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Abstract
We begin with a brief explanation of our proof-theoretic criterion of paradoxicality—
its motivation, its methods, and its results so far. It is a proof-theoretic account of
paradoxicality that can be given in addition to, or alongside, themore familiar semantic
account ofKripke. It is a question for further researchwhether the two accounts agree in
general onwhat is to count as a paradox. It is also aquestion for further researchwhether
and, if so, how the so-called Ekman problem bears on the investigations here of the
intensional paradoxes. Possible exceptions to the proof-theoretic criterion are Prior’s
Theorem and Russell’s Paradox of Propositions—the two best-known ‘intensional’
paradoxes.Wehavenot yet addressed them.Wedo sohere.The results are encouraging.
§1 studies Prior’s Theorem. In the literature on the paradoxes of intensionality, it
does not enjoy rigorous formal proof of a Gentzenian kind—the kind that lends itself
to proof-theoretic analysis of recondite features that might escape the attention of
logicians using non-Gentzenian systems of logic. We make good that lack, both to
render the criterion applicable to the formal proof, and to see whether the criterion gets
it right. Prior’s Theorem is a theorem in an unfree, classical, quantified propositional
logic. But if one were to insist that the logic employed be free, then Prior’s Theorem
would not be a theorem at all. Its proof would have an undischarged assumption—
the ‘existential presupposition’ that the proposition ∀p(Qp → ¬p) exists. Call this
proposition ϑ . §2 focuses on ϑ . We analyse a Priorean reductio of ϑ along with
the possibilitate ♦∀q(Qq ↔ (ϑ ↔ q)). The attempted reductio of this premise-pair,
which is constructive, cannot be brought into normal form. The criterion says we
have not straightforward inconsistency, but rather genuine paradoxicality. §3 turns
to problems engendered by the proposition ∃p(Qp ∧ ¬p) (call it η) for the similar
possibilitate ♦∀q(Qq ↔ (η ↔ q)). The attempted disproof of this premise-pair—
again, a constructive one—cannot succeed. It cannot be brought into normal form.
The criterion says the premise-pair is a genuine paradox. In §4 we show how Russell’s
Paradox of Propositions, like the Priorean intensional paradoxes, is to be classified as
a genuine paradox by the proof-theoretic criterion of paradoxicality.
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1 Introduction

1.1 Some History byWay of Background

We begin with some broad brush strokes of historical commentary by way of expla-
nation of both the purpose of this study and its choice of methods.

The usual way that paradoxes are set out for thinkers first becoming acquainted with
them is to use ordinary language as far as possible, and, at a push, to elevate matters to
the level of what is called ‘informal rigor’. If this latter route is taken, the informally
rigorous deductive reasoning can be taken as raw material for fuller formalization or
‘regimentation’, using some favored proof system to that end. It is fair to say that
the vast majority of such formalizations involve systems of formal proof in which the
reasoning is set out in the Lemmon–Mates–Fitch style that is so popular with teachers
of Introductory Logic courses for Philosophy students.

Serious work in proof theory, however, is much better carried out in Gentzenian
systems of natural deduction or sequent calculus. Their main distinguishing feature
(compared to proof-formating inLemmon–Mates–Fitch style) is the clarity of exposure
(to the naked eye, as it were) of the essentially tree-like structure of dependencies of
conclusions on assumptions. Moreover, by focusing on proofs that really are trees—
both in an abstract mathematical sense and manifestly so, on the printed page—proof
theorists are able to deal more expertly with concepts and methods such as reduction
procedures, normalization of proofs, subformulae properties, and normal forms. The
deeper insights of post-Gentzenian proof theory are difficult to acquire if the student’s
grounding is in the Lemmon–Mates–Fitch tradition.

In the hands of writers such as Dummett, Prawitz, Martin-Löf, and Schroeder-
Heister, modern proof theory has been a technical gift that keeps on giving
philosophically. Its full contemporaryflowering into thefield ofproof-theoretic seman-
tics bears testimony to this.1 The resources of proof theory have grown in stature and
scope to the point where they afford the real prospect of being deployable in ‘equal
partnering’, as it were, with model-theoretic semantics. And, just as Kripke ‘pushed
the envelope’ to provide a semanticmodeling of truth and paradox in the semantically
closed languages whose treatment Tarski—the founder of model-theoretic semantics
and the pioneering language-stratifier—refused to undertake, so too one could expect
exponents of proof theory in due course to venture beyond their previous confines of
formalizing mathematical reasoning and their focus on (relative-)consistency prob-
lems in the foundations of mathematics. They could broaden the scope of application
of their methods. They could address, say, the problem of paradox in semantically
closed languages with their own distinctively proof-theoretic ideas.

1 See, for example, [5], [14] and [15].
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1.2 The Proof-theoretic Criterion of Paradoxicality

It was against this brief historical background that in [18] we proposed what we
called a proof-theoretic criterion for paradoxicality. At the time of that writing, the
paradigm cases of paradox were of course the Liar Paradox and Russell’s Paradox
in set theory. The seminal tract [8] had indeed sought to get to grips with Russell’s
Paradox, and offered the observation that its ‘proof’ (using rules for naive set theory
that Prawitz formulated) resisted normalization. Our Dialectica paper took the germ
of that idea and applied it to all the usual logico-semantic paradoxes arising from
semantic closure: the Liar; the Wedge Liar (a.k.a. the postcard paradox); Grelling’s
paradox of heterologicality; the Curry paradox; and Tarski’s quotational paradox.

The proof-theoretic criterion that we proposed focused on the disproof (i.e., proof
of absurdity) in these cases (or the proof of an arbitrary conclusion in the case of the
Curry). The proofs or disproofs were most conveniently taken as Gentzen–Prawitz
natural deductions. The test was to see whether the (dis)proof in question could be
brought into normal form, by means of allowable reduction procedures. If it could not,
then one would be dealing with a genuine paradox. This resistance to normalization
was the quintessential feature of paradox-because-of-semantic-closure.

Upon illustrating the idea in the case of the Liar, we wrote (loc. cit., p. 270)

The normalisation sequence … enters a loop, never terminating with a proof in
normal form.

That is, all normalization sequences fail to terminate. So we do not have even weak
normalization.2 We then went on to say (p. 271)

…not every paradox need display this feature so clearly. It is therefore of consid-
erable interest to enquire after techniques for discerning, in less direct fashion,
whether something at root similar to this circularity of inference is at work in
all paradoxes. I wish to maintain that it is indeed their distinguishing feature. I
propose precisely the test of non-terminating reduction sequences.

The clearest cases of resistance to normalization were ones in which the reduction
sequence (as in all the aforementioned cases) would enter a loop. But that is merely
one special way in which a reduction sequence could fail to terminate.

The study [37] prompted the characterization in [19] of another way in which
a reduction sequence could be non-terminating: it could (metaphorically) spiral ad
infinitum, ratcheting up a numeral with each ‘turn’. It would not exactly loop, but it
would exhibit a discernible pattern that would prompt a warranted reaction of ‘Here
we go again—ad infinitum!’.

The (then) ‘state of the art’ of the proof-theoretic approach to paradoxwas described
for awider philosophical audience in [23].Wehave subsequently argued that the proof-
theoretic criterion deals satisfactorily with one more challenging agendum: the now
well-known Revenge Paradox.3

2 Thanks are owed to Peter Schroeder-Heister for suggesting that this point be stressed.
3 [27]. PDF of presentation available on request.
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The criterion that we proposed was also designed to accommodate the kinds of
paradox (still arising from semantic closure) that Kripke brought so forcefully to
philosophers’ attention. What Kripke showed is that paradoxicality can be a prop-
erty of a set of sentences, not just of a single sentence on its own. Kripke also (and
famously) gave examples where the paradoxicality of certain sentences involving
semantic vocabulary depended crucially on the contribution of empirical contingen-
cies, such as exactly what it was that Jones had said. (See [6] at p. 691.) Let us represent
those empirical contingencies as a model M . [18] (at p. 283) ventured the following
completeness conjecture (concerning the co-extensiveness of paradoxicality of sets of
sentences according to the proof-theoretic criterion with paradoxicality on Kripke’s
semantic account):

When … I speak of a proof of a conclusion from �(M), I have in mind a proof
from assumptions that are truths in (every member of) M, and by means of
rules for the logical operators and the truth predicate, as well as the id est rules
of inference—really, one could say, rules of reference—that are legitimated by
(every member of) M. The completeness conjecture is then that

A set of sentences is paradoxical [in Kripke’s sense] relative to M
iff

there is some proof of � [i.e., ⊥] from �(M), involving those sentences in id
est inferences, that has a looping reduction sequence.

Compactness of paradoxicality would follow as a corollary. So would the view
that paradox is really only theory-sensitive and not model-sensitive. Clearly
some result such as this is worth having, given the ideal and infinitistic nature
of Kripke’s semantical definition of paradox.

The occurrence of theword ‘looping’ in this quote should, especially in light ofYablo’s
subsequent paradox, be an occurrence of ‘non-terminating’.

1.3 The Technical Challenge for the Conjecture

The technical challenge of establishing this conjecture (if possible at all) is formidable.
In light of the complexity results in [3] for Kripkean fixed points for the lan-

guage L that supplements a language of arithmetic4 with the truth predicate T , it
would be necessary at least to determine the complexity of the criterial predicate
about non-terminating reduction sequences that is employed in the (re-)formulation
of the conjecture.

As Burgess’s title says, the truth is never simple. That pithy comment is based
on two main results about Kripkean fixed points generated using the ‘strong’ Kleene
three-valued method of evaluation that produces the jumps from stage to stage for the
extension A+ and anti-extension A− of the truth predicate T in any fixed point. (A+

4 The language in question has the usual primitive expressions for zero, successor, addition, and multipli-
cation, plus distinct function symbols for all the other primitive recursive functions. We are talking here of
complexity in the sense of the arithmetical hierarchy, not in the sense of computational complexity in the
sub-recursive hierarchy that occupies those who work in algorithmic complexity theory.
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and A− are always disjoint. We shall use (A+, A−) as a complex sortal variable over
fixed points.) The two results in question (loc. cit., p. 668) concern the complexities
of these ‘plus’ and ‘minus’ sets in the minimum fixed point (called (0+, 0−)) and in
the maximum intrinsic fixed point (called (I+, I−)) respectively.

We concentrate here on the minimum fixed point, whose fuller designation would
be (0+

K , 0−
K ), where the subscript K indicates use of the strong Kleene three-valued

method of evaluation. (0+
K , 0−

K ) is generated by beginning the infinite sequence of (re-)
evaluations with both empty extension and empty anti-extension (at stage zero) for
the truth predicate T . The eventual extension 0+

K for T in this fixed point is complete
�1

1 (Burgess’s theorem 6.1 at p. 668).
The set of sentences in the language L on which the paradoxicality theorist would

wish to focus, however, is the set of Kripkean paradoxes, which Kripke defined as
those sentences that receive no truth value in any fixed point. Pathological but non-
paradoxical sentences like the truth-teller are true in some fixed points, and false in
others. So they need somehow to be ‘winnowed out’ from that part of the language
that lies ‘in between’ 0+

K and 0−
K , so as to leave behind only paradoxes. L \ (0+

K ∪ 0−
K )

is the part of the language that is in question here. It will contain, however, both the
truth-teller and its negation. And these are not paradoxes.

The elusive set P (of just the paradoxes) that we are trying to define would be

[L \ (0+
K ∪ 0−

K )] \ �

where � is the set of all sentences θ such that θ is true in some fixed point or θ is false
in some fixed point. Thus

P = [L \ (0+
K ∪ 0−

K )] \ {θ ∈ L|∃ (A+, A−) θ ∈ A+ ∨ ∃ (A+, A−) θ ∈ A−}.

Using the ‘V ’ notation that Burgess introduces at p. 667 (for codes of sentences)
this becomes

P = [L \ (0+
K ∪ 0−

K )] \ (V+
K ∪ V−

K ).

But since 0+
K ⊆ V+

K and 0−
K ⊆ V−

K , this boils down to

P = L \ (V+
K ∪ V−

K ).

Burgess’s result 6.2(c) at p. 668 is that

ω \ (V+
K ∪ V−

K ) is complete �1
1.

We have a decision method for sieving ω for just the codes of L-sentences. Thus
P is complete �1

1.
5

With P being this complex, can the proof-theoretic criterion of paradoxicality ‘get
it right’ (at least, for this pure language of arithmetic plus the predicate T , with no
empirical hostages to fortune)? In support of the foregoing conjecture, the proof-
theorist can only rejoin that this level of complexity for Kripkean paradoxes might

5 Correspondence with John Burgess has been most helpful here.
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well be matched by that of the myriad ways in which reduction sequences might fail
to terminate.

1.4 A New Grouping of the So-called Paradoxes

Wehavewritten further on the proof-theoretic criterion of paradoxicality, most notably
to propose that Russell’s Paradox in set theory is not, after all, a genuine paradox.6

Instead, it turns out to enjoy the form of straightforward normal-form disproof of
the claim that there is such a thing as the set of all sets that are not members of
themselves. Russell’s Paradox is actually a negative-existential theorem of set theory.
The set theory in question must, however, be equipped with ‘single-barreled’ rules
of introduction and elimination for the set-abstraction operator {x | . . . x . . .}, which
forms singular terms from formulae. And the underlying logic must be a free logic,
not committed to the Fregean dogma that every singular term must denote.7

The proof-theoretic picture that is emerging is that a new distinction ought perhaps
to be drawn among the so-called ‘paradoxes’, one that differs from Ramsey’s famous
Group A-Group B distinction. There are the genuine paradoxes, whose paradoxicality
is revealed by the proof-theoretic criterion; and there are the so-called ‘paradoxes’,
like that of Russell in set theory, that are better understood as straightforward negative
existential theorems. This shows how a formal explication of a previously informal
idea can furnish reforming theoretical insights. The explication can persuade one to
carve things up and classify them rather differently.

2 On ∀p(Qp→¬p) [= #]

At this juncture the proof-theoretic criterialist needs to address the less frequently dis-
cussed ‘intensional paradoxes’. Thesewere not considered inRamsey’s seminal article
in 1925.8 Of course, the intensional paradoxes due to Prior were formulated well after
Ramsey’s article. Along with Russell’s paradox of propositions, Prior’s intensional
paradoxes deserve serious consideration.9 They are called intensional because they
involve an attitudinal operator Q on propositions. In the context of this study, however,
Q’s being an attitudinal operator is not essential. Q can be taken to be an arbitrary
propositional operator; for our proof-theoretic analysis will still go through.10

6 See [26], §11.4, and [29].
7 This motivates also further examination (and possible re-classification) of other ‘paradoxes’ in set theory,
such as the Burali–Forti paradox.
8 Russell’s paradox of propositions appeared as an appendix to Russell’s Principles of Mathematics, in
1903 (see §5)). Thanks are owed to an anonymous referee for noting that [33] argued that Ramsey’s ‘divide
and conquer’ strategy depended on a reconceptualization of logic that hides the intensional paradoxes from
view.
9 A promissory note: deserving also of serious further consideration is the Berry paradox. In unpublished
work, we argue that it (perhaps surprisingly) keeps company with the Russell paradox in set theory, in being
a straightforwardly provable negative existential. A lot depends on how carefully one formulates it.
10 Thanks to Peter Schroeder-Heister for suggesting that this point be made.
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The question to be addressed here is whether these so-called intensional paradoxes
are genuine paradoxes according to the proof-theoretic criterion. This study argues
that indeed they are. The term ‘intensional paradoxes’ seems to be an informal one,
for which hardly any writers seem concerned to have a precise explication. The results
in question seem only to need to be intuitively surprising, ‘hard to get one’s head
around’—very much in keeping with the etymology of the word ‘paradox’ being the
Greek for ‘beyond belief’.

In this section we shall examine one particular ‘intensional paradox’, attributed to
Prior. That it enjoys the kind of status just described is evident from [2], at p. 497. In
§2 of that study, with the phrase ‘Priorean paradoxes’ appearing in the heading, one
reads the following:

Let’s begin by discussing a puzzling result of Prior (1961). … Armed with a
pair of assumptions, namely Ul for the quantifiers into sentence position, and
classical propositional logic, one can prove …

prior’s theorem: Q∀p(Qp→¬p) → (∃p(Qp ∧ p) ∧ ∃p(Qp ∧ ¬p)).11

The authors go on to say that

this theorem is … puzzling … [I]t is extremely surprising to be informed that
this fact has the status of a logical truth. This doesn’t seem like the sort of thing
that could be figured out from logic alone.

The word ‘seem’ here is bearing a lot of weight. Many a logical truth does not seem
to be logically true—or, equivalently, can be difficult to see as logically true. Our goal
in this section is to show exactly how Prior’s Theorem might be able to be seen to be
logically true.

Let us abbreviate the proposition ∀p(Qp→¬p) as ϑ . Then Prior’s Theorem takes
the form

Qϑ → (∃p(Qp ∧ p) ∧ ∃p(Qp ∧ ¬p)).

Consider now the following formal proofs, in free quantified propositional logic, rep-
resented with abbreviations on the left of the colon, and fully formal renderings on the
right. Note the existential presuppositions ∃!ϑ called for in applications of ∃-I and of
∀-E.

First we have the proof 	.

Qϑ, ϑ, ∃!ϑ
︸ ︷︷ ︸

	

∃p(Qp∧ p)∧∃p(Qp∧¬p)

: Qϑ ϑ

Qϑ∧ϑ ∃!ϑ
∃p(Qp∧ p)

Qϑ

Qϑ

ϑ , i.e.
∀p(Qp→¬p)∃!ϑ

Qϑ →¬ϑ

¬ϑ

Qϑ∧¬ϑ ∃!ϑ
∃p(Qp∧¬p)

∃p(Qp∧ p)∧∃p(Qp∧¬p)

11 We have supplied the parentheses around the consequent of this conditional.
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We now use π as a parameter for quantificational reasoning about propositions.
Next we have the proof �, employing π in this way. Note the application of Classical
Reductio at the final step of �, labeled (3).

¬ϑ

�

∃p(Qp∧ p)
:

¬ϑ , i.e.
¬∀p(Qp→¬p)

(3)
¬∃p(Qp∧ p)

(2)
Qπ

(1)
π

Qπ∧ π
(4)

∃!π
∃p(Qp∧ p)

⊥ (1)
¬π (2)

Qπ →¬π
(4)

∀p(Qp→¬p)

(CR) ⊥ (3)
∃p(Qp∧ p)

Finally we embed our proofs 	 and � to form the following proof � of Prior’s
Theorem. Note that � involves yet another application of a strictly classical rule of
inference, namely dilemma, at its penultimate step, labeled (6).

∃!ϑ
�

Qϑ →(∃p(Qp∧ p)∧∃p(Qp∧¬p))
:

(7)
Qϑ ,

(6)
ϑ , ∃!ϑ

︸ ︷︷ ︸

	

∃p(Qp∧ p)∧∃p(Qp∧¬p)

(6)
¬ϑ

�

∃p(Qp∧ p)

(7)
Qϑ

(6)
¬ϑ

Qϑ∧¬ϑ ∃!ϑ
∃p(Qp∧¬p)

∃p(Qp∧ p)∧∃p(Qp∧¬p)
(6) dilemma

∃p(Qp∧ p)∧∃p(Qp∧¬p)
(7)

Qϑ →(∃p(Qp∧ p)∧∃p(Qp∧¬p))

This final proof � of Prior’s Theorem is a proof in free classical quantified propo-
sitional logic, and it is in normal form. So it is definitely not a paradox.

The proof � does reveal, however, that Prioreans need to secure, for Prior’s Theo-
rem, the as-yet unsecured premise∃!ϑ . Oneway to fix this, and to restore theoremhood,
would be to supply extra axioms or rules—perhaps along the line of the ‘closure prin-
ciples’ suggested by [2], at pp. 22-3—that would ensure the theoremhood of the
existential in question.

Perhaps those who give instances of the modifier Q to underscore just how ‘coun-
terintuitive’ Prior’s Theorem is, are happy to grant the existence of the proposition
ϑ .
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The following question appears to be open:

Can Prior’s Theorem—even in the premise-laden form

∃!ϑ � Qϑ →(∃p(Qp∧ p)∧∃p(Qp∧¬p))

—be proved in free constructive quantified propositional logic?

3 On ∀p(Qp→¬p) [= #] along with ♦∀q(Qq↔(#↔q))

We are still working with the language for quantified propositional logic. We wish to
determine whether a paradox usually attributed to Prior is genuinely paradoxical. Our
decision will be affirmative. We shall show that the derivation of ⊥ (absurdity) that is
involved cannot be brought into normal form.

Let Q be any attitudinal modifier. Let ϑ once again be the sentence

∀p(Qp→¬p),

which expresses the thought that every Q’d proposition is false. We define K∗ to be
the sentence

♦∀q(Qq↔(ϑ ↔q)),

which expresses the thought that it is possible that the Q’d propositions be exactly
those that are materially equivalent to ϑ .

Closely related to K∗ is the sentence K→, which we define to be

♦∀q(Qq↔(q→ϑ)),

and which expresses the thought that it is possible that the Q’d propositions be exactly
those that materially imply ϑ .

The question to be investigated is the following:

Is K∗ straightforwardly inconsistent, or is K∗ paradoxical?

A normal-form proof of ⊥ (absurdity) from K∗ would take the form

♦∀q(Qq↔(ϑ ↔q))

(i)
∀q(Qq↔(ϑ ↔q))

	

⊥
(i)

⊥
So, in order to show that K∗ is genuinely inconsistent, all we would need to do is find
a (normal-form) disproof 	 of

∀q(Qq↔(ϑ ↔q)).
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In order to work strictly within Core Logic, we shall make so bold as to display
proofs using parallelized eliminations whose major premises stand proud with no
non-trivial proof-work above them. This always carries the risk of sideways spread.
Accordingly, we shall seek to minimize such spread by providing labels for stretches
of proof to which we need subsequently to refer.

It would be a mistake to think that one would need any strictly classical steps in
such a disproof 	. Core Logic C should suffice—if indeed there is such a disproof
to be had. I shall, however, cast doubt on this existence claim. There is good reason
to believe that there is no Core disproof 	, even though one might naively think that
there must be one, on the grounds (to be furnished below) that there are in fact two
Core proofs � and � of the following forms:

∀q(Qq↔(ϑ ↔q))

�

ϑ

ϑ,∀q(Qq↔(ϑ ↔q))
︸ ︷︷ ︸

�

⊥

The naive reasoner will think that one can join � and � together, ‘cutting’ on ϑ , so
as to produce the sought disproof 	.

Alas, this is not the case. The would-be normal-form reduct, which we denote as
[�,�],12 does not exist. Any attempted sequence of reductionswill fail to terminate—
it will loop. It follows, by the proof-theoretic criterion for paradoxicality,13 that K∗ is
paradoxical, and not a genuinely inconsistent sentence.

Now for the promised proofs. These are core proofs, given in the form in which
major premises of all eliminations stand proud, with no non-trivial proof-work above
them.14 Note that � embeds �, so we give � first. We use p as the parameter for the
∀-Introduction at the final step of �.

12 We use our notation

⎡

⎢

⎣



�

ϕ

,

ϕ, �
︸︷︷︸

�

ψ

⎤

⎥

⎦ (from [22]) as an alternative to the notation



�

(ϕ) ,�
︸ ︷︷ ︸

�

ψ

that indicates the result of grafting copies of the proof � onto undischarged assumption occurrences of ϕ

in the proof �. Whichever notation one uses, the aim is to continue with whatever reduction steps might be
needed in order to arrive at a proof in normal form. The latter proof must draw its assumptions from ∪�;
and its conclusion must be either ψ or ⊥.
13 See [18], amended in [19] to take care of non-terminating reduction sequences that ‘spiral’ instead of
looping. See also [23] and [25].
14 See [26] for details.

123



Let

Qϑ,∀q(Qq↔(Qϑ ↔q))
︸ ︷︷ ︸

�

⊥
be the following proof:

∀q(Qq↔(Qϑ ↔q))

Qϑ , i.e.
∀p(Qp→¬p)

(5)
Qϑ ↔(Qϑ ↔Qϑ)

(1)
Qϑ

(1)
Qϑ

(1)
Qϑ ↔Qϑ

(4)
Qϑ →¬Qϑ

(3)
Qϑ

(2)
¬Qϑ Qϑ

⊥
(2)

⊥
(3)

⊥
(4)

⊥
(5)

⊥

Then
∀q(Qq↔(Qϑ ↔q))

�

Qϑ

is the proof

∀q(Qq↔(Qϑ ↔q))

(8)
Qp↔(Qϑ ↔p)

(10)
Qp

(7)
Qϑ ↔p

(9)
p

(6)
Qϑ, ∀q(Qq↔(Qϑ ↔q))
︸ ︷︷ ︸

�

⊥
(6)

⊥
(7)

⊥
(8)

⊥ (9)
¬p

(10)
Qp→¬p

∀p(Qp→¬p), i.e.
Qϑ

The penultimate step in the proof � is an application of the (parallelized) rule of
∀-Elimination, with major premise ∀p(Qp→¬p), i.e. Qϑ . And that same sentence
stands as the conclusion of an application of the rule of ∀-Introduction, at the final
step in the proof �. So, in determining the reduct15

[�,�]

the need will arise, after a single distribution conversion, for a ∀-reduction. This will
involve substituting, for the parameter p in the immediate subproof for ∀-Introduction,
the term Qϑ . Upon applying obvious shrinking reductions to the result, we shall find
that there is a newly createdmaximal sentence of the form Qϑ →¬Qϑ . Upon applying
the→-reduction that is therefore called for, we shall find ourselves back at our starting
point [�,�].

So the reduction sequences loops. The would-be disproof of

∀q(Qq↔(Qϑ ↔q))

15 For the definition of this binary reduction function [ , ] for first-order logic, see [24], [21], and [26].
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cannot be brought into normal form. This shows that it—hence also K∗:

♦∀q(Qq↔(Qϑ ↔q))

—is, according to the proof-theoretic criterion of paradoxicality mentioned earlier, a
paradox, and is not genuinely inconsistent.

4 On ∃p(Qp ∧ ¬p) along with ♦∀q(Qq↔(�↔q))

Let η be the proposition ∃p(Qp ∧ ¬p). Then Prioreans can try to raise a problem for
the now familiar possibilitate

♦∀q(Qq↔(η↔q))

by reducing to absurdity the immediately embedded unmodalized proposition

K: ∀q(Qq↔(η↔q)).

The crucial thing to determine here is whether the Prioreans’ reductio ad absurdum
of K is a genuine disproof—that is, a disproof in normal form. If not, then the reduc-
tio on offer—whose reduction-sequence will not terminate—will be classifiable as a
paradox.

To ‘fast forward’ in this section,whatwe shall show is the following. There is indeed
a ‘reductio’ on offer (which I shall construct on the Priorean’s behalf). Moreover, it
appears to be constructive. It will consist of two core proofs	 and�, of the following
overall forms:

K
	

¬η

¬η,K
︸ ︷︷ ︸

�

⊥
One might think, then, that one could simply find the reduct

⎡

⎢

⎣

K
	

¬η

,

¬η,K
︸ ︷︷ ︸

�

⊥

⎤

⎥

⎦

and that it will be a disproof of K. But—and here is the now familiar kibosh—the
reduct does not exist. The would-be reductio of K cannot be brought into normal
form. As we shall see, the reduction sequence in the rule-governed search for the
reduct loops. Accordingly, the proof-theoretic criterion for paradoxicality pronounces
that K (hence also: the possibilitate ♦K) is paradoxical.

[11], at p. 46, offered a Fitch-style reductio ofK, which he noted was constructive.
In his footnote 13, Sbardolini wrote

[The claim in fn. 5 of [1]] that Prior’s paradox requires “classical propositional
logic" is thus strictly speaking incorrect.
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Sbardolini’s claim of constructivity is correct.16 But more detailed formalization of
his Fitchian deduction, filling in all the primitive steps involved in the ‘longer’ steps to
which he helped himself in his formal reasoning, reveals that, though constructive at
every local step, his overall reductio is not in normal form. And, as we shall presently
see, a strange and discombobulating result emerges when we try to normalize it. Let
us set about doing so.

First, here is the proof
K
	

¬η

:

(2)
η, i.e.,

∃p(Qp ∧ ¬p)

(1)
Qπ ∧ ¬π

¬π

(2)
η

(1)
Qπ ∧ ¬π

Qπ

K, i.e.,
∀q(Qq ↔ (η ↔ q))

Qπ ↔ (η ↔ π)

η ↔ π

π

⊥
(1)

⊥ (2)
¬η

Call the subproof that ends with ⊥ and is an immediate subproof for the step labeled
(1)

Qπ∧¬π, η,K
︸ ︷︷ ︸

�

⊥
.

Call the immediate subproof of	—the one that ends with the step of ∃-E labeled (1)—

η,K
︸︷︷︸

	0
⊥

.

Second, here is the proof

¬η,K
︸ ︷︷ ︸

�

⊥
:

¬η, i.e.,
¬∃p(Qp ∧ ¬p)

K, i.e.,
∀q(Qq ↔ (η ↔ q)))

Qη ↔ (η ↔ η)

(1)
η

(1)
η

(1)
η ↔ η

Qη

K
	

¬η

Qη ∧ ¬η

∃p(Qp ∧ ¬p)

⊥

16 The claim is reprised, but only fleetingly, in footnote 43 on p. 567 of [12].
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Call the right-hand immediate subproof above

K
�

Qη ∧ ¬η

∃p(Qp ∧ ¬p)

,

with a bit of exposed detail that will be helpful in due course.
In order to obtain the reduct [	,�] (if it exists) we need to perform a ¬-reduction.

That will result in our needing to obtain the reduct

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

K, i.e.,
∀q(Qq ↔ (η ↔ q)))

Qη ↔ (η ↔ η)

(1)
η

(1)
η

(1)
η ↔ η

Qη

K
	

¬η

Qη ∧ ¬η

∃p(Qp ∧ ¬p)

,

η,K
︸︷︷︸

	0
⊥

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

Remember that η is ∃p(Qp ∧ ¬p). So to obtain this reduct we need to perform
∃-reduction. This results in our then having to obtain the reduct

⎡

⎢

⎣

K
�

Qη ∧ ¬η

,

⎛

⎜

⎝

Qπ∧¬π, η,K
︸ ︷︷ ︸

�

⊥

⎞

⎟

⎠

π

η

⎤

⎥

⎦

Let us dwell for a moment on the second argument here, the one after the comma. The
substitution of the term η for the parameter π produces the construct

Qη ∧ ¬η

¬η

η

Qη ∧ ¬η

Qη

K, i.e.,
∀q(Qq ↔ (η ↔ q))

Qη ↔ (η ↔ η)

η ↔ η

η

⊥
whose immediate subproof on the right is of the conclusion η from a set of premises
that includes η itself. So it should be replaced by a single occurrence of η. We are now,
therefore, seeking to obtain the reduct

⎡

⎣

K
�

Qη ∧ ¬η

,

Qη ∧ ¬η

¬η η

⊥

⎤

⎦
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—that is, the reduct

⎡

⎢

⎢

⎢

⎢

⎢

⎣

K, i.e.,
∀q(Qq ↔ (η ↔ q)))

Qη ↔ (η ↔ η)

(1)
η

(1)
η

(1)
η ↔ η

Qη

K
	

¬η

Qη ∧ ¬η

,

Qη ∧ ¬η

¬η η

⊥

⎤

⎥

⎥

⎥

⎥

⎥

⎦

,

now calling for us to apply an ∧-reduction. Doing so produces

K
	

¬η η

⊥
—that is,

(2)
η, i.e.,

∃p(Qp ∧ ¬p)

(1)
Qπ ∧ ¬π

¬π

(2)
η

(1)
Qπ ∧ ¬π

Qπ

K, i.e.,
∀q(Qq ↔ (η ↔ q))

Qπ ↔ (η ↔ π)

η ↔ π

π

⊥
(1)

⊥ (2)
¬η η

⊥
And this boils down to

η, i.e.,
∃p(Qp ∧ ¬p)

(1)
Qπ ∧ ¬π

¬π

η

(1)
Qπ ∧ ¬π

Qπ

K, i.e.,
∀q(Qq ↔ (η ↔ q))

Qπ ↔ (η ↔ π)

η ↔ π

π

⊥
(1)

⊥
So our attempt to obtain the reduct

⎡

⎢

⎣

K
	

¬η

,

¬η,K
︸ ︷︷ ︸

�

⊥

⎤

⎥

⎦

has simply returned to us the immediate subproof

η,K
︸︷︷︸

	0
⊥

of 	!
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This is a new phenomenon in attempted normalization of disproofs associated with
paradoxes. We have obtained, in 	0, a disproof in normal form certainly—but the
sought reduct was supposed to have only K as a premise. Instead, 	0 disproves K
only modulo η that is, 	0 derives ⊥ only from the pair {K, η} of premises, not from
K on its own.

What this suggests is that perhaps there cannot be a cut-admissibility metatheorem
for quantified propositional logic.

It would not help for the sympathizer to propose trying, instead, to apply Dilemma
as a way to solve the problem. The proposal would be, in light of the two (core)
disproofs that we do have—namely,

η ,K
︸︷︷︸

	0
⊥

and

¬η ,K
︸ ︷︷ ︸

�

⊥

—to form the ‘strictly classical’ disproof

(i)

η , K
︸ ︷︷ ︸

	0
⊥

(i)

¬η , K
︸ ︷︷ ︸

�

⊥
(i)

⊥

of just the premise K.
But such supposedly classical disproofs can—or should—always admit of con-

structivization, in the obvious and familiar way. That would involve—in the case at
hand—applying a step of ¬-I at the end of 	0, and ‘grafting’ the resulting proof of
¬η from just the premise K onto the premise-occurrences of ¬η in the proof �. That
is basically what we set out to do, in beginning with the search for the reduct

⎡

⎢

⎣

K
	

¬η

,

¬η,K
︸ ︷︷ ︸

�

⊥

⎤

⎥

⎦.

That search, we now see, has been thwarted. The reduction sequence did not terminate
with the desired (dis)proof. It terminated, to be sure! It did not loop, or spiral. Instead,
it just came to a useless dead end, serving up an immediate subproof (namely, 	0) of
one of the two proofs (namely, 	) that we started with. And 	0 is not a proof of the
sought result. It has η as an undischarged assumption.
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I propose to impose a new and slightly more exigent demand on any normalization
process of the kinds undertaken above. The new demand is that whenever one thinks
one is able to use two normal proofs17

ϕ ,
︸ ︷︷ ︸

�

⊥
and

¬ϕ , �
︸ ︷︷ ︸

�

ψ

(thus far discovered; and where, note, � ends with ⊥) to form a ‘strictly classical’-
looking proof

(i)

ϕ , 
︸ ︷︷ ︸

�

⊥

(i)

¬ϕ , �
︸ ︷︷ ︸

�

ψ
(i)

ψ

,

one should desist. This is because it is always the case that one is (and should be) able
to ‘avoid the classicism’ and obtain the sought result constructively. In the idiom of
‘grafting’, the sought result would be [a reduct of]

(i)

ϕ , 
︸ ︷︷ ︸

�

⊥ ( j)
(¬ϕ) , �
︸ ︷︷ ︸

�

ψ

A question now arises for the paradox theorist who says that the criterion of para-
doxicality is that the reduction sequence does not terminate in a normal disproof. How
should we classify failures so to terminate? Does it count as a failure if the reduction
sequence terminates after finitely many steps, but in a disproof other than what we
were ‘supposed’ to get?

I am proposing that we prevent this question from arising in the first place. It arose
above because we arrived at the normal proof

η,K
︸︷︷︸

	0
⊥

rather than at a proof of⊥ from the single premiseK, which is what we were supposed
to get. If we heed the demand just formulated—the demand, that is, to avoid the ‘clas-

17 Note that we are generalizing here from the case at hand, in which  = � = {K} and ψ = ⊥.
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sicizing’ stratagem in dogged pursuit of a (now, ‘classical-looking’) proof of ⊥ from
the single premiseK—then we shall see that the reduction sequence of constructivized
proofs does indeed enter a loop.

The implicit supposition has always been that what we were supposed to get was
a disproof that would establish the inconsistency in question. The terminal disproof
should not help itself to extraneous premises in doing so. But that is what would be
happening here, if we were to fail to heed the demand just imposed.

But what if our earnest reducer simply wishes to halt the reduction process at
	0, and does not even venture to try the (misguided) classicizing stratagem? Perhaps
arriving at two normal disproofs of K, one modulo η and the other modulo ¬η, is,
after all, a proof-theoretic marker of some kind of paradoxicality on the part of K
itself. Perhaps we should allow for this sort of ‘final outcome’ in the case of the so-
called intensional paradoxes? Only further research into their variety and idiosyncratic
behaviors in attempted normalization will produce an answer.

5 On Russell’s Paradox of Propositions

The proof-theoretic criterion of paradoxicality deals well with yet another paradox
about propositions, due to Russell. Let §ϕ be the proposition that ϕ. In [10], at §500,
we read the following:

If m be a class of propositions, the proposition “every m is true” may or may
not be itself an m. But there is a one-one relation of this proposition to m: if n
be different from m, “every n is true” is not the same proposition as “every m is
true”.

We propose the following regimentation of this, as a rule of inference in a ‘logic of
propositions’:

§∀p(Mp→ p) = §∀p(Np→ p)
∀p(Mp↔Np)

Note that we are seeking to avoid mention of classes. Thus we write Mp (proposition
p has the property M) instead of p ∈ M (proposition p is in the class M). We employ
quantification over propositions, so that ‘every propositionwith propertyM is true’ can
be regimented as ‘∀p(Mp→ p)’. We also contrapose Russell’s conditional, since this
simplifies the drawing of inferences. Since Russell himself is talking of classes m and
n of propositions, their being ‘different’ from each other is just a matter of their being
distinct classes—equivalently, a matter of those classes’ respective defining properties
M and N not being coextensive. So, if the two propositions “every n is true” and “every
m is true” are identical, it follows that M and N are coextensive—which is what our
rule states.

Russell went on to define a particular class w (or corresponding property W ) of
propositions, as follows.

Consider now the whole class of propositions of the form “every m is true”, and
having the property of not being members of their respective m’s. Let this class
be w …

123



Since we are choosing to regiment with (higher-order) predicates M rather than terms
m for classes of propositions, we propose the following characterization of a pred-
icate W (corresponding to Russell’s class w) in terms of an introduction rule and a
corresponding elimination rule.

W -Intro
q = §∀p(�p→ p) ¬�q

Wq

W -Elim

Wq

(i)

q = §∀p(Fp→ p) ,
(i)

¬Fq
︸ ︷︷ ︸

...

θ
(i)

θ

where F is parametric

The W -reduction procedure would be as follows:



�

q = §∀p(�→ p)

�

�

¬�q

Wq

� ,
(i)

q = §∀p(Fp→ p) ,
(i)

¬Fq
︸ ︷︷ ︸

	

θ
(i)

θ

� �,



�

q = §∀p(�p→ p),

�

�

¬�q
︸ ︷︷ ︸

	F
�
θ

The concept W is now available to be a constituent of propositions.
Let π be the proposition §∀q(Wq→q). Note that so ‘defining’ π presupposes that

such a proposition exists. Note further that, if this proposition does exist, then it lies
within the scope of the quantifier ∀q in the very sentence that expresses it.

Russell’s reasoning to a contradiction can now be regimented as follows. We con-
struct two proofs, which we shall call � and �. Each of them has

π = §∀q(Wq→q)

as a premise. Modulo this premise, � disproves Wπ ; whereas � proves Wπ :

Wπ , π = §∀q(Wq→q)
︸ ︷︷ ︸

�

⊥

π = §∀q(Wq→q)

�

Wπ

(Details of � and � will follow.) It would therefore appear that the common premise
π = §∀q(Wq → q) of � and of � is inconsistent. This inconsistency would pre-
sumably be brought out by grafting copies of the proof � of Wπ onto the latter’s
occurrences in premise position within �:

π = §∀q(Wq→q)

�

(Wπ) , π = §∀q(Wq→q)
︸ ︷︷ ︸

�

⊥
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Let us call this the accumulation of� on�. It would be a disproof of π = §∀q(Wq→
q) if but only if it can be converted into normal form. It is not, as it stands, in normal
form, because (as we shall presently see) one of the graft-occurrences of Wπ is
maximal. It stands as the conclusion of an application ofW -I (the terminal step in �),
and as the major premise for an application of W -E within �.

A single step of existential elimination now reveals the inconsistency of the exis-
tential generalization ∃p(p = §∀q(Wq→q)). Note that the accumulation of � on �

occurs here as the immediate subproof for ∃-E, in which the term π plays the role of
the parameter for existential elimination:

∃p(p = §∀q(Wq→q))

(1)
π = §∀q(Wq→q)

�

(Wπ) ,
(1)

π = §∀q(Wq→q)
︸ ︷︷ ︸

�

⊥
(1)

⊥

Here now are the details of both � and �. Note that � embeds �.

Wπ , π = §∀q(Wq→q)
︸ ︷︷ ︸

�

⊥
:

Wπ

(1)
¬Fπ

(1)
π = §∀p(Fp→ p) π = §∀q(Wq→q)

§∀p(Fp→ p) = §∀q(Wq→q)

∀p(Fp↔Wp)
Fπ ↔Wπ Wπ

Fπ

⊥
(1) W -Elim

⊥

π = §∀q(Wq→q)

�

Wπ

:
π = §∀q(Wq→q)

(2)
Wπ , π = §∀q(Wq→q)
︸ ︷︷ ︸

�

⊥ (2)
¬Wπ

W -Intro
Wπ

The question we must now address is whether the accumulation of � on � can be
brought into normal form.Answer: it cannot be; the reduction sequence loops.We shall
see that the accumulation of� on� calls for aW -reduction. The resulting reduct then
calls for a shrinking reduction. After that shrinking, ¬Wπ has a maximal occurrence.
The needed ¬-reduction then takes us back to the accumulation of � on �.

In summary, we conclude that the intensional paradoxes, in their natural-deductive
forms presented here, provide confirming support for our criterion of paradoxicality.
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It remains to be investigated whether that support might be susceptible to the meth-
ods employed in [7], by means of which non-normalizable disproofs associated with
paradoxes are related somehow to disproofs of ‘equivalents’ in normal form.

6 A Residual Issue

There is an important issue that we must set aside here for want of space, but which
must be subjected tomuchmore detailed future investigation. It would be very helpful,
though, to explain its importance here, even if at the cost of a few pages more; and
to impart some idea of the current state of play concerning it, in extant investigations.
Doing so also provides an opportunity to clarify themuchwidermethodological setting
within which the current study of the intensional paradoxes occupies its own special
niche.

The preceding investigation of (non-)normalizability of disproofs associated with,
and (sowewouldmaintain) criterial for, paradoxicality leaves uswith one outstanding
agendum. As we have already intimated, it deserves much deeper analysis and/or
explication than we have space for here; and, very importantly, it holds out a prospect
of potential re-education of intuitions that would require deeper and more extensive
study to elucidate. It is the combined matter of admissible reduction procedures and
how they bear on the question of identity of proofs.

We shall refer to this matter as ‘the Ekmanesque predicament’ that potentially
arises for the proof-theoretic criterion of paradoxicality. Ekman called for an alto-
gether new kind of reduction to remove what he regarded as a ‘redundant’ sentence
occurrence within a proof. The sentence occurrence was not of the familiar ‘maximal’
kind (namely, the conclusion of a step of introduction for its dominant operator, and
also the major premise of a step of elimination of that operator). Instead, it could even
be atomic, and therefore have no dominant operator at all. The new kind of reduction
procedure that Ekman called for was the following:

B → A

A → B
�

A

B∗

A

� �

A
.

Here it is the lone asterisked occurrence of atom B that is diagnosed as ‘redundant’.
The use of this newly available reduction procedure for ‘normalizing’ proofs and
disproofs could result in non-terminating reduction sequences starting from intuitively
non-paradoxical but inconsistent sets of sentences. An example of such a set is {A →
¬A,¬A → A}.

The interested reader will find this predicament sourced in [4], and then raised and
addressed (from differing standpoints) in [34], [35], [13], [25], [31], [26] (§11.3.2),
[16], [17], and [32] (especially Chapter 6 for the topic of current concern, which is
co-authored with Peter Schroeder-Heister).

In [17], the authors write as follows:
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Although we are strongly sympathetic to the Prawitz-Tennant analysis, in [[16]]
…we suggested that certain results by Ekman… can be naturally seen as show-
ing that the proposed criterion for paradoxicality overgenerates. [That is, in
their words from the Abstract, ‘there are derivations which are intuitively non-
paradoxical but which fail to normalize’—Author.] To solve the overgeneration
problem, we argued that the notion of reduction underlying the criterion must
be appropriately qualified, by requiring the reductions to preserve the identity of
the proofs represented by derivations (or more philosophically, by requiring the
reductions to be meaning-theoretically justified). … [W]ithout a criterion for
the acceptability of reduction procedures, the Prawitz–Tennant analysis over-
generates even when reformulated using general elimination rules. (p. 620) [All
emphases added.]

At the very least this quotation reveals that there are several centrally important notions
to get clear about: intuitive paradoxicality and intuitive non-paradoxicality; admissible
reduction; identity of proofs; and meaning-theoretic justifiability. All of these need to
be explicated. They must then co-function appropriately in any overall solution to the
Ekmanesque predicament that can claim reflective equilibrium. It is quite beyond the
scope of this particular study to undertake this task. For this study is confined to adding
more positive applications (in the form of the hitherto proof-theoretically unexamined
intensional paradoxes) to the list of claimed successes for the proof-theoretic criterion
of paradoxicality.

That is not to claim, to be sure, that this study’s positive conclusions about the
intensional paradoxes being genuine paradoxesmight eventually have to be re-assessed
from the reflectively equilibrated standpoint to which we can aspire after reaching an
overall solution to the Ekmanesque predicament. Small and unanticipated technical
details could matter enormously.

The reader should bear in mind, though, that the project of formally explicating
intuitive or informal concepts in logic and philosophy can lead one to seriously re-
consider certain of one’s intuitive judgements that one might have held, unreflectively,
at the very outset. This has already happened with the present author’s own initial
intuitive judgments in his investigations of paradoxicality from the proof-theoretic
point of view. We have already said some words (see §1.4) about our evolving views
involving Russell’s Paradox in set theory. But this theme takes on larger significance
in the current context, for which a few more words would be appropriate. The present
author has arrived at a (for him, stable and convincing) meta-theoretical determination
that the logico-semantic paradoxes are a completely different kettle of fish from the
so-called ‘paradoxes’ of Russell, Burali-Forti, Mirimanoff, and others in set theory,
and the famous Berry Paradox about numerical definability. The proof-theoretic cri-
terion, applied from within a properly formulated free logic furnished with the right
kind of introduction and elimination rules for variable-binding term-forming opera-
tors, reveals that all these latter named ‘paradoxes’ are not paradoxes at all; they are
straightforward inconsistencies, established by normal-form disproofs of mistaken
existential assumptions. Overall, as already mentioned in §1.4, this calls for a major
revision of the Group A and Group B classification of the paradoxes in [9].
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One irony is that our formal approach via his criterion for paradoxicality was
inspired by the treatment in [8] of Russell’s Paradox in set theory (which was the only
paradox of any kind that Prawitz studied in his seminal monograph). The irony is that
the present author eventually arrived at the carefully considered view that Russell’s
Paradox in set theory is not a genuine paradox at all. This judgement, however, depends
on having sorted out other important details about the right choice of logic (especially
for the purpose of formalizing mathematical reasoning).

After our initial study in 1982 that proposed the proof-theoretic criterion of para-
doxicality, we undertook our more detailed investigations of Core Logic in pursuit
not only of constructivity, but of relevance as well; and realized, through our work on
both number-theoretic neo-logicism18 and set-theoretic neo-logicism19 that a major
misconception on Frege’s part was that a so-called ‘logically perfect’ language had to
be one in which every logico-grammatically singular term denoted.

The Fregean tradition had been blind to the need for a free logic, which is crucial
for any Begriffsschrift that is designed to be adequate for the formalization of all
the informally rigorous reasoning that is to be found in mathematics—including, for
example, the discovery that there can be no such thing as the set of all sets that are not
members of themselves. Frege’s blindness to free logic brought him the devastation of
Russell’s Paradox. And that same blindness came to haunt subsequent neo-Fregeans
more generally (such as [36]) in their own continuation of Frege’s ill-conceived unfree
logic and Frege’s ill-advised choice of ‘double-barreled’ abstraction principles—Basic
Law V in the case of Frege, and Hume’s Principle in the case of Wright.

We advocate instead the careful free-logical employment of natural-deduction rules
for the number- and set-abstraction operators. We call them single-barreled rules,
because they seek to furnish the precise normative constraints on our deployment of
(possibly non-denoting) abstractive terms in canonical identity statements of the form
t = @xϕ(x), where @ is a variable-binding term-forming operator (such as #xϕ(x)
for natural numbers; and {x |ϕ(x)} for sets).

So the irony we are seeking to explain is this: it was Prawitz’s discovery of non-
normalizability of his (highly suboptimal choice of) regimentation of the reasoning
behind Russell’s Paradox that inspired the criterion for paradoxicality in general,
and especially for logico-semantic paradoxicality; yet our own pursuit of a properly
designed proof-system for mathematical reasoning, using free core logic20 and single-
barreled natural-deduction rules for abstractive terms, led us to the discovery that
Russell’s so-called paradox in set theory is not a genuine paradox at all.

Might one venture the suggestion that something similar could well turn out to
be the case with (perhaps mistaken?) initial intuitions—pending proper explication—
about identity-conditions for proofs as abstract objects; admissible reduction rules;
and intuitive paradoxicality (and non-paradoxicality, for that matter). We still need to
attain greater clarity about the following issues:

1. Derivations in certain formal systems of logic vs. proofs conceived of as abstract
objects that are somehow represented by various formal derivations.

18 See [28] and papers cited therein.
19 See [29] and papers cited therein.
20 Core Logic for the constructive case; Classical Core Logic for the classical one.
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2. The contribution of (Classical) Core Logic C
+ in clarifying (1), given how in

C
+ there is a direct structural isomorphism between natural deductions and their

corresponding sequent proofs.
3. The potential contribution of the grandly named ‘Global Anti-Dilution Precondi-

tion on Rule Applications’ in [20] at pp. 351-2, governing the formation of sequent
proofs:

In any application of a sequent rule

S0, . . . , Sn
T

we must ensure that no sequent in the subproof of any premis[e] sequent Si is a
sub-sequent of the conclusion sequent T .

4. The bearing on our conception of the identity-conditions of proofs when proofs
are viewed as objects of search,21 in the course of which one seeks to preserve and
maximize any possible epistemic gains (such as learning, in searching for a proof
of a given sequent, that one has stumbled across a proof of a proper subsequent of
it).

5. Whether shrinking reductions can be justified on the basis of (4), without going so
far as to accept any of Ekman’s proposed new reduction procedures as justified.

6. Whether the Ekmanesque predicament might be found to afflict our foregoing
treatment of the intensional paradoxes, in some unavoidable way.

The present author hopes to return to the pages of this journal with whatever clarity
he might be so fortunate as to achieve in addressing these further issues.
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