This scanned material has been brought to you by

Article/=]

Express

Interlibrary Services
The Ohio State University Libraries

Thank you for using our service!

NOTICE
WARNING CONCERNING COPYRIGHT RESTRICTIONS

The copyright law of the United States (Title 17, United States Code)
governs the making of photocopies or other reproductions of copyrighted
material.

Under certain conditions specified in the law, libraries and archives are
authorized to furnish a photocopy or other reproduction. One of these
specified conditions is that the photocopy or reproduction is not to be

“used for any purpose other than private study, scholarship, or research.”

If a user makes a request for, or later uses, a photocopy or reproduction for
purposes in excess of “fair use,” that user may be liable for copyright
infringement.

This institution reserves the right to refuse to accept a copying order if,
in its judgment, fulfillment of the order would involve violation of copyright law.

No further reproduction or distribution of this copy is permitted
by electronic transmission or any other means.

%T{IT(E) UNIVERSITY LIBRARIES




. Article
ILLiad TN: E
658416 xXpress
N AN

Request Date: 2/8/2010 08:59:38 AM
Patron: Tennant, Neil
Patron Email: tennant.9@osu.edu

Status: Faculty (Columb
vy, . -——-_f': -7 " /"C‘ -
Call #: :)) é 7’ L3 (& /o)
Location; /(4/{ ,

Journal Title: Philosophy and the Cognitive
Sciences:Proceedings of the 16th International
Wittgenstein Colloquium, edited by R. Casati, B. Smith
and G. White, Holder-Pichler-Tempsky, Vienna

Volume: Issue:
Month/Year: , 1994
Pages: 273-286

Article Author: Neil Tennant

Article Title: Automated Deduction and Artificial
Intelligence

Imprint:

Patron Notes:

Please email resend requests to
liblend@osu.edu or call 614-292-6211.

Notice: This material may be protected by
Copyright Law (Title 17 u.s.c.).

OSU Document Delivery



Automated Deduction
and Artificial Intelligence

Neil Tennant

As a central normative component of cognitive science, computational logic
should direct its interests first and foremost to the design of ideal infer-
ence engines for artificial intelligence. The computational logician wants
the computer to solve deductive problems. A deductive problem is of the
form X ?— A, where X is a finite set of sentences (the premisses) and A
is a sentence (the conclusion). If the computational logician succeeds, the
resulting programs can be used as components in the design of an artificial
intelligence. For in designing an artificial intelligence we want a cybernetic
theorizer: we want cybernetic development of the logical consequences of
sets of mathematical axioms; cybernetic unfolding of the predictive content
of our scientific hypotheses; and cybernetic revision of those theories in the
light of contradictions discovered, whether internally or with recalcitrant ob-
servation. In short, wherever logical reasoning features in our own framing,
testing and revision of theories, we should aim to have computational sur-
rogates for that exercise of our own logical intelligence. I say this in full
awareness of the undecidability of many logics, and of theories based on
them. What we need is eine Einstellung 2ur Seele als Maschine, an attitude
that concedes the possibility of cybernetic emulation of our logical abilities.

Computational logic can take two forms. First, one could devise logic
programs that would prompt the human user interactively when the human
user is seeking a proof of a given argument. In this role the computer with
its program is no more than a desk-mate, relieving the human user of some
of the formal drudgery involved in precise rule applications, and reminding
the human user of the full gamut of permissible moves that might be made
at any stage with the deductive materials at hand. It would still be up to
the human user to make the strategic decisions as to where to look next
for an unbroken path through the logical foothills. This is called interactive
theorem-proving, and I am not interested in it.

What interests me rather is automated theorem proving. On this ap-
proach, the computer is programmed to carry out the whole proof search
entirely on its own, following the search algorithm already embodied in the
program. Such programs can be logically complete only if the logical system
(or the theory within which one is working) is decidable, and not merely itself
complete. With an undecidable system, every such (terminating) program
for problem-focused proof search will be incomplete. But so too would be

R. Casati, B. Smith, G. White (eds.) Philosophy and the Cognitive Sciences 273-286
Copyright © 1994, Hélder-Pichler- Tempsky




274 NEIL TENNANT

that of any human mathematician for the system concerned; for the math-
ematician is just another machine. So even with respect to an undecidable
system one could emulate the abilities of the human logician or mathem-
atician. Even if we cannot match each and every human reasoner within one
all-encompassing program, then at least we can furnish for each and every
human reasoner a matching program. The aim, then, is to make an auto-
matic theorem-proving program that could take its place within the human
mathematical community, and earn its colours by passing the sort of Turing
Test that mathematicians constantly apply to each other in sustaining their
sense of community.

As we know from applications of computers in other areas, their great
advantage is their astonishing speed and their formidable accuracy. They
can take the drudge out of the logician’s task of formal pattern-matching
when invoking axiom schemata and applying rules of inference. They can
also make sure that no logical slips are made — that everything done so
far has been done correctly, according to the formal rules of the system
concerned. Computers keep our logical toils honest. They force us to abide
by the rules we have laid down. These rules specify what inferential moves
we may make; and what moves the doubting audience must accept as licit.
There is astonishing hardness in the silicon must.

Computational logic, then, even conceived as a part of cognitive sci-
ence, is a normative enterprise. One is seeking a model of competence, not
of performance. The methodology is a priori, and involves expert intro-
spection. The challenge is to identify, formulate and implement constraints
governing search for proofs within given theories.

In a project like this, one has to get three things right:

® a theoretically well-informed choice of logic (where the theoretical con-
siderations can concern such matters as computational complexity,
philosophical grounding, adequacy for science and mathematics, etc.)

e a decision algorithm that is no more complex than it has to be for
the logic in question (where the algorithm can be one that searches for
proofs and/or counterexamples, and where the proofs can be in various
formats)

e an implementation of that algorithm that is as efficient as possible
(where the implementation should be suitably general and uniform
across all possible input problems)

If you want a novice to become a good architect, let her start with Lego. If
you want to build a super-sophisticated deductive system, start with simple
p’s and ¢’s. I shall now describe some theory developed to devise automated
proof search for certain decidable propositional logics: logics deserving to
be called systems of constructive and relevant reasoning. (A propositional
logic deals only with logical operators that form sentences from one or more
sentences. The most familiar of these are ~ (negation), & (conjunction),




Automated Deduction and Artificial Intelligence 275

V (disjunction) and > (implication). A logic is decidable when there is an
effective method for deciding, of any finite set of premisses and a conclusion,
whether the latter can be deduced from the former within that logic.)

Deep and interesting problems emerge for the automation of proof
search even with these simple materials: problems the shape of whose general
theoretical solution one must discover and appreciate if one is to hope for any
progress later with more complicated systems. The computational explosion
involved in proof search, even in decidable propositional logics, is awesome.
One has to learn how to tame it before tackling the quantifiers, which take
one into the realm of the undecidable.

The computational logician is interested not just in the question of
whether a logic is decidable, but also in the question whether its decision
problem is tracteble. Every tractable problem is decidable, but not con-
versely. Tractable problems are conventionally taken to be those that can
be solved in polynomial time. Thus, the decision problem for a logic if there
is a polynomial function f(-) such that for any problem X 7— A of length n,
it could be decided within f(n) steps (or units of computing time) whether
there was a proof of the conclusion A from the set X of premisses within that
logic. Alas, none of the usual propositional logics turns out to be tractable
in this sense. .

Classical logic C properly contains intuitionistic logic I, which prop-
erly contains minimal logic M. M consists of just the introduction and
elimination rules for the logical operators. I has in addition the absurdity
rule, allowing us to infer anything from a contradiction. C goes even further
by adding one of the classical rules of negation: the law of double negation,
or classical reductio, or the rule of dilemma, or the law of excluded middle.
Within I, M has an overlapping neighbour: the system IR of intuitionistic
relevant logic. From M there is an easy theoretical transition to JR. This
system, I have argued elsewhere, has strong meaning-theoretic, epistemolo-
gical and methodological claims to adequacy and correctness. I maintain
it is the right logic. Like M, it lacks the absurdity rule; but unlike M, it
contains disjunctive syllogism and lacks the inference A,~ A F~ B.

Because of its extra negation rules, C has the tamest decision prob-
lem of all: although it is not tractable in the sense Just explained, it is
nevertheless NP-complete. What does it mean when one says that a com-
putational problem class (such as deciding whether a given deductive prob-
lem admits of proof) is NP-complete? It means that it can be solved in
non-deterministic polynomial time (that is, it is NP-easy); and that any
other problem class that can be so solved can be transformed into the one
at hand in (deterministic) polynomial time (that is, it is NP-hard). This
in turn raises definitional demands regarding non-deterministic polynomial
time and (deterministic) polynomial time. A problem class can be solved in
non-deterministic polynomial time just in case there is an algorithm o« for
solving it, and a polynomial function f(-), such that for any input problem
7 of length n, the search tree generated by the branching (choice) points of



276 NEIL TENNANT

the algorithm « applied to the problem 7 contains a solution at the end of
a branch of length less than f(n). An intuitive way of thinking of this is
that if, in the execution of the algorithm « (which requires us at branching
points to make single choices from a range of possible alternatives) we were
so it lucky as always to choose “correctly” — and thereby solve the problem
as quickly as possible — then indeed we would do so in no more than f(n)
units of time. :

P is the class of problems (more exactly: problem classes) that can be
computed in polynomial time. NP is the class of problem classes that can
be computed in non-deterministic polynomial time. It is an open problem
whether P = NP. The orthodox conjecture is that P is properly contained
in NP; for no-one has ever provided, for any one of the hundreds of problem
classes now known to be NP-complete, an algorithm that runs in polynomial
time.

C' is NP-complete because it provides a very replete set of proof meth-
ods. Both I and M, by contrast, are PSPACE-complete. This means that
the amount of memory (rather than the number of units of time) needed
for the relevant computations is bounded above by a polynomial function.
Computations in general need more time than memory, for it takes time
to exploit memory storage. So PSPACE-completeness is likely to be worse
than P(time)-completeness; indeed, likely to be worse even than NP-com-
pleteness.

Let us look more closely at the problem of proof search for systems of
constructive and relevant reasoning. For systems such as M, I and IR, there
are no such results as conjunctive normal form or disjunctive normal form
theorems. The de Morgan laws and dualities break down. Double negations
cannot in general be eliminated. One cannot simplify a problem by normal-
forming of formulae, or pre-processing its premisses and conclusion before
embarking in earnest on proof-search with the simplified forms. Thus the so-
called resolution method in automated theorem proving, insofar as it relies
on such normal-forming of formulae, is confined to classical logic.

The computational credentials of IR are as compelling as its philo-
sophical and metamathematical ones. By this I mean that its exploitation
of the notion of relevance will not make it strictly more difficult to find
proofs than it already is in intuitionistic logic. My method of relevantising
a system of logic will produce a relevant system whose decision problem
is no more complex than the decision problem of the parent system. The
method of relevantising the system I of intuitionistic logic to get the system
IR also produces, in a exactly similar fashion, the system CR of classical
relevant logic from the system C of classical logic. Both IR and CR are
decidable, and have decision problems no more complex than those of I and
of C respectively.

By contrast, the propositional relevance logic R of Anderson and Bel-
nap is undecidable. Its well-known decidable fragment LR, obtained by
dropping the distributivity axiom, has an awesomely complex decision prob-




Automated Deduction and Artificial Intelligence 277

lem: at best ESPACE hard, at worst space-hard in a function that is primit-
ive recursive in the generalised Ackerman exponential. From NP to ESPACE
or worse, courtesy of “relevance”! — so much the worse, then, for this brand
of relevance.

These complexity results for LR (and the undecidability of R itself)
bring out an important tension between one motivation for studying relev-
ance, and the Anderson-Belnap paradigm for treating it. The motivation is
that a proof system obeying some constraint of relevance of assumptions to
conclusion would admit of faster proof search. (The untutored idea is that
a suitable relevance constraint will somehow narrow the search space.) The
Anderson-Belnap paradigm for treating relevance is their family of systems,
clustering around R, that enjoy unrestricted transitivity of proof, eschew
disjunctive syllogism, and involve so-called “intensional” connectives. If the
motivation and the untutored idea are sound, we must conclude, in the light
of the complexity results, that the Anderson-Belnap approach to relevance
is not. The possibility remains that some other characterization of relevance
will yield the sought reduction in complexity of proof search (or, at least,
no increase). Here is an opportunity for computational concerns to inform
philosophical preferences for one system of relevance logic over another.

No-one interested in the logical reconstruction of mathematics should
undertake it in the relevance logic of Anderson and Belnap. For it forces
one to give up disjunctive syllogism - because it holds on to unrestricted
transitivity of deduction. Those who would “relevantise” mathematics in R
have to re-derive every well-known mathematical theorem from the accepted
axioms. They have no general metatheorem to the effect that if a result holds
classically, then there is a relevant proof of it.

By contrast with R, we have metatheorems, for the systems IR and
CR of relevance logic, guaranteeing the relevantisability of consistent math-
ematical theories:

Theorem 1 Any proof in I [C] of a conclusion A from a set X of premisses
can be transformed into a proof in IR [CR] of either A or A (absurdity) from
(some subset of) X.

This guarantees epistemic gain. On relevantising any classical or intu-
itionistic proof, one obtains either a proof of the sought conclusion from the
set X of original premisses, or a proof of that conclusion from some proper
subset of X, or a proof that (some subset of) X is inconsistent. We may
sum up by saying;:

¢ we may relevantise without loss on consistent sets of premisses

® we may relevantise without loss on logical truths (i.e., on the empty
set of premisses)

¢ we may relevantise without loss on inconsistent sets of premisses



278 NEIL TENNANT

So on the assumption that mathematics is consistent, we are assured
that every mathematical theorem (classical or intuitionistic) admits of the

corresponding kind of relevant proof And if mathematics is not consistent,

we are assured further that we shall be able to prove this relevantly. We are
assured, moreover. that every logical truth can be proved in relevant logic.
Finally, we are assured that the hypothetico-deductive method of science,
which involves the logical pursuit of inconsistencies between hypotheses and
observational evidence, can be carried out using relevant logic.

The systems IR and CR can do everything that any intuitionist or
classicist, respectively, could wish their logic to do. Furthermore, we have
now the prospect of exploiting the relevance relation (as these systems ex-
plicate it) so as to speed up proof-search — or, at the very least, not slow it
down. Propositional CR should be no harder than NP; propositional IR no
harder than PSPACE. And this is indeed the case.

To summarise, then, we have the following contrasts between the And-
erson-Belnap approach to relevance and the approach that I favour:

o They can relevantise mathematics only piecemeal. By contrast, there

are metatheorems guaranteeing the relevantisability of mathematics in
IR and in CR.

e They keep unrestricted transitivity of deduction, and abandon dis-
junctive syllogism. By contrast, in IR and CR the transitivity of
deduction is controlled in an epistemically gainful way, and disjunctive
syllogism is retained.

e Their propositional logics are either undecidable or have decision prob-
lems of awesome complexity, compared to those of their parent systems.
By contrast, my propositional logics lead to no increase in the com-
plexity of the decision problem.

A central methodological question in connection with any logic we may
try to treat computationally is: Do we search for proofs by brute methods or
refined ones? By machine-driven merry dance, as with resolution or model
elimination methods — or by somehow emulating or simulating competent
human interests and methods?

Considered as part of cognitive science, computational logic faces a
double challenge. First, one still has the old challenge of using computers
as prosthetic devices. That is, one programs computers to find solutions to
difficult problems faster and much more accurately than the unaided human
mind. One can meet this challenge without any concern for naturalness,
simplicity, elegance or “human-like” features of one’s search algorithms, ex-
cept insofar as these features might conduce anyway to greater speed and
efficiency in the execution of the programs on the available hardware.

As part of cognitive science, computational logic faces a new chal-
lenge: that of programming the machines to emulate human reasoning by
stmulating it. That is, one tries to design algorithms for proof search, to be




Automated Deduction and Artificial Intelligence 279

executed by the machines, that are as isomorphic as possible to whatever
collection of methods is employed by competent human reasoners in search
of suasive arguments. To face this new challenge, as a cognitive scientist, is
to give hostage to fortune in the competition to design proof-finders that do
their work simply as fast as possible. For the available hardware, because of
its radically different physical construction from the human brain, might be
much better at some tasks than the human being; and, correlatively, might
be much worse at others.

The human brain, as a product of natural selection, has highly evolved
abilities to recall and match visual patterns. This ability no doubt features
crucially in higher order human competence in schematic reasoning — at
least on reasonably short problems. Likewise, we are able to remember past
attempted moves and their outcomes when solving a problem. (And the
word ‘remember’, remember, is ambiguous between record and recall.) Our
relatively effortless memory of what we have recently done enables us to
learn rapidly from past mistakes.

In both these respects we are, arguably, somewhat different from to-
day’s programmable hardware. Depending on one’s programming language,
there may be a disproportionately higher cost, in the case of a machine,
associated with recording and consulting results of recently past computa-
tions. And pattern-matching and other forms of associative learning may be
severely hampered by the physical design of the hardware. We may have to
wait for an engineering revolution in the design of neural networks before
our prosthetic devices’ profile of relative competences begins to match our
own. Just having the theoretical assurance that any Turing machine can
be modelled by one of today’s digital computers offers no comfort to the
cognitive scientist endeavouring to use those computers to simulate our own
range of competences in a way that would be real-time faithful.

With the human profile of competence possibly drastically skewed with
respect to that of the digital computer, it may turn out that unnatura)l al-
gorithms can be executed faster than the natural ones that reflect specifically
human techniques, abilities, interests and methods. This must constantly be
borne in mind when assessing the models of reasoning, or of proof search,
offered by computational logic as a branch of cognitive science. Only then
can we properly compare the achievements of researchers who employ any
brute-force or machine-friendly method, with those of researchers who want
to “make the machine think the way we do”. If the latter can come close to
matching the achievements of the former as far as execution times are con-
cerned, that would already be cause for considerable satisfaction. (Especially
when one considers how late has been the entry of “natural deduction”-
minded logicians into the field of computational logic.) But there is the
exciting prospect also of achieving the added benefit of, say, finding the very
proofs that human beings would find, by following methods that human be-
ings themselves deploy. So I would venture to suggest that, in addition to
execution times, one consider the nature of the process and features of the



280 NEIL TENNANT

output — in particular, the length and structure of a natural deduction — be-
fore entering a decision as to which computational logic program is optimal
as a model of human deductive reasoning.

Deductive logic is the centrepiece of any model of (ideal) cognition
and reasoning. One’s metaphysical stance can influence choice of meth-
odology: e.g. choice of syntactic, proof-theoretic methods over semantic,
model-theoretic methods which in their full extent can deal with infinit-
ary objects. A cognitive scientist whose metaphysical position is basically
materialist, and who is impressed by the finitude of the neural network,
will incline towards models of cognition and reasoning that involve effective
transformation of finitary representations.

Now from the standpoint of one interested in human cognitive com-
petence — and in particular the ability to reason logically — “natural proof
search” methods seem strikingly underdeveloped. Computational logic needs
to explore the algorithmic gains in efficiency on offer from over five decades
of proof theory. The kind of proof theory I have in mind here is what might
be called intra-systematic proof theory. Its main concern is to achieve a thor-
ough understanding of what a given proof system is like “from the inside”.
It studies the structure, in the system, of proofs in normal form. The system
is characterized by its rules of inference and by the way steps according to
them can be patterned so as to form proofs.

It has been the central concern of the work reported on here! to explore
what proof theory can offer computational logic. Successful proof-search can
be very fast, when it is guided by constraints deriving from a deeper under-
standing of the structure of proofs in normal form. There are also some
unexpected benefits for proof theory in confronting the exigencies of compu-
tation. The main one is a hybrid system of proof that can be characterised
as midway between a Gentzen sequent system and a Prawitz-style natural
deduction system.

Another closely connected concern is to develop methods to deal with
propositional logic that will generalise smoothly to first order logic. We wish
emphatically to avoid any hacker’s devices that will not survive the lift to
first order. We want, as far as possible, to keep our algorithmic principles
uniform across the whole class of input problems. It is this concern that
gives us further reason to explore systems of natural deduction, and attack
the problem of how to find or generate proofs as suitably structured patterns
of sentences.

When searching for proofs we are seeking to construct tree-like arrays of
sentences satisfying local or global constraints on their syntactic patterning.
Intelligent — that is, highly constrained — search would be best secured by
applying the knowledge we have from proof theory about the shape of proofs
in normal form, and the transformations that convert proofs into normal
form.

IN. Tennant 1992.




Automated Deduction and Artificial Intelligence 281

Systems of natural deduction offer a rich variety of what might be
called completeness-conserving constraints. The main theoretical investiga-
tions to be presented below concern the existence of various kinds of normal
forms for proofs of given problems. Suppose P is an effectively decidable
property of (X, A) and F is an effectively decidable and non-trivial — that
is, constraining — property of proofs. Then what I shall call a PF-normal
form theorem is a result of the following form:

for all X and for all A, if P(X, A) then for all proofs I of A from any
subset Y of X, there is a proof & of A from some subset Z of Y such
that F(Z, A, ).

Such a theorem gives constraining heuristic guidance in the search for
proofs for the problem X 7~ A. One checks whether P(X, A). If so, then
one confines one’s search to proofs with property F. Ordinary normalization
theorems are special cases of results of the above form:

for all X, for all A, and for all proofs IT of A from any subset Y of
X, there is a proof ¥ of A from some subset Z of Y such that ¥ is in
normal form.

Note that the precondition P in their statement is trivial, and F is the
property of normality as usually understood (that is, “not containing any
maximal formula occurrence — an occurrence standing as the conclusion of an
introduction rule and as the major premiss of the corresponding elimination
rule”). Naturally we exploit this conventional normal form theorem, in that
we seek only proofs in such conventional normal form. But we supplement
this obvious focusing of our search with further PF-normal form theorems,
for non-trivial preconditions P, tailored for service in computational logic.

Another special case of PF-normal form theorems is where the rela-
tional property F' is restricted to the arguments Z and A and is persistent,
in the sense that if F(Z, A) and Z is a subset of Y, then F(Y, A):

for all X and for all A4, if P(X, A) then, for all proofs IT of 4 from any

subset Y of X, there is a proof ¥ of A from some subset Z of Y such
that F(Z, A).

Results like this are called filters. They say, essentially, that if P(X, A)
then the problem X ?— A has a proof only if F(X, A). So if we are given
X 7- A, and can determine that it has property P but lacks property F,
then we know that there is no proof to be had.

One has to be careful to prosecute the enquiry into constraints with
great care, so as to avoid producing an incomplete proof-finder for one’s
chosen logical system. One has to pay attention, that is, to the compossibility
of constraints. For suppose one has a series of P, F;-normal form theorems
(i=1,...,n). One may have a provable problem that satisfies all the P;. If
one has constrained one’s search by using all of the corresponding F;, then



282 NEIL TENNANT

one must be assured that the F; are compossible — that is, that there will
indeed be a proof satisfying all the properties Fj.

Think of a completeness-conserving contraint F as a spotlight on a
surface whose points are proofs. Compossibility then amounts to this: with
several spotlights in play, one wants to be sure that there is a region that
they all illuminate. When one's constraints are not thus compossible, then
one is forced to choose different combinations from among them that are.
And here lies the prospect (for computational logic as a branch of cognitive
science) of being more or less faithful to the repertoire of human logical
competence. Some completeness-conserving constraints may force proofs
into a form that is highly unlikely to be happened upon by human reasoners.
Others may turn up proofs on which all human avenues of logical enquiry
converge. The aim is to produce highly readable proofs that are rigorous
and detailed formalizations of intuitive lines of human reasoning. The more
succinet arguments that human reasoners would produce in actual logical or
mathematical discourse will be homomorphs of these formal proofs under a
very natural projection.

Another advantage for a computational logician in working with sys-
tems of natural deduction rather than, say, with Beth tableaux or the resolu-
tion method, is that debugging one’s proof-finding programs is much easier.
Suppose, for examnple, that one discovers a provable problem that one’s pro-
gram fails to prove. When one examines the trace of the computation one
is much better able, in a natural deduction system, to locate and isolate the
characteristic errors through failure to construct various subproofs of the
would-be proof. Clauses of the program correspond to rules of inference;
calls of clauses correspond to attempted applications of these rules of infer-
ence. The subproblems generated correspond to the subproofs required for
successful application of those rules of inference. Diagnosis and debugging
are very easy in such a nested environment.

A decidable logic is the simplest case of a decidable theory based on it.
One can implement a decidable theory in a variety of ways, ranging from the
evidentially miserly to the evidentially generous. Take the decision problem
for a theory T

Find correct Yes/No answers to problems of the form X 7— A, where
X is a finite set of premisses and A is a conclusion, and the question
mark concerns the relation of deducibility within 7.

There is a minimal response to this problem:

Bare oracles One could give a bare oracle for the decision problem: a
program that computed Yes/No answers and gave nothing else as output.
This would be a case of extreme evidential miserliness. (It goes without
saying that the answers would have to be correct. This is true also of the
programs involved in the remaining responses.)

Then there are two intermediate responses:




Automated Deduction and Artificial Intelligence 283

Proof-finders: One can give full reasons for Yes answers. in the form of
proofs. Proofs are finite objects that we can check for correctness. It matters
not whether we check the correctness of proofs “by hand” or by means of yet
another program — a proof-checker. Proof-checkers are not to be confused
with proof-finders. The former verify proofhood. The latter find proofs. If
we know that the proof-finding program is correct, however, we will not have
to check them. Instead, we can use them to convince others who may be
sceptical about positive answers. I call such a program a proof-finder.

A proof-finder for a given theory may be complete or incomplete. A
complete proof-finder is one that gives at least one proof for cach true state-
ment of deducibility in the theory. An example, by contrast, of an incomplete
proof-finder for a theory would be one which implemented an axiomatic
system of arithmetic (such as Peano-Dedekind arithmetic), for the theory
consisting of all true sentences of arithmetic.

A proof-finder could be complete - insofar as it would eventually, for
any given provable problem, find a proof of it — and yet fail, on some un-
provable problems, to yield even bare negative decisions. On these problems
it would not terminate. A complete and bounded proof-finder is one which
will eventually terminate with a negative verdict on any unprovable prob-
lem. Even with a complete and bounded proof-finder one cannot tell, from
its failure to respond by any given time, whether it had not vet had time to
find a proof, or whether indeed there was no proof to be had. One simply
has to wait. All one knows is that one will not have to wait for ever.

A hypercomplete proof-finder would do even better than a merely com-
plete one: it would provide a distinct formal but faithful representation, in
the form of a proof, for each of the possibly many different informal ar-
guments that might serve to establish the validity of the transition, in the
theory, from premisses X to conclusion A. Hypercompleteness is of necessity
an informal notion, like that of computability; but it is important to bear in
mind as an ultimate desideratum. It will turn out, however, that if complete
proof-finders written in any version of Prolog based on a depth-first strategy
are to have remotely tractable tasks, they must abjure hypercompleteness.
Otherwise the proliferation of alternative proofs on backtracking will greatly
delay the making of correct negative (and positive) decisions.

Best of all proof-finders would be a hypercomplete and bounded one,
which was able to arrange all alternative proofs in some order of ascend-
ing complexity. The notion of such order, however, has yet to receive a
satisfactory theoretical analysis.

Counterexample-finders: One can give full reasons for No answers, in
the form of counterexamples. Finite counterexamples, like proofs, may be
checked for correctness. Counterexamples may be used to convince sceptics
about negative answers (but see below).

In the case of first-order mathematical reasoning, a counterexample
will be a structure — finite or infinite - that forces all the premisses (makes



284 NEIL TENNANT

them true), but does not force the conclusion. There are interesting philo-
sophical problems, however, concerning the status of counterexamples to
X 7— A as supposedly semantic objects distinct from proofs. One can have
philosophical reservations about the epistemic force or persuasive power of
an infinite counterexample qua semantic object. In the case of an infinite
counterexample, it could be maintained that what we really have in mind is a
well-known theory, given by a set of axioms widely assumed to be consistent,
and enjoying the counterexample as a model, and that the counterexempli-
fication of X 7— A consists in the proof-theoretic facts that there are proofs
of each of the premisses in X from those axioms, and a proof that the con-
clusion A is inconsistent with those axioms. And one can easily contend
that a finite counterexample is, once again, simply another way of coding
proof-theoretic facts: facts concerning the existence of proofs of each of the
premisses in X from (an obviously consistent set of) axioms categorically
describing the finite counterexample, and the existence of a proof that the
conclusion A is inconsistent with those axioms.?

In the propositional case, another kind of counterexample may be
logical matrices. These provide functional interpretations of the connect-
ives over a set of designated and undesignated values. They have to be
sound for the theory in the sense that every true statement of deducibility
in that theory preserves designated value from premisses to conclusion under
every assignment of values to the propositional variables involved. A matrix
counterexample to X ?— A is then an assignment of values to the proposi-
tional variables involved in X and in A on which each premiss in X takes a
designated value and A takes an undesignated value. This is a generalization
of the familiar matrix {T, F'} for classical propositional logic, with 7" des-
ignated and F undesignated, and the usual truth-functional interpretations
for the connectives. A class of sound matrices is complete for the theory
if every false statement of deducibility in that theory has a counterexample
using a matrix in that class. A sound and complete class of matrices is said
to be characteristic for the theory. Another example of a characteristic class
of matrices for a theory is the class of Jaskowski matrices for intuitionistic
propositional logic. One well-known way of showing that an axiomatisable
propositional theory (including a logic) is decidable is to show that it has a
characteristic class of finite matrices. For then the decision procedure can
exploit two enumerations: one of proofs, by virtue of axiomatisability, and
one of the finite sound matrices, testing the latter effectively to see whether
they counterexemplify the problem in hand. Eventually either the first enu-
meration hits on a proof of the problem, or the second enumeration hits on
a counterexemplifying finite sound matrix.

Like a proof-finder, a counterexample-finder for a given theory may be
complete or incomplete. A complete counterexample-finder is one that gives
at least one counterexample for each false statement of deducibility in the

2For a, fuller develoment of this view, see Tennant 1986.




Automated Deduction and Artificial Intelligence 285

theory. Even a sound but incomplete class of matrices can be useful for an
algorithm of this third kind. But such a class is usually exploited for the
fortuitous benefits it might bestow in attempts by a proof-finder to prune
the search tree in the space of possible proofs. Its members could be used to
counterexemplify sequents generated by inductive breakdown of deductive
problems in those logics. This can yield speed-up in proof search in the
context of the proof-finder of which the counterexample-finder is a module
even though the matrices be drawn from a class that is incomplete for the
logic concerned.

It is possible for a complete and bounded proof-finder also to be a
counterexample-finder (and of finite ones at that) without much further ado.
The trace of a terminated and unsuccessful search by such a proof-finder for
a proof in response to X 7~ A is, after all, a finitary object that bears
effective scrutiny. It can play the epistemic role of a finite counterexample
to X ?— A to one who knows how to read it.

Finally, we have the full-blown response to the problem, which is to
provide programs that I call:

Judicial reasoners: These are both proof-finders and counterexample-
finders. That is, they give full rationes decidendi for their positive or neg-
ative verdicts on deductive problems. The best among these would be the
rationauts. A rationaut would be able to give the shortest or simplest proof
possible as its answer to any provable problem, and be hypercompletely
ready to give, on request, all alternative proofs, in normal form, in ascend-
ing order of length, complexity, roundaboutness or what one will; and would
be able to give the shortest or simplest counterexample possible as its answer
to any unprovable problem.

The way I set about the task at hand is to aim, modestly, for a complete
and bounded proof-finder for a well-chosen decidable propositional logic. It
is not hypercomplete. But its terminated unsuccessful searches can deliver
traces playing the role of counterexamples to the unprovable problems con-
cerned. The algorithm for finding proofs is written in such a way, however,
as to allow one to insert various filters on the sub-problems generated during
the search. We have such filters anyway in connection with past recorded
successes and or failures. In just the same way we could incorporate filters
exploiting matrices, say, if we so wished. But we do not actually do so. The
only filters we employ, apart from those recalling past successes and fail-
ures, concern the various sorts of syntactic relationships that subformulae
can bear to containing formulae. That is, we try to exploit only the sort of
syntactic evidence that it is reasonable to suppose the human reasoner can
easily (and perhaps often subconsciously) detect.

One scientific theory can possess the pragmatic virtues of elegance
and simplicity to a greater or lesser degree than another. It is a matter
of trained taste on the part of practising scientists to decide between them
on the basis of such considerations. So too in cognitive science: one can



286 NEIL TENNANT

prefer computational models of human logical competence that exploit only
what meets the eye syntactically, so to speak, to models that employ, say,
nine-element Heyting algebras in their filtrations during search.

Our search heuristics will encode the effect of generally available trans-
formations on proofs. It is desirable to get as many of these as possible to
be invariant across choice of logical system, so that the proof-finder is more
easily adaptable to whatever system one chooses to work in.

A first major challenge will be to combine aspects of the bottom-up
and top-down kinds of search that human logicians undertake when trying
to construct suasive arguments.

A second major challenge is to program a proof-finder that is short
enough to admit of an informal proof of correctness. On our approach we
justify the inclusion of every clause in the Prolog program that embodies
the proof-finder. by appeal to proof-theoretic considerations concerning the
logic in question.

A third major challenge is to exploit the notion of the relevance of
premisses to a conclusion in a manner that I would call it endogeneous to
the proof-finder. One does not want the proof-finder to find proofs indiscrim-
inately, and only thereafter produce one that exhibits genuine relevance in
all its inference steps. One wants rather to use the requirements of relevance
to avoid the irrelevant inferential directions and focus on the relevant.

References
N. Tennant, Autologic, Edinbugh: Edinburgh University Press 1992.

N. Tennant, “The Withering Away of Formal Semantics?”, Mind and Language 1 (1986),
302 318.




