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Abstract

This study takes a careful inferentialist look at Graham Priest’s
Logic of Paradox (LP). I conclude that it is sorely in need of a proof-
system that could furnish formal proofs that would regiment faithfully
the ‘naive logical’ reasoning that could be undertaken by a rational
thinker within LP (if indeed such reasoning could ever take place).
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1 Introduction

Graham Priest first put forward his Logic of Paradox, now known by the
acronym LP, in Priest [1979]. Subsequently LP was one of many paraconsis-
tent logics that he considered in his survey article Priest [2002]. (Unsourced
page references will be to the latter.) By definition, a paraconsistent logic
is one that does not admit (hence certainly does not allow one to derive, let
alone have as a primitive rule) the inference known as Ezplosion:

A,—A: B.

Priest’s LP was a creature of formal semantics. At its inception it had no
proof system. All it had was a logical consequence relation = defined in the
usual way—the usual way, that is, for a many-valued logic. In such logics,
there are more than two truth-values, and one is concerned with preserving
‘designatedness’ of truth value. Many-valued logics therefore evince a vestige
of classical, two-valued thinking in the way they partition their many values
into two classes—the designated and the undesignated. LP employs certain
3-valued truth tables (or perhaps one should say: truth-value tables) for the
connectives -, A, V and —.

At p. 224 of Priest [1979], we read that ‘the logic of naive proofs [which is
what Priest is after—NT] is not classical’. Nevertheless it turns out that LP
is ‘classical enough’ for negation and conjunction to suffice for the definition
of disjunction and the conditional. We read at p. 227 loc. cit. that Priest
is content to define AV B de Morgan-wise as =(=A A =B); and thereafter
to define A — B as the usual disjunction A V B.

The truth-values that Priest [1979] proposes for LP are True, False, and
both-True-and-False. True, i.e. True only, is abbreviated as t; False, i.e.
False only, is abbreviated as f; and both-True-and-False is equated with
Paradorical, and abbreviated accordingly as p. The row-by-row truth-value
tables for the connectives — and A, as well as the (primitive or defined) Vv
and —, are as follows. We state them so that the rows can be read ‘from
left to right’, i.e. from values of immediate constituents to values of the
respective compounds.
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In this form, significant patterns are difficult to discern. This can be reme-
died by resorting to stating a 3-by-3 matrix for each binary connective and
using some font changes to highlight the patterns.

ANlt|p]|f Vit|p]|f =t |p|f
t[t][pl|f tt|t]t t [t]p]|f
plp|p|t pltp|Pp pltip|p
flf]f]f flelplf f 1ttt

As Priest notes, these are the truth-value tables of Kleene’s (strong) 3-valued
logic in Kleene [1952], pp. 332 ff.! The main difference is that in LP the
designated values are ¢t and p, whereas in Kleene’s logic only ¢ is designated.

Observation 1. Priest [1979], at p. 227, describes the truth-value table for
— as resulting from defining A — B as ~AV B; but there should be no ob-
jection in principle to anyone who opts to treat — as a primitive connective
i LP, furnished with that truth-value table. It would then be very natural
to pose the question: What rules of inference govern ‘“—’%¢

By the end of this study it will emerge, perhaps surprisingly, that there
appears to be no straightforward answer to this question.

'Kleene had u as his third value, standing for ‘undefined’ (or, at p. 335, ‘unknown’).
He was concerned with partial recursiveness of compounds, not at all with paradoxes or
‘truth-value gluts’.



2 The formal semantics of LP

Definition 1. An assignment 7 is a function assigning values in {t,p, f}
to certain atoms. (Which atoms these are will depend on the context.) The
value T(p) is defined in the familiar way, by appeal to the truth-value tables
of LP. When 7(p) is a designated value, we shall say that T designates ¢,
and abbreviate this as TIF . When T designates every member of A, we
shall say that T designates A, and write 7 IF A.

Logical implication (the semantic relation) in LP can now be defined as
follows.

Definition 2.
A= if and only if V(T IF A = TIF),

i.e., for every truth-value assignment T to the atoms involved, if T designates
every member of A, then T designates 1.

We shall read A pp ¢ as ‘the inference A : ¢ is LP-valid’; or ‘A LP-
implies ¢’; or ‘@ is an LP-consequence of A’.
Remember that truth-value assignments are single-valued.

Definition 3. ¢ and ¢ are (semantically) equivalent just in case they have
the same truth(-value) table.

For example, - A V B is equivalent to A — B:
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Observation 2. That ¢ =p ¥ and 1 |=Lp ¢ is not in general sufficient
to ensure that ¢ and 1 are semantically equivalent. This is because mutual
LP-implication is compatible with one of the two sentences being t, and the
other p, in some same row.



Definition 4. ¢ is a daudology just in case p takes a designated value on
every LP-assignment; i.e., just in case O =pp .

N.B. This is a neologism, not a typo. ‘Daudology’ takes its initial letter
from ‘designated’. It is the LP-analog of a tautology in the two-valued case.
2.1 Some low-level explorations of LP-consequence

All the results of this subsection are obtained by using only Core Logic in
the metalanguage.

Observation 3. A good example of a daudology is AV —A :

A[-A[AvV-A
t | f t
p p p
Flt t

Note that we do not need a solid column of t-entries; all we need is the
absence of any f-entries. This is because both t and p are designated.

For A U {¢} we shall write A, ¢ and typically understand the latter to
mean also that ¢ & A.

Lemma 1. If 7 If = then 7 IF .

Proof. Suppose 7 Iff =¢. Then by definition of I+ we have 7(—¢) = f. Hence
by the truth-value table for = we have 7(¢) = t. So by definition of IF again
we have 7 IF ¢. O

Note that the proof of Lemma 1 implicitly relies on the following assumption,
which could be called the Law of Excluded Fourth: an assignment 7 assigns,
to every sentence whose atoms it deals with, a determinate one of the three
values t, p or f. The Law of Excluded Fourth underlies Priest’s whole three-
valued semantical approach to LP-consequence. The core meta-logician is
entitled, therefore, to appeal to that law when investigating the properties
of LP that are revealed in this subsection.

Lemma 2. [LP-consequence satisfies Dilution]
If A =ip 1), then A =pp ).

Proof. Suppose A =1 p ¥. Suppose p is an arbitrary assignment dealing
with the atoms involved in A, p,%. Suppose p I A;p. Then p - A.
Hence by main supposition we have p IF ¢. But p was arbitrary. Thus

A, Frp 1. ]



When one is working with sequents of the form A : I', where A and I’
are finite sets of sentences, the natural reading of ‘A = I"" (for any many-
valued logic) is that no assignment designates every sentence A but none
in I'. We are adopting that reading here, but treating only of sequents whose
succedents are at most a singleton. (We write ‘A I ¢’, however, rather than
‘At {p}.) We shall follow the convention of rendering ‘A = (" as ‘A = L.
This means, on the reading adopted, that no assignment designates every
member of A.

Lemma 3. [Classical Reductio is LP-valid]
If A, _‘(p ):LP J_, the’n A |:LP (p.

Proof. Suppose A, —¢ [=p L. It follows that for no 7 do we have both
7IF A and 7 IF —p. Suppose u is an arbitrary assignment dealing with the
atoms involved in A, . Suppose p I A. Then p If —¢. Hence by Lemma 1
p k. But p was arbitrary. Thus A |=pp . O

Observation 4. We have used constructive reasoning in the metalanguage
to show that Classical Reductio is LP-valid. This should strike the unsus-
pecting reader as surprising. It provokes the question ‘How does LP pull
this off 2’ (i.e., reveal itself, ‘constructively’ at the meta-level, to validate a
strictly classical, non-constructive, rule of reasoning). The answer must be
that an awful lot is packed into the Law of Excluded Fourth. That principle
18 so powerful that merely constructive reasoning can draw out from it the
LP-validity of Classical Reductio.

Lemma 4. [Double-Negation Elimination is LP-valid]
e |:LP P-

Proof. Suppose p is an arbitrary assignment dealing with the atoms in (.
Suppose u IF ==, Then either pu(——p) =t or u(——¢) = p.

Suppose first that p(——¢) =t. Then u(—p) = f; whence u(p) = t.

Suppose secondly that pu(——¢) = p. Then u(—p) = p; whence p(p) = p.
Either way, ¢ is assigned a designated value under u. That is, p IF .

But p was arbitrary. Hence =—¢ pp @. O

Lemma 5. [Dilemma is LP-valid]
If Ao Ep ¥ and T, = E=pp 1, then AT =pp ).

Proof. Suppose that

Aoy and T',—p e 9.



‘We shall show that
Av r |:LP @D

Let p be an arbitrary assignment dealing with the atoms involved in A, T, ¢, 1.
Suppose that
wliE AT,

It follows immediately that
wlEA and pl-T.

We shall now show that w I .

We reason by using proof by cases (Disjunction Elimination) in the met-
alanguage. We know that p assigns one of the three values ¢, p or f to any
sentence. So, in particular,

()=t or u(p)=p) or u(p)=f

Suppose on the one hand that either () =t or pu(¢) = p. Then u Ik . It
follows that

wlE A .
By main supposition we have
A, Fre .
So
k.
Suppose on the other hand that u(p) = f. Thus u(—p) = t, whence
wlE —gp.
It follows that
wlE T, =,
By main supposition we have
L, = e .
So
k.

Either way, we have p IF 1.
But p was an arbitrary assignment such that p I A, T'. It follows that

AT pp 0.



Lemma 6. Suppose A, =.p L. Then A =pp o — 1.

Proof. The main supposition amounts to the following:
VT =(TIF AATIE @).

Let 1 be an arbitrary assignment to the atoms involved in A, ¢, 1. Suppose
that p IF A. We shall show that u I ¢ — 9 ; and this will establish the
lemma. This we do by using Disjunctive Syllogism in the metalanguage. We
know that p assigns one of the three values t, p or f to any sentence. So, in
particular,

(e =)=t or plp—=1)=p) or ple—1v) =1

We are seeking to show that u designates ¢ — 1, i.e.

ple =)=t or p(p— 1) =np.

So all we have to do is rule out the possibility that u(p — ¥) = f. Assume
for (constructive) reductio, then, that u(¢ — 1) = f. By the 3-valued table
for —, we have

plp) =t and p(y) = f.
Thus p I A A plF ¢, contradicting the main supposition. O

Lemma 7. Suppose A, =.p 0. Then A = p o — 1.
Proof. The main supposition amounts to the following:

V7 (T IF Ao = T IF).

Let 1 be an arbitrary assignment to the atoms involved in A, ¢, 1. Suppose
that p IF A. We shall show that p I ¢ — 1 ; and this will establish the
lemma. This we do by using Disjunctive Syllogism in the metalanguage. We
know that p assigns one of the three values ¢, p or f to any sentence. So, in
particular,

(W =)=t or plp—1)=p) or ule—v)=rf
We are seeking to show that u designates o — 1, i.e.

ple =)=t or p(p— 1) =np.



So all we have to do is rule out the possibility that p(¢ — ) = f. Assume
for (constructive) reductio, then, that p(¢ — 1) = f. By the 3-valued table
for —, we have

n(e) =t and p(y) = f.
Thus p I- A, . Hence by main supposition we have

pik v

but this contradicts
w(@) = f.
O

We are using Modus Ponens here in the metalanguage, even though it
is not LP-valid.? But the discrepancy, once registered, is innocuous. This
is because it is our prerogative as investigators of LP at the meta-level to
be able to reason in normal mathematical fashion about the system, since
it is mathematically well defined. Both Modus Ponens and Disjunctive Syl-
logism are part of (even the constructive) mathematician’s unrelinquishable
tool-kit. Otherwise, how could any useful consequences be drawn out from
the various definitions that the LP-theorist provides of such notions as =1 p?
The ‘naive logician’ would not proceed any differently. For we are talking
here about the inferential part of the ‘logic of naive proof’, which obviously
includes all the usual logical inferences employed by mathematicians. This
prescinds from the axiomatic basis of the logic of naive proof in, say, arith-
metic. Priest’s comments about naive reasoning in arithmetic, in §I1.2 and
§I1.6 of Priest [1979], in no way commit the formalizer to not incorporate
inferential rules such as Modus Ponens and Disjunctive Syllogism in what-
ever formal system of proof will result from one’s investigations. See also
Observation 6.

Corollary 1. Suppose A |=.p 0. Then A =pp @ — 9.

Proof. Suppose A [=1p ¥. Then by Lemma 2 we have A, ¢ Eip 1. By
Lemma 7 it follows that A =1p ¢ — 1. O

Corollary 1 also has this direct proof: Suppose A |=p 9. Let p be an
arbitrary assignment dealing with A, ¢, 1. Suppose p - A. Then p IF .
Hence pIF o — 9.

2This point is owed to Matthew Souba.



2.2 Considerations of natural deduction

In general, a natural deduction is a proof of some conclusion 6 from some
(finite) set A of undischarged assumptions (premises). For any system S of
formal proof, we write

PS (H7 97 A)

for ‘Il is an S-proof of the conclusion 6 from the set A of undischarged
assumptions’. Note that ‘from the set’ means, here, ‘using exactly the set’.

Suppose there is a natural deduction system to be had for LP, in which
all LP-proofs are LP-sound. Expressed as a single metalinguistic sentence,
we have:

VIIVAVYO(Prp(I1,0, A) = A =16 0)

Equivalently, we have the metalinguistic rule of inference

Pre(IL 6, A)
A }:Lp 6

Lemma 6 forces the following reflection. This rule is admissible in LP:

=Y

Lemma 7 and Corollary 1 together force a similar reflection. The conven-
tional Rule of Conditional Proof (a.k.a. —-Introduction), which permits
vacuous discharge, is also admissible in LP:

Y )
=Y

Note that these last two rules are the two parts of the rule of —-Introduction
in Core Logic. (See, for example, Tennant [2015b]; and Appendix I below.)

Lemma 8. Ezxplosion (A,—A: B) is not LP-valid. That is,
A, _‘A I#LP B.

10



Proof. 1t is clear how to invalidate Explosion. Let A be assigned p. Then —A
too takes the value p. Now assign B the value f. This yields a counterexam-
ple to Explosion: each of the premises A and —A enjoys a designated value,
whereas the conclusion B does not. O

The form of definition of = guarantees that it is unrestrictedly tran-
sitive:
Lemma 9 (Unrestricted Cut).
IfA =@ and Uy o =ip i), then AT = p 1.

Proof. Suppose that
A ¢ (1)

and

e ):LP (0 (2)

Suppose p is an arbitrary assignment dealing with the atoms involved in
A, T, p, 1. Suppose that
wlE(AUT) (3)

We shall show that |- 1. From (3) it follows that

wlE A (4)
and
pIFT (5)
From (1) and (4) we have
plE e (6)
From (2), (5) and (6), we have p I 1. O

Corollary 2. As a special case of Lemma 9 we have the following:

If Epp and T, =pp ), then T = p 1.
Proof. Set A = () in Lemma 9. O

Observation 5. Corollary 2 says one can suppress daudologies as premises.

Now it is well known, from Lewis’s famous argument, that Explosion
follows from the combination of

11



1. having AV B implied by A (and implied by B);
2. having Disjunctive Syllogism: =4, AV B : B; and
3. having unrestricted transitivity.

This stares one in the face upon arranging the following little bits of proof
in an inviting pattern:

A
AV B

AVvB -A
B

Since LP validates VI (hence may have it as a rule) and enjoys unrestricted
transitivity, but invalidates Explosion, it follows that LP must invalidate
Disjunctive Syllogism. And so it does.

Lemma 10. Disjunctive Syllogism (—A, AV B : B) is not LP-valid. That
18,

_\A,A\/B %LP B.

Proof. 1t is clear how to invalidate Disjunctive Syllogism. We adduce once
again the assignment

TA)=p 7(B)=f
By LP’s truth-value tables, we have

7(mA)=p, 7T(AVB)=p; but(B)=f.

The value p is designated but the value f is not. So Disjunctive Syllogism
is not LP-valid. O

Observation 6. The proofs of Lemma 6 and of Lemma 7 use Disjunctive
Syllogism in the metalogic. But Lemma 10 says Disjunctive Syllogism is not
LP-valid. So the advocate of LP cannot undertake the foregoing metalogical
reasoning that yields the insights of Lemma 6 and of Lemma 7. This re-
veals a reflexive instability in the position of the LP-advocate—unless some
alternative passage of metalogical reasoning can be furnished, which is for-
malizable in a proof-system for LP.

12



I cannot, however, find any ready alternative. I would be happy to be
instructed in this regard by an LP-er.

Disjunctive Syllogism as stated above is an inference from the premises
AV B, = A to the conclusion B. Metalinguistically, one would state

AV B,-AEs B

for any logical system S validating Disjunctive Syllogism. For LP, however,
we have, on the one hand,

A \/ B’ _\A %LP B,
whence also (by Al and unrestricted transitivity)
(A\/ B) /\ _‘A %LP B.

On the other hand, the THEOREM in §IIL.8 on p. 228 of Priest [1979] tells
us that the classical tautologies are exactly the daudologies. Among the

latter we have

Note that this is a formal semantic claim, using the double turnstile |=p.

2.3 The trouble with Modus Ponens

If Priest is correct in thinking that there is a sound and complete system of
natural deduction for LP—giving rise to a single turnstile . coextensive
with = p—then we know that to match the last semantic claim (the second
of the two results stated at the end of §2.2) there must be some proof in this
system of the form

0
IT

((AVB)AN—-A) — B
The first of the two results stated at the end of §2.2—

—shows that the usual rule of detachment (i.e., Modus Ponens):

A r

o =Y
(0

13



fails rather conspicuously in LP. Indeed, it can fail even in a context where
the newly accumulated premises A UT are jointly consistent:

0
IT

(AVB)A-A ((AVB)A-A)—= B
B

So one cannot have, in LP, the following rule, either primitive or derived:

@ =Y
(0

There is of course a deep motivating reason for the LP-er to invalidate Modus
Ponens. If he were entitled to the instance
(AV B)A—-A ((AVB)AN—-A) — B
B

then he would be able to construct a proof of Explosion as follows:

A 0
AV B —-A II
B

And this, by Lemma 8, would mean that the would-be natural-deduction
system for LP is unsound with respect to =pp.

3Priest, of course, is aware of this; see Priest [1979], p. 228 infra, where he points out
that A, A — B [~ B. (He does not use the subscript LP with |=. His |= is our =rp.)
Note also that the generalized (or parallelized) elimination rule

=Y (% 0
0

fails a fortiori, since it has Modus Ponens as a degenerate instance:

= ®

14



Note that this problem for Modus Ponens arises even without inquiring
into the nature of any LP-proof II that would have to be vouchsafed by any
LP-proof system establishing all daudologies as theorems. We are entitled to
assume that LP-proofs, however they might be constructed, are LP-sound.
That granted, we know that the final step of the ‘proof’ just given must be
LP-invalid by the following considerations:

1. the left immediate subproof establishes the following true statement
of LP-consequence:

2. the right immediate subproof II establishes the following true state-
ment of daudologousness:

= (AV B) A —A) - B;

3. [=wp is transitive;

4. therefore, if the final step (of what looks like Modus Ponens) were
LP-valid, it would follow that

A, _‘A ):LP B .
But this we already know is impossible.

This trouble with Modus Ponens is hardly surprising. Priest does, after
all, define A — B as =A V B. Thus the primitive-looking would-be rule of

Modus Ponens:
A A-— B

B

is really only a form of Disjunctive Syllogism:

A -AVEB
B )

which we have already seen to be LP-invalid.

On further reflection, the puzzle with — deepens. Suppose one were
seeking to have it as a primitive connective in LP. Consider how (in a classi-
cal system, at least) the two sentences A — B and ~AV B are interdeducible.

15



Here, for example, are the two proofs establishing their interdeducibility in
Classical Core Logic. In each case the LP-invalid step is highlighted.

()— (1) e)

A A—B -A A
S R -4 4
B —-A -AV B 1 B 1
~AVB  -AVB 5 W
1) —— 2
-AV B A— B

Under our supposition, the LP-advocate would not be able to avail himself
of either of these proofs. For the proof on the left uses Modus Ponens;
while the proof on the right contains a subproof that establishes Disjunctive
Syllogism (in the form =AV B, A : B). The latter emerges therein as derived,
courtesy of Core Logic’s liberalized rule of V-Elimination. This rule allows
one to bring down as the main conclusion of a proof by cases the conclusion
of either of the two case proofs should the other case-proof’s conclusion be
absurdity (L). If one were (like the intuitionistic logician) to eschew Core
Logic’s liberalized rule of V-Elimination, then one would obtain equiform
conclusions for the two case proofs by insinuating into the first case proof
an application of the rule Ex Falso Quodlibet:

H—  —2
A

—/

L
-AVB B B
M

_ B (9
A— B

The offending appeal to, in effect, Disjunctive Syllogism, remains highlighted
within this intuitionistic version of the right-hand core proof given above.
But the advocate of LP would now cast a jaundiced glare at the invocation of
EFQ, which is not allowed by his lights. It would be a mistake, however to lay
the ‘blame’ for Disjunctive Syllogism at the door of EFQ. EFQ is reprehen-
sible all on its own; while, in the view of the core logician (who rejects EFQ),
Disjunctive Syllogism is perfectly acceptable. Indeed, Disjunctive Syllogism
is perfectly valid!—it is valid, and has no valid proper subsequent.

We have seen, then, that even though A — B and —=AV B have the same
truth-value table (as we saw above), nevertheless neither of them can be
deduced from the other in the usual way in any ‘standard’ system of natural
deduction for LP that might seek to subject — to anything like its ‘own’ rules

16



as a primitive. (A logical operator $ has rules of ‘its own’ just in case the
rules in question are stated in such a way that $ is the only operator explicitly
occurring in them.) It is highly unusual for (semantically) equivalent sen-
tences to fail thus to be interdeducible. More familiar are certain systems in
which interdeducibility fails to secure synonymy—see Smiley [1962]. Smiley
proposed, as necessary and sufficient for the synonymy of any two sentences
within a logical calculus, that they be interreplaceable, salva veritate, in all
statements of deducibility. Smiley’s exigent definition of synonymy makes
it trivial, therefore, that synonymous sentences are interdeducible. We have
seen that what we defined above as LP-equivalence—possession of the same
three-valued LP-truth-value table—cannot even secure LP-interdeducibility
in any natural sense; and therefore certainly cannot guarantee synonymy
in Smiley’s yet more demanding sense. Despite Observation 1, Priest ap-
pears to be denied the option of adopting A — B as a primitive conditional,
and making it behave (in a system of natural deduction) exactly the way it
ought to behave if it were understood as being captured also as ‘merely’ an
abbreviation for —=A vV B. With the latter, ‘abbreviatory’ option, of course,
the question of interdeducibility would not arise; or, at least, it would be
settled trivially in the affirmative: from —A V B one can deduce A V B,
just by writing it down. And one can construe this either way—that one
has deduced the (defined) A — B from —A V B, or vice versa.

Modus Ponens, for the would-be LP-proof-theorist, is verboten. But no
proof-theorist for any system S can refuse to accept a rule of inference (as a
means of constructing S-proofs) that happens to be S-valid. So the would-
be LP-proof-theorist cannot refuse ‘to be given’ any of the four classical rules
of negation respectively known as the Law of Excluded Middle, Dilemma,
Double-Negation Elimination and Classical Reductio ad Absurdum. By the
same token, in light of Lemma 7 and Corollary 1, the would-be LP-proof-
theorist also cannot refuse ‘to be given’ the Rule of Conditional Proof.

This makes the situation with LP rather puzzling for the inferentialist.
For Lemma 7 and Corollary 1 together showed that the conventional Rule
of Conditional Proof—which is part of the rule of —-Introduction in Core
Logic—is LP-admissible (i.e., LP-valid). The remaining part of the rule
of —-Introduction that is found in Core Logic is that which allows one to
infer the conditional upon refuting its antecedent. And this part is also
LP-admissible, as Lemma 6 shows.

So the conventional Rule of Conditional Proof—indeed, even the full rule
of —-Introduction of Core Logic—might as well be adopted as the rule of
—-Introduction for LP. In unrestrictedly transitive systems, the usual ‘har-
moniously balancing’ companion rule, the rule of —-Elimination, is taken

17



to be Modus Ponens. But the latter is not allowed as a rule of inference
in LP. Conclusion: LP cannot regiment the logical behavior of — by means
of introduction and elimination rules that are in harmony with one another.*

So: what is the inferentialist to do, when confronted with the strange
relation = p? What might be left in the inferentialist’s toolbox to make
the conditional arrow intelligible to one who wishes to learn how to reason
deductively within, or by means of, LP? Or, if not in LP itself, then at least
in some other system with just as good a claim as LP to capturing the ‘logic
of naive proofs’?

3 A different route for the inferentialist

Tennant [1979] put forward a different paraconsistent logic, namely Core
Logic.® (For its natural deduction rules, see Appendix I below; for the cor-
responding sequent rules, see Appendix II.) One main aim of Core Logic is
to track the ways in which the premises of a proof are relevant to its conclu-
sion. This motivating concern was not necessarily to handle the paradoxes,
let alone to lay any logical foundations for such an arresting philosophical
claim as Priest’s, that some contradictions are true. The interest was only in
how logicians might avail themselves of techniques of proof-normalization in
order to establish conclusions only from genuinely relevant premises.® Not
long after our papers appeared, Priest made the humorous remark to me
that whereas I was countenancing truth-value gaps, he was ‘merely’ counte-
nancing truth-value gluts. But the contrast of course, between our respective
systems runs far deeper than that. The contrast is in both output—the field
of the consequence or deducibility relation—and the methodology—formal-
semantical (in Priest’s case) and proof-theoretical (in mine). This study
dwells on this contrast, and seeks to draw some lessons from it.

It turned out (from the perspective of this Core logician) that by getting
the logical rules right—in a perfectly tweaked form, differing slightly but cru-
cially from their form in Gentzen [1934, 1935] and Prawitz [1965]—it was
possible to hold that the resulting logical system forged analytical logical

T am grateful to a referee for referring me to Priest [2008], at p. 125, where Priest
points out that changing just one entry in LP’s 3-valued truth table for the conditional
turns it into the conditional of RM3, for which Modus Ponens holds. But, as Priest then
points out, this change turns the whole system into RMg3. And this would take us right
off our titular topic.

®The system was originally called Intuitionistic Relevant Logic.

5The project was accomplished for the propositional part of Core Logic in Tennant
[1992], and reached its full fruition for first-order logic in Tennant [2015c].
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connections among sentences in two important and complementary regards.
Such connections obtained both because of the meanings conferred on the
logical operators by the logical rules governing them; and also because those
rules were so formulated that when their applications were arranged so as
to form proofs, relevant connections were preserved among the extra-logical
expressions occurring in the premises and the conclusion of any core proof.
This phenomenon of relevant connection is preserved also in Classical Core
Logic, whose strictly classical rules for negation are carefully tweaked in sim-
ilar fashion.” So, to the extent that one is after a ‘logic of naive proof’, Core
Logic and Classical Core Logic are perfect vehicles for the rigorous formal-
ization of reasoning in constructive and classical mathematics respectively.?

At its inception this particular logical system (Core Logic) was a system
of proof. The mode of investigation was thoroughly inferentialist. It was only
later that it was discovered that the proof-theoretic methods had fruitful
application in the diagnosis and defusing of the logico-semantic paradoxes.”

The inferentialist logician who inquires after how a particular logical sys-
tem is characterized wants to be given a system of proof—ideally, a set of

"For details, see Tennant [2015¢].

8That the contrast between Gentzen’s system of natural deduction and the artificial
Frege—Hilbert systems reflects favorably on the former appears to be tacitly conceded at
p- 25 in Hilbert and Ackermann [1938]—the second, ‘improved’ (verbesserte) 1938 edition
of Grundziige der theoretischen Logik, whose first edition appeared in 1928. There Hilbert
and Ackermann write

Wir erwadhnen endlich noch als eine Sonderstellung einnehmend den von
G. GENTZEN aufgestellten ,,Kalkiil des natiirlichen SchlieBens” [fn], der aus
dem Bestreben hervorgegangen ist, das formale Ableiten von Formeln mehr
als bisher dem inhaltlichen Beweisverfahren, wie es z. B. in der Mathematik
iiblich ist, anzugleichen. Der Kalkiil enthéalt keine logischen Axiome, sondern
nur Schluffiguren, die angeben, welche Folgerungen aus gegebenen Annah-
men gezogen werden kénnen, sowie solche, die Formeln liefern, bei denen die
Abhéngigkeit von den Annahmen beseitigt ist.

I would translate this as follows (rather than using the translation provided in Hilbert and
Ackermann [1950] at p. 30):

We mention finally one more system, one occupying a special position, the
‘calculus of natural deduction’ set up by G. Gentzen, which emerged from
the endeavor to make the formal derivation of formulae resemble more closely
than it has until now the contentful procedure of proof that is customary,
for example, in mathematics. The calculus contains no logical axioms, but
only rules of inference, which specify which consequences can be drawn from
given assumptions, as well as rules that deliver formulae while rendering
them independent of [certain] assumptions.

9See Tennant [1982], Tennant [1995] and Tennant [2015a].
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primitive rules of inference by means of which proofs can be constructed
in the now familiar way. Moreover, it is a special mark in favor of a par-
ticular kind of proof system if the proofs it furnishes are homologous to, or
smoothly regiment, the more informal proofs that they formalize and that
carry conviction for expert reasoners in areas like mathematics. The pre-
ferred format for such description is that of natural deduction and/or the
sequent calculus, familiar from the loci classici Gentzen [1934, 1935] and
Prawitz [1965]. Logical rules in systems of natural deduction deal with
single dominant occurrences of logical operators—in conclusions of intro-
duction rules, and in major premises of elimination rules. The introduction
and elimination rules in natural deduction are mirrored by the Right and
Left rules, respectively, in the sequent calculus.

If thinkers could reason in an ordinary, but appropriately adjusted, sort
of way within a framework like Priest’s once they had liberated themselves
from the dogma of consistency, then one would expect their patterns of
reasoning—and the primitive steps that are sanctioned within them—to be
formalizable ‘naturally’. This is probably why the assurance was given, in
Priest [1979] at p. 241, that ‘It is not difficult to give an axiom or rule system
for LP ...".

It is difficult, however, to find in the literature either a natural-deduction
presentation, or a sequent-calculus presentation, of LP.

In an email exchange in April and May 2016, I received Priest’s helpful
answer to my question ‘{W]here, in your estimation, is the best or fullest
treatment of a proof system (natural deduction or sequent calculus) for your
Logic of Paradox?’ He directed me to the rules given in §4.6 of Priest [2002].
These are the rules of the system of First Degree Entailment, plus Excluded
Middle:

aV o

The quantifier rules are in §6.4, and are the usual ones. (LP confines all its
significant differences from Classical Logic to the propositional level. The
same is true of Core Logic.)

LP of course cannot contain Explosion:

o T«

B

because LP is paraconsistent. FDE plus Explosion is Kleene’s system K3.
Another ‘rule’ that needs to be mentioned at this stage is Implosion, the dual

20



of Explosion (and which a relevantist would regard as similarly irrelevant!):

B

aV
Priest commented

I think you need LEM, not Implosion. Normally these would
be equivalent, but without either you have FDE, which has no
logical truths, and so Implosion does not deliver LEM. [FDE plus
LEM] is sound and complete [for LP].

So the list of officially approved rules for propositional LP is the one given
(in §4 below), these rules being taken from pp. 302, 303 and 309 in Priest
[2002].

There emerged from the aforementioned email exchange the following
further important points about the rules of inference for LP.

1. There are no rules just for negation, in isolation. The de Morgan-like
rules (see §4 below) plus LEM are ‘the rules’ for negation.

2. Likewise, there are no rules just for the conditional, in isolation.

3. There is no straightforward way to identify the intuitionistic fragment
of LP (if there is such a thing) by simply dropping certain primitive
rules of (classical) LP.

4. Implosion—despite its inherent irrelevance—is semantically valid in LP.

5. There is no ‘normal form’ proof of Implosion by means of the rules
for LP. (This will be shown at the end of §4.)

Another comment is in order. Among the rules of FDE is the classical rule
of Double Negation Elimination. But as Priest observed, FDE has no logical
truths; hence by means of its rules one can prove no theorems. Hence despite
containing Double Negation Elimination, FDE does not prove the Law of
Excluded Middle. This is rather peculiar. For, against the background
of Intuitionistic Logic, the four strictly classical rules of Double Negation
Elimination, Classical Reductio, Dilemma and the Law of Excluded Middle
are interderivable. Moreover, in order to derive DNE using LEM and the
standard rule of Proof by Cases, one has to use EFQ. In the absence of
EFQ, then (as in any paraconsistent logic) LEM is prima facie weaker than
DNE. Yet in LP it seems to be the other way round. It appears that DNE
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is weaker than LEM; for the system containing DNE needs to have LEM
added in order to yield the full classical system of LP. This terrain, for the
logician sensitive to the usual marks of non-constructivity, appears to be full
of potholes.

4 Rules for propositional LP

The following set of rules for propositional LP were gleaned, then, from
Priest [2002], with helpful guidance from its author.!°

From p. 302:
a f
I
A aAp
AR alp aNp
o B
o B
VI av s av B
From p. 303:
a B
VE : E
aVp Y Y
Y

So far, so good ... for this is straight out of Gentzen [1934, 1935] and
Prawitz [1965]. These are the familiar Introduction and Elimination rules
for A and V. But where are the rules for = ¢ ... All we learn is that the be-
havior of negation is constrained only in relation to conjunction, disjunction
and itself, as follows. Such multi-operator constraining of how any single
operator behaves is what makes it so difficult to identify an intuitionistic
subsystem of LP.

10The rule AI was given the mistaken label VI on p. 302.
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From p. 309:

(A p) —aV —f
—aV —f3 “(aAB)
—(aV p) —a A —f
—a A f —(aVp)
o -
o «
LEM
aV o

Conspicuously missing here, for the Gentzen—Prawitz proof-theorist, is any
account of negation on its own, or in its own right. LP appears not to
provide so much as a rule of constructive reductio ad absurdum (i.e., negation
introduction), let alone a rule of negation elimination.

Bear in mind that Priest is happy with the following abnormal proof of
Implosion from LEM, using the time-honored trick of applying AE immedi-
ately after AL

AV-A B
(AV-A)\B
AV A

This makes B spuriously relevant to the ultimate conclusion AV —A. A
simple A-Reduction transforms the foregoing ‘proof’ into a single invocation
of LEM, which is all that is ‘really going on’:

AV -A B A-Redn.
(AV—-A)AB N AV -A
AV -A

The conclusion AV —A does not really follow from an arbitrary, thematically
unconnected ‘premise’ B after all. Implosion implodes.

But not for LP! According to Priest, the would-be proof of Implosion
exploiting the abnormality trick really does count as a proof in his ‘natural
deduction’ system for LP. So that system will be devoid of any meaningful
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normalization theorem concerning its proofs, which is one of the main mo-
tivations for using natural deduction as one’s format for fully regimented
proofs.

5 Upshot; and a proposed agenda for the LP-er

The upshot of all this, for the inferentialist logician, is a sense of both be-
wilderment and bafflement as to how one is permitted to reason ‘within’ LP.
There is no easily recognizable ‘body of deductive reasoning’ produced by
LP-experts that lends itself to faithful and homologous formalization by
means of such LP-proofs as are available in the rather sketchy system that
this inquiry has uncovered. My own experience is that logicians who think
that they understand ‘what it would be to reason like an LP-er’ are really
only reasoning about LP (in particular: about its semantic consequence re-
lation =pp). Their reasoning does not, on any particular occasion when it is
directed towards some conclusion, lend itself to formalization as a proof in
a proof-system for LP, a system that could generate a deducibility relation
ke that might be shown (at the metalevel) to coincide with .. Rather,
they ‘reason LP-ishly’ at arm’s remove, ‘one level up’, as metalogicians using
ordinary mathematical reasoning (as I have above!) to work out whether
particular sequents lie in the extension of = . They don’t work ‘within LP
itself’, in accordance with primitive deductive rules of LP, which could then
in turn be studied by a proof-theorist. As we have pointed out above, there
is a reflexive instability in making moves at the metalevel, when reasoning
about |=pp, that are not themselves catered for within j=;p itself.

If anything positive is to emerge from these modest investigations, one
hopes it will be this: LP-ers ought to devote some of their ingenious energies
to the devising of a natural-deduction system, or sequent calculus, for LP
that could be offered as ‘the’ organon of inference in ‘naive logic’. It’s just
not good enough to stick with = p ‘down there’, and reason about it like
any classical or constructive logician ‘up here’. Rather, one must get down
there with the requisite logical goggles on, in order to appreciate or better
understand the murky currents of thought that the LP-er, by his own lights,
can allow himself to be guided by when setting out from certain premises and
seeking to arrive at some conclusion LP-implied by them. One should also
be mindful of the fact that some naive reasoners might wish their reasoning
to be strictly constructive. That means we ought to be prepared to identify
a strict subset of the primitive rules of LP that would enable and allow all
the inferential moves that the naive constructive reasoner wishes to make.
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If such an investigation were to be undertaken by LP-devotees intent
on furnishing us at long last with a proof-system for LP worthy of the
title ‘(regimentation of) naive logic’, then the next item on the collective
agenda would be to find points of contrast or similarity with the proof-
system of Core Logic. For the latter system also lays claim to the title of
‘naive logic’, on at least three scores: (i) it avoids altogether EFQ and its
ilk (so it is a non-explosive, or paraconsistent, logic); but (ii) it respects
every ordinary logical inference (such as Disjunctive Syllogism) which naive
beginners find (correctly!) to be intuitively correct; while (iii) it can be
deployed to regiment the reasoning that is actually involved in generating
the various logico-semantical paradoxes, and at the same time allows the
theorist to point out what it is about (the formalizations of) those passages
of reasoning that reveal that one is dealing thereby with the paradoxical,
rather than with the straightforwardly inconsistent.!!

The sort of thing I am asking the LP-er to provide is: some set of logical
rules, each, ideally, focusing on just one logical operator at a time, plus—
perhaps—some structural rules (as in some sequent calculi) that do not
mention any operators; something, indeed, like the systems C of Core Logic,
and C* of Classical Core Logic. These are laid out in the Appendix, and
are furnished here as a guide. Note, however, that the core systems have
no structural rules other than the Rule of Initial Sequents (REFLEXIVITY).
Both cUT and THINNING are admissible only, not derivable (and a fortiori
not primitive) rules of the systems.

Both C and its classicized extension CT are paraconsistent, and are
transitive in the following important sense:

Any pair of proofs of the sequents A : ¢ and I', ¢ : ¢ respectively
can be effectively transformed into a proof of a sequent either of
the form A’,T” : ¢ or of the form A, T : L, for some A’ C A
and IV CT.

That is, cUT is admissible.!?

Appendix I: Natural Deduction Rules for Core Logic C

"Tn support of these closing claims, see Tennant [2015a], Tennant [2016] and Tennant
2017].
12%We mean here that the following metalinguistic inference holds:

AF{p} T,oF{¢}

AT {y}
where © - = means that there is a proof of some subsequent of © : Z, i.e. a proof of some
sequent of the form ©’ : Z', where ©' C © and ' C =.
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A box annotating a discharge stroke indicates that we must have used at
least one of the indicated undischarged assumptions in the subordinate proof
in question. This is called non-vacuous discharge of assumptions. Vacuous
discharge, by contrast, is indicated by a diamond. Note that the absence
of any vertically descending dots above a major premise for elimination
indicates that it must ‘stand proud’, with no proof-work above it.

(i)

¢ A ﬁ
N——
=1 -E
(-1 I CB) L,
L T
'
(i) —0—(i)
Al Ay 01,902, A
(AT) L (AE) :
¥1 ¥2 .
A2 P1AP2 4 ()
0
A A
(\/I) 11 11
¥1 Y2
Y1V o1V
H—(4) H—(4)
»1 A1 w2 AQ
—_—— —_———
(VEgL) I, I,
1V P2 0 €L @
0
(i) (i)
»1 A1 w2 AZ
N—_—— N—_——
(VE1g) IT; 11y
1V P2 L 0 @
0
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(VEgs) I, I,
o1V 2 0 0 "
0

(VEL1) 1T I,
w1V P2 1 1 -
1
0—() ©—(i)
Y1 A P1 A
—_——— N——
(—=1)(a) I (=D)(b) I
L P2 (4
P17 P2 P1 = P2
0—()
AI P2 A2
—_———
(—E) 1L I,
Y1 — P2 $1 2 "
9 \
A
@ -
t
Jxp
= (4)
Yla) , A
— where a does not occur in any
(3E) I : . .
sentence in A or in Jz(x) or in 0
Toge) 0
9 \
A
(V1) II where a does not occur in any
(a) sentence in A or in Vi) (x)
Vaip(z)
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(i) . O.
qﬁfl,

V) 0
0

The classicized extension C* of Core Logic may be obtained by adding one
or other of the following two rules (Classical Reductio or Dilemma).

0—()

R
(CR) :
L@
1%
O—@) B—() U—(@) B—A()
¥ I ¥ 2
(Dil) :
1
4 Y (%) 4 (%)
(0 (0

Appendix II: Sequent Calculus Rules for Core Logic C

The only structural rule is REFLEXIVITY, or the Rule of Initial Sequents:

The logical rules are as follows.

) A p:

(=) A -
_ Ay

(_‘.) A,_‘SD:
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(V)

(CR)

At Ag o

A1, Azt 1 A2
A %2 :T .
—————  for i=1,2;
A o1 Apa:T
A T
( which affords also the more economical EN AN )
A AT
A:(pi .
——— fori=1,2
A:p1Vipo

Ay, 1: 11 Ag,pa:T9
A1, Ag, o1 Vipa:T'1UT

where I'1UTI'y is at most a singleton

A Ao
A:tpr—p2 A\{p1}:p1—¢2

Ar:pr Ag,pa:T
A1, Ag, o1 —a:T

A:f
Az

M here the conclusion sequent has no occurrences of
INE . HOTIION SOATCHL Has Ho beeirren !
A
A:Vxyl

T

where a occurs in ¥ but in no member of A

AE T
A Vz:T

0, A )
Ay
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