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Sex and the Evolution of Fair-Dealing”

Neil Tennantft
Department of Philosophy, Ohio State University, Columbus

Brian Skyrms has studied the evolutionary dynamics of a simple bargaining game. Fair-
dealing is the strategy ‘demand 1/2°, competing with the more modest strategy ‘demand
1/3’ and the greedier strategy ‘demand 2/3’. Individuals leave offspring in proportion
to their accumulated payoffs. The rules for payoffs from encounters penalize low- and
high-demanders. The result is a significant basin of attraction for fair-dealing as an
evolutionarily stable strategy. From these considerations Skyrms concludes that a dis-
position to fair-dealing could have evolved. A very different picture emerges, however,
when one considers genetic bases for the dispositions involved. A simple two-allele
sexual model produces very different stable equilibria in the distribution of behavioral
phenotypes. The equilibria for Skyrms’s purely phenotypic selection process will not in
general be attainable once one enters some simple genetic considerations.

1. Introduction. This is an investigation in evolutionary game theory,
with special attention paid to simple genetic mechanisms. It seeks to
extend Brian Skyrms’s modeling of the evolution of fair-dealing as a
behavioral strategy in competition with strategies involving more mod-
est or greedier demand levels (Skyrms 1996).

In a sense to be made clear below, Skyrms’s model is purely phe-
notypic. It takes no account of possible genetic bases for the behavioral
dispositions involved. The simplest possible extension of Skyrms’s
model to take account of genetic bases, however, forces one to draw
very different qualitative conclusions about the likelihood of fair-
dealing being favored by natural selection as an evolutionarily stable
strategy. Conclusions at odds with those of Skyrms also force them-
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392 NEIL TENNANT

selves upon one when one considers realistic variations of his rule gov-
erning the division of spoils between competing parties with different
demand levels. Both severally and jointly, sex and sub-draconian pen-
alties on greed give fair-dealers short shrift.

1.1. Evolutionary Game Theory. Imagine the following. In a popu-
lation of social individuals, there are finitely many behavioral types
B, - . ., b Every individual is of exactly one of these types. Individuals
encounter one another randomly, two at a time. As a result of its en-
counters with others, each individual acquires a certain fitness value.
This fitness value determines how many offspring it has. Offspring tend
to resemble their parents in behavioral type.

Thus far we have a completely general account of [heritable] fitness-
affecting phenotypic interactions. Since evolution requires only differ-
ential reproduction and heritable variation in fitness, we already know
enough to be able to predict that there will be an evolutionary process,
resulting possibly in changes in the population frequencies ¢(f,), . . .,
&(B,,) of the respective behavioral types. (Note that Z,¢(5,) = 1.) More-
over, the selection process could be frequency-dependent. For we have
been told that encounters determine fitness. So, the relative proportions
within the population of each behavioral type could be crucial in de-
termining an individual’s own eventual fitness—and that of those of
the same type.

Let us now add some more detail about how interactions affect fit-
ness. When two individuals encounter one another, they play a certain
game. As a result of its various encounters (plays of the game), each
individual garners resources. How much an individual garners in any
encounter depends only on its behavioral type, and on that of the other
party. This dependence is described by a prevailing payoff rule (call it
7). It is the individual’s total accumulated resources, from plays of the
game, that determine how many offspring it has.

We are now in the realm of evolutionary game theory. The impor-
tance of the game in question lies in how, via its associated payoff rule
7, it affects the fitness of (individuals of ) any given behavioral type. Let
&(i,j) be the probability that a given individual of type i will, on its next
encounter, meet an individual of type j. Let n(i,j) be the payoff to an
individual of type i from a sharing encounter with an individual of type
Jj. The payoff matrix 7(z,j ) and the matrix &(i,j ) of encounter probabilities
enable one to calculate the expected total resources p(i) garnered by an
individual of type i. The defining equation is p(i) = Ze(i,j)n(i,j).

Make the following further simplifying assumptions. At each bout
of reproduction, all parents die. The number of offspring of any indi-
vidual i is directly proportional to its accumulated resources p(i). In-
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dividuals encounter one another at random within the population at
large. Thus &(i,j) = ¢(7) and so p(i) = Z,¢(j)n(i,f).

Life has now become less interesting, but computationally more
tractable. Given the payoff rule 7, one can work out how any initial
distribution ¢ = (¢, . . ., ¢,) of population-frequencies of the behav-
ioral types will change, from one generation to the next. One can ex-
amine whether the population will evolve to stable equilibria y—that
is, constellations of frequencies (of behavioral types) on which evolu-
tionary trajectories tend, from a surrounding neighbourhood, to con-
verge. We shall write ¢—]r]— w to express this. When the convergence
is achieved within N generations we shall also write d)—{n]——) w. When
the frequency of any one behavioral type tends to unity, we say that
the type in question spreads to fixity. But if more than one behavioral
type enjoys a non-zero limiting frequency within the population, we
say that the population has reached a polymorphic equilibrium. An
equilibrium w will have a ‘basin of attraction’ in frequency-space: start
the population off anywhere in this basin of attraction, and it will
converge to the equilibrium  in question.!

Now enter the following further assumptions. Each offspring has
only one parent. Breeding is true—that is, each offspring is of the same
behavioral type as its (sole) parent. Finally, there are only three be-
havioral types.

We are now in the realm of Skyrmsian selection theory—of which
more in a moment.

1.2. Heritability and Innateness. In quantitative genetics, a trait is
said to be heritable if its variation among individuals is due at least in
part to genetic differences among them. The concept of heritability is
a statistical one, and finds its most useful application when the trait is
polygenic and its variation is continuous. The concept of heritability
is employed when one is concerned to factor out the relative contri-
butions of nature and nurture to the interindividual variation of a given
(polygenic) trait.

In developmental biology, a trait is said to be innate (for a given
genotype) when it displays rigidity of development across the normal
range of environmental influences (on that genotype).? With asexual

1. An equilibrium can be a small neighbourhood in frequency-space rather than just a
point. In that case y will be a convenient point within that neighborhood, to which,
after sufficiently many generations, the frequency vector remains appropriately close.
2. See von Schilcher and Tennant 1984, Ch. 1, §6, for a discussion of the connections
and contrasts between the developmental biologist’s concept of innateness and the
population geneticist’s concept of heritability.
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reproduction, the form of an innate trait in the parent will be identical
to its form in any of its offspring. But with sexual reproduction, simple
Mendelian recombination can make matters different even for innate
traits. Consider, for example, two alleles a and b for a single chromo-
somal locus. Suppose that the genotypes aa, ab, and bb give rise re-
spectively to three distinct forms of the (monogenic, or single-locus)
innate trait in question. Note that two parents whose genotypes are aa
and bb will have only ab offspring—which resemble neither of the par-
ents with respect to the trait in question. Similarly, two ab parents will
have a brood one quarter aa, one half ab and one quarter bb (assuming
no meiotic drive). So in this case one half of the brood will resemble
neither parent with respect to the trait in question. Thus even with
innate traits the parent-offspring correlation of trait-values need not
be perfect.

All that natural selection needs is that traits be heritable (to at least
some degree). Traits do not have to be innate, nor do they need to be
100% heritable, in order to be subject to natural selection. Natural
selection can reshape the distribution of a heritable trait even if the
trait is not innate. Indeed, natural selection can have a significant effect
even if the environment makes a very important contribution to the
expression of the trait in any individual. Moreover, a trait’s heritability
in the quantitative geneticist’s sense can be established quite indepen-
dently of any hypotheses as to the biological or psychological mecha-
nisms whereby the trait is expressed.

These general considerations are worth bearing in mind when con-
sidering the likely sources of variability in behavioral traits such as
resource-sharing strategies. Even if only a small amount of the varia-
tion is due to genetic differences (i.e., even if heritability is low), natural
selection can nevertheless change the underlying distribution of alleles
at the loci concerned. And certainly, in the innate case it will be of
paramount importance to consider natural selection and its effects on
the underlying genotypes.

2. Skyrms’s Use of Evolutionary Game Theory. Skyrms believes that an
appealing evolutionary story can be told about how, from among pos-
sible competing strategies in ‘sharing encounters’, the strategy of fair-
dealing will probably evolve (Skyrms 1996). He imagines the encoun-
ters as involving two individuals at a time. In each encounter some
resource-value is at stake, which is available to be divided between the
two parties. It is their cooperation that make the resource available; it
is assumed that the resource would not be available to any individual
acting on its own. Each party brings a characteristic ‘demand level’ to
the encounter. This is its ‘strategy’—or, in our introductory terminol-
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ogy, its ‘behavioral type’. The fair-dealer will demand 1/2 of what is at
stake. There could also be more modest or greedier demand levels.
Among these, Skyrms considers only ‘demand 1/3° and ‘demand 2/3’
for his explanatory purposes. Playing the game consists in making
one’s demand, and taking one’s resulting due, as prescribed by the
payoff rule.

In an ideal world of share-and-share-alike, there would be no squab-
bling, and no squandering of resources. It would seem to be in every-
one’s best interests to be fair-dealers. As everyone knows, however,
greedier demanders might do better (especially against more modest
parties). There must be some penalty, Skyrms thinks, to punish those
who demand too much, especially in encounters among themselves.
Those who demand too little will already be punishing themselves by
garnering less than they otherwise might. The Skyrms payoff rule
(henceforth: the rule ¢) penalizes high-demanders. The entry o(i,j) in
the i-th row and j-th column represents the payoff to an individual of
type i from a sharing encounter with an individual of type j. The
Skyrms matrix o(i,j) is as follows:

D1/3 D12 D2/3
D1/3 173 173 1/3
D12 112 1/2 0
D2/3 273 0 0

The leading idea is that, with suitable levels of punishment—repre-
sented by the zeros in the matrix above—deviations from fair-dealing
would be held in check, and in due course eliminated, by natural se-
lection. For it is assumed that individual’s demand levels are heritable,
and that reproductive success correlates positively with what one gets
as a result of what one demands. The most successful strategy, Skyrms
believes, will prove to be ‘demand 1/2°—in the sense that it is ‘the
unique evolutionarily stable equilibrium strategy of the symmetric bar-
gaining game’ (Skyrms 1996, 11; note that the game in question is
defined by the matrix just given).

The Skyrmsian selection process has, as stressed above, a special
feature: every individual is (in the relevant phenotypic respect) exactly
like its (sole) parent. This is what makes Skyrmsian selection purely
phenotypic. This special feature could be realized in two distinct ways.
And both these ways tolerate complete omission of any genetic consid-
erations in the modeling.

The first way for the selection process to be purely phenotypic is for
the parent-offspring influence to be completely environmental. Imagine
that either (i) the parent has complete power to indoctrinate its off-
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spring; or (ii) the offspring’s desire to imitate the parent’s example is
overriding; or (iii) there is a happy confluence of parental concern and
juvenile diligence. Whatever the psychological mechanism, at this en-
vironmental extreme the ‘breeding true’ would be achieved in a ‘purely
cultural’ fashion. Acquiring one’s behavioral type (adopting a strategy)
would be a matter of imitation and learning—Ilike learning to play the
piano, rather than growing five toes on each foot. Indeed, at this level
of cultural abstraction, one could conceive of the strategies, rather than
the biological individuals, being the replicators. It is clear that at this
environmental extreme (that of nurture as opposed to nature) genetic
considerations become irrelevant for the modeling.

The second way for the selection process to be purely phenotypic is
for an exact parent-offspring resemblance to be wholly due to their
exact similarity in some relevant genotypic respect, and to the innate-
ness of the associated phenotypic trait. The ‘purely genetic’ extreme
described here (that of nature as opposed to nurture) could arise when
offspring were asexual clones of the parent. If the phenotypic trait were
innate, then every individual would be (in the relevant phenotypic re-
spect) exactly like its (sole) parent. Ironically, with such genetic deter-
mination, genetic considerations once again become irrelevant for the
evolutionary dynamics. Because the genotype-phenotype correspon-
dence is rigidly one-to-one, the modeling can be purely phenotypic,
and the genotypes ignored altogether.

So we see that Skyrmsian selection can be realized at two very dif-
ferent extremes, one purely environmental and the other purely genetic.
Both of these extremes allow one to ignore genetic considerations al-
together when studying the evolutionary dynamics of the trait in ques-
tion, and to deal directly and only with the phenotypes. And that is
why we call Skyrms’s model purely phenotypic.

Real-world populations of social individuals, however, tend to be
found at neither of these extremes. Social individuals are not usually
asexual; and, while important phenotypic traits are heritable, offspring
in sexually reproducing species often fail exactly to resemble, in those
important phenotypic respects, either one of their parents. Instead, we
have to contend with the reality of genetic recombination. This means
that even when certain traits are wholly innate, the offspring might not,
in the relevant phenotypic respect, be exactly like either of its parents.
Parent-offspring correlation of phenotypic traits need not be random;
but it need not be perfect either.

For the three sharing strategies in Skyrms’s model to be innate, there
would have to be three genotypes corresponding respectively to ‘de-
mand 1/3°, ‘demand 1/2°, and ‘demand 2/3’. Every individual would
breed true, all its offspring having the same genotype, and hence ex-
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hibiting the same strategy, as their (sole) parent. But with sexual re-
production, matters are different: as soon as there is genetic variability
individuals do not always breed true, even when the phenotypic traits
in question are innate. This is because of sex.

Skyrms’s assumption that offspring exactly resemble their (sole) par-
ents is adopted also in the account of Batterman, D’Arms, and Gorny
1998 (henceforth, BDG). The BDG-model, like the Skyrms model,
does not take sexual reproduction into account.

The Skyrms-BDG purely phenotypic modeling is our acknowledged
departure point. We shall maintain the following points of simplifying
agreement with purely phenotypic modeling: parents die immediately
after reproducing; the number of any individual’s offspring is directly
proportional to its accumulated resources; there are just three strategies
or behavioral types (demand 1/3, demand 1/2, and demand 2/3); and
individuals encounter one another randomly for plays of the game, two
at a time.’

Our guiding question is: Can the selection process reliably vouchsafe
that fair-dealing will always be an evolutionarily stable strategy? Hold-
ing at least the points of methodological agreement just mentioned will
allow us to focus on two other, more important, features of the mod-
eling in which developments might be desirable in pursuit of an answer
to this question. These features are: (1) the nature of the genotype-
phenotype relation; and (2) the fitness-affecting phenotypicinteractions
(i.e., the payoff rule). We shall make our first modeling innovation (or
extension) with regard to feature (1). Then we shall make a second
innovation with regard to feature (2). We shall examine the effects of
each innovation in isolation, and then see what results from combining
them.

3. The Dialectical Situation. We shall find, on making the foreshadowed
innovations or extensions in the modeling with respect to features (1)
and (2), that many of the qualitative conclusions from purely pheno-
typic modeling are undermined. That is, the evolutionary processes
whose study is made possible by the innovations to be described result
in very different kinds of equilibria than those produced by purely
phenotypic modeling. In particular, the strategy of fair-dealing does not
emerge as evolution’s favorite choice.

3. Both Skyrms and BDG examine different relaxations of this last randomness as-
sumption, by introducing so-called correlation coefficients; and we can follow them in
that regard. The question of correlation coefficients, however, is orthogonal to the main
concerns of this paper; and limitations of space prevent us from considering it. Suffice
it to say that in our two-allele model positive correlation coefficients improve the for-
tunes of the allele for low demanding.
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Now it is important to appreciate exactly what we take the dialec-
tical situation to be, given how the modeling innovation to be described
yields results at odds with those of Skyrms. There are two considera-
tions to be distinguished. First, one could ask

(D) Are the likely evolutionary circumstances of our own past better
modeled by a purely phenotypic selection process or by one of the
processes afforded by one of our modeling innovations?

This is an empirical question, one best answered by the extent to which
the predictions of the respective models might match our pre-theoretical
observations of the social phenomena. This is where the models are
applied, or tested. Any pre-theoretical evidence, for example, that sta-
ble economic stratification in many a human society is the outcome of
much unfair dealing could well be taken to support something like our
genetically-minded modeling extension rather than the purely pheno-
typic model. For in a wide range of circumstances our model predicts
a stable three-way polymorphism; whereas the purely phenotypic
model does not predict it under any circumstances. (The only three-
way polymorphism of the purely phenotypic model is unstable.) Purely
phenotypic models tend in general to provide poor explanations of
heritable behavioral traits in sexually reproducing organisms.
Secondly, one could require that the modeling address the question

(I1) Is fair-dealing likely to spread to fixity independently of what-
ever the genotype-phenotype relation might be?

This is a more a priori question, to be answered by examining the
consequences of the modeling. We do this by implementing the model
and exploring its computational results. In this regard, our investiga-
tions yield a negative answer to question (II). Fair-dealing is not likely
to spread to fixity independently of whatever the genotype-phenotype
relation might be. We demonstrate this with our main modeling exten-
sion: a single-locus two-allele model for the innate case.

Now admittedly this is a very specialized genetic scenario; but it is
not to be neglected by any theorist aspiring to allege a general tendency
of fair-dealing to spread to fixity, regardless of the nature of the
genotype-phenotype relation. There are two feeding strategies in Dro-
sophila larvae, which behavioral geneticists call rover and sitter. Rovers
stay on the surface and forage widely. Sitters stay put and dig deep.
This is quite a radical difference in behavior—not just in degree or
intensity, but in kind. Yet the difference is known to be due to two
alleles for a single locus (see Sokolowski 1980). If such a difference—
even if only on the part of a fruit fly—can be due to variation at a
single chromosomal locus, then one has to keep an open mind about
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the possibility that organisms such as primates might likewise display
variations in the degree or intensity of a certain kind of behavior as a
result of variations at but a single locus.

The specialized nature of our chosen genetic scenario should kindle
interest in the further question:

(IIT) When the genetic model is developed further, to a multiple-
locus, multiple-allele model allowing for gene linkage, dominance-
recessiveness and other genetic effects, and when the genotype-
phenotype relation is conceived more generally so as to allow the
phenotypic traits to be not wholly innate, will the qualitative results
resemble those of purely phenotypic selection or those of the single-
locus two-allele model of the innate case?

The reader is cautioned against too hasty a judgment call on this last
question. The Mendelian combinatorics of evolutionary game theory
even in the case of a single-locus three-allele model allowing for
dominance-recessiveness are so complicated, notwithstanding the sim-
plifying effects of our points of methodological agreement above, that
qualitative predictions would at this stage be premature.* A great deal
of further computer-aided intellectual effort is needed in order to settle
question (IIT). It is only to be hoped that the current investigations will
be a spur to this even more ambitious extension of genetic modeling in
evolutionary game theory.

4. A First Move Towards Greater Generality: Introducing Sex. We want
to introduce sex into the theoretical picture. This is the single major
extension we envisage in order to move towards a model capable of
finding application in the real world regardless of what its Mendelian
secrets may turn out to be. The position here is that variations in social
behavior in some sexually reproducing (diploid) species might, in an
interesting range of cases, be the result of genetic variation at a single
chromosomal locus. So we look first at the most obvious and most
modest genetic extension of the purely phenotypic model. We take off
from Skyrms’s model, and introduce the minimum that it takes to get
sex into the picture. Our discussion will focus on ‘sharing strategies’ as
the phenotypic trait of interest; and these traits will be assumed to be

4. Templeton (1982) discusses significant differences between what would be predicted
by a naive adaptationist (or purely phenotypic) model, and what is predicted by a
particular single-locus, three-allele model. The latter model postulated various order-
ings of fitnesses of the six possible genotypes, as well as a dominant-recessive pair among
the three alleles. The real-world phenotypic traits being modeled were two different
levels of malarial resistance, one level of malarial susceptibility, and two levels of sickle-
cell anemia.



400 NEIL TENNANT

innate. But the considerations to be advanced subsequently are per-
fectly general, applying to any innate trait admitting genetic variation
of the kind here bruited.

4.1. Intermediate Inheritance and Over-Dominance. Consider the sex-
ual case where two alleles—say, a and b—account for the phenotypic
variety of ‘demand 1/3°, ‘demand 1/2’ and ‘demand 2/3’. If we assume
intermediate inheritance (IH), then we could assign the phenotypic de-
mand levels to genotypes as follows:

1/3 172 2/3
—IH
aa ab bb

But the correspondence might be different. It might be the heterozygote
that demands the most. Such a situation is one of so-called ‘over-
dominance’, and is well-known to geneticists:

1/3 172 2/3
—OD
aa bb ab

Note that we are adopting a convention to the effect that the homo-
zygote aa demands less than the homozygote bb. Thus we shall speak
of a as the allele for low demanding, and of b as the allele for high
demanding. This holds regardless of the heterozygote’s demand level.
We shall also assume in our displays that demand-levels increase from
left to right: (1/3,1/2,2/3). Thus intermediate inheritance is evident in
the triple (aa,ab,bb); and over-dominance obtains when the triple is
(aa,bb,ab).

Over-dominance has been found quite frequently with polygenic
traits in very inbred populations. But it is perfectly feasible for mono-
genic traits as well. Indeed, there is now even an explanation on offer
as to the molecular mechanism that produces over-dominance in the
single-locus case (Kacser and Burns 1981). We shall investigate only
the kind of over-dominance just indicated. There is of course also the
possibility that it is the heterozygote that demands the least.

The disadvantage in the two-allele case for three expressed values of
a trait is that the trait-values are not completely independent genetic
competitors. The situation is made more complex by heterozygosity.
(In real life the strategies might not be independent competitors; it is
an empirical question whether they are so.) Note that if the two alleles
were dominant-recessive, then only two values for the trait would ever
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be expressed. So, since we are assuming three expressed trait-values, it
follows that in the two-allele case we have to rule out dominance-
recessiveness. That leaves us, then, with intermediate inheritance and
over-dominance as the only possibilities in the two-allele model. Only
when we examine a three-allele model shall we be able, and obliged, to
consider dominance-recessiveness as a genuine—and indeed rather
likely—option.

It is not unrealistic to hypothesize that three behavioral types might
arise from the action of just two alleles, with intermediate inheritance
or over-dominance for the heterozygous case. Increasing demand levels
could well be the result of, say, increasing concentrations of certain
chemicals in the brain. These increased concentrations could have the
effect of either stimulating or inhibiting certain kinds of neural activity.
Nor is it unrealistic to assume that regimes of intermediate inheritance
or of over-dominance (of either of the two possible kinds) could result
from the neurochemical effects of the different alleles in homozygous
and heterozygous combination. After all, it has been seriously hypoth-
esized, even if not conclusively established, that even such a compli-
cated psychological disorder as manic depression might be a single-
gene defect (see Egeland et al. 1987 and Berrettini 1997, 262, 264; for
a more skeptical assessment of the single-gene hypothesis for psychi-
atric disorders, and alternative explanatory—but still genetic—models,
see Comings 1997). In light of the seriousness with which psychiatric
geneticists are prepared to consider single-gene hypotheses, there is no
prima facie reason why we should not consider as plausible the hy-
pothesis that variations in sharing behavior might be due to variation
at but a single genetic locus. The model we have suggested is adequate
to just such a situation, where the variation is confined to one critical
locus and is moreover absolutely minimal.

If the truth remains more complicated, then at the very least our
model approximates it more closely than the purely phenotypic model,
which does not enter any genetic considerations at all. Moreover, our
model would lend itself to whatever further complications might be
needed in order to save it from the charge of oversimplification.

4.2. A Simple Disagreement with Purely Phenotypic Modeling. Re-
flection on the two-allele case yields an important and almost a priori
disagreement with purely phenotypic modeling. Take the case of inter-
mediate inheritance. First, the combination ab (1/2-er) could not drive
out the other two (the 1/3-er aa and the 2/3-er bb) to extinction. Even
with every individual at a given time being of type ab, random meiosis,
matings, and fertilizations would ensure, by Mendel’s laws, that in the
next generation about one quarter of the offspring would be aa and
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one quarter bb. Thus in this ‘two-allele’ genetic set-up, one could not
attain the purely phenotyplc result of fixity for ‘demand 1/2°. (Here we
have to assume meiosis is random, that is, that there is no meiotic drive.
This assumption is justified by citing the need to isolate just the effects
of the game-playing strategies on reproductive fitness.)

Second, there could be no polymorphic equilibrium, of the kind
predicted by purely phenotypic modeling and confirmed in our non-
stochastic replication of Skyrms’s model, of homozygous 1/3-ers
(genotype aa) and homozygous 2/3-ers (genotype bb), unless matings
took place strictly between the same genotypes. For, if any aa individ-
ual were to mate with any bb individual, all their offspring would be
heterozygous 1/2-ers (ab)!

4.3. Evolutionarily Stable Strategies and Invading Alleles. Evolution-
arily stable strategies are strategies that, once followed by almost all
members of a population, prevent invasion by any other mutant strat-
egy (see Maynard Smith 1982, 10, 24). Any mutant strategy would
naturally be exhibited, initially, by only a very small proportion of the
population. In the purely phenotypic case one could consider any one
of ‘demand 1/3’, ‘demand 1/2’ and ‘demand 2/3’ as a candidate for ESS
status, and try to ‘invade’ the population with one of the others. In the
two-allele case, however, this kind of thought experiment is compro-
mised by the genotype-phenotype relation. For, if almost all individuals
were heterozygotes ab, then the very next generation would be about
one quarter aa, one half ab, and one quarter bb, and that would be a
successful invasion (by aa and bb). Thus any candidate for ESS would
have to be homozygous (say aa). Any imagined invasion would have
to involve a new allele b—probably, therefore, in a new heterozygote
ab. If the first ab individual manages to leave any offspring, half of
them will be ab. Any interbreeding among these will produce a brood
one quarter bb—and thus a third strategy would pop into the scene.
Thus invasions would not be ‘single strategy’ invasions for very long.

The genetic approach therefore provides reason to re-conceive the
process by means of which equilibria might be achieved. The point is
clearest in the innate case, where each genotype determines a unique
demand level. Invasion by a mutant strategy requires a new allele to
enter the gene pool. This means that the new strategy thereby arising
will enjoy some miniscule initial representation in the population, the
allele responsible for it having arisen by mutation. With our single-
locus, two-allele model we can think of these invasions as effecting a
transition from an earlier stage where there is only one allele for that
locus, to a later stage where we now have the two alleles of the model,
the new one having arisen by mutation. Thus the new allele will in all
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probability find itself initially within a new heterozygote, in a popula-
tion of individuals otherwise homozygous in the old allele. This means
that evolutionary stability is best judged in terms of what happens with
initial positions such as the following, whose evolutionary trajectories
we shall study below:

(aa ab bb
0 107 1 — 10-7) — allele a for low demanding invading; IH
(aa ab bb)

1 — 1077 10-7 0 / — allele b for high demanding invading; IH
(aa bb ab

0 1 - 107 1077/ — allele a for low demanding invading; OD
(aa bb ab )

1 — 107 0 10-7)— allele b for high demanding invading; OD

In the genetic case, then, it becomes less important to consider (as
purely phenotypic models invite one to do) the size of any basin of
attraction for a stable polymorphism or for fixity of a given strategy.
For, when the new alleles arise by mutation, much of the area of each
such basin of attraction (considered as providing starting points for an
evolutionary process) is rendered irrelevant. This is because points in
the irrelevant areas correspond to frequency vectors with non-trivial
components for all behavioral types involving the invading allele.
When a new allele invades, however, at least one of the behavioral types
based on it will be ex Aypothesi in a miniscule initial proportion within
the population. Thus the sheer size of any basin of attraction can no
longer feature in a probabilistic argument (as in Skyrms 1996, 16, and
BDG 81) to the effect that evolution would belikely to produce the result
in question (that is, the attractor within that basin). Instead, one should
look at what successive invasions, one allele at a time, would do.

5. Qualitative Results from the First Innovation (Introducing Sex). We

shall not lay out the mathematical details of the two-allele model; suf-

fice it to say that they represent a smooth and direct generalization of

the details of the purely phenotypic model, and are easy to implement

computationally. We are concerned here rather to report the results.
The first remarkable result is the following:

Example 1. With over-dominance (with the heterozygote as the
highest demander) and the Skyrms matrix ¢ in effect, a tiny 1-in-
10,000,000 proportion of ab heterozygotes in an otherwise wholly
aa homozygous population will see the new allele b for high de-
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manding spread within about 60 generations to high representation
in a stable polymorphism:

aa bb ab 60 aa bb ab
(1 - 10-7 0 10—7>_[J] <.5286 .3969 .0745)

This equilibrium will be achieved only when allele b is the invader.

Example 2. If the roles are reversed, so that allele a for low de-
manding is trying to invade an otherwise wholly homozygous bb
population, then allele a simply never gets a look-in:

aa bb ab aa bb ab
(0 1 — 107 10—7) —el ’(0 1 0)

So, we see that over-dominance favors the allele b over the allele a.
By contrast, intermediate inheritance favors both:

Example 3. With the Skyrms payoff rule o, there is a remarkably
stable evolutionary equilibrium, which is achieved quite rapidly,
and from both extremes for the initial proportion of allele ¢ in the
gene pool. The rarer allele in each case is introduced once again
only via heterozygotes:

aa ab bb 40 aa ab bb
(o 107 1 — 10-7>—["] > <.3967 4663 .1370>

aa ab bb 100 aa ab bb
(1 — 107 107 0>“{"]“" <.3967 4663 .1370>

The Skyrms rule is severe on high-demanders, leaving them empty-
handed when the combined demand level in an encounter exceeds 1.
This accounts for the genotype b (demand 2/3) making up less than
15% of the population in this last equilibrium, while aa (demand 1/3)
makes up almost 40%.

6. Qualitative Results from the Second Innovation: Allowing More Ver-
satile Payoff Rules. It would be sensible to investigate the effects of
other payoff rules than that represented by the Skyrms matrix o. For
it does not strike one as wholly realistic to assume that neither party
to an encounter receives any resource-value at all if the sum of their
demand levels exceeds unity. Why should the penalty on high de-
manding be so severe? In order to justify the zeros in his payoff matrix,
Skyrms resorts to the expository fiction of a referee who confiscates
the whole cake. But a more realistic assumption, not calling for such
expository fictions, would be that the result of such ‘greedy’ encounters
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would be some division (in proportion to demand levels) of at least
some portion of the disputed resource. The resource may, to be sure,
be diminished or forfeited as a result of conflict over its (even only
prospective) division. But even two hyenas each of which wants more
than half of the carcass usually manage to munch a few morsels.

There is a useful role to be played, then, by a function that we shall
call a(i,j). This represents the available intact value of a resource (Whose
initial value is normalized to unity) left over for division between two
contesting claimants with demand levels i and j respectively. Clearly
0 =< a(y) =1 and o(iyj) = n(ij) + =n(,i) (whence a(ij) = ofj,i)).
When a(ij) < 1, the “forfeited value’ 1 — «(i,j) has been forfeited by
the two claimants because of the contest between them.

Whatever payoff rule is in effect, the residual value a(iy) is always
shared in proportion to the respective demand levels i and j. Thus we
always have what may be called the sub-rule of proportional division:

jr(j) = i.xn(i)
This sub-rule says that the more one demands, the more one gets—of
what is available to both parties (namely, «(i,j)). This makes good sense
of the operational meaning of a ‘demand’ level. Different payoff rules,
since they all embody the sub-rule of proportional division, will then
differ from each other only in how they determine the ‘available value’
a(i,j) from the demand levels i and j.

In general, the greater the sum of the two demand levels i and j, the
greater the ensuing conflict, and the lower will be the available intact
value a(i,j) of the acquired resource with initial value 1. We would
approximate this thought by saying that a(i,j) is min(1,2 — (i + j)):

a(i, 7)
1-
} - (3 + J)
0 1 2

Available intact resource value a(ij) in encounters between demand i and demand j
(a continuous case)

Notice that «(i,) is a continuous function of the sum (i + j) of demand
levels. We shall call a payoff rule continuous just in case its associated
residue function «(i,j) is continuous, like the one (call it y) depicted in
the graph above. Skyrms’s payoff rule o, by contrast, is discontinuous
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because its associated residue function a(ij)isi + jif 0 =i + j=1,

0if i + j > 1, which jumps discontinuously from 1 to 0 when (i + j)
reaches 1:

a(i, 5)

- (i +7)

0 2

[ T

Auvailable intact resource value a(i,j) in encounters between demand i and demand j
(Skyrms’s discontinuous case)

The question now arises whether «(i,j) should be able to take non-
zero values when i + j > 1. When the two demand levels match one
another, for example, the division should be 50-50. But 50-50 of how
much?—the whole resource (whose value is unity)? Or only some frac-
tion thereof?

The discontinuous rule o is extremely gloomy on this score. It sets
the fraction in question to zero. It envisages total destruction (or for-
feiture) of the resource as soon as i + j exceeds unity, no matter by
how little. According to the rule g, a(ij) = i + jif 0 =i + j=1,
0if i + j> 1, as depicted in the last graph. This may be excessive, and
biologically unrealistic.

For, consider the case where the resource in question does not spoil
with time. When / + j < 1, proportional shares could be enjoyed, and
any (non-spoiled) left-overs could be made available for another
‘encounter’. Iterating, two low-demanders could eventually achieve a
proportional division of the whole initial value of the resource. When
i + j > 1, however, the ensuing conflict could well spoil or destroy the
resource—but in a way that worsened only gradually. We could imag-
ine destruction being total when both parties wanted the whole hog.
But there could be a gradual slide to this fractious extreme. Thus we
could have, say, a(i,j) = min (1,2 — (i + j)), as depicted in the first
graph above.

This continuous rule with a(ij) = min(1,2 — (i + j)) (which we
have called y) would entail that low-demanders would obtain a little
more than they actually demand in encounters with each other; and
that high demanders, though still punished in encounters with each
other, would not be so strictly punished. In accordance with the sub-
rule of proportional division, the payoff matrix for the rule y would be
as follows:
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D1/3 D12 D2/3
D1/3 112 2/5 173
D12 3/5 172 5114
D2/3  2/3 1021 1/3

To appreciate the difference that the continuous rule y can make, we
shall consider in this section only the effect of that rule, not the effect
of introducing sex. The qualitative results on the purely phenotypic
model are extremely sensitive to initial conditions and the payoff rule.
Switching from the discontinuous payoff rule ¢ to the continuous rule
y just suggested dramatically alters the nature of the equilibria attained
in the purely phenotypic case.
Example 4. One can test the prospects of 1/3 and/or 1/2 spreading
within the population when the initial frequencies are
(.005,.005,.99). With Skyrms’s discontinuous rule o, 1/2 is wiped
out, and 1/3 and 2/3 establish an evenly divided equilibrium within
10 generations. Yet with the continuous rule y, 1/2 not only sur-
vives, but spreads to fixity within 200 generations:

(.005,.005,.99) —fo}——> (.50..5)

(.005,.005,.99) —y— (0,1,0).
Such dramatic differences are to be had even with very slight variations
in a single parameter that could be introduced to calibrate the ‘penalty’
on high-demanders. The continuous rule y above says that the total
available resource value (which we are normalizing to unity) is propor-
tionally divided between the two individuals when their combined de-
mand level (i + j) does not exceed 1; but diminishes when (i + j) exceeds
1. At present a straightforwardly proportional diminution is envisaged:

a(ij) =2 — (@ +j)(wheni +j>1)
Thus when (i + j) = 2, the available value is 0. We could modify this
effect by introducing a ‘penalty’ factor e > 0 (yielding the preceding
equation when e takes value 1):
aij)y =1+ el — (i + j) (Wheni + j>1)

o (4, 7)
1

0

Available intact resource value a(i,j) (when i + j > 1) resulting from varying values of the
penalty factor e on high-demanding
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We find that variation in this penalty factor e can induce dramatic
phase transitions.

It is not only high-demanders who are ‘punished’ by the discontin-
uous rule; for the low-demanders also suffer when they encounter each
other, by virtue of forfeiting some part of the total resources available.
When the sum of the demand levels i and j is less than 1, the discon-
tinuous rule allows only (i + j) of the resource value to be available
for (proportional) distribution. Thus if a 1/3-er encounters a 1/3-er,
they each get 1/3, and 1/3 is forfeited by both sides; if a 1/3-er encoun-
ters a 1/2-er, the 1/3-er gets 1/3, the 1/2-er gets 1/2, and 1/6 is forfeited
by both sides. So with the discontinuous rule ¢ we have

a(ij) = ( + j)wheni + j=1)

In order to relax this imposed forfeiture on low-demanders, we intro-
duce the forfeiture factor 4, taking values between 0 and 1; and we
recast the foregoing part of the discontinuous rule so that it reads, more
realistically, as a(i,j) = h(i +j — 1) + 1 (Wheni + j < 1):

o(i, 5)
1-

0

— e

- (i + 7)
2

Available intact resource value a(i,j) (When i + j < 1) resulting from varying values of the
forfeiture factor 4 on low-demanding

When 2 = 0 we have complete generosity towards low demanders.
They get to divide the whole resource in proportion to their demand
levels. When # = 1 we have Skyrms’s treatment of low demanders.
For values of 4 between 0 and 1, we have varying levels of generosity
towards low-demanders (the more generous the lower the value of 4).
Thus our continuous rule y arguably makes more versatile provision
than the discontinuous rule ¢ in two respects, namely in being possibly
more generous towards low-demanders and in being possibly more
generous towards high-demanders.

How does one determine (from the two demand levels i and j) what
fraction of the original resource value is available to be divided? This,
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as remarked above, is where the different payoff rules distinguish them-
selves. The question is answered by the continuous rule y(e, /) as follows
(in effect combining the last two graphs).

Sub-rule providing penalties on high demanding:

aij) = max(0,1 + e(1 — (( + j) wheni + j>1(0 =¢)

Sub-rule providing penalties on low demanding:

a(ij) =hi +j— 1)+ 1wheni+j=10=h=1

a(i, §)
1 h=0 e=0
h=. =0.5
=1 e=1
2
} - (i +J)
0 1 2

Available intact resource value a(i,j) resulting from varying values of the penalty factor e
on high-demanding and the forfeiture factor 4 on low-demanding

The discontinuous rule ¢ can now be seen to be a special case of the
continuous rule: ¢ = y (e0,1); or, written another way, o = [e = o, &
= 1]. (Thus wherever we have [o] in the statement of results above, we
could instead write [e = o, 4 = 1].) The continuous rule simply coun-
tenances more of the likely empirical possibilities. The rule we have
called y has the settings[e = 1, 4 = 0].

For the rest of this discussion, we shall set # = 0 when the contin-
uous rule is in effect. Thus we shall be combining the greatest possible
degree of generosity towards low demanders (2 = 0) with varying levels
of severity (registered by the penalty factor e) towards high-demanders:

a(4, 5)
1_

0

Available intact resource value a(i,j) resulting from varying values of the penalty factor e
on high-demanding and the fixed value 0 for the forfeiture factor /# on low-demanding
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Our computations reveal that an ever-so-slight variation of the value
of e can dramatically alter the evolutionary outcome on the purely
phenotypic model.

Example 5. If we set e = 0.8 then from the initial proportions of
our last example, 1/2 still spreads to fixity. But if we set e = 0.7
then 2/3 repels the invaders. Note moreover that neither of these
settings for e produces any of the zeros of the discontinuous payoff
matrix. So what we have here is a phase transition induced by some
threshold value of e, which lies between 0.7546 and 0.7547. (As we
lower the value of e, we reduce the penalty on high-demanders,
such as 2/3.)

(.005,.005,.99) —]e
(.005,.005,.99) —Je
(.005,.005,.99) —{e
(.005,.005,.99) —Je

0.8, h = 0—> (0,1,0)
0.7547, h = 0}—> (0,1,0)
0.7546, h = 0}—s (0,0,1)
0.7, h = 0}—> (0,0,1)

This is completely new for the purely phenotypic case—quite unlike
the two possible outcomes that the purely phenotypic model produces
using the discontinuous rule o, as we saw in Example 4.

Note that the dramatic contrast reported in this section concerns the
purely phenotypic model, and comes only from changing the payoff
matrix. The purely phenotypic model is so sensitive to initial conditions
that it is doubtful whether anything of general predictive or explana-
tory value can be derived from it. Every evolutionary process governed
by the discontinuous payoff rule ¢ = [k = o, ¢ = 1] has as its only
stable outcomes either (0.5,0,0.5), or (0,1,0). But with the continuous
rule [ = 0, e < 0.7546], one has the further stable outcome (0,0,1).

[ [ T

7. Qualitative Results from Combining the Two Innovations.

7.1. Over-Dominance. We saw in Example 1 how in the case of over-
dominance with the discontinuous rule ¢ in effect, a new allele b for
higher demanding can invade the gene pool and establish a polymor-
phism. Changing the payoff rule dramatically changes the end-result:

Example 6. When the continuous rule is used—with penalty factor
e = 1—instead of the discontinuous rule, and allele b is the invader,
it spreads to fixity, making up over 99.99% of the gene pool by
generation 600.

aa bb ab _|e h| o aa bb ab
1 —-107 0 107 1 0 0 1 0

The result is also very sensitive to the magnitude of the penalty factor e:
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Example 7. If the penalty factor in the continuous rule is decreased
to around 0.3, one suddenly obtains a phase transition, to a stable
equilibrium by around generation 250:

aa bb ab _le hl 250 aa bb ab
1 —-10"7 0 107 30 0614 3728 .5659

It is easy to understand why we obtain the last result: in the case of
over-dominance, it is the heterozygote that is the highest demander.
Reducing the penalty on high demanding therefore boosts heterozygote
fitness. Once boosted above a certain level, heterozygote fitness ensures
that the new allele b does not spread to fixity and drive out allele a,
but will instead be held in check in a stable polymorphic equilibrium
with allele a.

7.2. Intermediate Inheritance. We saw in Example 3 how in the case
of intermediate inheritance with the discontinuous rule ¢ in effect, in-
vasions by alleles for either low- or high-demanding resulted in the
aa ab bb j
3967 4663 .1370
tinuous rule to the continuous rule has a marked effect on the nature
of the equilibrium attained:

same equilibrium . Changing from the discon-

Example 8. With the continuous rule for payoffs, with penalty fac-
tor e = 1, and with the allele a for low demanding being the mutant
trying to get a look-in,

<aa ab bb e h| o0 (aa ab bb )
0 1007 1 — 107 1 0 .0601 3701 .5698

When allele 4 for high demanding is the mutant trying to get a
look-in, the same equilibrium is achieved, but more quickly:

aa ab bb e h| 43 aa ab bb
1 — 1077 107 0 1 0 .0601 .3701 .5698

Again, we see the effect of changing the penalty factor e:

Example 9. With the continuous rule for payoffs, but with the
higher penalty factor e = 2, the equilibrium achieved in each of
the two invasion scenarios is more nicely representative:

aa ab bb e hl 10 aa ab bb )
0 107 1 — 107 20 2660 4995 2345

When allele 4 is the mutant trying to get a look-in, the same equi-
librium is achieved, but more slowly:
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aa ab bb _le hi 276 aa ab bb
1 —10-7 107 0 20 2660 .4995 2345

The contrast between the rates of invasion by allele a or by allele b in
the last two examples is explained by the penalty factor e on the allele
b for high-demanding. High-demanders suffer from this penalty more
when they are in the majority—hence invasion by the allele a for low-
demanding is made easier and swifter as e takes higher values.

With the continuous rule (with e = 2), high-demanders are still pun-
ished when the combined demand level exceeds 1, but not as severely
as they are in the discontinuous case. This change in the interests of
realism puts the two alleles almost on a par, in what resembles a Hardy-
Weinberg equilibrium for their equal representation. (But of course we
have balancing selection here, rather than no selection pressure at all.)
With the continuous rule, we clearly have a case of superior hetero-
zygote fitness ensuring that allele @ is never driven to extinction. If,
however, we ease the penalty factor e down below 0.7, a phase tran-
sition occurs, and allele a is then driven to extinction:

(aa ab bb) _|e h (aa ab bb)
1 —10-7 107 0 <0.7 0 0 0 1

8. Concluding Remarks. By omitting genetic considerations, purely phe-
notypic modeling makes each behavioral type as independent as pos-
sible from the others. Their evolutionary fortunes are then determined
solely by their interactions, and not by any patterns of allele-sharing,

BDG criticize Skyrms’s model for not being realistic enough; but
they do not themselves remedy what is perhaps its most unrealistic
aspect—namely, the lack of any genetic constraints on degrees of phe-
notypic freedom. BDG complain that Skyrms “has given us no reason
to think that we have genetic proclivities for strategies.”” Given the vast
amount of evidence about heritability of variable traits in behavioral
genetics, however, it would be more appropriate to demand reason to
think that we (and other social species) do not have such genetic pro-
clivities.

Although Skyrms assumed such genetic proclivities, he omitted to
enter any genetic considerations. This omission was not altogether in-
advertent. Skyrms wrote

We start by building an evolutionary model. Individuals, paired at
random from a large population, play our bargaining game. The
cake represents a quantity of Darwinian fitness—expected number
of offspring—that can be divided and transferred. Individuals re-
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produce, on average, according to their fitness and pass along their
strategies to their offspring. In this simple model, individuals have
strategies programmed in, and the strategies replicate themselves in
accord with the evolutionary fitness that they receive in the bar-
gaining interactions. . . .

[D]emand 50% is a stable equilibrium. In a population in which
everyone demands half of the cake, any mutant who demanded
anything different would get less than the population average. De-
manding half of the cake is an evolutionarily stable strategy . . . and
an attracting dynamical equilibrium of the evolutionary replicator
dynamics. [fn]

Fair division is thus the unique evolutionarily stable equilibrium
strategy of the symmetric bargaining game. . .. For this reason,
the Darwinian story can be transposed into the context of cultural
evolution, in which imitation and learning may play an important
role in the dynamics. (1996, 9-11; first two emphases are mine)

The first two emphasized phrases call for a genetic reading, and indeed
one on which the phenotypic traits are not only heritable, but also
innate; or, at the very least, these phrases call for the admissibility of
such a reading. This quote shows that Skyrms can be held to take his
model as applying, inter alia, to the case of three wholly innate phe-
notypes whose (genetic) heritability could well be 100%. So we would
do well to examine the possible genetic bases involved. This is what we
have done here; and indeed we have examined the simplest possible
such bases.

We discovered considerable differentiation in the broad nature of
the qualitative results obtained in the purely phenotypic modeling, once
we took into account the possibilities of intermediate inheritance and
of over-dominance. That is, the qualitative results emerging from the
purely phenotypic model did not prove to be robust under the genetic
innovations that we undertook.

The point about how phenotypic equilibria might not be so freely
attainable is perfectly general across traits. There is nothing special
about behavioral strategies, or indeed the sharing strategies among
them, that makes it important to pay attention to the genetic base that
might be involved. Any fitness-affecting trait is subject to the same
caveat. The purely phenotypic model involved a discrete-valued be-
havioral trait with three values. But any trait, with however many dis-
crete values, is in principle subject to the same considerations as those
we have advanced above, provided only that phenotypic interactions
affect fitness in the ways registered in the payoff rule. To the extent,
then, that there is a theoretical shortcoming in the purely phe-
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notypic modeling of phenotypic interactions, it is a shortcoming deriv-
ing from perfectly general considerations about the relation between
phenotype and genotype, and from nothing having to do with the com-
plications involved in modeling specifically behavioral traits, or indeed
phenotypic interactions in general.

What we have demonstrated in this paper is that the details of a
purely phenotypic account are not realizable through at least one of
the simplest and most plausible genetic mechanisms that one could
imagine underlying the phenotypic trait in the sexual case. We have
considered the case where only two alleles are involved for a trait ad-
mitting three selectable values, and we have arrived at very different
results from those of the purely phenotypic model concerning the
existence and stability of evolutionary equilibria in the frequency-
dependent selection process. The difference is enough to give one pause
before drawing any optimistic philosophical conclusions, about the
evolution of fair-dealing, from the purely phenotypic model. Recall our
guiding question above: Can the selection process reliably vouchsafe that
fair-dealing will always be an evolutionarily stable strategy? Skyrms’s
answer was positive, based on results concerning a purely phenotypic
model. At this stage of investigation, however, after paying some at-
tention to genetics, it seems that the answer could well be negative—
or at best, undecided.
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