival and departure times dictate, for each node
incident to an arc, whether the mobile object
can traverse the full arc to an adjacent node
or can only traverse partway and return to the
original node. These cases correspond to the



Figure 6 A network time prism.

rectangular and triangular regions in Figure 6,
bottleneck
in the algorithm is the shortest path trees in

respectively. The computational
the precomputation step; although this is only
applied to a subportion of the network, this
subnetwork can be large, as can the number of
prisms to be processed. However, the Boolean
query about whether two NTPs intersect can be
solved analytically.

Similar to an STP, the parameters of an NTP
can also be measured with uncertainty. An anchor
region 1s the set of all possible locations and
times for a prism anchor within a network arc.
These regions are not necessarily continuous
in space or time and can have nonuniform
probabilities. There are two ways to calculate
an NTP with anchor regions. The first way is
to calculate the envelope of all NTPs having an
anchor point within a given anchor region. The
second way is to calculate, for any space—time
point, the probability that an NTP with given
anchor regions contains that point. As with the
standard NTP, the computational bottleneck
is the precomputation phase involving shortest
path calculations.
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A field time prism (FTP) is a planar STP
where travel speeds (magnitude) or velocities
(magnitude and direction) vary continuously
across space. Fields are useful for describing
movement across terrain or through water and
air that are subject to currents. Fields can extend
the NTP by treating edges as 2-D regions
with continuously varying speeds or velocities
due to factors such as traffic. In these cases,
space—time paths have unobserved components
corresponding to minimum cost curves through
an inverse speed or velocity field rather than
straight line segments through a uniform plane.
The FTP generalizes the prism concept: the
STP and the long standing concept of isochrones
(curves of equal travel time) are special cases
of the FTP. It also links time geography to
the continuous transportation or wurban fields
tradition in quantitative geography and regional
science.

Space—time prisms as described above are phys-
ically impossible; they assume that the mobile
object can instantly accelerate and decelerate
at locations such as the prism anchors and the
prism’s sharp corners. Physical limitations on
acceleration and deceleration mean that an STP
is an overestimate of the true space—time region
accessible to the object. While this may not mat-
ter for some STP applications, kinetics can make
a difference for applications such as microscale
movement (e.g., pedestrians, athletes), active
transport modes such as bicycling, movement
through media such as airplanes and ships, and
animal behavior. It can also make a difference
for applications in sustainable transportation, as
vehicle fuel consumption and emissions are often
dominated by acceleration events.

A kinetic time prism (KTP) is the set of all
possible kinetic paths between two locations
and times, where a kinetic path is a space—time
path that obeys physical limits on acceleration
and deceleration. Figure 7 illustrates a KTP in
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Figure 7 A kinetic (solid line) and classic (dotted
line) space—time prism in 1-D space.

1-D space and time, overlaid with a classic STP,
Solving a KTP is scalable in 1-D space and time
but complex in 2-D space. In 2-D space, only
one-quarter of the prism must be solved; the
remainder can be obtained through point and
reflection symmetries. But calculating the first
quarter of the KTP requires solving parametric
functions describing the 1-D prism rotating
around the line connecting the prism anchors.
This can only be accomplished if it is assumed
that the object’s initial heading is unknown; still
open is the case where the object’s initial heading
is known.

Path and prisms collections

With the proliferation of location-aware tech-
nologies generating mobile objects data, it is
often the case that there are large collections of
space—time paths and prisms to analyze. With
these collections, it is often useful to summarize
the paths or prisms through clustering (finding
groups of similar paths or prism) or aggregation
(forming a composite representative paths or
prisms). It may also be desired to search through
a collection of paths and prisms for other cases
that resemble a reference path or prism. This
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requires methods for calculating path and prism
similarity.

Path  similarity is the degree of correspon-
dence between two space—time paths. Geometric
similarity measures focus only on the geometry,
ignoring sequence and time; these include
Euclidean and Hausdorft' distances. Euclidean
distances, such as the average, minimum and
maximum distance are intuitive and scalable;
however these measures are sensitive to noise
and outliers. The Hausdorft distance is the maxi-
mum distance from a location in one path to the
closest location in the other path. However, the
Hausdorft distance can be misleading, as it does
not take into account the temporal sequence of
the path locations, only their geometry.

Dynamic  similarity measures include Fréchet
distance, dynamic time warping, longest com-
mon subsequences, and edit-distance functions.
Unlike Hausdorff, the Fréchet distance takes
into account the sequence of locations in the
path and is, therefore, better suited to mobile
objects. One way to think about the Fréchet
distance is to imagine two space—time paths
representing a person walking a dog: the Fréchet
distance is the shortest leash that connects the
two. Dynamic time warping measures the similarity
between two sequences or trajectories based on
the effort involved to stretch or compress time
to get the sequences to match. Least common
subsequence (LCSS) measures similarity based
on the length of least common subsequence
between two sequences. Edit-distance functions are
a generalization of LCSS; these measure simi-
larities between sequential patterns based on the
cost of the insertion, deletion, and substitution
operations required to transform one sequence
into the other.

Other methods for analyzing collections of
space—time paths include path clustering meth-
ods and spatial field methods. Path clustering
methods find groupings of similar space—time



paths in collections of mobile objects; these are
often based on path similarity measures such as
the ones already discussed. Spatial field methods
translate movement patterns of objects into fields
or surfaces that summarize mobility and activity
frequency by geographic location, allowing the
identification of “hot spots” or locations with
high mobility activity.

Similar to space—time paths, it may desired to
analyze a collection of space—time prisms for
patterns. This may involve clustering or aggre-
gating prisms based on morphology, finding
prisms similar to reference prism, and sum-
marizing and aggregating prisms to discover
synoptic patterns. However, to date there has
been little research on these questions; it is a
much less developed research topic than path
comparison and summarization. A fundamental
problem is to develop efficient numeric measures
that summarize meaningful prism properties.
It is easy to calculate basic properties such as
prism volume and PPA size for classic prisms,
as these have an elegant geometry consisting of
cones and cylinders. More generally, measures
are required that can capture a wide range of
morphological properties. These properties may
be straightforward for classic prisms, but more
complex prisms such as NTPs, FTPs, and KTPs,
or prisms with fuzzy or probabilistic boundaries
have more complex shapes and, consequently,
are more difficult to describe analytically.

One possible strategy for measuring planar
space—time prism morphology is shape analysis
or quantitative measures summarizing geomet-
ric form. Shape analytical techniques typically
reduce geometric forms to a single numeric indi-
cator or a small set of indicators; for example,
roughness, perforation, and elongation. How-
ever, most shape measures are specific to 2-D
space: required are scalable shape measures that
can handle 3- or 4-D space (treating time as
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static) and the evolution of shape (treating time
as dynamic).

A possible way to summarize NTP structure is
through network indices based on graph theory.
Network indices summarize network properties
such as connectivity, the distribution of arc
lengths/costs, and properties of shortest paths
and tours within the network. Graph theory and
network analysis is a very well established field
that has been newly reinvigorated due to the rise
of network science to analyze phenomena such
as social network and cities. A research frontier
is determining which existing network indices
describe relevant properties of NTPs, and the
development of new network indices tailored
for NTDPs.

Joint accessibility and time ecology

As mentioned, time geography recognizes
bundling and intersections among paths and
prisms as indicators of shared activities. The next
step beyond calculating bundles and intersections
are the higher-level properties associated with
space—time coordination and dynamics.

Collective motion methods focus on individual
object movement patterns within the context of
a larger group of mobile objects. Distance-based
measures search for collective patterns, such as
flocks, by searching for moving objects that are
densely connected in space given user-defined
distance and time thresholds. Relative motion
methods consider the individuals’ directions
to detect collective patterns such as flock-
ing, leadership and convergence in a group of
moving objects. Joint accessibility measures use
prism—prism intersections as a basis for analyzing
the potential benefits to coordinated activity
participation.

Static measures of collective motion and joint
accessibility do not directly address the ultimate
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goal of understanding the dynamic processes
though which shared and interlinked activities
form and intertwine in space and time. This
highlights a weakness of time geography: its
inability to specify an explanation of human
activity that goes beyond the implications of
space—time constraints limiting possible activi-
ties. Time geography can explain why infeasible
activities did not occur, but it cannot explain
why some feasible activities occurred while
others did not. However, it would be difficult to
build a dynamic, processes-based time ecology
theory based only on the negative space implied
by prisms and stations. A more promising way
forward is to link time geography with modeling
approaches such as activity-based travel demand
models and agent-based models that naturally
capture the emergent properties associated with
individuals’ interactions over space and time.
The natural fit between activity-based analysis
and time geography is well recognized and well
utilized in many models. However, the linkages
between time geography and agent-based mod-
eling are less developed, somewhat surprisingly
given their complementarity.

Time geography and virtual interaction

Classical time geography recognizes the pos-
sibility of wvirtual interaction; for example,
Higerstrand (1970) shows a telephone call
between two space—time paths. However, virtual
interaction 1s neglected relative to travel and
physical interaction in classical time geography.
This is understandable given the era when time
geography was initially formulated. But in the
contemporary world virtual interaction is more
pervasive and cannot be ignored when discussing
physical mobility and activities.

Table 2 is a typology of possible communi-
cation modes based on space—time constraints.
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Synchronous presence (SP) includes face-to-face
conversations; this requires people involved to be
physically present or proximal at the same time.
Asynchronous presence (AP) requires co-location
in space but not coincidence in time; examples
include notes left on an office door or in a
geocache. Synchronous telepresence (ST) requires
coincidence in time but not in space; it includes
media such as telephones, television, radio, and
teleconferencing. Asynchronous telepresence (AT)
does not require co-location in space or coinci-
dence in time; it includes mail, e-mail, messages,
and webpages. Classical time geography focuses
on SP, recognizes but does not develop ST, and
mostly ignores AP and AT.

There are at least two strategies for incorpo-
rating the wider range of communication modes
into time geography. One strategy is to treat these
as spatial and temporal relationships between
space—time paths and prisms. SP requires the
prism to intersect both spatially and temporally,
while AP interactions only require spatial coinci-
dence between the prisms (in other words, they
share the same locations but at different times).
ST requires temporal but not spatial coincidence

Table 2 Communication modes based on spatial
and temporal constraints.

Temporal Spatial
Presence Telepresence
Synchronous ~ SP ST
Face-to-face Telephone
conversation Television
Radio
Teleconferencing
Asynchronous AP AT
Trail signs Mail
Note left on E-mail
office door ~ Newspapers
Geocaches Webpages

Janelle 2004.



(the prisms share some interval in time but not
locations in space), while AT only requires one
prism to precede the other in time.

Another strategy for extending time geog-
raphy is to make communication technology
explicit using time geographic entities and derive
space—time constraints based on those entities. A
portal 1s a type of space—time station (Figure 1)
where a person can access communication ser-
vices. It includes a point location, and an access
range and time intervals when the service is
available. Portals correspond to real world enti-
ties such as wired Internet connections (a point
location with zero range), wireless access points,
and cellular telephone base stations (both charac-
terized as point locations with different ranges).
An individual can access a communication ser-
vice only if his or her paths or prism intersect
with the service footprint of an appropriate
portal. When this occurs, it generates a message
window or an interval of time when a message
could be sent or received. Message windows
can be compareed using temporal predicates
such as before, during, and after to determine
which communication events are feasible. This
approach is consistent with the perspective that
temporal constraints dominate spatial constraints
on telepresence.

Discovering time geographic knowledge

As the size of mobility datasets become richer
and voluminous, the challenges move beyond
developing scalable techniques for comput-
ing low-level time geographic properties and
relationships to discovering higher-level time
geographic knowledge. Mobility mining is a set of
activities and techniques for discovering novel
knowledge hidden in moving objects data. This
involves three major activities: (i) trajectory
reconstruction and management; (ii) space—time
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knowledge discovery; and (iii)
knowledge delivery.

Tiajectory reconstruction and management requires
processing the raw mobility data to obtain the
space—time paths of the mobile objects as well as
data structures and access methods for processing
these paths efficiently. These include specialized
data warehouse designs, mobile object indexing
methods, and semantic trajectory compression
methods for reducing storage requirements.
Preserving locational privacy through security,

anonymization, and other protocols is also a

space—time

concern.

Space—time knowledge discovery involves process-
ing the trajectories to discover patterns such as
clusters and behavioral rules. As noted, path and
prism similarity methods can be used in conjunc-
tion with clustering methods to provide synoptic
summaries of large mobile objects databases.
Collection motion methods can also scale to
large mobile databases. Another technique is
space—time association rule mining that discovers
rules describing how objects move among a set
of regions over time. Sequence mining techniques
search for temporal patterns in mobile objects
data. Periodic pattern mining search for recurrent
patterns in sequential data includes finding loca-
tions that are repeatedly visited by mobile objects
and the recurrent movement patterns between
these locations. Under specific conditions, causal
relationships can also be inferred from sequential
pattern in movement data.

Space—time knowledge delivery from movement
data requires methods for transparent manage-
ment of the knowledge discovery process and
linking discovered knowledge to real-world
semantics. A strategy for managing mobility
mining is through visual analytics. Visual analytics
is an extension of scientific visualization, but
rather than seeking insights into data, visual
analytics seek insights into how data are pro-
cessed during exploration and analysis. Visual
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analytics for moving objects include techniques
for analyzing and comparing entire trajectories,
the distribution of properties within trajecto-
ries, synoptic visualization, and investigating
movement within geographic context.
Connecting movement patterns to real-world
movement semantics requires a conceptual sys-
tem for describing low-level patterns and their
relationships with higher-level behavior. System
dimensions can include movement parameters
(direct measures and derivatives; Table 1), the
number of objects (one, group, or a cohort of simi-
lar objects such as people aged 20-30 years), path
type (semantically continuous or discontinuous),
influencing factors (the object’s intrinsic properties,
spatial constraints on movement, environmental
factors, and the influence of other agents), and
scale/granularity of the data (spatial and temporal
scales, temporal granularity). Generic patterns
are low level and shared with many different
types of mobile objects. These can be primi-
tive (based on a single mobility parameter) or
compound (based on multiple primitives and/or
inter-object relations). Behavioral patterns are high
level and specific to the object type. Examples
pursuit/evasion, fighting, flocking,
and leader/follower. Unlike generic patterns,
behavioral patterns are open-ended and can
be added to the framework as more empirical
movement patterns are discovered in different
(Dodge, Weibel and Lautenschiitz

include

domains
2008).

SEE ALSO: Accessibility, in transportation
planning; Agent-based modeling; Behavioral
geography; Big data; Data model, moving
objects; Geographic data mining; Geographic
information science; Geographic information
system; Geolocation services; GIS for
transportation; Graph theory; Information and
communications technology; Information
technology and mobility; Network analysis;
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Regional geography; Representation: time;
Representation: trajectories; Transport
geography; Transport networks; Transport
technology; Uncertainty
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