
Morphing Rules of Evaluation into Rules of
Deduction: Preserving Relevance and

Epistemic Gain

by

Neil Tennant∗

Department of Philosophy
The Ohio State University

August 12, 2023

Abstract
This study seeks to reveal the proper source of the (cor-

rect) rules of natural deduction (and their associated rules of
the sequent calculus). Perhaps surprisingly, this source con-
sists of just the familiar truth tables (deriving from Frege).
These tables can be construed inferentially. The primitive
steps of value-computation correspond to primitive steps of
‘inference’. We shall call them, however, primitive steps (or
rules) of evaluation. These can be steps of verification or of
falsification. The rules of evaluation constitute the inductive
clauses in a metalinguistic co-inductive definition of model-
relative verifications and falsifications.

We then show how the rules of evaluation can be ‘morphed’
into rules of natural deduction. Rules of verification thereby
become introduction rules, and rules of falsification become
elimination rules. The morphing produces model-invariant
rules in the simplest way possible. It preserves, for natural
deduction, the feature of relevance that is involved in truth-
tabular computation. This makes for a system of natural de-
duction (and a directly corresponding sequent calculus) that
is relevant.

∗To appear in the forthcoming volume ‘New Directions in Relevant Logic’,
edited by Igor Sedlár, Shawn Standefer, and Andrew Tedder, in Springer’s Trends
in Logic series.
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1 Introduction

This study is inferentialist in spirit. We aim to show how to pass
from the rules of evaluation (verification and falsification) that are
enshrined in the truth tables, to rules of natural deduction (intro-
duction and elimination). Rules of evaluation are model relative.
Rules of natural deduction, however, are model invariant. We show
how to morph the former rules into the latter rules. Our method of
morphing preserves the connections of relevance that are intrinsic to
evaluations (which are computations, hence relevant); and produces
rules of inference so formulated as to ensure the relevance of premises
to conclusions of the proofs that they generate. The deductive rules
that result from this investigation are those of Core Logic C. We
shall also have occasion to invoke its classicized extension, C+.

2 Notation

Λ A set of literals (encoding a model)
ϕ, ψ, θ Sentences
∆, Γ Sets of sentences
∆ : ϕ A sequent (in single-conclusion logic)

For any logical operator @:

(@-V) the Verification rule for @
(@-F) the Falsification rule for @
(@-I) the Introduction rule for @ in Natural Deduction
(@-E) the Elimination rule for @ in Natural Deduction
(@-R) the Right rule for @ in Sequent Calculus
(@-L) the Left rule for @ in Sequent Calculus

Evaluation

Λ an interpretation (truth-value assignment, or model)
V(V, ϕ,Λ) V is a verification of ϕ relative to Λ
F(F,ϕ,Λ) F is a falsification of ϕ relative to Λ
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Λ  ϕ ∃V V(V, ϕ,Λ) ‘Λ makes ϕ true’
Λ, ϕ  ⊥ ∃F F(F,ϕ,Λ) ‘Λ makes ϕ false’

Deduction

PS(Π, ϕ,∆) Π is an S-proof of ϕ, with the set ∆ of premises
(S is the system of natural deduction, or the sequent calculus.)

∆ `S ϕ ∃Γ⊆∆ ∃Π PS(Π, ϕ,Γ) ‘∆ S-proves ϕ’, or
‘ϕ is S-deducible from ∆’

Note that PS(Π, ϕ,∆) implies that ∆ is the exact set of premises
(i.e., undischarged assumptions) of the proof Π. This set is finite,
because proofs are finite.

3 The method of framing rules of verification
and of falsification

The rules of verification and of falsification (collectively: ‘evaluation
rules’) are ‘model-relative’. They were put forward in Tennant [2010]
and Tennant [2018]. They were also dealt with in Chapter 3 of
Tennant [2017].

The value T (for true) and the value F (for false) are conceptually
coequal. Each is just as important as the other, as far as the familiar
truth tables are concerned. We remind the reader of a point made
in Tennant [2017], at p. 53:

The truth tables should really be called truth-value ta-
bles, because they involve two truth values, T and F,
with F figuring just as importantly within them as T. We
need to bear that overriding consideration in mind, and
not let it be eclipsed by our preference, when forming
beliefs or making assertions, for true propositions over
false ones.

The rules of verification and of falsification, likewise, are coequal.
Verifications and falsifications are coinductively defined. The rules
of verification and of falsification for the connectives can be read
off from their familiar truth tables. Reciprocally, the familiar truth
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tables can be constructed directly from the rules of verification and
of falsification themselves. This means that we can be inferentialists
au fond.

If, however, one wishes to take the truth tables as one’s starting
point, one can advance to the rules of verification and of falsification
in the way we shall now describe. The reader is invited to read each
row within each of the following truth tables from left to right. We
have supplied, in the final column, the valid sequents expressing the
value-determining contribution of the pertinent row. Assignment
of the value T to an immediate constituent is registered by having
that constituent stand as a premise of the sequent, on the left. As-
signment of the value F to an immediate constituent is registered
by having the negation of that constituent stand as a premise of
the sequent, on the left. When the compound sentence receives the
value T, this is registered by having the compound sentence fea-
ture as the conclusion of the sequent, whose premises represent the
assignments of values to the immediate constituents. When the com-
pound sentence receives the value F, this is registered by having ⊥
on the right as the conclusion of the sequent in question, and having
the compound sentence featuring on the left as a premise.

ϕ ¬ϕ
T F ¬ϕ,ϕ : ⊥
F T ¬ϕ : ¬ϕ (trivial)

ϕ ψ ϕ ∧ ψ
T T T ϕ,ψ : ϕ ∧ ψ
T F F ϕ ∧ ψ,¬ψ : ⊥)

F T F ϕ ∧ ψ,¬ϕ : ⊥)

F F F overkill

ϕ ψ ϕ ∨ ψ
T T T overkill
T F T ϕ : ϕ ∨ ψ
F T T ψ : ϕ ∨ ψ
F F F ϕ ∨ ψ,¬ϕ,¬ψ : ⊥

ϕ ψ ϕ→ψ

T T T ψ : ϕ→ψ

T F F ϕ→ ψ,ϕ,¬ψ : ⊥
F T T overkill
F F T ¬ϕ : ϕ→ ψ

The rules of verification and of falsification for the quantifiers
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treat quantified sentences as generalized conjunctions or disjunctions
of all instances of the predicate that is quantified. Such generalized
conjunctions or disjunctions can of course be infinitary when the
domain of interpretation is infinite. That also leads to evaluations
being infinitary (‘infinitely wide’ in places)—in particular, when ver-
ifying universal generalizations, or falsifying existential ons. It is for
this reason that we have to regard evaluations as very different in-
deed from proofs. For the latter are finite and effectively checkable
for correctness; whereas evaluations need not be. Nevertheless, the
seeds of proof—namely, rules of inference—are to be found in the
rules of evaluation themselves. The present study aims to explain
how this is so.

1. Our rules of evaluation determine whether a sentence is veri-
fied or falsified in a given interpretation.

2. An interpretation, or model (in the first-order case) consists
of a domain of individuals, and a specification of extensions of
predicates within that domain. In the propositional case, an
interpretation is an assignment of truth values to the atomic
sentences.

3. A verification of a sentence ϕ (relative to an interpreta-
tion M) establishes ϕ as its conclusion:

...
ϕ

4. A falsification of a sentence ϕ (relative to an interpreta-
tionM) establishes absurdity (⊥) from ϕ as its major premise:

ϕ
...
⊥

Note that major premises for steps of falsification always ‘stand
proud’, with no ‘evaluation work’ above them. This important fea-
ture of major premises will be preserved when we make (in §6) the
promised transition to Elimination rules in natural deduction.
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The simplest verifications (relative to a first-order interpreta-
tion M) are of the form

M

P (α1, . . . , αn)

where in M the predicate P holds of the individuals α1, . . . , αn.
This is a verification of P (α1, . . . , αn) relative to M .
The simplest falsifications (relative to an interpretation M) are

of the form
P (α1, . . . , αn)

M
⊥

where inM the predicate P fails to hold of the individuals α1, . . . , αn.
This is a falsification of P (α1, . . . , αn) relative to M .
Any interpretation M is atomically complete: every atomic sen-

tence features either in a positive M -factoid, or in a negative M -
factoid. Any interpretation M is also coherent : no atomic sentence
features both in a positive M -factoid, and in a negative M -factoid.

More complex verifications and falsifications (relative to M) are
built up in accordance with the rules (@-V) and (@-F) for logical
operators @, which will be stated presently.

In the propositional case the simplest verifications and falsifi-
cations relative to a truth-value assignment τ take the respective
forms

τ

A
and A τ

⊥ ,

for atomic sentences A.
Note that we are dealing here, in the first-order case, with satu-

rated formulae. These are created by taking a formula ϕ(x1, . . . , xn)
(with the indicated variables free) and replacing each free occurrence
of a variable xi (1 ≤ i ≤ n) with an individual αi:

ϕx1α1
. . . xnαn

= ϕ(α1, . . . , αn).

Saturated formulae do not have any free variables. That is why
they are able to be true, or false, in an interpretation. They can be
thought of as sentences, liable to come out true, or come out false,
in any model that interprets their extra-logical vocabulary.

A literal is an atomic sentence, or the negation of an atomic
sentence. Thus atomic saturated formulae and their negations are
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literals. Construed inferentially, literals are our simplest possible
evaluations. This constitutes the basis clause in our co-inductive
definition of (the tree-like arrays that we are calling) verifications
and falsifications.

In the propositional case, the simplest possible verifications and
falsifications are, respectively,

τ

A
and A τ

⊥ .

In the first-order case, they are

M

P (α1, . . . , αn)
and

P (α1, . . . , αn)
M

⊥ .

So: the simplest possible verifications and falsifications express,
respectively, positive or negative factoids.

We shall use Λ as a placeholder for sets of literals of the inter-
pretation in question. Every such Λ is a coherent set of factoids. We
choose purple as the coloration here to remind the reader that these
sets Λ can in general contain both positive and negative factoids.

Such sets Λ feature as the sets of ‘undischarged side assump-
tions’ in the following graphic statements of our rules of evaluation.
These rules are of the respective forms @-V and @-F for each logical
operator @.

Each such rule can be construed as an inductive clause in our
co-inductive definition of the notions

V(Π, ϕ,M,D) and F(Π, ϕ,M,D).

These metalinguistic predications can be read, respectively, as
‘Π is a verification of ϕ relative to model M with domain D’

and
‘Π is a falsification of ϕ relative to model M with domain D’.

3.1 Verification and Falsification rules for ¬

(¬-V)

2 (i)

ϕ , Λ︸ ︷︷ ︸
...
⊥ (i)

¬ϕ

Note the box 2 .
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To verify a negation ¬ϕ one must falsify ϕ. That is, one must
actually use ϕ as an ‘evaluative assumption’ and show it to be false
(modulo Λ). This requirement of ‘non-vacuous discharge’ is what
is represented by the box that annotates the discharge stroke. The
same remark applies to subsequent boxes in other evaluation rules.

(¬-F)
¬ϕ

Λ
...
ϕ

⊥
To falsify a negation ¬ϕ one must verify ϕ.

Note the classicism that has immediately crept in by virtue of this
dualizing.

3.2 Verification and Falsification rules for ∧

(∧-V)

Λ1
...
ϕ

Λ2
...
ψ

ϕ∧ψ
To verify a conjunction, one must verify both conjuncts.

(∧-F)

2 (i)

ϕ , Λ︸ ︷︷ ︸
...

ϕ∧ψ ⊥
(i)

⊥

2 (i)

ψ , Λ︸ ︷︷ ︸
...

ϕ∧ψ ⊥
(i)

⊥

Note the boxes.

To falsify a conjunction, one has to falsify one of the conjuncts.

3.3 Verification and Falsification rules for ∨

(∨-V)

Λ
...
ϕ

ϕ∨ψ

Λ
...
ψ

ϕ∨ψ
To verify a disjunction, one has to verify one of the disjuncts.
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(∨-F)
ϕ∨ψ

2 (i)

ϕ , Λ1︸ ︷︷ ︸
...
⊥

2 (i)

ψ , Λ2︸ ︷︷ ︸
...
⊥

(i)

⊥

Note the boxes.

To falsify a disjunction, one must falsify both disjuncts.

3.4 Verification and Falsification rules for →

(→-V)

2 (i)

ϕ , Λ︸ ︷︷ ︸
...
⊥ (i)

ϕ→ψ

Λ
...
ψ

ϕ→ψ

Note the box.

To verify a conditional, one must either falsify its antecedent or
verify its consequent.

(→-F)
ϕ→ψ

Λ1
...
ϕ

2 (i)

ψ , Λ2︸ ︷︷ ︸
...
⊥

(i)

⊥

Note the box.

To falsify a conditional, one must both verify its antecedent and
falsify its consequent.

3.5 Verification and Falsification rules for ∃

(∃-V)

Λ
...
ϕxα
∃xϕ

where α is any individual in the domain

To verify an existential, one must verify some instance of it.
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(∃-F)

∃xϕ

2 (i)

ϕxα1
, Λ1︸ ︷︷ ︸
...
⊥

. . .

2 (i)

ϕxαn
, Λn︸ ︷︷ ︸
...
⊥

. . .

(i)

⊥

Note the boxes.

where α1, . . . , αn, . . . are all the individuals in the domain

To falsify an existential, one must falsify every instance of it.

3.6 Verification and Falsification rules for ∀

(∀-V)

Λ1
...

ψ(α1)

. . .

Λn
...

ψ(αn)

. . .

∀xψ(x)

where α1, . . . , αn, . . . are all the individuals in the domain

To verify a universal, one must verify every instance of it.

(∀-F)
∀xψ(x)

2 (i)

ψ(α) , Λ︸ ︷︷ ︸
...
⊥

(i)

⊥

Note the box.

where α is any individual in the domain

To falsify a universal, one must falsify some instance of it.

4 Possession of a verification is equivalent to
Tarskian truth

Theorem 1. Modulo a metatheory which contains the mathematics
of D-furcating trees of finite depth, we have, for all models M with
domain D,

∃Π V(Π, ϕ,M,D) ⇔ M  ϕ, i.e., ϕ is true in M
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where the right-hand side is in the sense of Tarski.

We are explaining here what Tarskian truth (in a modelM) con-
sists in. It consists in the existence of an M -relative verification of
the sentence in question.

Proof. The proof is by the obvious induction on the complexity of the
sentence (or saturated formula) ϕ. Note that the proof is intuitionis-
tic, provided only that theM -relative truthmakers for universals and
the M -relative falsitymakers for existentials, in the case where D is
infinite, can be assumed to exist, courtesy of the background meta-
mathematics. This observation affects the right-to-left direction in
the relevant cases of the inductive step.

5 Bivalence and Non-Contradiction

We can see from the rules of evaluation for negation that Bivalence
will hold for evaluations with respect to any interpretationM : every
sentence being evaluated will either come out true (by having anM -
relative verification), or come out false (by having an M -relative
falsification).

Moreover, the Law of Non-Contradiction will hold at the meta-
level: no sentence will have both an M -relative verification and an
M -relative falsification. This can be proved by induction on the
complexity of sentences, by appeal to the basis fact that the inter-
pretation M is both atomically complete and coherent.

6 Framing rules of natural deduction by mor-
phing rules of evaluation

The rules of verification and of falsification, to repeat, are model-
relative. But rules of inference for deduction have to be model-
invariant.

Our rules of inference for natural deduction are nevertheless go-
ing to be sourced in the rules of evaluation.

The rules of verification and of falsification will be respectively
‘morphed into’ model-invariant rules of introduction and elimination
in natural deductions. The morphing will preserve as much of the
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former rules’ overall features as possible. One such feature has al-
ready been mentioned: major premises for eliminations (like major
premises earlier, for falsifications) must stand proud, with no proof-
work above them. Another important feature that will be preserved
is the relevance of constituents to compounds—now in the deductive
setting, as earlier in the evaluational or computational setting. This
means that in the deductive setting we continue to respect the boxes
that annotated discharges in the evaluational setting.

The morphings also yield the Right and Left rules for the logical
operators in sequent calculus. These sequent rules are the Introduc-
tion and Elimination rules; they are just set out in a slightly different
format.

This is how we shall pass from rules of evaluation to rules of
deduction.

1. Replace sets Λ of literals with sets ∆ of arbitrary sentences.

2. In the F-rules for ∧, ∨, →, ∀ and ∃, allow for an arbitrary
sentence θ as the conclusion, as an alternative to ⊥. One can
still, of course, have ⊥ as a conclusion (as in instance of θ).

3. In step (2) above, when formulating ∨-E from ∨-F , allow for
a sentence θ to be the overall conclusion even when it is the
conclusion of just one of the case-proofs, the other case-proof
concluding with ⊥. This is called ‘liberalized’ ∨-E.

4. In step (2) above, when formulating ∀-I from ∀-V, and ∃-E from
∃-F , replace the domain-many sub-evaluations of instances
with a single subproof template involving a parameter a. This
respects the fact that the aim of deduction is to preserve truth
over all models, and to do so by means of finitary proofs.

The following clarificatory remarks should help one understand the
morphings.

1. We shall use V (with or without numerical subscripts) as a
placeholder for verifications.

2. Reminder: A verification has a sentence as its conclusion.
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3. We shall use F (with or without numerical subscripts) as a
placeholder for falsifications.

4. Reminder: A falsification has the absurdity symbol ⊥ as its
conclusion.

5. We shall use Λ (with or without numerical subscripts) as a
placeholder for sets of literals of the model, relative to which
a sentence is being evaluated.

6. We shall use Π (with or without numerical subscripts) as a
placeholder for proofs (natural deductions).

7. A proof can have either a sentence or the absurdity symbol ⊥
as its conclusion.

8. We shall use ∆ (with or without numerical subscripts) as a
placeholder for sets of sentences (the set of premises of a proof)

9. We shall color in brown the changes wrought by the morphings,
which will be indicated by the squiggly arrow ;.

10. We first take all the Verification rules, and morph them into
Introduction rules:

(@-V) ; (@-I)

11. We then take all the Falsification rules, and morph them into
Elimination rules:

(@-F) ; (@-E)

6.1 Morphing verification rules to introduction rules

6.1.1 Morphing ¬-V to ¬-I

(¬-V)

2 (i)

ϕ , Λ︸ ︷︷ ︸
F
⊥ (i)

¬ϕ

; (¬-I)

2 (i)

ϕ , ∆︸ ︷︷ ︸
Π
⊥ (i)

¬ϕ
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6.1.2 Morphing ∧-V to ∧-I

(∧-V)

Λ1

V1

ϕ1

Λ2

V2

ϕ2

ϕ1 ∧ϕ2

; (∧-I)

∆1

Π1

ϕ1

∆2

Π2

ϕ2

ϕ1 ∧ϕ2

6.1.3 Morphing ∨-V to ∨-I

(∨-V)

Λ
V
ϕ

ϕ∨ψ

Λ
V
ψ

ϕ∨ψ

; (∨-I)

∆
Π
ϕ

ϕ∨ψ

∆
Π
ψ

ϕ∨ψ

6.1.4 Morphing →-V to →-I

(→-V)

2 (i)

ϕ , Λ︸ ︷︷ ︸
F
⊥ (i)

ϕ→ψ

Λ
V
ψ

ϕ→ψ

; (→-I)

2 (i)

ϕ , ∆︸ ︷︷ ︸
Π
⊥ (i)

ϕ→ψ

∆
Π
ψ

ϕ→ψ

Note that these two parts of (→-I) resulting from this direct mor-
phing of the verification rule (→-V) do not yet furnish that form of
(→-I) (known as the rule of ‘conditional proof’) that permits one
to assume ϕ for the sake of argument, then to deduce ψ by using
assumption ϕ, and finally to discharge ϕ when one infers the con-
clusion ϕ→ψ. We shall see in due course how to get this ‘missing
part’ of (→-I).

6.1.5 Morphing ∀-V to ∀-I

(∀-V)


Λα
Vα
ψ(α)


α∈M

∀xψ(x)

; (∀-I)

∆�a

Π
ψ(a)

∀xψ(x)
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6.1.6 Morphing ∃-V to ∃-I

(∃-V)

Λ
V
ϕxα
∃xϕ

where α is any
individual in
the domain

; (∃-I)

∆
Π
ϕxt
∃xϕ

where t is any
closed term

6.2 Morphing falsification rules to elimination rules

6.2.1 Morphing ¬-F to ¬-E

(¬-F) ¬ϕ

Λ
V
ϕ

⊥

; (¬-E) ¬ϕ

∆
Π
ϕ

⊥

6.2.2 Morphing ∧-F to ∧-E

(∧-F)
ϕ∧ψ

2 (i)

ϕ , Λ︸ ︷︷ ︸
F
⊥

(i)

⊥
ϕ∧ψ

2 (i)

ψ , Λ︸ ︷︷ ︸
F
⊥

(i)

⊥

; (∧-E)
ϕ∧ψ

2 (i)

ϕ , ∆︸ ︷︷ ︸
Π
θ/⊥

(i)

θ/⊥
ϕ∧ψ

2 (i)

ψ , ∆︸ ︷︷ ︸
Π
θ/⊥

(i)

θ/⊥

;

hence, more efficiently:

ϕ∧ψ

(i) 2 (i)

ϕ ,ψ , ∆︸ ︷︷ ︸
Π
θ/⊥

(i)

θ/⊥

,

where the box between the two discharge strokes indicates that at
least one of ϕ and ψ must feature as an undischarged assumption of
the subproof Π.
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6.2.3 Morphing ∨-F to ∨-E

(∨-F)
ϕ1∨ϕ2

2 (i)

ϕ1 , Λ1︸ ︷︷ ︸
F1

⊥

2 (i)

ϕ2 , Λ2︸ ︷︷ ︸
F2

⊥
(i)

⊥

; (∨-E)
ϕ1∨ϕ2

2 (i)

ϕ1 , ∆1︸ ︷︷ ︸
Π1

θ/⊥

2 (i)

ϕ2 , ∆2︸ ︷︷ ︸
Π2

θ/⊥
(i)

θ/⊥

‘If either of the two case-proofs Π1, Π2 has ⊥ as its conclusion, bring
down as the main conclusion the conclusion of the other case-proof.’

6.2.4 Morphing →-F to →-E

(→-F)
ϕ→ψ

Λ1

V
ϕ

2 (i)

ψ ,Λ2︸ ︷︷ ︸
F
⊥

(i)

⊥

; (→-E)
ϕ→ψ

∆1

Π1

ϕ

2 (i)

ψ ,∆2︸ ︷︷ ︸
Π2

θ/⊥
(i)

θ/⊥

6.2.5 Morphing ∀-F to ∀-E

(∀-F) ∀xψ(x)

2 (i)

ψ(α) , Λ︸ ︷︷ ︸
F
⊥

(i)

⊥

where α is any
individual in
the domain

; (∀-E) ∀xψ(x)

2 (i)

ψ(t) , ∆︸ ︷︷ ︸
Π
θ/⊥

(i)

θ/⊥

where t is any closed term

;

hence
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∀xψ(x)

(i) . . . 2 . . . (i)

ψ(t1) , . . . , ψ(tn) , ∆︸ ︷︷ ︸
Π
θ/⊥

(i)

θ/⊥

where t1, . . . , tn are closed terms, and the box indicates
that at least one instance ψ(ti) must feature as an

undischarged assumption of the subproof Π.

6.2.6 Morphing ∃-F to ∃-E

(∃-F)
∃xϕ


2 (i)

ϕxα , Λα︸ ︷︷ ︸
Fα
⊥


α∈M (i)

⊥

; (∃-E)
∃xϕ�a

2 (i)

ϕxa , ∆�a︸ ︷︷ ︸
Π

θ�a/⊥
(i)

θ�a/⊥

7 Allowing →-I to discharge an assumption

Note that we have thus far obtained an introduction rule for → in
only the two parts that correspond to the respective considerations
that it suffices, for the truth of a conditional, to have its antecedent
false, or to have its consequent true. But this leaves out of the
picture the most familiar form of →-Introduction, known as Condi-
tional Proof, which allows for the discharge of the antecedent ϕ as an
assumption if it has been used in the derivation of the consequent ψ
as the conclusion of the subordinate proof:

(i)

ϕ
...
ψ

(i)

ϕ→ ψ

The first two parts of →-Introduction immediately below were
obtained by morphing the rule of →-Verification. The third part—
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the usual ‘Rule of Conditional Proof’ allowing discharge of the antece-
dent-as-assumption—can now be added to them:

2 (i)

ϕ , ∆︸ ︷︷ ︸
Π
⊥ (i)

ϕ→ψ

∆
Π
ψ

ϕ→ψ

(i)

ϕ , ∆︸ ︷︷ ︸
Π
ψ

(i)

ϕ→ψ

This is in light of the classical derivations that follow. They employ
Bivalence (in the form of the rule of Dilemma) at their final steps,
marked (2). The first derivation uses Dilemma on the antecedent ϕ
as its positive horn-assumption; the second derivation uses Dilemma
on the consequent ψ as the same:

(2)

ϕ
...
ψ

ϕ→ ψ

(2)

¬ϕ
(1)

ϕ

⊥ (1)

ϕ→ ψ
(2)

ϕ→ ψ

(2)

ψ

ϕ→ ψ

(2)

¬ψ

(1)

ϕ
...
ψ

⊥ (1)

ϕ→ ψ
(2)

ϕ→ ψ

8 Succinct graphic statement of →-I

We now have the following three ‘parts’ of the rule of→-Introduction:

2 (i)

ϕ , ∆︸ ︷︷ ︸
Π
⊥ (i)

ϕ→ψ

∆
Π
ψ

ϕ→ψ

(i)

ϕ , ∆︸ ︷︷ ︸
Π
ψ

(i)

ϕ→ψ
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The second and third of these can be melded so that the display
becomes

2 (i)

ϕ , ∆︸ ︷︷ ︸
Π
⊥ (i)

ϕ→ψ

3 (i)

ϕ , ∆︸ ︷︷ ︸
Π
ψ

(i)

ϕ→ψ

The diamond in the graphic rule-part on the right says ‘vacuous’
discharge is permitted: ϕ need not be an undischarged assumption
of the subordinate proof Π. This is exactly the rule of (→-I) in the
Gentzen–Prawitz tradition. The graphic rule-part on the left is a
‘new part’ of (→-I) supplied by the Core logician via the foregoing
method of morphing. It directly respects the third and fourth lines of
the truth table for→. It is derivable in the Gentzen–Prawitz system
by appeal to their rule of EFQ, which we, by contrast, eschew.

It is easy to see how to re-write the foregoing rules of natural
deduction as sequent rules. Introduction rules can be re-written as
Right rules, and Elimination rules can be re-written as Left rules.
A single illustration, say with the connective →, should suffice to
indicate the way this is done.

(→-I)

2 (i)

ϕ , ∆︸ ︷︷ ︸
...
⊥ (i)

ϕ→ψ

3 (i)

ϕ , ∆︸ ︷︷ ︸
...
ψ

(i)

ϕ→ψ

are re-written as (→-R)
∆, ϕ : ⊥
∆ : ϕ→ψ

∆ : ψ

∆\{ϕ} : ϕ→ψ

(→-E)

ϕ→ψ

∆1

...
ϕ

2 (i)

ψ ,∆2︸ ︷︷ ︸
...
θ

(i)

θ

is re-written as (→-L)
∆1 : ϕ ∆2, ψ : θ

∆1,∆2, ϕ→ψ : θ

The result of this re-writing of rules of natural deduction as their
corresponding rules of the sequent calculus is that every core proof
in natural deduction is ‘isomorphic’ to the corresponding core proof
in the sequent calculus. Here is an illustration of this.
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A∧(B∨C)

(2)

B∨C

(2)

A
(1)

B

A∧B
(A∧B)∨(A∧C)

(2)

A
(1)

C

A∧C
(A∧B)∨(A∧C)

(1)

(A∧B)∨(A∧C)
(2)

(A∧B)∨(A∧C)

A :A B :B
A,B :A∧B

A,B : (A∧B)∨(A∧C)

A :A C :C
A,C :A∧C

A,C : (A∧B)∨(A∧C)

A,B∨C : (A∧B)∨(A∧C)

A∧(B∨C) : (A∧B)∨(A∧C)

Next we illustrate the tree structure of a successful proof search
for the foregoing result.

• • • •

@
@I

�
��

6
•
6

6
•

@
@I
�
��

6
•
6

6
•

@
@
@I

�
�
��

6
•
6

6
•

:∧ :∧

:∨ :∨

A:A B:B A:A C:C

A,B :A∧B A,C :A∧C

A,B : (A∧B)∨(A∧C) A,C : (A∧B)∨(A∧C)

∨ :

A, (B∨C) : (A∧B)∨(A∧C)

∧ :

A∧(B∨C) : (A∧B)∨(A∧C)

Core proofs can now be conceived of as the naturally arising ob-
jects that can be directly constructed by the method of proof search
that proceeds by breaking down deductive problems into the natu-
rally arising immediate subproblems resulting from either (i) choos-
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ing to focus on the dominant operator of the sought conclusion, so
as to end up with a terminal Introduction (equivalently, application
of a Right rule); or (ii) choosing to focus on the dominant operator
in an available premise, so as to end up with a terminal Elimination
(equivalently, application of a Left rule). Efficient proof-search is a
matter of alternating insightfully between (i) and (ii) as the search
proceeds. Normalization results in proof theory yield many such
useful insights into how the syntactic form of a sequent to be proved
can guarantee that if there is a proof at all to be had, then there is a
proof of such-and-such a constrained form. (See Tennant [1992].) To
this end, similarly, a valuable constraint leading one to make success-
ful choices during proof-search is the ‘relevance filtration’ afforded
by the relevance property R(∆, ϕ) explicated in Tennant [2015], and
proved to hold between the premise-set ∆ and the conclusion ϕ of
any Classical Core proof.

9 Summary of main points

One starts with model-relative rules of evaluation, i.e. of verification
and of falsification. One morphs those rules respectively into model-
invariant introduction and elimination rules of natural deduction (or,
equivalently, into Right rules and Left rules of sequent calculus).

The method of morphing, by its very design, produces no such
rule as Ex Falso Quodlibet in natural deduction. Nor does it produce
any rule of Cut or of Thinning in the sequent calculus. We therefore
avoid the First Lewis Paradox (A,¬A : B), which is the single most
important aim of the relevantist.

Important features of the evaluation rules are preserved by the
morphing. These are

• Major premises of falsifications stood proud; so too do major
premises of elimination.

• Discharges were obligatory in evaluations; so too are they in
natural deductions.

• Falsification rules were parallelized; so too are the elimination
rules.
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• Natural deductions become more ‘general’ by having arbitrary
premise sets in place of sets of literals; and by having arbitrary
sentences as conclusions of eliminations, in place of ⊥ as the
conclusion of a falsification.

Semantic evaluations are perforce relevant. This relevance is pre-
served by our morphing of rules of evaluation into rules of natural
deduction.

Every rule of natural deduction (and every rule in the sequent
calculus) preserves fortuitous epistemic gains (i.e., gains in logical
strength). At any stage in a search for a proof if one succeeds for-
tuitously in finding a proof of a logically stronger result than the
actual sequent that one set out to prove, that stronger result can be
used at that very point in the construction of the desired proof. Put
another way: logically stronger solutions to deductive subproblems
generated during proof-search can always be ‘inherited’ to help de-
liver a stronger (and shorter) solution to the problem that generated
those subproblems. The isomorphism between natural deductions
and sequent proofs affords a conception of proofs as abstract objects
of search, with their formal presentation being a matter of perspic-
uousness or pragmatic convenience.

10 Final note

A reviewer helpfully inquired how the present study might be situ-
ated within the tradition of ‘bilateralism’ in proof theory. That tradi-
tion derives from the seminal paper Rumfitt [2000], where the words
‘bilateral’, ‘bilateralist’, and ‘bilateralism’ were first introduced. The
very first occurrence of any of these words was the occurrence of ‘bi-
lateral’ on page 790, where Rumfitt wrote

The standard introduction and elimination rules for “∧”
and “∨” and “→” are harmonious in this bilateral sense.
[Emphasis added]

The immediately preceding context supplied the sense in question.
Rumfitt generously wrote

For reasons that Neil Tennant (1987, pp. 94–97) has ex-
plained, . . . it makes sense to favour the strongest elim-
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ination rule that is a Prawitzian inverse of a given intro-
duction rule.[fn] Tennant, indeed, shows how to detach
Gentzen’s underlying idea from the explanatory prior-
ity that he had accorded to introduction rules. Let us
say that an introduction rule I is in harmony with an
elimination rule E when (a) E ’s major premiss expresses
the weakest proposition that can be eliminated using E ,
with I taken as given, and (b) I ’s conclusion expresses
the strongest proposition that can be introduced using I ,
with E taken as given.

On page 97 of the passage that Rumfitt cited, the present author
suggested that

. . . there is an intrinsic meaning to conjunction, for ex-
ample, that is invariant across minimal, intuitionistic,
and classical logic. I intend thereby to reveal as unjus-
tifiable marginal excesses or excrescences the extra in-
gredients in the consequence relation of classical logic
that have earned the generic labels (a) the fallacies of
relevance, and (b) the classical laws of negation. The
intrinsic meanings of the logical operators, characterized
‘from below’, as it were, provide no justification whatever
for this fleshing out of the correct consequence relation.

The present study can be understood as underscoring further that
very suggestion. Our methodology of morphing rules of evaluation
into rules of deduction has avoided the fallacies of relevance. It
has also left us in a position to eschew the strictly classical rules of
negation (notwithstanding the appearance of classicism in our BHK-
appropriation above of the Rule of Conditional Proof).

Rumfitt attributed another important facet of bilateralism as
deriving from investigations by the present author. Just as in bilat-
eralism the values T and F are coequal, along with the respective
notions of assertion and rejection, so too in proof theory the notions
of proof and of disproof are coequal. Rumfitt wrote (loc. cit., p. 794

. . . as Tennant has put it, the expression [⊥] plays the
role of a punctuation mark in the deduction (1999). It
marks the point where the supposition . . . has been shown
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to lead to a logical dead end, and is thus discharged, prior
to an assertion of its negation.

The work Tennant [1999] that Rumfitt cites presented the notions of
proof and of disproof as coinductively defined. It is in the same spirit
that we have here deployed the rules for generating the coinductively
defined constructs that we called verifications and falsifications; and
then morphed these rules into rules of natural deduction. In keeping
with the metalogical prescription of Tennant [1999], the latter rules
can likewise be regarded as generating the coequal constructs that
we called proofs and disproofs. For want of space here, we set aside
for further investigation the interesting question whether Rumfitt’s
bilateralism should shift one’s choice of logic from Core Logic C to
its classicized extension Classical Core Logic C+.
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