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I use the Corcoran–Smiley interpretation of Aristotle’s syllogistic as my starting point for an examination of the
syllogistic from the vantage point of modern proof theory. I aim to show that fresh logical insights are afforded by
a proof-theoretically more systematic account of all four figures. First I regiment the syllogisms in the Gentzen–
Prawitz system of natural deduction, using the universal and existential quantifiers of standard first-order logic, and
the usual formalizations ofAristotle’s sentence-forms. I explain how the syllogistic is a fragment of my (constructive
and relevant) system of Core Logic. Then I introduce my main innovation: the use of binary quantifiers, governed
by introduction and elimination rules. The syllogisms in all four figures are re-proved in the binary system, and are
thereby revealed as all on a par with each other. I conclude with some comments and results about grammatical
generativity, ecthesis, perfect validity, skeletal validity and Aristotle’s chain principle.

1. Introduction: the Corcoran–Smiley interpretation of Aristotle’s syllogistic as
concerned with deductions

Two influential articles, Corcoran 1972 and Smiley 1973, convincingly argued that Aris-
totle’s syllogistic logic anticipated the twentieth century’s systematizations of logic in terms
of natural deductions. They also showed how Aristotle in effect advanced a completeness
proof for his deductive system.

In this study, I shall introduce a different modern perspective on Aristotle’s syllogistic.
I am less concerned to advance an interpretation that is faithful to Aristotle’s text and
more concerned to reveal certain logical insights afforded by a proof-theoretically more
systematic account of Aristotle’s syllogisms of all four figures. For this reason it is enough
to acknowledge the Corcoran–Smiley re-interpretation as my point of departure, from which
a fresh new line of inquiry can fruitfully be followed. I shall not be detained by more recent
secondary articles challenging the accuracy of the Corcoran–Smiley re-interpretation in
all minute respects. (Martin 1997 is an example in this regard. The reader interested in
following up on other papers in this secondary literature will find Corcoran 2009 a useful
source.)

It would be mistaken to think of the current undertaking as one of re-visiting Aristotle’s
syllogistic equipped with all the more sophisticated techniques of modern proof theory,
with the aim of revealing the weaknesses and limitations of Aristotle’s system. To quote
Lear 1980, p. ix:

The very possibility of proof-theoretic inquiry emerges with Aristotle, for such
study requires that one have a system of formal inferences that can be subjected to
mathematical scrutiny. Before the syllogistic there was no such formalization that
could be a candidate for proof-theoretic investigation.

There is, however, a certain fascination in seeing what light can be shed on the syllogistic
using techniques that could eventually have arisen only because of the groundworkAristotle
laid, but which were not yet available to him. It is a test of their fruitfulness to see what
account those techniques can render of Aristotle’s own subject matter.

© 2013 Taylor & Francis
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2 N. Tennant

1.1. Deductivist reconstructions of Aristotle’s syllogistic
For both Corcoran and Smiley, the sentences

‘Every F is G’ and ‘Some F is not G’

are defined by Aristotle to be contradictories of one another, as are the sentences

‘Some F is G’ and ‘No F is G’.

Using my notation to effect the comparison, we have Corcoran writing, p. 696:

[‘Every F is G’] and [‘No F is G’] are defined to be contradictories of [‘Some F is
not G’] and [‘Some F is G’] respectively (and vice versa) …,

and Smiley writing to the same effect, p. 141:

[‘Every F is G’] and [‘Some F is not G’] will be said to be each other’s contradictory;
likewise [‘No F is G’] and [‘Some F is G’].

Corcoran uses the notation C(d) for the contradictory of a sentence d; and Smiley uses the

notation P for the contradictory of P. I shall borrow Smiley’s notation here. Note that for
both these authors, the contradictory of P is P itself:1

P = P.

Both Corcoran and Smiley present Aristotle’s syllogistic as a deductive system, based on
a certain limited choice of ‘perfect’ syllogisms (which are in effect two-premise rules of
inference), plus certain other deductive rules. By means of these rules, all other syllogisms
can be derived from the perfect ones. (At this stage, the reader unaquainted with Aristotle’s
syllogistic needs to have it mentioned that it is built into the notion of a syllogism that it is
or contains a valid argument, and one enjoying a certain form. More explanation of these
features is to be found in Section 2.)

Let us concentrate on Smiley’s presentation of such a system. Smiley stresses Aristotle’s
chain principle as ‘absolutely fundamental’ to his syllogistic. This is ‘the principle that
the premisses of a syllogism must form a chain of predications linking the terms of the
conclusion’. It is because of this principle that Aristotle is able to show that

. . . every valid syllogistic inference, regardless of the number of premisses, can be
carried out by means of a succession of two-premiss syllogisms. . . .

One is thus led to ask what account of implication, if any, will harmonize with
Aristotle’s chain principle for syllogisms. The question invites a logical rather than
a historical answer . . .

I shall offer my answer to my question in the shape of a formal system in which
I shall put into practice the idea of treating syllogisms as deductions, and which
is intended to match as closely as possible Aristotle’s own axiomatization of the
syllogistic by means of conversion, reductio ad impossibile, and the two universal
moods of the first figure. (Smiley 1973, p. 140)

Smiley’s logical system, on behalf of Aristotle, and in this logically reconstructive spirit,
has the following basic rules of inference, by means of which one can form deductions.

(1) The syllogism Every M is P, Every S is M; so, Every S is P (Barbara).
(2) The syllogism No M is P, Every S is M; so, No S is P (Celarent).

1 Thus the contradictory of a sentence is not the result of attaching something to it (for example, prefixing it with a negation sign).
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Aristotle’s Syllogistic and Core Logic 3

(3) The conversion No F is G; so, No G is F.
(4) The conversion Every F is G; so, Some G is F.
(5) The classical rule of reductio ad impossibile: A deduction of P from Q (the contra-

dictory of Q), along with a deduction of P, entitles one to form a deduction of Q
from the combined premises – other than Q – of those two deductions.2

Aristotle’s system prioritized Barbara and Celarent, the first two syllogisms of his first figure.
Corcoran and Smiley were faithful to this feature in their respective accounts of Aristotle’s
method. Note that (5) is the only strictly classical (i.e. non-constructive) rule, and the only
rule that involves discharge of assumptions made ‘for the sake of argument’.

1.2. The different inferential approach of this study
We shall state some altogether new rules for Aristotle’s quantifying expressions. Each of

those expressions is governed by at least one basic rule that involves discharge of assump-
tions; and every basic rule is constructive. These rules also maintain relevance of premises
to conclusions; and they are far more basic than any of the syllogisms themselves.3 They
have been devised with an eye only to the need to provide a deduction for each of Aristotle’s
syllogisms in all four figures; yet the rules do not call for any modification or extension in
order to provide deductions for all arguments whose validity is determined by the quantify-
ing expressions that the rules govern. Moreover, the rules furnish deductions for Aristotle’s
syllogisms in a beautifully uniform fashion: every two-premise syllogism has a deduction
containing only three basic steps.4 Thus no syllogism, or pair of syllogisms, is prioritized
over the others.

2. What is a syllogism?
An argument is what modern logicians also call a (single-conclusion) sequent: a (finite)

set � of sentences, called premises, followed by a single sentence ϕ, called the conclusion.
Sequents are often represented as of the form � : ϕ. Sequents are valid or invalid; it is the

2 The reader can easily verify that this is an equivalent way of stating Smiley’s inductive clause (iii) in his definition of formal

deduction, loc. cit., at 142 supra. The clause in question is

If 〈. . . P〉 is a deduction of P from X1, Q, and 〈. . . P〉 is a deduction of P from X2, then 〈. . . P, . . . P, Q〉 is a deduction

of Q from X1, X2.

3 Cf. Smiley 1994, p. 30:

Aristotle’s case for the chain condition is redolent of relevance – the need for some overt connection of meaning between

premises and conclusion as a prerequisite for deduction.

This may be thought of as a ‘macro’ point on Aristotle’s behalf. I shall be concerned to preserve it at the micro-level of the rules

for the binary quantifiers to be proposed in Section 4.1 – which, to be sure, are not those of Aristotle himself.
4 For those syllogisms that, from the point of view of a modern advocate of ‘universally free’ logic, require an extra existential

premise, the deductions consist of four steps. (For a system of universally free logic, see Tennant 1978, Ch. 7.) But it should

also be noted that modern systems of ‘unfree’, many-sorted logic, such as the various systems used in Smiley 1962, Parry 1966

and Gupta 1980 have been suggested as ways of accommodating Aristotle’s syllogistic. In such systems, the sortal variables a

are assumed to range over non-empty sorts A, thereby making each such sort A analogous to the single domain presumed by

the system of standard first-order logic. The latter system is unfree and single-sorted, and in it we have ∀xFx � ∃xFx. In an

unfree many-sorted system, analogously, one has, for each sort A, both � ∀aAa and � ∃aAa. When using a many-sorted system

to regiment the syllogistic, there is no need for any extra existential premises of the form ∃aAa; as Smiley put it (loc. cit., p. 66).

…this is something implicit rather than explicit – the existence of the various As is a pre-condition of the successful

application of the system rather than an assumption formulated or even formulable within the system.

See also footnote 8.

D
ow

nl
oa

de
d 

by
 [

N
ei

l T
en

na
nt

] 
at

 0
4:

29
 1

1 
Ja

nu
ar

y 
20

14
 



4 N. Tennant

logician’s job to classify them as such. The valid ones are those that ‘preserve truth from
their premises to their conclusions’. This idea is usually explicated as follows:

Definition 2.1 � : ϕ is valid if and only if every interpretation of the non-logical vocab-
ulary (in the sentences involved) that makes every sentence in � true makes ϕ true
also.

One can read the colon in a sequent � : ϕ as the word ‘so’, or ‘therefore’, or ‘ergo’. In
doing so, however, one must bear in mind that the sequent itself is a complex singular term
denoting an argument. If (and only if) the argument were to be presented argumentatively,
this would involve the arguer making it clear that the premises were thereby being supposed,
or taken as hypotheses, or assumed for the sake of argument; and that the conclusion was
being drawn from those premises. In general, of course, one could denote arguments by
means of sequents which one would be unwilling to present argumentatively – indeed,
which one would be concerned to point out should never be endorsed, because they are
invalid.

What has come to be called an Aristotelian syllogism is a valid argument with two
premises and a single-conclusion.5 These sentences are, moreover, of particular forms.
Each of them involves two non-logical terms (predicates) from a trio of such terms, along
with a quantifying expression, which is one of a, e, i or o – see below. In addition, the
occurrences of the non-logical terms of the trio within the argument have to exhibit certain
patterns, called figures. There are four such figures, explained below. Aristotle investigated
only the first three of them.

It is now common practice to use the abbreviations in the left column below for the four
logical forms of sentences of which Aristotle treats. Their English readings are given in the
right column.

aFG Every F is G
eFG No F is G
iFG Some F is G
oFG Some F is not G

We use the sortal variable q, possibly with a numerical subscript, to stand for any of the
quantifier expressions a, e, i or o in what follows. I shall call the forms in the foregoing
display Aristotelian forms (of sentences).

The major term of an argument is the right-most one in its conclusion. It is rendered
as P in the following. The major term occurs in exactly one of the two premises, which is
accordingly called the major premise. The other premise is called the minor premise. The
major premise is always listed first when an Aristotelian argument is stated:

5 As Nicholas Rescher has pointed out, he and various other scholars think that ‘for Aristotle himself a syllogism was simply a pair

of duly related premises. The conclusion was left as a problem and did not serve as a constituent part of the syllogism’ (personal

correspondence). But Corcoran has pointed out that both he and Smiley emphasize that Aristotle did not limit syllogisms to

two-premise arguments, and that some of Aristotle’s syllogisms contain propositions other than the premises and conclusion

(personal correspondence).

I do not intend to resolve this disagreement here. We just need a clear technical term for the purposes of this study. Accordingly,

an ‘Aristotelian syllogism’ will be a valid two-premise argument of the restricted form specified in the text. It will reside in one

of the four figures.
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Aristotle’s Syllogistic and Core Logic 5

Major premise
Minor premise
Conclusion

We shall ambiguously denote the quantifier expression of the major premise by q1; that
of the minor premise by q2 and that of the conclusion by q3. Remember, there are four
possible values for these qj: a, i, e and o.

One of the three terms of the argument, called the middle term, occurs in both of the
premises, but not in the conclusion. It is rendered as M in the following. Since the major
premise contains both the major term P and the middle term M, it is of the form q1MP or
q1PM.

The third term of the trio is called the minor term. It is rendered as S in the following.
The conclusion contains the minor term S left-most. It follows from what we have specified
that the minor premise contains the middle term M and the minor term S. So it is of the
form q2SM or q2MS.

It also follows from the foregoing stipulations that the conclusion of an argument must
have the form q3SP. Thus arguments can vary in their patterns of term occurrences only in
respect of their major and minor premises, and the way the latter combine the major term
P, the middle term M and the minor term S. The major premise contains P and M (in either
order). The minor premise contains M and S (in either order). So, bearing in mind that the
major premise is always listed first, the only possible combinations of terms within the two
premises are the following four, called figures6:

Major premise
Minor premise

First
Figure
q1MP
q2SM

Second
Figure
q1PM
q2SM

Third
Figure
q1MP
q2MS

Fourth
Figure
q1PM
q2MS

The mood of an argument is defined as its ordered triple

〈q1, q2, q3〉.

Clearly, there are 43 = 64 possible moods within any one figure. Matters can be simplified,
though. It is obvious that both e and i are ‘symmetric’ quantifier expressions. That is, eFG is
equivalent to eGF, and iFG is equivalent to iGF. Thus there are really only 16 moods within
any one figure that deserve serious independent attention.

It is the combination of figure and mood, for two-premise arguments involving sentences
of the above forms, under the constraints of major-, minor- and middle-term occurrences
within premises and conclusion, that determine the logical form of the argument in question.
An argument of mood 〈q1, q2, q3〉 and of figure k will be said to have the form 〈q1, q2, q3〉-k.
Aristotle gave each (valid) syllogistic form a name – see below. The systematic notation
〈q1, q2, q3〉-k, however, is completely specific and is a helpful mnemonic – and is therefore

6 Aristotle himself, in his Prior Analytics, investigated only syllogisms in the first three Figures. His pupil Theophrastus added

the Fourth Figure, which has also been attributed to Galen. It is strange that Aristotle omitted the Fourth Figure, given his

usual systematic thoroughness. There has been debate over many centuries as to whether Aristotle ought to have recognized the

Fourth Figure, or whether its arguments can really be assigned, ‘indirectly’, to the First. The Fourth Figure was recognized by

Peter of Mantua in 1483, and was argued for by Peter Tartaret (ca. 1480), by Richard Crackenthorpe in 1622, and by Antoine

Arnauld in 1662. For a scrupulously scholarly account of these matters, see Rescher 1966. Another useful source is Henle

1949. Here we follow the post-Port Royal, English tradition of giving the Fourth its due. Smiley 1994, Section III offers an

intriguing explanation for Aristotle’s exclusion of the Fourth Figure, by suggesting ‘a connection between it and the role of

Platonic division in shaping syllogistic logic’.
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6 N. Tennant

preferable. In deference to tradition, however, we also give the medieval scholastics’ names
below.7 Note how the vowels in the names codify the moods of the syllogisms.

Remember: a syllogism is a valid argument. Some of Aristotle’s syllogisms, it turns out,
need to be supplemented with certain existential premises in order to make them valid in the
system on offer here. These supplementations are supplied below, without further comment.
They all take the form ‘There is some F’. Aristotle presumed that every non-logical term
(i.e. monadic predicate) has a non-empty extension. Modern logicians, by contrast, allow
for empty extensions.8 Hence their need to make certain existential premises explicit.

2.1. Syllogisms of the First Figure

These have the form
q1MP
q2SM
q3SP

. They are:

〈a, a, a〉-1 (Barbara)
Every M is P
Every S is M
Every S is P

〈e, a, e〉-1 (Celarent)
No M is P
Every S is M
No S is P

〈a, i, i〉-1 (Darii)
Every M is P
Some S is M
Some S is P

〈e, i, o〉-1 (Ferio)
No M is P
Some S is M
Some S is not P

7 The mnemonic poem

Barbara, Celarent, Darii, Ferio que prioris;

Cesare, Camestres, Festino, Baroko secundae;

Tertia, Darapti, Disamis, Datisi, Felapton, Bokardo, Ferison, habet;

Quarta in super addit Bramantip, Camenes, Dimaris, Fesapo, Fresison

is of uncertain provenance, but is thought to be at least as old as William of Sherwood (1190–1249).
8 We note, however, that Smiley 1962 proposed a modern formalization of Aristotelian forms using sortal quantifiers. Just as in

standard (unfree!) logic the domain is taken to be non-empty, so too in sortal quantification theory the various sortal domains

are taken to be non-empty. An Aristotelian form such as ‘All As are Bs’ is translated, ‘sortally’, as ∀a B(a), where a is now a

sortal variable ranging over the As – of which there must be at least one. As Smiley notes (p. 66),

Since the interpretation of our many-sorted logic demands that all the relevant domains of individuals shall be non-

empty, there is a sense in which all the wff., whether cast in affirmative or negative form, have an existential import.

But this is something implicit rather than explicit – the existence of the various As is a pre-condition of the successful

application of the system rather than an assumption formulated or even formulable within the system.

Since, in the formal reconstruction here of the syllogistic, we are not sortalizing after Smiley’s fashion, we can and must on

occasion make existential import explicit in order to secure the validity of certain syllogisms.

The sortalizing strategy was employed also by Parry 1966.
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Aristotle’s Syllogistic and Core Logic 7

〈a, a, i〉-1 (Barbari)

There is some S
Every M is P
Every S is M
Some S is P

〈e, a, o〉-1 (Celaront)

There is some S
No M is P
Every S is M
Some S is not P

2.2. Syllogisms of the Second Figure

These have the form
q1PM
q2SM
q3SP

. They are:

〈e, a, e〉-2 (Cesare)
No P is M
Every S is M
No S is P

〈a, e, e〉-2 (Camestres)
Every P is M
No S is M
No S is P

〈e, i, o〉-2 (Festino)
No P is M
Some S is M
Some S is not P

〈a, o, o〉-2 (Baroco)
Every P is M
Some S is not M
Some S is not P

〈e, a, o〉-2 (Cesaro)

There is some S
No P is M
Every S is M
Some S is not P

〈a, e, o〉-2 (Camestros)

There is some S
Every P is M
No S is M
Some S is not P

2.3. Syllogisms of the Third Figure

These have the form
q1MP
q2MS
q3SP

. They are:
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8 N. Tennant

〈a, a, i〉-3 (Darapti)

There is some M
Every M is P
Every M is S
Some S is P

〈e, a, o〉-3 (Felapton)

There is some M
No M is P
Every M is S
Some S is not P

〈i, a, i〉-3 (Disamis)
Some M is P
Every M is S
Some S is P

〈a, i, i〉-3 (Datisi)
Every M is P
Some M is S
Some S is P

〈o, a, o〉-3 (Bocardo)
Some M is not P
Every M is S
Some S is not P

〈e, i, o〉-3 (Ferison)
No M is P
Some M is S
Some S is not P

2.4. Syllogisms of the Fourth Figure

These have the form
q1PM
q2MS
q3SP

. They are:

〈a, a, i〉-4 (Bramantip)

There is some P
Every P is M
Every M is S
Some S is P

〈a, e, e〉-4 (Camenes)
Every P is M
No M is S
No S is P

〈i, a, i〉-4 (Dimaris)
Some P is M
Every M is S
Some S is P

〈a, e, o〉-4 (Calemos)

There is some S
Every P is M
No M is S
Some S is not P
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Aristotle’s Syllogistic and Core Logic 9

〈e, a, o〉-4 (Fesapo)

There is some M
No P is M
Every M is S
Some S is not P

〈e, i, o〉-4 (Fresison)
No P is M
Some M is S
Some S is not P

3. Natural deductions in the style of Gentzen and Prawitz
for Aristotle’s syllogisms

Natural deductions in the style of Gentzen 1934, 1935 and Prawitz 1965 employ serial
forms of elimination rules for conjunction (∧), the conditional (→) and the universal quan-
tifier (∀). These rules find frequent application in proofs of Aristotle’s syllogisms, as the
reader will see below. The extra existential premises of the form ‘There is some F’ are now
translated into Aristotle’s notation as iFF. In conventional notation this is of course rendered
as ∃xFx.

In the table below we provide for each syllogism its conventional translation into mod-
ern logical notation, and a natural deduction in the style of Gentzen and Prawitz. It
is no surprise that each syllogism admits of such proof. The system of proof in ques-
tion is, after all, complete for all valid arguments expressible in the language, which (if
it contains any non-monadic predicate symbols) is much more extensive than just the
monadic fragment that suffices for formulating the premises and conclusions of Aristotelian
syllogisms.

The Gentzen–Prawitz deductive system is a hammer to crack these Aristotelian walnuts.
Once cracked, however, each walnut is beautiful inside. We lay out the results below for
two purposes. First, there ought to be some place in the literature to which the beginning
student of logic can turn in order to see proofs of all of Aristotle’s syllogisms laid out
in the complete formal detail afforded by a modern logical system. Second, the resulting
extensive but surveyable ‘database’helps the more advanced theorist by suggesting to his or
her inspecting eye certain metalogical themes that can be explored with great profit. These
remarks apply also to the collection of proofs laid out in Section 5, using rules governing
the binary quantifiers to be introduced in Section 4.

3.1. Gentzen–Prawitz natural deductions for syllogisms of the First Figure
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10 N. Tennant

3.2. Gentzen–Prawitz natural deductions for syllogisms of the Second FigureD
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Aristotle’s Syllogistic and Core Logic 11

3.3. Gentzen–Prawitz natural deductions for syllogisms of the Third Figure
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12 N. Tennant

3.4. Gentzen–Prawitz natural deductions for syllogisms of the Fourth Figure
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Aristotle’s Syllogistic and Core Logic 13

The reader will no doubt have noticed that the number of steps within a Gentzen–Prawitz
syllogistic proof (i.e. the number of applications of primitive rules of inference, or the
number of furcations within the proof tree) varies from syllogism to syllogism. Each proof
is either six, seven or nine steps long. This is because the Gentzen–Prawitz system uses
serial elimination rules for ∧, → and ∀; and because some of the syllogisms involve an
extra (third) premise of ‘existential import’.

More important, from a theoretical point of view, is that every syllogism has been fur-
nished above with a constructive Gentzen–Prawitz natural deduction (in normal form). No
use has been made of strictly classical negation rules. Inspection reveals also that (i) no use
has been made of Ex Falso Quodlibet and (ii) all applications of discharge rules occasioned
non-vacuous discharge of the assumptions that had been made for the sake of argument.
Thus the natural deductions in question are all relevant.

Deductions in normal form that are both constructive and relevant comprise what the
author calls Core Logic.9 We may summarize the rather operose catalog above as follows:
Aristotle’s syllogistic is part of Core Logic. The Gentzen–Prawitz system of natural deduc-
tion, however, is not the best way to present Core Logic. Its best presentation involves the use
of parallelized elimination rules, whose major premises stand proud, with no proof-work
above them. More on that in due course.

9 See Tennant 2012.
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14 N. Tennant

4. Aristotelian syllogistic with binary quantifiers
The modern logical notation employed above uses the standard unary quantifiers ∃ and

∀ to translate ‘restricted’ quantifications from English into logical notation

aFG Every F is G ∀x(Fx→Gx)
eFG No F is G ¬∃x(Fx ∧ Gx)
iFG Some F is G ∃x(Fx ∧ Gx)
oFG Some F is not G ∃x(Fx ∧ ¬Gx)

The extra binary connectives – namely, → and ∧ – that appear to be occasioned by
this use of conventional logical notation cannot be discerned within the English forms
thus translated. They are complications that are forced upon us by our choice of the
unary quantifiers ∃ and ∀ to translate restricted quantifications of English into logical
notation.

An alternative translation method employs binary quantifiers.10 Unlike Aristotle’s a, e, i
and o, these binary quantifiers bind variables, the way that the unary Fregean ones do. But the
binary quantifiers have no need for auxiliary connectives to construct a satisfactory formal
sentence representing the logical form of a given English sentence. Using uppercase A, E,
I and O for our more ‘Fregean’ variable-binding binary quantifiers, in order to distinguish
them from Aristotle’s quantifiers, our logical forms would be the ones in the right-most
column

aFG Every F is G Ax(Fx, Gx)
eFG No F is G Ex(Fx, Gx)
iFG Some F is G Ix(Fx, Gx)
oFG Some F is not G Ox(Fx, Gx)

(One needs to be very careful not to read the negative existential Ex(Fx, Gx) as ‘There
exists an F that is G’! That would be an easy mistake to make, since logicians so often use
‘E’ as an existential quantifier.)

We owe to Frege the device of variable-binding in connection with quantifiers. We owe
to Gentzen the device of introduction and elimination rules for logical operators in a system
of natural deduction (and, correlatively, the device of ‘right’ and ‘left’ logical rules, respec-
tively, in the sequent calculus). In this post-Fregean and post-Gentzenian age it would be
anachronistic indeed to suggest that Aristotle himself could have had anything like these
suggested binary quantifiers A, E, I and O in mind when formulating his syllogistic – let
alone the logical rules that will be stated below, governing each of these new quantifiers.
We shall see, however, that the new quantifier rules afford dramatic simplifications in the
deductions of Aristotle’s syllogisms. And these rules have been formulated in response
to the modest task of furnishing all of Aristotle’s (and Theophrastus’s) syllogisms with
deductions.

4.1. Introduction rules and parallelized elimination rules for the new binary quantifiers
in a system of natural deduction

In order for Qx(ϕ, ψ) (Q = A, E, I , O) to be a sentence, both ϕ and ψ must have x as
their only free variable.

10 See Altham and Tennant 1975 for the usefulness of such binary quantifiers in the logic of plurality. They can be independently

motivated by grammatical and logical considerations in the regimentation of quantifier expressions in natural language. It is

not at all ad hominem to suggest their fruitful use in regimenting premises and conclusions in Aristotelian syllogisms.
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Aristotle’s Syllogistic and Core Logic 15

ϕx
t is the result of replacing all free occurrences of the variable x in ϕ by an occurrence of

the closed singular term t. (A singular term is closed just in case it has no free occurrences
of variables.) Use of the notation ϕx

t indicates that x enjoys free occurrences in ϕ, so that
the substitution of t for such free occurrences is genuine.

ϕa
x is the result of replacing all occurrences of the parameter a in ϕ by an occurrence of

the variable x. Use of the notation ϕa
x indicates that a occurs in ϕ, so that the substitution of

x for a is genuine.
In the rules of natural deduction that follow, the parameter a may occur only where

indicated. Note that the elimination rules are all in parallelized form. Their major premises
stand proud. Hence all deductions in this system are in normal form.

A-Introduction

(i)
ϕ
...
ψ

(i)
Ax(ϕa

x , ψa
x )

A-Elimination

Ax(ϕ, ψ) ϕx
t

(i)
ψx

t
...
θ

(i)
θ

E-Introduction

(i)

ϕx
a ,

(i)
ψx

a︸ ︷︷ ︸
...
⊥ (i)

Ex(ϕ, ψ)

E-Elimination
Ex(ϕ, ψ) ϕx

t ψx
t

⊥

I-Introduction
ϕx

t ψx
t

Ix(ϕ, ψ)
I-Elimination

Ix(ϕ, ψ)

(i)

ϕx
a ,

(i)
ψx

a︸ ︷︷ ︸
...
θ

(i)
θ

O-Introduction
ϕx

t

(i)
ψx

t
...
⊥

(i)
Ox(ϕ, ψ)

O-Elimination

Ox(ϕ, ψ)

(i)

ϕx
a ,

ψx
a (i)

⊥︸ ︷︷ ︸
...
θ

(i)
θ

Note how O-Elimination allows one to discharge an inference of the form ‘ψx
a , so ⊥’.

The latter is the inferential equivalent of the negation of ψx
a .

With the application of a rule in natural deduction, the left–right ordering of displayed
assumptions and of immediate subproofs is immaterial. Hence, we see immediately that
our rules confer the same logical force on Qx(ϕ, ψ) and Qx(ψ , ϕ), for Q taking the value
E or I .

There is no rule of Ex Falso Quodlibet. There are no strictly classical negation rules. The
system of binary-quantifier deduction is both constructive and relevant. It is part of Core
Logic.
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16 N. Tennant

4.2. Right and left logical rules for the new binary quantifiers in a sequent calculus
In all the sequent rules to follow, the parameter a occurs nowhere in the conclusion-

sequent. A sequent ‘empty on the right’, i.e. of the form ‘� : ’ states the non-satisfiability
of �. So one could also write it as ‘� : ⊥’.

A-Right
�, ϕx

a : ψx
a

� : Ax(ϕ, ψ)
A-Left

� : ϕx
t ψx

t , � : θ

Ax(ϕ, ψ), �, � : θ

E-Right
�, ϕx

a , ψx
a :

� : Ex(ϕ, ψ)
E-Left

� : ϕx
t � : ψx

t

�, �, Ex(ϕ, ψ) :

I-Right
� : ϕx

t � : ψx
t

�, � : Ix(ϕ, ψ)
I-Left

�, ϕx
a , ψx

a : θ

�, Ix(ϕ, ψ) : θ

O-Right
� : ϕx

t �, ψx
t :

�, � : Ox(ϕ, ψ)
O-Left

�, ϕx
a : ψx

a

�, O(ϕ, ψ) :

Applications of the rules with just one premise-sequent (A-Right, E-Right, I-Left, O-Left)
give rise to monofurcations within the proof-tree. Applications of the other rules give rise
to bifurcations.

5. Proofs of syllogisms using binary-quantifier rules
Our binary-quantifier rules afford significantly shorter deductions for Aristotle’s syllo-

gisms. I give both natural deductions and the sequent proofs that correspond to them. The
extra existential premises of the form ‘There is some F’ are translated into the new formal
notation as Ix(Fx, Fx).

It is important to realize that the system of natural deduction with parallelized elimination
rules whose major premises stand proud produces deductions that are, in effect, isomor-
phic to the corresponding sequent proofs. Moreover, the order of elimination steps can be
reversed, so that there are two distinct formal proofs (two normal natural deductions, and
two cut-free sequent proofs) for each standard syllogism with two premises. I shall give the
alternatives for the first two examples (Barbara and Celarent); and leave it as an exercise
for the reader to discover similar alternatives to each of the natural deductions and sequent
proofs that we provide for the remaining syllogisms.

The reader should be aware that the re-orderability of elimination rules allows even this
simple deductive system for syllogistic to provide different proofs of the same sequent. The
proofs in question have rich enough inferential structure to be identified as the outcomes
of different strategies of proof-search. This is a strong point in favor of using parallelized
elimination rules rather than serial ones. For, with serial rules, those different strategies of
proof-search will produce, as their results, one and the same proof.

5.1. Binary-quantifier deductions for syllogisms of the First Figure
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Aristotle’s Syllogistic and Core Logic 17

5.2. Binary-quantifier deductions for syllogisms of the Second Figure
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18 N. Tennant

Note that the natural deduction on the left reveals our first use of an inference to absurdity
(⊥) being discharged by an application of O-Elimination. The inference in question is from
Ma to ⊥ at the top right, labeled (1), which is discharged at the final step. In the sequent
proof on the right, the same stratagem (of ‘assuming the falsity of Ma’) is effected by
allowing the penultimate sequent to be a ‘multiple-conclusion’ sequent. This sequent has
two sentences in its succedent (i.e. on the right of the colon), one of them being Ma. For
the sequent-system theorist, ‘multiplicity on the right’ is a warning sign that one might
be ‘classicizing’ the logic. In this instance, however, we are dealing with constructively
innocuous multiplicity on the right. The great advantage of exploiting it is that we can avoid
any explicit use of the negation sign, and work only with atomic sentences when the binary
quantifiers are not involved.

5.3. Binary-quantifier deductions for syllogisms of the Third Figure
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Aristotle’s Syllogistic and Core Logic 19

5.4. Binary-quantifier deductions for syllogisms of the Fourth Figure
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20 N. Tennant

Our binary rules afford proofs of a few more valid arguments (using Aristotelian forms)
than just the syllogisms. For example, we can derive the sequent called (C1) in Corcoran’s
system (loc. cit., p. 697) and called Rule 3 in Smiley’s system (loc. cit., p. 141), namely the
sequent (in our notation)

Ex(Fx, Gx) : Ex(Gx, Fx).

Likewise, Corcoran’s (C2), which is Smiley’s Rule 4, can be derived, when it is supplied
with the extra existential premise ‘There is some F’:

Ax(Fx, Gx), Ix(Fx, Fx) : Ix(Gx, Fx).

It will come as no surprise either that Corcoran’s (C3):

Ix(Fx, Gx) : Ix(Gx, Fx)

can be derived. Finally, we can also derive

Ax(Fx, Gx), Fa : Ga,

thereby making formal provision for the hoary example ‘All men are mortal; Socrates is a
man; therefore, Socrates is mortal’.

We leave as an exercise for the reader the construction of sequent proofs of these four
results, using the sequent rules furnished above for the binary quantifiers.

6. Features of Aristotle’s syllogistic of special interest to the modern logician
6.1. The grammar of Aristotelian forms is not generative

The formal grammar forAristotelian forms is very austere, as is the grammar for the forms
involved in the language used by the proof system for the binary quantifiers. Recall that the
rules of inference for binary quantifications involve not only major premises and conclusions
of the form Qx(Fx, Gx) (Q = A, E, I or O), but also minor premises, or assumptions for the
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Aristotle’s Syllogistic and Core Logic 21

sake of argument, of the form Ft, Fa, etc. These latter additions are all that were needed in
order to ‘Gentzenize’Aristotle’s syllogisms.

The grammar even for this slightly extended language allows one to generate, from a
finite non-logical vocabulary of monadic predicates, only finitely many well-formed for-
mulae. The language contains only one variable, x, and only one parameter, a. The rules of
Aristotelian grammar are as follows.

(1) The variable x is a singular term, with itself as its only free occurrence of a variable.
(2) The parameter a is a singular term, with no free occurrences of variables.
(3) If P is a monadic predicate, and t is a singular term, then Pt is a formula whose free

occurrences of variables are those of t.
(4) If ϕ, ψ are formulae with a free occurrence of x, then Ax(ϕ, ψ), Ex(ϕ, ψ), Ix(ϕ, ψ)

and Ox(ϕ, ψ) are formulae whose free occurrences of variables are those of ϕ and
ψ , save of x.

(5) [Closure clause] A thing is a singular term, or a formula, only if its being so follows
from the preceding rules.

A sentence is a formula with no free occurrences of variables.
Remark on terminology. I have taken care to say ‘singular term’in the foregoing definition

even though the modern logician would simply say ‘term’. This is because in the context of
a discussion of Aristotle’s syllogistic the term ‘term’ has come to mean monadic predicate
rather than singular term.11

6.2. Aristotelian ecthesis can be universal and can be existential
It is remarkable that one needs only one parameter (here called a) in order to frame a

complete set of deductive rules for the syllogistic. The parameter lends itself to construal as
existential or universal, depending on its occurrences and non-occurrences within a sequent.
Lear 1980 (p. 4) advances the opinion that

. . .ekthesis is similar to the use of free variables in modern systems of natural
deduction

and gives an example in which the particular instance ‘corresponds to existential instan-
tiation in natural deduction’. A case is made also by Smith 1982 in favor of interpreting
Aristotelian ecthesis as akin to the use of a parameter for existential elimination (instan-
tiation). I submit, however, that there is a systematic deductive perspective – namely, that
provided by our system of rules for the binary quantifiers – from which all uses of a param-
eter, be they for existential elimination or universal introduction, are cases of ecthesis; and
that every case of ecthesis can be explicated by an appropriate use of a parameter. By instan-
tiating with a parameter, one is setting out a deductive sub-problem to be solved, whose
solution will vouchsafe a deduction for the overall problem, courtesy of a single application
of a binary-quantifier rule. An interesting point that neither Lear nor Smith raise is that only
one parameter is ever needed for Aristotle’s syllogistic, even for extended syllogisms.

The need for more than one parameter will arise only when the formal language allows
for sentences that have one quantifier-occurrence within the scope of another. But this does
not happen in the formal ‘Fregean’ language that is expressively adequate for the syllogistic.

Lemma 6.1 Every sentence allowed by the Aristotelian grammar has at most one
quantifier-occurrence in it.

11 I am indebted to an anonymous referee for stressing the need to make this clear.
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22 N. Tennant

Proof By inspection of the rules of the grammar, there are only two kinds of sentences:
atomic sentences of the form Fa; and quantified sentences of the form Qx(Fx, Gx), where
both F and G are monadic predicates. �

The latter kind of sentences are the Aristotelian forms.

Observation 6.2 Aristotelian grammar does not permit iterative embeddings: no
quantifier-occurrence can lie within the scope of another quantifier-occurrence.

This follows trivially from Lemma 6.1.

6.3. Syllogisms are perfectly valid
In this section and the next, two more demanding notions of semantic validity are intro-

duced, and it will turn out that Aristotelian syllogisms are valid even in the more exigent
of the two senses. A sustained case is about to be laid out for the claim that Aristotle’s
syllogistic is a fragment of Core Logic – and a very natural and instructive one at that.

Definition 6.3 An argument is perfectly valid just in case it is valid but every one of its
proper sub-arguments is invalid.

Remark on terminology. This notion of perfect validity was defined and used in Tennant
1984, without any intended application to a study of Aristotle’s syllogistic. It could easily
have been called something like ‘prime validity’ instead, but the word ‘perfect’ was chosen
back then, and it seems wise to stick with it, all things considered. The reader should be
aware, however, that there is no intention here to suggest an analogy with Aristotle’s notion
of perfected proof or deduction. Any connection between Aristotle’s proof-theoretic notion
of perfect deduction and the above-defined semantic notion of perfect validity would have
to be independently established.12

Lemma 6.4 Given any Aristotelian form involving F and G (in either order), whatever
non-empty extension is assigned to F, one can assign a non-empty extension to G so as to
make that form true.

Proof We need to consider the following forms. For each one we indicate how, in response
to the assignment of an extension to F, an extension of G is to be chosen so as to make the
form in question true.

Ax(Fx, Gx) Let ext(G) = ext(F)
Ax(Gx, Fx) Let ext(G) = ext(F)
Ex(Fx, Gx)
Ex(Gx, Fx)

}
equivalent Let ext(G) be disjoint from ext(F)

Ix(Fx, Gx)
Ix(Gx, Fx)

}
equivalent Let ext(G) overlap ext(F)

Ox(Fx, Gx) Let ext(G) fail to include ext(F)
Ox(Gx, Fx) Let ext(G) fail to be included in ext(F)

�

12 I am indebted to an anonymous referee for stressing the need to make this clear.
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Aristotle’s Syllogistic and Core Logic 23

Lemma 6.5 Given any Aristotelian form involving F and G (in either order), whatever
non-empty extension is assigned to F, one can assign a non-empty extension to G so as to
make that form false.

Proof We now indicate how, in response to the assignment of an extension to F, an
extension of G is to be chosen so as to make the form in question false.

Ax(Fx, Gx) Let ext(G) fail to include ext(F)
Ax(Gx, Fx) Let ext(G) fail to be included in ext(F)
Ex(Fx, Gx)
Ex(Gx, Fx)

}
equivalent Let ext(G) overlap ext(F)

Ix(Fx, Gx)
Ix(Gx, Fx)

}
equivalent Let ext(G) be disjoint from ext(F)

Ox(Fx, Gx) Let ext(G) include ext(F)
Ox(Gx, Fx) Let ext(G) be included in ext(F)

�

Corollary 6.6 Let Q
[

F
G

]
be any of the above sentences using F and G as the two predi-

cates. Ditto for Q′
[

G
H

]
, using G and H as the two predicates. Then extensions can be fixed

so as to make both Q
[

F
G

]
and Q′

[
G
H

]
true.

Proof Fix any extension for F. By Lemma 6.4, fix an extension for G that makes Q
[

F
G

]
true. By Lemma 6.4 again, fix an extension for H that makes Q′

[
G
H

]
true. �

Corollary 6.7 Let Q1

[
F1
F2

]
, Q2

[
F2
F3

]
, …, Qn−1

[
Fn−1

Fn

]
, Qn

[
Fn

Fn+1

]
be a chain (n > 0). Then

extensions can be fixed for F1, . . . , Fn+1 so as to make every member of that chain true.

Proof By n applications of Corollary 6.6, the chain condition ensuring applicability. �

Corollary 6.8 Let Q
[

F
G

]
and Q′

[
G
H

]
be as in Corollary 6.6. Then extensions can be fixed

so as to make both Q
[

F
G

]
and Q′

[
G
H

]
false.

Proof Fix any extension for F. By Lemma 6.5, fix an extension for G that makes Q
[

F
G

]
false. By Lemma 6.5 again, fix an extension for H that makes Q′

[
G
H

]
false. �

Corollary 6.9 The single-premise argument that results by dropping any one premise
from a syllogism is invalid.

Proof Such a single-premise argument will have the form ‘Q
[

F
G

]
: Q′

[
G
H

]
’, where Q

[
F
G

]
and

Q′
[

G
H

]
are as in Corollary 6.6.

Fix any extension for F. By Lemma 6.4, fix an extension for G that makes Q
[

F
G

]
true. By

Lemma 6.5, fix an extension for H that makes Q′
[

G
H

]
false. �
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24 N. Tennant

Corollary 6.10 The argument ‘P, Q : ⊥’ that results by dropping the conclusion of a
syllogism ‘P, Q : R’ is invalid.

Proof Immediate from Corollary 6.6. �

Theorem 6.11 All syllogisms are perfectly valid.

Proof Let ‘P, Q : R’ be any syllogism. By Corollary 6.9, both ‘P : R’ and ‘Q : R’ are
invalid. By Corollary 6.10, ‘P, Q : ⊥’ is invalid. So no proper sub-argument of ‘P, Q : R’ is
valid. �

6.4. Syllogisms are skeletally valid
Definition 6.12 A substitution is a mapping from predicate letters to predicate letters.
A substitution induces in the natural way a mapping from sentences to sentences. Every
substitution σ is of course uniform – that is, it replaces each predicate letter F at all its
occurrences (within a given sentence or sequent) by an occurrence of the substituend σF.
A substitution on a sentence or on a sequent is one whose domain contains all the predicate
letters involved therein.

All subsequent talk of substitutions will be with implicit or explicit reference to a sequent
that we have in mind. Thus one should think of the substitutions as restricted so as to deal
only with predicate letters occurring in sentences within the sequent in question.

Definition 6.13 A substitution that maps each predicate letter to a predicate letter is
called a re-lettering. If the mapping is also one–one, it is called a permutation. Thus a
re-lettering that maps at least two distinct predicate letters to some same predicate letter is
a non-permutative re-lettering.

A non-permutative re-lettering can induce important extra logical structure, because of
repetitions of predicate letters that it can allow to occur. Consider, for example, the non-
permutative re-lettering

F G
↓ ↓
F F

Applied to the invalid sequent ∅ : Ax(Fx, Gx), it produces the (perfectly) valid sequent
∅ : Ax(Fx, Fx). The latter, valid, sequent has a repetition of F that the former, invalid,
sequent does not. Logical structure is not only a matter of patterns of placement of logical
operators within sentences, but also a matter of patterns of repetitions of predicate letters.
Indeed, it is easy to show (by induction on the complexity of finite sequents) that any finite
valid sequent in the Aristotelian language involves a repetition of at least one predicate
letter.

Definition 6.14 A substitution σ is one–one on a sequent if and only if the induced
mapping θ → σθ is 1–1 on the sentences, i.e. the premises and conclusion(s), of that
sequent.

Definition 6.15 A substitution σ is a proper substitution on a sequent in the Aristotelian
language if and only if on that sequent, σ is one–one, and σ is a non-permutative re-lettering.
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Aristotle’s Syllogistic and Core Logic 25

Definition 6.16 If a substitution σ is proper on � : �, then the resulting sequent σ� : σ�

is said to be a proper substitution instance, or refinement, of � : �, and � : � is said to be
a proper suprasequent, or coarsening, of σ� : σ�.

A proper substitution on � : � can strictly increase its logical structure, by identifying
formerly distinct predicate letters, thereby increasing ‘repetition’ of predicate letters within
the sequent; but it does so without merging any distinct sentences in � : � into a single
sentence in the resulting sequent.

Example 6.17 The proper substitution

F G H
↓ ↓ ↓
F G F

is one–one on the sequent

Q1x(Fx, Gx), Q2x(Gx, Hx) : Q3x(Fx, Hx),

turning it into

Q1x(Fx, Gx), Q2x(Gx, Fx) : Q3x(Fx, Fx),

without identifying any two distinct sentences.
By contrast, the substitution

F G H D
↓ ↓ ↓ ↓
F G G F

,

which is a non-permutative re-lettering, fails to be one–one on the (invalid) sequent

Ix(Fx, Hx), Ix(Dx, Gx) : Ix(Gx, Fx),

because it turns it into the (valid) sequent

Ix(Fx, Gx) : Ix(Gx, Fx),

in which the formerly distinct premises have been merged into one.

Definition 6.18 An entailment is a substitution instance of a perfectly valid sequent.13

Definition 6.19 An argument is skeletally valid just in case it is perfectly valid and is not
a proper substitution instance of any perfectly valid argument.

Theorem 6.20 All syllogisms are skeletally valid.

13 This concept was introduced in Tennant 1984.
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26 N. Tennant

Proof Consider any syllogism 	

Q1

[
P
M

]
Q2

[
S
M

]
Q3

[
S
P

]
By Theorem 6.11, 	 is perfectly valid. By inspection, any argument of which 	 is a proper
substitution instance has the form

Q1

[
P′
M1

]
Q2

[
S′
M2

]
Q3

[
S′
P′
]

Fix an extension for P′.
By Lemma 6.5, fix an extension for S′ so as to make Q3

[
S′
P′
]

false.

By Lemma 6.4, fix an extension for M1 so as to make Q1

[
P′
M1

]
true.

By Lemma 6.4, fix an extension for M2 so as to make Q2

[
S′
M2

]
true. �

6.5. Forms of sequent proofs of syllogisms
The reader will have noted that the terminal step of every three-step sequent proof of an

Aristotelian syllogism is a monofurcation, and the two earlier steps are bifurcations. With
four-step sequent proofs (the ones for arguments requiring an extra existential premise), the
last two steps are monofurcations, and the two earlier ones are bifurcations.

Our proofs of the syllogisms are all core proofs, in the sense of Tennant 2012. They
contain

• no ‘vacuous discharges’ of assumptions;
• no cuts;
• no dilutions (thinnings);
• no applications of strictly classical negation rules.

This last feature distinguishes my formal approach from those of both Corcoran and Smiley,
which were explained at the outset. I avoid altogether the rule of reductio ad impossibile,
which is conspicuously non-constructive.14

The proof-theoretic perspective offered here affords also fresh confirmation of an insight
of Robin Smith. As I would be inclined to put it, Aristotle could have been the very first
constructivist, in so far as he was concerned to be able to prove all his syllogisms; but, alas,
he presupposed more than he needed to.15

14 Corcoran 2009, p. 13, argues that ‘in Aristotle’s categorical syllogistic . . . indirect deductions are indispensable’. This entails

that the system of rules that Aristotle uses in order to perfect or complete deductions of arguments with more than two premises

is inherently non-constructivizable. Thus the system of rules for the binary quantifiers opens up a possibility that was closed

to Aristotle, without resorting to any essential extension of Aristotle’s formal language.
15 Smith 1983 provides an ‘ecthetic system’ and shows that

. . . if ecthetic rules are added to a model for the syllogistic, indirect deductions may be dispensed with. That is . . . for

any consistent set S of categorical propositions and any proposition p, if S implies p then p can be deduced from S by a

direct deduction in the ecthetic system. It is impossible to say whether Aristotle realized this or not . . . (loc. cit., p. 225)

Our system of rules for the binary quantifiers is of course ecthetic also, in the sense that certain of those rules allow (indeed,

call for) the use of a (single) parameter a.
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Aristotle’s Syllogistic and Core Logic 27

Our proof-theoretic perspective affords another insight:Aristotle was indeed the very first
relevantist, in so far as he was concerned to be able to prove all his syllogisms. But, alas,
there was no irrelevantist orthodoxy for him to rebel against. He was laying the groundwork
for such an orthodoxy eventually to arise, which it did by neglecting this signal feature
(relevance) of his syllogistic – a feature now respected, and restored, by Core Logic.

6.6. Aristotle’s chain principle re-visited
Our system of binary-quantifier rules, applied according to the foregoing constraints,

affords a deeper understanding of why syllogisms can be ‘strung together’, with the con-
clusion of one being a premise of the next, so as to afford a licit deduction of the final
conclusion from the ultimate premises. For the proof in Tennant 2012 of cut-elimination
for Core Logic (for a standard first-order language) is easily adapted to our system for the
binary quantifiers.

We shall say that the proof 
 connects with the proof 	 just in case the conclusion (call
it ϕ) of 
 is a premise (i.e. an undischarged assumption) of 	. So the two proofs may be
rendered graphically as

�




ϕ

and
ϕ, �
	

θ

.

Here, ϕ is called the cut sentence. When ϕ is compound, we shall refer to its dominant
operator as α. By virtue of ϕ’s being displayed separately in the premises of the proof 	,
it is to be assumed that ϕ �∈ �.

The target sequent is �, � : θ . Here, it is denoted by means of the premise-sets of the
two proofs 
 and 	, and the conclusion of 	.

We have furnished above, for every Aristotelian syllogism, a syllogistic deduction enjoy-
ing the form of a cut-free, thinning-free proof using only the rules for the binary quantifiers.
By an extended syllogistic deduction we shall mean any cut-free, thinning-free proof that
can be formed in accordance with those rules – not just those with two premises sharing
only a middle term.

If 
 and 	 are extended syllogistic deductions, and 
 connects with 	, then we can
inquire after the result ‘established’ by placing a copy of 
 over each premise-occurrence
of ϕ within 	. Call this construct




(ϕ)

	

.

Adding a little more detail:

�




(ϕ) , �

	

θ

This construct might not count as an extended syllogistic deduction. This is because ϕ might
be a major premise for a step of α-elimination at one of its premise-occurrences in 	. Such a
‘cut’ would have to be eliminated, in order to turn the construct in question into a legitimate
cut-free, thinning-free proof. The cut-elimination theorem tells us that this can be done. It
says that there will be a reduct [
, 	] whose premises form a subset (call it �) of � ∪ �,
and whose conclusion is either θ or ⊥.

This latter possibility – that the overall conclusion is ⊥ – is, however, ruled out in the
case where the members of � ‘form a chain of predications linking the terms of’ θ . For by
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28 N. Tennant

satisfying that chain condition, the members of � are jointly satisfiable, by Corollary 6.7.
Hence we know that the chain condition ensures that the reduct [
, 	] is an extended
syllogistic deduction that establishes the target sequent � : θ .
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