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Abstract

In this note we extend a remarkable result of Brauer [2024] con-
cerning propositional Classical Core Logic. We show that it holds
also at first order. This affords a soundness and completeness re-
sult for Classical Core Logic. The ℂ+-provable sequents are ex-
actly those that are uniform substitution instances of perfectly valid
sequents, i.e. sequents that are valid and that need every one of
their sentences in order to be so. Brauer [2020] showed that the no-
tion of perfect validity itself is unaxiomatizable. In the Appendix
we use his method to show that our notion of relevant validity in
Tennant [2024] is likewise unaxiomatizable. It would appear that
the taking of substitution instances is an essential ingredient in the
construction of a semantical relation of consequence that will be
axiomatizable—and indeed, by the rules of proof for Classical Core
Logic.

1 Introduction

Core Logic ℂ is both constructive and relevant. Its classicized extension
is Classical Core Logic ℂ+. Both systems have been—and are—defined
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as proof systems based on rules of inference.1 In this study we concentrate
on ℂ+.

Unlike Classical Logic C, which contains fallacies of relevance, the
deducibility relation ⊢ℂ+ has not heretofore been shown to be coexten-
sive with any known semantical relation of logical consequence relating
premise-sets to conclusions. The standard adequacy equivalence

Δ ⊢C 𝜑 ⇔ Δ ⊧ 𝜑

(of soundness and completeness combined) has been achieved by dint of
having ⊢C ‘beefed up’ by the rule of Ex Falso Quodlibet in the case of
natural deduction, and by the so-called structural rules of Thinning and
Cut in the case of the sequent calculus. These deductive features ensure
the exact match of ⊢C to the Tarskian relation ⊧ of semantic consequence,
which is explosive—every Tarskian model making true every sentence in
an unsatisfiable set Δ will make any conclusion 𝜑 true. (This is because
the default reading of ‘Every 𝐹 is𝐺’ is that such a claim is true when there
are no 𝐹 s.) The deducibility and consequence relations for C, thanks to
the aforementioned features, turn out to be exactly coextensive.

Those deductive features are ones that the core systems of proof es-
chew. They do so in pursuit of relevance between premise-sets and con-
clusions of proofs. Until now, however, it has been difficult to furnish for
the deducibility relation ⊢ℂ+ an exactly coextensive semantical relation
that would yield for ℂ+ a result directly analogous to the above adequacy
equivalence for C. It is the soundness half of that equivalence for ℂ+ that
has proved to be elusive.

One possible candidate semantic notion that one might consider in this
connection is that of perfect validity. A perfectly valid sequent is a se-
quent that is valid in the Tarskian sense and, moreover, needs every one
of its sentences for its validity. All perfectly valid sequents can be proved
in ℂ+. So we would have the ‘completeness half’ of the sought equiva-
lence for ℂ+. But the converse ‘soundness half’ is unattainable. This is
for the deep reason that the notion of perfect validity (for finite sequents)
is unaxiomatizable.2

In Tennant [2024] we proposed a ‘double-double turnstile’ relation ‖=

for the semantical consequence relation that⊢ℂ+ might arguably be aiming
1For a full account, see Tennant [2017]. The Law of Excluded Middle, note, is a zero-

premise rule of inference.
2See Brauer [2020].
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to capture. But while ‖= yields the completeness half of the equivalence
sought, and can be understood as motivating the deductive changes thatℂ+

makes to C, ‖= is nevertheless (like the notion of perfect validity) unaxiom-
atizable;3 so the soundness half remained unattainable. ‖= cannot match
⊢ℂ+ exactly.

The prospect of finding an alternative notion of semantic consequence
to match to ⊢ℂ+ is now realizable, however, owing to a remarkable result
of Brauer [2024]. He established it for propositional ℂ+. In this study we
extend Brauer’s result to first-order ℂ+. The result is that any given ℂ+-
proof is ‘perfectible’—it can be transformed into a ℂ+-proof every one
of whose subproofs establishes a perfectly valid sequent; and the sequent
established by the given ℂ+-proof is a substitution instance of the sequent
established by its perfected version. The perfectibility theorem for first-
order ℂ+-proofs provides the sought notion of semantical consequence to
match exactly to the deducibility relation of Classical Core Logic. The
new notion of validity for sequents is this: a sequent is valid just in case it
is a substitution instance of a perfectly valid sequent.

2 Preliminaries

We work with a first-order language whose primitive extralogical expres-
sions are names, predicates of arbitrary finite adicity, and parameters. The
parameters are name-like, and are to feature in the familiar way in quanti-
fier rules.4 Sentences have no free variables. Proofs consist only of sen-
tences. Δ, Φ will be sets of sentences. 𝜙, 𝜓 , 𝜃 will be sentences.

Definition 1. Single-conclusion sequents have the form Δ ∶ Φ where Φ is
at most a singleton. That is, either Φ = ∅ or Φ = {𝜙} for some sentence 𝜙.

We shall be dealing here only with single-conclusion sequents. Hence-
forth ‘sequent’ will mean ‘single-conclusion sequent’.

Definition 2. Δ1 ∶ Φ1 is a subsequent of Δ2 ∶ Φ2 just in case Δ1 ⊆ Δ2
and Φ1 ⊆ Φ2. If either of these containments is proper, then Δ1 ∶ Φ1 is a
proper subsequent of Δ2 ∶ Φ2.

3See the Appendix for a proof of the result that ‖= is unaxiomatizable.
4See, for example, Prawitz [1965] and Tennant [1978].
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Definition 3. A sequent is perfectly valid just in case it is valid and has no
valid proper subsequent.

Definition 4. An atomic formula is one of the form 𝑃 (𝑡1,… , 𝑡𝑛), where 𝑃
is an 𝑛-place primitive predicate, and 𝑡1,… , 𝑡𝑛 are names or parameters
or variables.

Definition 5. A substitution is a mapping on formulas induced in the ob-
vious way by the base move of uniformly replacing atomic formulas with
formulas, subject to the constraint that variables, names, and parameters
be preserved. If a substitution 𝜎 deals with the atomic formulas in 𝜑, and
𝜓 is the result of replacing each atomic formula-occurrence of 𝛼 in 𝜑 with
an occurrence of 𝜎(𝛼), then we write 𝜎(𝜑) = 𝜓 . We shall also say that 𝜓
is a coarsening of 𝜑 induced by the substitution 𝜎.
We shall take proofs to be proofs in the system of natural deduction for
Classical Core Logic ℂ+. It is an important feature of this system that ap-
plications of elimination rules have their premises standing proud, with no
non-trivial proof-work above them.

Definition 6. Following Brauer [2024], we identify as subproofs of a proof
Π those subtrees of the proof-tree Π whose roots are not major premises
for eliminations; and we say that a proof is perfect just in case it, and every
one of its subproofs, is a proof of a perfectly valid sequent.

Brauer (loc. cit., at p. 9) also introduced the notion of one formula
being a contraction variant (abbreviated ‘c-variant’) of another formula.
We can explain this notion as follows.

Definition 7. 𝜑 is an immediate c-variant of 𝜓 (formally: 𝜑 ⊳𝑐 𝜓) just
in case 𝜓 can be obtained from 𝜑 by replacing in 𝜑 an occurrence of a
subformula of the form 𝜃 ∨ 𝜃 or of the form 𝜃 ∧ 𝜃 with an occurrence of 𝜃.
Observation 1. If 𝜑 ⊳𝑐 𝜓 , then 𝜑 is logically equivalent to 𝜓 . Moreover,
𝜓 will be less complex than 𝜑. Thus the relation 𝜑 ⊳𝑐 𝜓 is asymmetric.
Definition 8. 𝜑 is a c-variant of 𝜓 (formally: 𝜑▶𝑐𝜓) just in case there is
a finite sequence

𝜑 = 𝜒1 ⊳𝑐 … ⊳𝑐 𝜒𝑛 = 𝜓 .

Observation 2. If 𝜑▶𝑐𝜓 , then 𝜑 is logically equivalent to 𝜓 . Moreover,
𝜓 will be less complex than 𝜑. Thus the relation ‘𝜑▶𝑐𝜓’ is asymmetric.
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3 Perfectibility

Brauer’s crucial insight was that a classical core proof could be coarsened
to yield a perfect proof of the ‘same’ overall result. The sameness consists
in equivalence modulo c-variance. His THEOREM 3, p. 10, for proposi-
tional ℂ+, reads:

If Π is a [classical core] proof of Δ ∶ Φ, then there is a perfect
proof Π′ of Δ′ ∶ Φ′ and a substitution 𝜎 [on atoms] such that
𝜎Δ′ consists of c-variants of the members of Δ and 𝜎Φ′ is a
c-variant of Φ. That is, if Φ = ∅, then Φ′ = ∅ and if Φ = {𝜙}
then Φ′ = {𝜑′} and 𝜎𝜙′ is a c-variant of 𝜙.

Brauer’s proof of this result was by induction on the height of Π. Through-
out the process of perfecting a classical core proof one remains within the
space of classical core proofs.

The picture is this: Given a ℂ+-proof Π of Δ ∶ Φ, it can be perfected
so as to yield a perfect ℂ+-proof Π′ of Δ′ ∶ Φ′. This process of perfecting
involves ‘coarsening’ assumptions, which is (roughly) the inverse of taking
substitution instances.

We stress that Brauer proved his result for propositional ℂ+ because
one would wish the result to hold at first order. For then one could make
serious application of it in arguing for the adequacy of first-order ℂ+, with
an accompanying semantics, for deductive reasoning in mathematics.

We shall show here how to extend Brauer’s THEOREM 3 to first-order
Classical Core Logic, employing the methods he introduced. The present
author views this as an improvement on his own earlier result in Tennant
[1984]. That earlier paper concerned a multiple-conclusion version of se-
quent calculus at first order;5 but, alas, one without the conditional ‘→’
primitive. The latter deficiency meant that Intuitionistic Logic I could not
be identified as a subsystem of Classical Logic C; hence also Core Logic ℂ
could not be identified as a subsystem of Classical Core Logic ℂ+. Brauer
[2024] has fixed that deficiency in the propositional case. But since natu-
ral deduction is perforce a single-conclusion proof system, it is worthwhile
verifying that the proof-perfection method in our earlier paper can be pros-
ecuted fully à la Brauer in the natural-deduction setting at first-order, with

5To be precise: only ∃ was dealt with; but that was acceptable at the time because of
the expressive completeness of ¬, ∧, and ∃ in the classical case.
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the full set of primitive logical operators for the constructive case, namely
¬, ∧, ∨, →, ∀, and ∃.

All we need to supply is the reasoning in the inductive step of Brauer’s
proof, to deal with the cases involving terminal applications of introduction
and elimination rules for the quantifiers ∀ and ∃. Brauer has already dealt
with the full set of connectives.

4 The formal work

We are treating a first-order language that contains only predicates and
names as extra-logical primitives. In this setting substitutions will be map-
pings on the atomic formulas, whose values are formulas of the same adic-
ity (and same alphabetical choice of free variables) and with the same
names and parameters occurring in them. It should be clear that when
we speak of terms 𝑡 within sentences within a proof (which consists only
of sentences), we can only be countenancing names and parameters, not
variables. Moreover, terms remain invariant and ‘in place’ under substitu-
tions.

Definition 9. The left-associated conjunction of sentences 𝜙1,… , 𝜙𝑛 is
defined inductively as follows:

1
⋀

𝑗=1
𝜙𝑗 = 𝜙1

𝑘
⋀

𝑗=1
𝜙𝑗 =

𝑘−1
⋀

𝑗=1
𝜙𝑗 ∧ 𝜙𝑘

Lemma 1. For all 𝑛 > 0 and for all Δ not containing any of 𝜙1 ,… , 𝜙𝑛,
from a proof

Δ , 𝜙1 ,… , 𝜙𝑛
⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟

Π
𝜃
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one can construct a proof

Δ ,
𝑛
⋀

𝑗=1
𝜙𝑗

⏟⏞⏞⏟⏞⏞⏟
⋮
𝜃

by appending (𝑛 − 1) terminal steps of ∧E.

Proof. By induction on 𝑛. The basis (𝑛 = 1) is obvious, since the sought
proof is already in hand. For the inductive step (to prove the claim for
𝑛 + 1), the inductive hypothesis takes the form of the sought result. For
the inductive step, suppose Δ does not contain any of 𝜙1 ,… , 𝜙𝑛, 𝜙𝑛+1.
Invoke IH with its universally quantified Delta instantiated to Δ∪ {𝜙𝑛+1}.
This vouchsafes the proof

Δ , 𝜙𝑛+1 ,
𝑛
⋀

𝑗=1
𝜙𝑗

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Π∗

𝜃

which can then be extended with one more application of ∧E to yield the
proof sought in the inductive step:

𝑛+1
⋀

𝑗=1
𝜙𝑗 , i.e.,

𝑛
⋀

𝑗=1
𝜙𝑗 ∧ 𝜙𝑛+1

Δ ,
(𝑖)

𝜙𝑛+1 ,
(𝑖)

⋀𝑛
𝑗=1 𝜙𝑗

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Π∗

𝜃
(𝑖)

𝜃

We have made the necessary adjustments to the definitions of atomic for-
mulas and of substitutions to enable us to make the transition from the
propositional case to the first-order case. (See Definition 2 and Defini-
tion 5.) The basis step in the proof of Brauer’s THEOREM 3 for the propo-
sitional case is straightforwardly effected for the first-order case. Note also
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that the re-letterings called for in the inductive cases dealing with steps
such as ∧I can be systematically effected by, say, adding numerical su-
perscripts to primitive predicates to ensure vocabulary disjointness of the
perfected subproofs.

We turn now to the task of carrying out the four cases in the inductive
step (in extending Brauer’s theorem to deal with first-order Classical Core
Logic) that deal with the quantifier rules. We shall take them in order of
increasing ‘difficulty’: ∀I, ∃I, ∃E. and ∀E.

We shall follow the usual convention of writing 𝜓𝑥𝑡 as 𝜓𝑡; and we shall
use primes, as Brauer did, to indicate c-variant coarsenings. Thus 𝜓𝑡′ is
a c-variant coarsening of 𝜓𝑡; and, by Observation 2, 𝜎(𝜓𝑡′) is logically
equivalent to 𝜓𝑡. If necessary, to make the scope of the priming clearer,
we shall say 𝜓 ′(𝑡) is a coarsening of 𝜓(𝑡). This holds, of course, when
there is a uniform non-trivial substitution 𝜎 on lexical primitives (here,
just: predicates) such that 𝜎[𝜓 ′(𝑡)] = 𝜓(𝑡).

As Brauer has observed6,
one difference between the propositional case and the quanti-
fied case is that the coarsening procedures will not in general
ensure that two parallel subproofs[, after coarsening, will be]
disjoint in all their non-logical vocabulary. They will ensure
that the relation symbols occurring in parallel subproofs will
be disjoint, but there might be an individual constant that oc-
curs in both subproofs.

This does not, however, compromise the reasoning in the inductive cases
below that deal with the quantifier rules.

The case where Π ends with ∀I.

Let the classical core proof Π end with an application of ∀I, whose
immediate subproof we shall call Π1:

Π =

Δ1
Π1
𝜓

∀𝑥𝜓𝑎𝑥
6Personal communication, May 14, 2024.
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Suppose IH holds for Π1:
Δ1
Π1
𝜓

So there is a perfect proof that coarsens Π1, whose premises and conclu-
sion are c-variants of those of Π1. Let the perfect proof in question be
called Π′

1. The conclusion of Π′
1 is the coarsened conclusion 𝜓 ′, which,

we must remember, contains the parameter 𝑎. The premises of Π′
1 are the

coarsenings (forming the set Δ′
1) of the members of Δ1. So we have

Π′
1 =

Δ′
1

Π′
1

𝜓 ′

Since 𝑎 did not occur in any member of Δ1, it follows that 𝑎 does not occur
in any member of Δ′

1. Therefore we can apply ∀I to obtain

Π′ =

Δ′
1

Π′
1

𝜓 ′

∀𝑥[𝜓 ′]𝑎𝑥

The members of Δ′
1 are c-variants of the members of Δ1; and the new

conclusion ∀𝑥[𝜓 ′]𝑎𝑥 is a c-variant of ∀𝑥𝜓𝑎𝑥 .

The case where Π ends with ∃I.

Let the classical core proof Π end with an application of ∃𝐼 , whose
immediate subproof we shall call Π1:

Π =

Δ1
Π1
𝜓𝑥𝑡
∃𝑥𝜓

Suppose IH holds for Π1:
Δ1
Π1
𝜓𝑥𝑡
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So there is a perfect proof that coarsensΠ1, whose premises and conclusion
are c-variants of those ofΠ1. Let the perfect proof in question be calledΠ′

1.
The conclusion of Π′

1 is the coarsened conclusion [𝜓𝑥𝑡 ]
′. The premises

of Π′
1 are the coarsenings (forming the set Δ′

1) of the members of Δ1. So
we have

Π′
1 =

Δ′
1

Π′
1

[𝜓𝑥𝑡 ]
′

We can now apply ∃I to obtain

Π′ =

Δ′
1

Π′
1

[𝜓𝑥𝑡 ]
′

∃𝑥[𝜓 ′]

This is because
[𝜓 ′]𝑥𝑡 = [𝜓𝑥𝑡 ]

′.

The members of Δ′
1 are c-variants of the members of Δ1; and the new

conclusion ∃𝑥[𝜓𝑥𝑡 ]
′ is a c-variant of ∃𝑥𝜓𝑥𝑡 .

The case where Π ends with ∃E.

Let the classical core proof Π end with an application of ∃E, whose
immediate subproof we shall call Π1:

Π =
∃𝑥𝜓

(𝑖)
𝜓𝑥𝑎 , Δ1
⏟⏞⏞⏟⏞⏞⏟

Π1
𝜃

(𝑖)
𝜃

Suppose IH holds for Π1:
𝜓𝑥𝑎 , Δ1
⏟⏟⏟

Π1
𝜃
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So there is a perfect proof that coarsensΠ1, whose premises and conclusion
are c-variants of those ofΠ1. Let the perfect proof in question be calledΠ′

1.
The conclusion of Π′

1 is the coarsened conclusion 𝜃′. The premises of
Π′
1 are the coarsenings (forming the set Δ′

1) of the members of Δ1, along
with the coarsenings (note the plural) of the parametric assumption (for
subsequent discharge) that instantiated ∃𝑥𝜓 . So we have, for some 𝑛 ≥ 1,

Π′
1 =

[𝜓𝑥𝑎 ]
′
1,… , [𝜓𝑥𝑎 ]

′
𝑛 , Δ

′
1

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Π′
1
𝜃′

Note that each [𝜓𝑥𝑎 ]
′
𝑘 (1 ≤ 𝑘 ≤ 𝑛) involves the parameter 𝑎; and the pa-

rameter 𝑎 occurs in no member of Δ′
1 and does not occur in 𝜃′.

By Lemma 1, we can construct a proof

Δ′
1 ,

𝑛
⋀

𝑗=1
[𝜓𝑥𝑎 ]

′
𝑗

⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟
⋮
𝜃′

We can now apply ∃I to obtain

∃𝑦

( 𝑛
⋀

𝑗=1
[𝜓𝑥𝑎 ]

′
𝑗

)𝑎

𝑦

Δ′
1 ,

(𝑖)
𝑛
⋀

𝑗=1
[𝜓𝑥𝑎 ]

′
𝑗

⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟
⋮
𝜃′

(𝑖)
𝜃′

Note that the major premise of this terminal step of ∃E is a c-variant of
∃𝑥𝜓 , and does not contain the parameter 𝑎.

The case where Π ends with ∀E.
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Let the classical core proof Π end with an application of ∀𝐸, whose
immediate subproof we shall call Π1:

Π =

∀𝑥𝜓

(𝑖)
𝜓𝑥𝑡1 , … ,

(𝑖)
𝜓𝑥𝑡𝑛 , Δ1

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Π1
𝜃

(𝑖)
𝜃

Suppose IH holds for Π1:

𝜓𝑥𝑡1 , … , 𝜓𝑥𝑡𝑛 , Δ1
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

Π1
𝜃

So there is a perfect proof that coarsensΠ1, whose premises and conclusion
are c-variants of those ofΠ1. Let the perfect proof in question be calledΠ′

1.
The conclusion of Π′

1 is the coarsened conclusion 𝜃′. The premises of Π′
1

are the coarsenings (forming the set Δ′
1) of the members of Δ1, along with

the coarsenings (to be described in greater detail presently) of the various
assumptions (for subsequent discharge) that were instantiations of ∀𝑥𝜓 .
For each 𝑘 (1 ≤ 𝑘 ≤ 𝑛) the assumption 𝜓𝑥𝑡𝑘 will have a certain number
of coarsenings (call that number 𝑚𝑘) functioning as undischarged assump-
tions in Π′

1. So the assumption 𝜓𝑥𝑡𝑘 in Π1 gets replaced, upon coarsening
of Π1, by these 𝑚𝑘 coarsened assumptions

𝜓 ′
1(𝑡𝑘),… , 𝜓 ′

𝑚𝑘
(𝑡𝑘)

withinΠ′
1. We can form the 𝑡𝑘-specific left-associated conjunction of these

coarsenings of 𝜓𝑥𝑡𝑘 :
𝑚𝑘
⋀

𝑖=1
𝜓 ′
𝑖 (𝑡𝑘)

Recall 1 ≤ 𝑘 ≤ 𝑛. Now we can form the ‘big’ left-associated conjunction
of all the coarsened assumptions of Π′

1:

𝑛
⋀

𝑘=1

( 𝑚𝑘
⋀

𝑖=1
𝜓 ′
𝑖 (𝑡𝑘)

)

12



We shall use

∀𝑥
𝑛
⋀

𝑘=1

( 𝑚𝑘
⋀

𝑖=1
𝜓 ′
𝑖 (𝑥)

)

as the major premise of the terminal application of ∀E that is needed in
order to form the coarsened proofΠ′. Note that this last displayed universal
is a c-variant of ∀𝑥𝜓 .

The terminal step of ∀E in Π′ will be immediately preceded, of course,
by a chain of applications of ∧𝐸 appended to the coarsened proof Π′

1
vouchsafed by Inductive Hypothesis. These applications of ∧𝐸 will bring
down the (coarsened) conclusion 𝜃′ of Π′

1 as their own conclusions; and
they will discharge one-by-one all the coarsened assumptions in the fore-
going big conjunction—in the way justified by Lemma 1, which secures
the existence of the proof Σ embedded in the following display.7 The fully
coarsened proof in this case will therefore be

Π′ =

∀𝑥
𝑛
⋀

𝑘=1

( 𝑚𝑘
⋀

𝑖=1
𝜓 ′
𝑖 (𝑥)

)

Δ′ ,

(𝑖)
𝑛
⋀

𝑘=1

( 𝑚𝑘
⋀

𝑖=1
𝜓 ′
𝑖 (𝑡𝑘)

)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Σ
𝜃′

multiple ∧ Es

𝜃′
(𝑖)

𝜃′

A Appendix

Brauer’s result establishing the unaxiomatizability of the notion of perfect
validity (which we mentioned in footnote 2) can be extended to the no-
tion ‖= of relevant validity. It is impossible effectively to enumerate all
and only the finite relevantly valid sequents, i.e. the finite sequents of the
following three forms:

7The application of Lemma 1 is a matter of some subtlety, given how the conjuncts
of the ‘big’ conjunction have been arranged. One will apply Lemma 1 for each of the
innermost left-associated conjunctions, and thereafter apply Lemma 1 again for the outer-
most left-associated conjunction of the innermost ones. The reader will be spared pictorial
details.
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1. Δ∶⊥

2. ∅∶𝜑 where 𝜑 is logically true

3. Δ∶𝜑 where Δ is satisfiable and Δ ⊧ 𝜑

It is worth noting that this impossibility proof proceeds by considering,
as Brauer did, sequents of the form 𝜑 ∧ 𝐴 ∶ 𝐴, where 𝐴 is an atom not
occurring in 𝜑. It would be appropriate to call these Brauerian sequents.

Metatheorem 1. There is no effective enumeration of all and only the finite
relevantly valid sequents.

Proof. Adopt as the main reductio assumption that there is an effective
enumeration of all and only the finite relevantly valid sequents. Call this
effective enumeration 𝜋.

Consider the Brauerian sequent-form 𝜑 ∧ 𝐴 ∶ 𝐴, for arbitrary 𝜑 and
atomic 𝐴 not occurring in 𝜑. Extract from 𝜋 an effective sub-enumeration
(call it 𝜀) of all and only the relevantly valid sequents of this (effectively
decidable) Brauerian form.

𝐴 is an atom and is not identical to ⊥. Since the conclusion 𝐴 of the
relevantly valid sequent𝜑∧𝐴∶𝐴 is not⊥, it follows that𝜑∧𝐴 is satisfiable.
That in turn requires that 𝜑 be satisfiable. Thus we have

if 𝜑 ∧ 𝐴 ∶ 𝐴 is relevantly valid, then 𝜑 is satisfiable. (1)

For the converse of (1), suppose that 𝜑 is satisfiable. Let 𝑀 be an inter-
pretation of the non-logical vocabulary in 𝜑 that makes 𝜑 true. Since 𝐴 is
an atom not occurring in 𝜑, one can extend 𝑀 to an interpretation mak-
ing 𝜑 ∧ 𝐴 true simply by assigning the truth-value 𝑇 to the atom 𝐴. Thus
𝜑∧𝐴 is satisfiable. Moreover,𝜑∧𝐴 ⊧ 𝐴. It follows by the third definitional
clause above for ‖= that 𝜑 ∧ 𝐴‖=𝐴.

We have therefore shown that

if 𝜑 is satisfiable, then 𝜑 ∧ 𝐴∶𝐴 is relevantly valid. (2)

It follows, then—combining (1) and (2)—that

𝜑 ∧ 𝐴∶𝐴 is relevantly valid if and only if 𝜑 is satisfiable. (3)

Thus one can extract from our effective enumeration 𝜀 of all and only the
relevantly valid sequents of the form𝜑∧𝐴∶𝐴, for arbitrary𝜑 and atomic𝐴
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not occurring in 𝜑, an effective enumeration of all and only the satisfiable
sentences 𝜑.

Result: the satisfiable sentences can be effectively enumerated.
Next we show (still entertaining our main reductio assumption) that

the unsatisfiable sentences can be effectively enumerated.
The following is obvious:

if 𝜑∶∅ is relevantly valid, then 𝜑 is unsatisfiable. (4)

So too is the following:

if 𝜑 is unsatisfiable, then 𝜑∶∅ is relevantly valid. (5)

It follows, then—combining (4) and (5)—that

𝜑∶∅ is relevantly valid if and only if 𝜑 is unsatisfiable. (6)

A sequent’s being of the form 𝜑 ∶ ∅ is an effectively decidable matter.
Thus from the effective enumeration 𝜋 one can extract an effective sub-
enumeration of all and only the relevantly valid sequents of the form 𝜑∶∅;
and therefore, in effect, of all and only the unsatisfiable sentences 𝜑.

Result: the unsatisfiable sentences can be effectively enumerated.

Summarizing: we have that the satisfiable sentences can be effectively
enumerated, and the unsatisfiable sentences can be effectively enumerated.

Suppose now that one is given an arbitrary sentence 𝜃, and asked whether
it is unsatisfiable. One can effectively decide whether this is the case by
going down the two enumerations until one discovers 𝜃 on one of them.
(The sentence 𝜃 will eventually turn up on one of the enumerations.)

Now suppose that one is given an arbitrary sentence 𝜉 and asked whether
it is logically true. One can determine the correct answer by answering
the question whether its negation ¬𝜉 is unsatisfiable. We can answer this
question effectively, as just shown. Hence there is an effective method for
determining, of an arbitrary given sentence, whether it is logically true.

This contradicts Church’s Undecidability Theorem (Church [1936]).
Thus there can be no such enumeration as 𝜋, which was supposed to be an
effective enumeration of all and only the finite relevantly valid sequents.

15



References

Ethan Brauer. Relevance for the classical logician. Review of Symbolic
Logic, 13:436–457, 2020.

Ethan Brauer. Coarsening Natural Deduction Proofs I: Finding Perfect
Proofs. Journal of Logic and Computation, 2024. doi: https://doi.org/
10.1093/logcom/exad077.

Alonzo Church. A note on the Entscheidungsproblem. Journal of Symbolic
Logic, 1(1):40–41. Correction, ibid., pp. 101–2, 1936.

Dag Prawitz. Natural Deduction: A Proof-Theoretical Study. Almqvist &
Wiksell, Stockholm, 1965.

Neil Tennant. Natural Logic. Edinburgh University Press, 1978.

Neil Tennant. Perfect Validity, Entailment and Paraconsistency. Studia
Logica, XLIII:179–198, 1984.

Neil Tennant. Core Logic. Oxford University Press, Oxford, 2017. doi:
https://doi.org/10.1093/oso/9780198777892.001.0001.

Neil Tennant. The Logic for Mathematics Without Ex Falso Quodlibet.
Philosophia Mathematica, 2024. doi: https://doi.org/10.1093/philmat/
nkae001.

16


