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ABSTRACT

Informally rigorous mathematical reasoning is relevant. So too should be the
premises to the conclusions of formal proofs that regiment it. The rule Ex Falso
Quodlibet induces spectacular irrelevance. We therefore drop it. The resulting
systems of Core Logic C and Classical Core Logic CT can formalize all the infor-
mally rigorous reasoning in constructive and classical mathematics respectively.
We effect a revised match-up between deducibility in Classical Core Logic and
a new notion of relevant logical consequence. It matches better the deducibility
relation of Classical Core Logic than does the Tarskian notion of consequence.
It is implosive, not explosive.

1. INTRODUCTION

Philosophers and mathematicians inquire after the best choices of formal logical
systems within which to regiment the deductive reasoning that is found in
constructive and classical mathematics. Regimentation is the apotheosis of the
Aristotelian ideal of ‘perfecting’ deductive arguments. It was Euclid who began
what is known today as reasoning with ‘informal rigor’ in mathematics. Formal
logical systems enable us to perfect that reasoning. Which formal logical system
to use for this purpose is a methodological choice. Once the right choice is
made, formal logic itself can then provide many insights, and give rise to many
controversies — enabling both their formulation and their resolution — within
the philosophy of mathematics.

Since [Frege, 1879] (the famous Begriffsschrift) the main foundational task of
formal logic has been the fully detailed formalization of the informally rigorous
deductive reasoning that is now to be found in all branches of mathematics.
The great breakthrough of that year was a finally perfected understanding of
the logical grammar of multiple quantification. In Frege’s hands, fully formal
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logic was to make the correctness of proof an effectively decidable matter. This
was important epistemologically: only on the basis of a fully formalized proof
could one attain absolute certainty that if its premises were collectively true,
then so too would be its conclusion. Formal deduction, par ezcellence, preserves
truth. And on Frege’s own foundational approach, which was logicist, this would
mean that Arithmetik could attain the same epistemological status as Logik —
in Kantian terms, it would be analytic a priori.

For the less logicistically inspired methodologist in mathematics (such as,
say, Peano or Hilbert), fully formalized deductive reasoning would still serve
an importantly analogous purpose. It would enable the mathematical axiom-
atizer to provide a logical foundation for all the truths that were to be
asserted on the basis of proof from their chosen axioms. The axioms them-
selves needed only to be a priori; their status as (possibly) analytic was of
lesser importance. A fully formal logic would ensure that any mathemati-
cal theorem derivable from those axioms by fully formal proof would also be
a priori.

At that early juncture — the late 1800s — the philosophical and epistemolog-
ical importance of fully formal logic was firmly established. It matters not that
the two Kantian distinctions (analytic / synthetic, and a priori / a posteriori)
were later to be questioned or abandoned. The contribution to epistemology of
logical guarantee of truth transmission was intact. Nor does it matter that math-
ematical ontologists could disagree among themselves about whether abstract
objects such as numbers ‘really’ exist (nominalists vs. platonists); or that a
methodological divide would emerge between those who insisted on construc-
tivity in all our mathematical reasoning (for example, Brouwer), and those who
did not; or that differences of opinion would develop over whether there could
be completed infinite totalities (Cantor and Hilbert), or only potentially infinite
ones (Kronecker, Weyl, and other predicativists).

To repeat the main theme: the contribution to epistemology of logical guar-
antee of truth transmission remained intact. It would always serve both sides
of any of these debates in equal measure. Even when, as in the debate between
classicists and intuitionists, there was disagreement over which rules of inference
were permitted, both sides had a clear understanding of how their respec-
tive positions were to be represented, in terms of the formal logical resources
of which they could avail themselves. The only change to be made in the
main theme was that the contribution to epistemology of logical guarantee of
truth transmission — for the respectively appropriate conception of truth' —
remained intact.

From its very inception, then, the development and deployment of the fully
formal logic of modern times has been intertwined with various philosophies
of mathematics, providing always a stable backbone for honest mathemati-
cal conduct. And that backbone could be tended, and improved. One could

LFor the classicist: truth as determinate and bivalent; for the intuitionist or construc-
tivist: truth as warranted assertability.
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The Logic for Mathematics * 3

make alterations to accommodate the conviction that it would be an error to
take every grammatically well-formed singular term as denoting some abstract
object. Such alterations lead to a free logic, which was surprisingly late in its
development in the decades following the Begriffsschrift. The ensuing tweak-
ing of the rules governing the quantifiers V and 3, to accommodate ‘existential
presuppositions’ regarding singular terms (including parameters) were minor
indeed. But the result has been to make for a more perfect union of fully for-
mal logic with the informally rigorous reasoning in mathematics that it (the
logic) was designed to formalize.

It is remarkable how stable is the resulting logical behavior of the two quan-
tifiers. The disputes over correct choice of logical system are always focused on
the logical behavior of the connectives, not the quantifiers. With the quantifiers’
having been the last expressions in informally rigorous mathematical practice
(as initiated by Cauchy and Weierstra) to have been formalized properly (by
Frege, with his introduction of bound-variable notation), it is rather ironic that
the methodological hubbub since then has been confined to the ‘much simpler’
connectives. To be sure, the classical reasoner has ways of proving existential
statements that are not condoned by the constructivist. But this discrepancy
has its ultimate roots in the classicist’s use of strictly classical rules of negation.
Both the classicist and the constructivist frame and use the same introduction
and elimination rules for the existential quantifier.

The axioms and rules of formal logic themselves evolved and changed, both
in their number and in their forms. The first formal systems, of Frege and of
Hilbert, were not at all ‘natural’. In a nutshell: too many axioms (or axiom
schemata), and too few genuine rules. Formal systems of deduction gradually
improved, to the point where in [Gentzen, 1935], via [Prawitz, 1965], we finally
reached a formulation, in terms of rules of inference, that was both logically
clarifying and philosophically illuminating.

There remains, however, one striking feature of standard informally rigorous
deductive reasoning in mathematics that has for far too long escaped serious
consideration: the issue of relevance. Mathematicians never (or: never need
to) reason or infer irrelevantly. The ultimate premises for their proofs of any
mathematical theorem — their so-called mathematical axioms — are always
relevant to the theorems that are deduced from them. Their step-by-step deduc-
tive progress from those axioms to their theorems is manifestly relevant at
every stage. At no stage in mathematical reasoning is there ever utter thematic
discontinuity, or a rupturing lurch from one set of ideas to entirely discon-
nected ones. There is always a chain of expressive connections. Mathematical
reasoning is always tightly knitted so that it can unfold. We provide this pur-
posely metaphorical and intuitive imagery in order to underscore the need for
a formal explication of what, in informally rigorous mathematical practice,
inspires it.

The questions that animate this study are, first, this rhetorical one:

Why hasn’t formal logic finally caught up with this striking feature of
mathematical reasoning, and done it justice?
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Second, by way of analytic and formal focus:

How best does one update or reform or tweak the fully formal logic that
the tradition has bequeathed us, so as to capture fully, and endorse only,
such deductive reasoning as is genuinely relevant?

Note that this issue is orthogonal to the question whether one should choose
only a constructive formal logical system, or the non-constructive, classicized
one that is more widespread in current mathematical practice. Intuitionist and
constructive mathematicians reason every bit as relevantly as do their classical
confréres. It would be an added bonus, for any approach to relevance, if it could
be shown that the best way to ‘relevantize’ is exactly the same for a system of
constructive reasoning as it is for a system of non-constructive reasoning.

So: how does one capture such relevance? This is simultaneously a question
for mathematicians, logicians, and philosophers of mathematics. The optimal
answer to this question will make use of already well-established metalogical
concepts and seek only to ‘fine tune’ systemic details so as to achieve the goal
of relevance. What sort of systems might then be the result? We shall begin
our own answer here by displaying our hand(s) right away.

2. THE CORE SYSTEMS
Our discussion is motivated by the need to reconsider the relationship between
the semantic relation of logical consequence and the syntactic relation of
deducibility, in light of the delineation of the two deductive systems (at first
order) of Core Logic C, which is constructive, and its classicized extension
Classical Core Logic C*, which of course is non-constructive.? For the reader
unacquainted with the two Core systems, some easily accessible explanation
of them will be in order at the outset.® First, in §2.1, we state the rules
for the (unfree) systems, for easy reference, in familiar natural-deduction and
sequent-calculus formats. Next, in §2.2, we shall discuss the way in which the
two systems capture relevant deductions par excellence. This is foundationally
important, because, as stressed in our introductory remarks, all mathematical
reasoning is relevant, in the intuitive sense of ‘relevant’ that we claim can be
precisely explicated — see the Appendix — and captured in the Core systems.

2.1. Rules of Natural Deduction and Sequent Calculus

With our natural deduction rules, when we append a diamond (Q) to the dis-
charge stroke over an assumption, this means that the assumption need not
have been used as a premise in the subproof; but, if it has been used, it gets
discharged. When we append a boz ([J) to the discharge stroke over an assump-
tion, we are registering explicitly the requirement that the assumption must
have been used. (If boxes are placed between discharge strokes, the requirement
is that at least one of the indicated assumptions must have been used.)

2For a full account of these systems, see [Tennant, 2017] and earlier publications cited
therein.
3 At this point, the reader might benefit from a quick look ahead to Figure 1 in §2.4.
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We use vertical ellipses to gesture at possible proof-work implicitly there. We
shall supply explicit reminders of sets of undischarged side-assumptions (the As
and I's below). We shall be meticulous in annotating discharge rules with their
boxes or diamonds.* Note that dischargeable assumptions are separated by
commas from their accompanying sets of side-assumptions. This underscores
the fact that they (the dischargeable assumptions) are not to be taken as
members of those accompanying sets.

Note the following important features. All the elimination rules are in
parallelized form, and their major premises stand proud, with no non-trivial
proof-work above them. Hence, all proofs are in normal form. There is no rule
of Ex Falso Quodlibet (henceforth: EFQ).

With our rules for the Sequent Calculus, note that the only ‘structural’ rule
is that of Reflexivity; proofs, after all, need to get started. There is no rule
of THINNING; there is no rule of cuT. Nor do we have any need for Gentzen’s
structural rules of INTERCHANGE and CONTRACTION, since we are dealing with
(single conclusion) set sequents (even in the classical case), and not, as Gentzen
did, with (possibly multiple-conclusion) sequence sequents.

What follows is a list of Introduction (resp., Elimination) rules in Natural
Deduction, paired with their corresponding Right (resp., Left) rules in Sequent
Calculus.

O

(4)

e, A A
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0, A: L . A:p
(=D ; (-R) Ao (-E) : L o7
. A.—‘go - ® A,—\QDL
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A Ap e, A A, A0
——
. : Arip Asx:yp ) A, p:0
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N ey 8, A0
0 A N0
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: : AV ” ’ Ar, 0/ Ag,p:0/1
vI) © (VR) . VE : S (VL) = L
D © (VR) Az (VE) : : (VL) Ar,Ag,pViap:i6/L
Y v AoV VY 6/1 .9/J.(i>

0/L

The compressed notation ‘0/L’ here indicates that if either of the subordinate
conclusions for (VE) is L, then one may bring down as the main conclusion the
other subordinate conclusion. The sequent rule (VL) is to be understood in the
same way.

4This represents an increase in explicitness over the presentation of discharge rules by
Gentzen and Prawitz.
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are closed terms

The foregoing rules form the system C of Core Logic. The system CT of Clas-
sical Core Logic is obtained by adding the following Classical Rule of Dilemma
(Natural Deduction form on the left, Sequent Calculus form on the right).
(H)—0a 0O (4) (1)—0O O—q()
® % » —p

A7¢:¢ F7ﬁ<ﬂ:¢/l
AT ’

7717 v (%) 7¢ (4)

2.2. The Pursuit of Relevance
A minimal requirement of relevance for any system of formal proof is that there
be no proof of either the sequent A,—A : B (the ‘positive’ form of the First
Lewis Paradox) or the sequent A, —A : =B (the ‘negative’ form thereof).
Every Classical Core proof (hence every Core proof) is in ‘normal form’ of
an exigent kind. In sequent-calculus terms, as already mentioned, the so-called
structural rules of CUT and of THINNING:

A:p o,
cuT A, T ’l/) THINNING

A

are absent from the Core systems. The reason for this is that the presence of
either one of these two structural rules would engender Lewis’s First Paradox,
which is anathema to all relevance logicians. As far as deducibility () is con-
cerned, adopting Gentzen’s unrestricted cuT rule would oblige one to surrender
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Disjunctive Syllogism (A V B,—A : B), on pain of reinstating the First Lewis
Paradox:

A:AVB AVB,-A:B
A, —-A: B

cuT |

Disjunctive Syllogism is ubiquitous in mathematical reasoning; so unrestricted
cuT must go. And to avoid reinstating the First Lewis Paradox every relevance
logician (of whatever ‘school’) also has to surrender THINNING:

THINNING

2.3. Two Schools of Relevance Logic

Relevance logicians divide roughly into two schools. The most familiar one,
given its greater vintage, is the Anderson-Belnap school of relevance logic.”
This school concentrates on the task of ‘relevantizing’ the object-linguistic con-
ditional connective —. As far as the metalinguistic relation of deducibility ()
is concerned, they are committed to the unrestricted transitivity of deduction
afforded by the cuT rule. Because of that, as explained above, they have to
surrender Disjunctive Syllogism (A V B,—A : B), on pain of reinstating the
First Lewis Paradox.

By contrast with the Anderson-Belnap school’s approach to relevance, the
more recent approach of the Core logician is to concentrate on the task of
‘relevantizing’ the metalinguistic turnstile - of deducibility® (and, accordingly,
whatever ‘double’ turnstile |= of relevant logical consequence we might be able
to match to the relevantized single turnstile ). The Core logician does not need
to surrender Disjunctive Syllogism. And Lewis’s First Paradox remains blocked
because the structural rules of cuT and of THINNING, as already observed, are
not available in the Core systems.

The following table summarizes the fundamental contrast between the
Anderson—Belnap approach to relevance (A—B) and that of the Core logician
(Core). Strong claims in this diagram will receive their justification presently.

A-B Core
Focus of relevantizing — F
What kind of transitivity Unrestricted Slightly restricted,
of deduction results (cur) for epistemic gain
Disjunctive Syllogism? No Yes
Adequate for mathematics?  No Yes

5The locus classicus is [Anderson and Belnap, 1975].
8This approach originated in [Tennant, 1979].
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The last line in this diagram is significant and important. The Core systems
are designed to achieve the most fundamental of Frege’s purposes in devising
a formal logic: that of providing effectively checkable proofs that establish the
truth of mathematical theorems with the same degree of certainty that we
profess regarding the truth of the mathematical axioms that are employed as
premises in those proofs. And we aim to capture all of those mathematical
theorems. In these fundamental regards, none of the Anderson—Belnap sys-
tems of relevance logic passes epistemological muster. None of them enjoys
a metatheorem to the effect that every logical consequence of a satisfiable
set of mathematical axioms at first order can be established as a theorem
on the basis of those axioms by means of the first-order system of rele-
vance logic in question. In welcome contrast, the Core systems do enjoy such
metatheorems.

The parlous predicament of the A-B tradition of relevance logic for the
formalization of mathematical reasoning is starkly illustrated by Friedman and
Meyer [1992]. Friedman exhibited a theorem of classical Peano Arithmetic that
cannot be derived from the Peano Axioms using only the logical resources of
the Anderson—Belnap system R of relevance logic. This is dispositive. It shows
that R is not adequate for the formalization of all the reasoning in classical
mathematics — all of which is intuitively relevant.” And this is the case even
in the most modest and central branch of mathematics, namely the theory of
the natural numbers.

2.4. More on the Core Systems
As already noted, there is no Classical Core proof (hence no Core proof) of
either the sequent A, —A : B (the ‘positive’ form of the so-called First Lewis
Paradox) or the sequent A, —A : =B (the ‘negative’ form thereof).® Yet there

“In the words of an anonymous referee, ‘.. .it shows that resources beyond what are

provided by R are necessary if we wish to preserve all “classical” mathematical theorems.’
Classical Core Logic provides those resources.

8Nor is there any CT-proof of the ‘dual’ irrelevance A : B V —B. This follows from
the main theorem of [Tennant, 2015b] establishing that the relevance relation R(A, ¢)
holds for any first-order C*-proof of ¢ whose premises form the set A. If A is non-empty
and ¢ is not L, then R(A, ¢) entails that some atom in ¢ occurs (with the same par-
ity) in some member of A. In fact, if A is non-empty and ¢ is not L, then R(A,p)
entails an even stronger condition on ¢ and A; but the weaker one we have just stated
is all that one needs in order to conclude that the sequent A : B V =B is not provable
in CT.

9 The well-known system of Minimal Logic, due to Johansson [1936], admits the negative
form A,—A : —B of the First Lewis Paradox. So Johansson’s attempted Reduzierung
of Intuitionistic Logic to a relevant core was a failure. With the system of Core Logic,
Johansson’s aim is achieved.
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A
C >
| |
| |
< : : Constructivize
| |
Y Y
I — C
Relevantize

Fig.1. How C and C* stand to I and C. Left-to-right is classicizing;
top-to-bottom is de-relevantizing. System-inclusions are Left-to-Right and
Top-to-Bottom.

is a Core proof of Disjunctive Syllogism:
(1)—
A —A
AVB 1
B

—(1)
(1) VE*

The two Core systems stand to the well-known (and irrelevant) systems I of
Intuitionistic and C of Classical Logic in the way illustrated in Figure 1.

We stress: avoiding the First Lewis Paradox is a minimal requirement of rel-
evance. But proofs in CT (hence also proofs in C) display a much more exacting
form of relevance between their premise sets and their conclusions. (Classical)
Core Logic does not achieve its status as a relevance logic simply by being para-
consistent (i.e., simply by avoiding explosion). Rather, it achieves that status
by having rules of inference so carefully crafted that a remarkable ‘relation of
relevance’ R(A, ¢) holds between the premise set A and the conclusion ¢ of
any (classical) core proof. (See the Appendix for the technical details justifying
this claim.) There are no comparable relevance results for any of the systems
in the Anderson—Belnap school of relevance logics.

This relation R(A, ¢) of relevance goes well beyond anything previously con-
ceived by way of a ‘variable-sharing’ requirement. ‘Variable sharing’ is the term
of art employed for systems of propositional logic for which ‘variable’ means
‘propositional atom’. By contrast the ‘variable’ sharing described by the relation
R for Classical Core Logic concerns not just propositional atoms, but also extra-
logical predicates in the first-order case. See [Tennant, 2015b] for details. The
formal explication R(A, ¢) captures the informal notion that primitive linguis-
tic expression occurrences, with suitable parities of occurrences within premises
and conclusions of proofs, establish unfailingly that the former are relevant to
the latter. That paper ended with a thorough survey of extant variable-sharing
results for different propositional systems in the Anderson—Belnap tradition,
and showed how the various degrees of ‘relevance’ they achieved did not (and
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perhaps cannot) match that of the system CT of Classical Core Logic. The
challenge was issued at the end of that paper to followers of Anderson and
Belnap to furnish a system of relevance logic of their favored kind that would
match the deductive power and the proven achievement of relevance of the Core
systems. It has thus far gone unanswered.

How is this systemic feature of robust relevance achieved by the Core sys-
tems? Every Classical Core proof (hence every Core proof), as we have already
stressed, is in ‘normal form’ of an exigent kind. In Core natural deductions, as we
have already seen, all eliminations are in parallelized form, their major premises
standing proud with no non-trivial proof-work above them. In Core sequent-
calculus proofs, neither cuts nor thinnings are allowed. In addition to these
changes to the Gentzenian systems, certain rules governing the logical opera-
tors are importantly tweaked. As we saw in §2.1, the rule of —1 is tweaked with a
new part, and the rule of VE is tweaked by being more liberal with respect to the
two case-proof conclusions. The natural deduction rules of Gentzen via Prawitz
have attained canonical status, but that does not mean that their formulations
of the various introduction and elimination rules admit of no improvement. The
Core logician commends the two tweaks just mentioned, in order to free our
logic from the need to have EFQ.

The resulting systems of natural deduction and of sequent calculus then
enjoy a beautiful correspondence. Proofs come ‘in pairs’ — natural deductions
and sequent proofs — whose members are structurally isomorphic to each other.
So it does not really matter, with the Core systems, whether one deals with
natural deductions, or with sequent proofs. They are, as it were, one and the
same. This should have struck the reader’s eye as soon as it was cast on the
rules that were stated in §2.1.

2.5. A Very Important Property of the Core Systems
We are dealing with single-conclusion sequents. These are of the form A : {¢}
or A : () (the latter often written as A : L), where A is a finite set of sentences.
Ty @ @y is a subsequent of I'2 : @2 just in case either I'y C 'y or &1 C P2; and
it is a proper subsequent if either of those containments is proper.

In C there is of course a proof of the sequent A,—A : (), which is a proper
subsequent of A,—A : B. This is just a special case of a wholly general property
of the proof system C (and also, incidentally, of (C+). That property can be
explained as follows.

Suppose there is a proof (II, say) of the sequent A : ¢ and a proof (X, say)
of the sequent o, I' : 1. Suppose further that ‘unrestricted’ Cut appears to fail,
for want of a proof of the notional ‘target sequent’ A, T : 2. This failure of
‘unrestricted’ Cut does not matter. This is because a metatheorem guarantees
that there will be a proof — let us call it [II, X] — of some proper subsequent
of the target sequent A, I : 4. 10

0For this metatheorem see [Tennant, 2012] for the case of C, and [Tennant, 2015a] for
the case of C*.
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The Core logician can in effect comfort the traditional, ‘unrestricted’ Cutter
by providing a proof of an even better result. We can re-frame such ‘failures’
of Cut by saying that they are situations in which Cut ought to fail. They are
situations in which such failure is more than compensated for by concomitant
epistemic gain. It ought also to be emphasized that the aforementioned binary
function [ , | is computable. Another way of characterizing this happy property
of the Core systems is to say that Cut is in general admissible, with potential
epistemic gain — despite the fact that Gentzen’s ‘unrestricted’ structural rule
of cUT is not in the systems.!?

Now, in addition to the welcome provision of effectiveness of the method
of determination just mentioned (of proof [II, 3] from the proofs II and ¥), a
further welcome feature would be that the effective method would in general
furnish, if not a proof of the exact ‘target’ sequent A, 3 : v, then at least a proof
of some proper subsequent thereof. Why would this be welcome? — because it
is epistemically gainful to have a proven sequent that is as ‘perfectly valid’ as
possible. A valid sequent is perfectly valid just in case it has no valid proper
subsequents. Every sentence appearing in a perfectly valid sequent is necessary
for its validity.

It is in this sense that we can show that for the Core systems, despite their
not containing the rule of cuT, that rule is nevertheless admissible with potential
epistemic gain. That is to say, once again:

Given any proof IT of the sequent A : ¢, and any proof ¥ of the sequent
©,I" : 9, one can effectively determine a proof [II, X] of some subsequent
of AT : .

It is because the Core systems ‘admit’ of ‘Cut’” with epistemic gain that they are
completely adequate for the formalization of all of mathematics (constructive
mathematics in the case of C, classical mathematics in the case of CT). We
shall have more to say about this in due course.

The question now arises: how can we make ‘semantic sense’ of what these
Core systems of proof afford us? Put in terms that will be familiar to a con-
temporary logician: Is there some kind of ‘double turnstile’ (for a relation of
‘semantic’ consequence) that we can match up somehow to the rather different
and new ‘single turnstile’ of deducibility in a Core system?

3. THE MODERN NOTION OF LOGICAL CONSEQUENCE
First we shall clarify some notation. We have already been speaking of sen-
tences ¢, ¥ and sets A, T' of sentences; and now we shall be speaking of models
M. The first-order language that contains these sentences will be presupposed
in the background.

M 'We are adverting here to the notion of an admissible rule of inference from premise-
sequents to a conclusion-sequent that was introduced by Hiz [1959].
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When a model M makes a sentence ¢ true, we shall write'?
M IF .

When a model makes every sentence in A true, we shall say that it satisfies A,
and can write

MIFA.

We shall say that a set A of sentences has a model just in case there is one that
satisfies A. We shall often express the same claim by saying ‘A is satisfiable’.
The metalinguistic statement

Ale

means that every model satisfying A makes ¢ true. Formally, in the metalan-
guage:

VM(MIFA = M)

One can read A | ¢ also as ‘A logically implies ¢’, or as ‘p is a logical
consequence of A’. Note that this notion of logical consequence is a semantic
one, defined entirely with reference to models and makings-true.

We have used here the familiar and standard definition of logical conse-
quence that is usually attributed jointly to Bolzano and Tarski. It yields the
classical conception of consequence when the models are classical ones and the
embedded relation ‘I’ is taken to represent the classical relation of ‘making
true’. It yields the intuitionistic conception of consequence when the models
are intuitionistic ones (such as Kripke models) and the embedded relation ‘IF’

is taken to represent the intuitionistic relation of ‘forcing’.'®

LeMMA 1. If A is unsatisfiable, then for all ¢ A = .

Proof. Suppose that A is unsatisfiable. Let ¢ be an arbitrary sentence. Let ® be
any property. It is trivially true that every model satisfying A has property ®.
Formally, in the metalanguage:

VM(MIFA = &(M)).

12T his is a carefully considered departure from established conventions in logical termi-
nology. We aim to avoid using the symbol ‘=’ for this particular relation between models
and sentences. We thereby reserve that symbol for the relation of logical consequence
between sets of sentences and sentences, which will be defined next.

13 Gee [Fitting, 1969; Tennant, 1978].
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This is because, by supposition, there are no models satisfying A; whence there
are no counterexamples to the universal generalization just displayed. Now take
for ® the property of making ¢ true:

VM(MIFA = MIFg); ie, Ao

But ¢ was an arbitrary sentence. Thus for all ¢ A = . O

Lemma 1 says that the traditional semantic relation of logical consequence is
explosive. This holds regardless of whether the models M and the relation |-
that they bear to sentences are conceived of, and constituted, intuitionistically
or classically. Lemma 1 holds for intuitionistic logical consequence as well as for
classical logical consequence. And this is all for the simple reason that both the
intuitionist and the classicist agree that if there are no Fs, then all Fs are Gs.
The Core logician, too, agrees with this italicized claim. There is a Core proof
of the sequent =3Iz Fz : Va(Fx — Gx). This does not mean, however, that the
Core logician has to accept that the logical consequence relation is explosive.
The overall aim of this study is to show that the relation of logical consequence
should be taken, on the contrary, to be implosive — nothing but absurdity
follows from an unsatisfiable set. Details will emerge in due course.

Along with the standard formal semantics for first-order extensional lan-
guages with identity, the tradition provides us also with systems of finitary,
effectively checkable, proof. It is by means of such proofs that mathematical
reasoning can ideally be ‘regimented’, and the semantic validity of arguments
can come to be known with certainty. The best and most extensively investi-
gated of the various systems of formal proof that have been invented since Frege
wrote his Begriffsschrift derive from the work of Gentzen [1935] on systems of
natural deduction and on sequent calculi.

Gentzen’s systems of formal proof (in the present author’s assessment) enjoy
a significant advantage over the others. When we said above that mathematical
reasoning can ideally be ‘regimented’ as formal proofs, we left the ‘can ideally’
unexplicated. But when the formal proof systems are the Gentzenian ones, the
‘can ideally’ becomes a ‘can feasibly’ — not just a ‘can, in principle, even if it
takes until the heat death of the universe to accomplish’. Of course, it would
remain to explicate the notion of feasibility; and in this regard we would be
content to say that it means ‘within polynomial time’, as this is understood in
algorithmic complexity theory. This remains a mere conjecture at this stage,
but it is one for which the present author has a great deal of anecdotal evidence.
Suffice it to say that the feasible translatability, into formal proofs, of informally
rigorous proofs of mathematical theorems from axioms is a topic calling for a
great deal of further, more highly-focused, research. And even if the Gentzenian
systems end up not furnishing proofs within feasible computational reach (in
producing regimentations of informally rigorous proofs), we are confident that
the Gentzenian systems are significantly better, in this regard, than any of their
competitors.
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With reference to whichever formal system S of proof one chooses, the
metalinguistic statement

A'_SSO

will mean that there is an S-proof, of the conclusion ¢, whose premises (i.e.,
undischarged assumptions) are in A. Frequently the subscript is suppressed,
when S is known from the context. The symbol F, known as the ‘single
turnstile’, represents the relation of deducibility in the system in question.

There is debate between formal semanticists who prioritize models (in terms
of which the semantic relation = of logical consequence is defined), and proof-
theoretic semanticists who prioritize rules of inference (in terms of which the
syntactic notion - of deducibility is defined), over the question of how best to
characterize the meanings of logical operators. This debate, however, is orthog-
onal to the concerns of this study. We advance no particular preference for
either formal semantics or proof theory as the more foundational of the two
approaches. The study can be undertaken, and its main arguments and conclu-
sions assessed, from a neutral standpoint from which the main concern is only
that there be a (suitably re-conceived) match-up between the two approaches
(proof-theoretic and model-theoretic).

The main conclusions of this study may well be regarded by many a logician
trained in the current orthodox tradition as too radical. Still, we ask both
the philosophically and the technically minded reader to assess the pros and
cons carefully. We have thus far appealed to the very familiar notions of model
and of formal proof; we wish to emphasize, at this stage, that these will be
taken pretty much as ‘given’. At certain points we have, to be sure, caviled
at particular aspects of the formulation of rules of inference in the Gentzenian
tradition. But the net result has been one of merely ‘tweaking’ those rules.
The major thrust of natural deduction (or the closely related sequent calculus)
remains the same.

What we are taking issue with in this study, and focusing on henceforth, is
the construction-via-definition of the main resulting metalogical concepts (of
deducibility and of logical consequence) that the tradition at present affords
us. We believe those concepts can be radically amended, without injury or loss
to the epistemological role of deductive logic, so as to change logic from being
explosive to being implosive.

4. THE ABSURDITY CONSTANT AND THE RULE EFQ
Natural-deduction systems are standardly formalized with the use of the so-
called absurdity constant L (‘falsum’) as an official sentence of the formal
language. The present author has argued elsewhere that one can forgo hav-
ing 1 as a sentential constant, and regard it simply as a punctuation mark
within proofs, keeping it visible only for convenience, to mark the end of a
disproof.'* That ‘punctuation mark’ conception of the role of L could be

14 See [Tennant, 1999].
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rigorously respected and applied throughout this study; but it would be at some
cost in the immediate comprehensibility of the main heterodox proposal being
put forward for serious consideration. We have therefore decided, in this expo-
sition, to go along with the standard conception of L as a (non-embeddable)
sentential constant.

No model makes the absurdity constant L of the object language true.
This we shall express inferentially by means of the metalogical rule

15

MIE L
J_ )
where L is the absurdity constant in the metalanguage. (We shall have occasion
to apply the rule («) in due course.)

In what is curiously like a case of the tail wagging the dog, the explosiveness
of logical consequence (the semantic relation, be it classical or intuitionistic) is
frequently nowadays presented as justification for the presence in one’s system
of natural deduction of a very problematic rule of inference in which the absur-
dity symbol L features. This is the rule EFQ, also known as Fx Contradictione
Quodlibet or the Absurdity Rule:

L

o

The rule EFQ along with more prosaically expressed views that lend themselves
to formalized expression as EFQ have been part of the tradition in Classical
Logic going back at least as far as Peter Abelard (1079-1142).'¢ EFQ has
survived even into the modern-day Intuitionistic Logic that Brouwer began
employing in the early 1900s, and that was belatedly formalized by Heyting
[1930] as a strict subsystem of Classical Logic. So EFQ has come to enjoy a
firm and unchallenged place in the aforementioned systems of natural deduction
due to Gentzen and Prawitz. Note also that commitment to EFQ has been on
the syntactic side. It is a formal rule of inference. EFQ is at home in virtually
every orthodox system of formal proof.!” And these systems pre-dated the
development of modern model theory with its clarificatory definition of the
explosive semantic relation = of logical consequence.

15 Note that on the aforementioned ‘punctuation-mark’ conception of the role of L this
would have to be re-expressed as ‘No model makes any sentence and its negation true.’

161 am indebted here to Peter King. He points out that Abelard maintained that two
of the eight principles generally taken to cover propositional logic (Dialectica 288.23-34),
namely “not-(if not-p then p)” and “not-(if p then not-p)”, have to be rejected since if
accepted they would entail anything (Dialectica 290-292).

17 As already pointed out, the main system that dropped EFQ was the Minimal Logic
of Johansson [1936]. But unfortunately it still proves the negative form A, =A : =B of the
First Lewis Paradox; so Johansson’s attempt failed.
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5. SOUNDNESS AND COMPLETENESS
We ended §3 by speaking of a ‘match-up’ between the proof-theoretic and
model-theoretic approaches. The well-known soundness and completeness
metatheorems for systems of proof with respect to the language’s formal
semantics have standardly been taken to constitute such a match-up:

Soundness: Al = AEy;

Completeness: AEy = AFo.

Godel [1930] established the strong Completeness Theorem for Classical Logic;
and the method of proof was much improved by Henkin [1950]. So for nine
decades at least, there has been détente between proof theory and model theory.

When a significant reform is proposed and effected on one side of the accord,
however, pressure can arise for accommodations on the other side, to restore the
balance of power. Rapprochement is called for. A great deal of interest, there-
fore, attaches to the question of what metalogical form could be devised for a
‘suitably re-conceived’ match-up between a newly defined notion of deducibil-
ity, such as the one provided by the system CT of Classical Core Logic,18 and
a newly defined notion of ‘genuine’ logical consequence, when EFQ is to be
eschewed as a rule of inference. C* eschews EFQ, in pursuit of relevance. So
the extension of the deducibility relation of C* is properly included in that of
Classical Logic C. Let us now explore what adjustments have been, or could
be, made in the relationship between deducibility and consequence, in pursuit
of this relevantist reform of Classical Logic.

The soundness and completeness metatheorems for CT that we have at
present take the following forms. The reader is reminded that the semantic
relation |= of logical consequence is the conventional, classical, explosive one.

Soundness: Abct o = AEy;

Completeness: AEy = (Abcs por Abgr L),

In these statements, as in the original ones above, A is taken to be an arbitrary
set of sentences; thus A could be infinite. And ¢ is taken to be an arbitrary
sentence (¢ could be L). Remember that the definition of deducibility requires
only that the premises of the witnessing proof be members of A, not that they
exhaust A.

When L is the conclusion, both C and CT achieve completeness in the same
way (for arbitrary sets A of sentences).

Classical: A1 = Ablc L.

Classical Core: AE 1 = Alger L.

8See [Tennant, 2017].
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Likewise, for satisfiable sets A of sentences, they achieve completeness in the
same way.

Classical: AlFE¢ = Akrco.

Classical Core: AE¢ = Alct o

The crucial difference between the ‘completenesses’ of C and of CT is mani-
fested only in the case where A is an unsatisfiable set of sentences (i.e., A = 1)
and ¢ is not L. For in that case we have (expanding now to make the formerly
implicit universal quantifications explicit)

Classical: VAVe#1(AE L = Atcp); but

Classical Core: —VAVo#Ll(AEL = Alc+ ¢).

The system C ‘achieves’ completeness here in two simple steps. Under the
governing supposition A |= 1, we know we already have A F¢ L; so by one
step of EFQ it follows that A ¢ .

The corresponding metalinguistic conditional for CT fails to hold in full
generality simply because EFQ is not a rule of the system, and is not derivable
in it either. (Note that A, ~A = B; but, because C* ensures relevance between
the premises and the conclusion of any proof, we have A, - A l/c+ B.)

In order to achieve a different rapprochement between the deducibility rela-
tion of C* and some sort of matching semantic consequence relation, we can
consider paring down the conventional relation = in some appropriate way.

To this end we shall introduce a new semantic relation of ‘genuine’ logical
consequence, symbolized by ‘|E’. Thus we shall read ‘A’ as ‘A genuinely
logically implies ¢’. The genuineness of such logical implication consists not only
in its coinciding with ordinary logical consequence = (‘double-turnstile’) when
A is satisfiable, but also in L’s being the only possible consequence of A when
the latter is unsatisfiable. Logicians could perhaps refer to the symbol | as
‘double-double-turnstile’. When Al holds, we shall say that the argument (or
sequent) A : ¢ is genuinely valid. We shall re-visit the metalogical forms of the
soundness and completeness conditionals, but now with the deducibility relation
for CT being matched to the new relation | of genuine logical consequence.

We should say, by way of anticipatory reassurance at this juncture, that
we shall be leaving untouched the major feature of proofs, which is that they
should be effectively checkable for correctness (which of course entails that they
must be finite). Nowhere will it be proposed that rules may be applied only if
(for example) the premises for the rule application form a consistent set. This is
for the obvious reason that according to Church’s undecidability theorem there
is no effective method for checking whether such a condition would be met —
so any proof calling for consistency checks would not be effectively checkable
for correctness.
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The main concerns of the remainder of our study will be: Why, in addition
to the Introduction and Elimination rules for negation — in which, understand-
ably, L has to occur — do Intuitionistic and Classical Logic have EFQ? Can
it be justified? Could it be rejected? Could it be replaced by something else?
Should it be replaced by something else? And finally: Can we answer these
questions in a heterodox fashion while still deploying the fundamental notion
of a model from formal semantics, and the fundamental notion of a formal proof
from proof theory (even if the latter notion needs some modification should we
decide to reject EFQ altogether)?

6. CONDITIONS THAT A PROOF SYSTEM OUGHT TO SATISFY
Consider a logical system S§ — for definiteness, a system of natural deduction
— satisfying the following conditions:

1. S-proofs are finite. Hence, the set of premises of any S-proof is finite. The
relation ‘IT is an S-proof of the sentence ¢ whose premises form the set
A’ is effectively decidable.

2. If there is an S-proof of 1. whose premises form the set A, then A has no
model.

3. If A is a set of sentences that has no model, then there is an S-proof of
absurdity (L) from premises in A.

4. If A has a model and there is an S-proof of ¢ from premises in A, then
every model of A makes ¢ true.

5. If A has a model and every model of A makes ¢ true, then there is an
S-proof of ¢ from premises in A.

6. The premise set A and the conclusion ¢ of any S-proof are mutually
relevant.?

These six conditions suffice for the remainder of the discussion in this paper.

The present author would like to place on record, however, that there is
much to be said in favor of one more condition. In all likelihood it (like Con-
dition 6 above) has not been much considered by formal logicians, even when
they address the matter of a logic’s adequacy unto the deductive demands of
mathematics and science.

7. Given any proof P in a mathematics journal or textbook, written by an
expert mathematician, and acknowledged within the pertinent mathemat-
ical community as meeting their standards of informal rigor, the following
task will be feasible for proponents of system S: extract from the proof
P its conclusion ¢, along with the set A of its premises; then regiment P
as a fully formal S-proof of ¢ from A, in such a way as merely to supply

19 An explication of this relation of relevance is the aforementioned syntactic relation
R(A, @) defined in [Tennant, 2015b]. The reader will recall that Condition 6 has been
advanced here as a major aim for a formal system that could fully formalize deductive
reasoning in mathematics.
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missing detail, while preserving at the macro-level all the various ‘lines of
argument’ that an expert mathematician can discern within P.

This is a much more exigent requirement on the relationship between informally
rigorous proofs and their formal regimentations than any that was broached by
Hamami [2022]. The reader is now asked to set (7) aside.

Let us focus on Conditions (2)—(5).

2) can be thought of as “soundness of S with respect to unsatisfiable sets of
g

sentences”.

(3) can be thought of as “completeness of S with respect to unsatisfiable sets

of sentences”.

4) can be thought of as “soundness of & with respect to satisfiable sets of

g

sentences” .

(5) can be thought of as “completeness of S with respect to satisfiable sets of

sentences”.

Note that (3) entails that every logically false sentence ¢ can be refuted in S;
that is, there is an S-proof of L from (the singleton of) ¢.

OBSERVATION 1. The empty set (of sentences) is not merely satisfiable, that
is, satisfied in some model; it is satisfied in every model. This is because every
model makes every one of the empty set’s members true — because there are
none.

Note that (4) entails that any S-theorem (i.e., sentence with an S-proof whose
premise set is empty) is (by Observation 1) a logical truth, i.e., true in every
model.

Note that (5) entails that every logically true sentence ¢ can be proved outright
in S; that is, ¢ is the conclusion of an S-proof whose premise set is empty.

LeMMA 2. (1), (2), (3), (4), and (5) do not collectively entail that if there is an
S-proof of L whose premises form the set A, then there is an S-proof of any
sentence whatsoever from A.

Proof. The system C* of Classical Core Logic meets requirements (1), (2), (3),
(4), and (5). There is a C*-proof of L from the set {4, A};?° but there is no
C*-proof of B from {A, —~A}. O

Note that Lemma 2 would be trivially true if one were to add condition (6) to
the list of five conditions that it mentions.

2%Tndeed, this is a proof in Core Logic C.
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Lemma 2 tells us that (1), (2), (3), (4), and (5) do not force the logic to
be explosive. We are morally certain that a strengthening of Lemma 2 can be
achieved by incorporating (7); but at this stage this remains a conjecture.

It is worth stressing that we are engaging in an a prioristic methodological
investigation, insofar as it involves merely reflecting on, and analyzing, the clear
and distinct deductive needs of both mathematicians and natural scientists. The
aim is to formulate (as we have done above) conditions of adequacy on any
logical system that is to satisfy those needs. Once we have our logic, we can
proceed to develop our theories. This is the proper order of foundational study.
It is the opposite of the recently touted ‘abductive methodology’ according
to which we are presumed to have prior access to theories in general (both
mathematical and scientific) and then somehow — by means of criteria both
vague and implausible — work backwards from those theories (closed, one might
ask, under what relation of logical consequence or deducibility, exactly?) to
some choice of logical system the preference for which is based on intuitive
and unexplicated notions of simplicity, elegance, fit with evidence, and the like.
For an account of such an abductive (and a posterioristic) methodology, see
[Williamson, 2017].

7. THE QUESTION
The question now posed for consideration is this:

What extra condition, if any, not already entailed by (1), (2), (3), (4),
and (5) can possibly be required of any logical system of proof that is to
be adequate for the formal regimentation of the deductive reasoning that
18 involved in mathematics and science?

Here, being adequate is to be understood as being able to furnish whatever
proofs and disproofs might be required as fully formal regimentations of the
deductive reasoning that is involved in these areas of intellectual endeavor.
We include, of course, proving theorems in mathematics from decidable sets of
mathematical axioms; discovering inconsistencies in proposed axiom sets; mak-
ing scientific predictions from scientific hypotheses combined with statements of
initial and boundary conditions for experiments; and discovering any conflicts
that could arise between such predictions and the statements of observations
and measurements that might result from experimental testing.

Having raised the foregoing question, we shall pause to anticipate and dispose
of one possible reply to it. It involves the controversial rule EFQ. The reply in
question would be

Surely you would wish your logic to be able to derive from a contradictory
set of premises any sentence you like? That is, surely you would wish to
have EFQ in your proof system? This important virtue of a logical system
of proof is, by your own Lemma 2, not entailed by your conditions (1),

(2), (3), (4), and ().
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The answer to this question is an emphatic No. Note that this question cannot
even be raised by one who accepts the relevance condition (6) on S-proofs. For
EFQ directly violates relevance. The extra feature that the questioner thinks
is a virtue is actually a vice.

8. EFQ AND EXPLOSION
The rule EFQ, despite being so widely adopted as a ‘primitive’ rule of conven-
tional natural deduction, is not readily acceptable. It can be irksome to experts
in logic, a thorn in the logic teacher’s side, and a stumbling block for students
of logic. Perhaps Abelard was right (and, in retrospect, deservedly so?) when he
wrote to Heloise ‘... odiosum me mundo reddidit logica’ (‘... logic has made
me hated in the world’).?!

The simple Gentzen—Prawitz proof

A -A

L EFQ
B

—Elim

shows that EFQ leads to the notorious First Lewis Paradox

A -A
g

All relevance logicians, and a great majority of beginners in logic, reject this
result (as a would-be valid inference). This is because there need not be any
meaning connection at all between A and B ; and they have the intuition, quite
rightly, that there should be such a connection between the premises and the
conclusion of any genuinely valid argument. More generally, whenever one has
a disproof (that is, a collective reductio ad absurdum) IT of a set A of sentences:

A
II
4

)

the rule EFQ permits one to conclude further that A logically implies any
sentence 1 whatsoever:

regardless of whether ¢ enjoys any connection of meaning with the premises
in A. This is why EFQ itself is sometimes called ‘Explosion’. It blows up any

21From a letter to Heloise, in V. Cousin, ed., Opera Petri Abaelardi. 2 vol. Paris: A
Durand, 1849, 1859, 1.680—81; also in PL178 c375-378; trans. Betty Radice, The Letters
of Abelard and Heloise. Harmondsworth: Penguin, 1974, pp. 270-271.
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inconsistent set of sentences to be the whole language. The sad irony is that
the belated adoption of the simple-minded, and therefore explosive, semantic
relation = of logical consequence is now taken to provide some kind of retro-
spective justification for having EFQ as a rule of inference, in the minds of
many orthodox-logic lobbyists.

9. ALLEGED LOSSES AT THE META-LEVEL UPON GIVING UP EFQ
As far as provabilities within the system are concerned (at the object level),
we have already seen that EF(Q is dispensable. But the supporter of EF(Q is
likely to complain that in giving up EFQ other kinds of losses will be incurred,
these ones at the meta-level. The present author has countered elsewhere the
complaint that the so-called Deduction Theorem

AFp—=yY & ApkyY
fails in the left-to-right direction. We shall not reprise the considerations here.?>
We shall turn instead to the rather more subtle question of valid arguments
supposedly having to be ‘closed under substitutions’.

9.1. Substitution Instances of Proofs
One of the ‘sacrosanct’ features of formal logic is widely supposed to be that
proofs should be closed under uniform substitutions for their primitive extra-
logical expressions. Consequently, and more importantly, the ‘substitutionist
dogma’ maintains

for any such substitution o applied to a proof II of ¢ from A (which
proof establishes the argument A : ¢ as valid) the resulting proof oIl
must establish, as valid also, the resulting argument ¢A : o¢.?3

228ee Tennant [2018].

230ne striking piece of evidence that the substitutionist dogma has a strong hold
is to be found in [Williamson, 2017]. Williamson abandons the a prioricity of founda-
tional considerations that should determine one’s choice of logic. He opts instead for an
‘abductive methodology’ to determine that choice. Yet he still clings to the substitution-
ist dogma. He states a supposedly stripped-down set of requirements on the relations of
logical consequence that can so much as enter into consideration. At p. 327 he writes

Logical consequence in the sense of |= obeys the standard structural rules for a
consequence relation. That is, the following hold for all sentences a and g of L and
all sets I' and A of sentences of L:

Assumption {a} E a
Monotonicity (Thinning) If I' =« then TUA | o
Cut If' =aand AU{a} =B then TUA |= 8
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To be sure, even on an exigent reading of ‘validity’, the dogma just stated is
true for all proofs of the extremal forms

0 A
11 and 11
© 1

— that is, proofs of logical truths and disproofs of unsatisfiable sets of premises.
The dogma is not true, however, of many a case ‘in between’ those extremal
cases. Along the spectrum of intermediate cases are ones whose premise sets
are satisfiable and whose conclusions are falsifiable.

To an examination of such cases we now turn.

9.1.1.  Substitutions can turn satisfiable premise sets into unsatisfiable ones
The opponent of EFQ will concede, for example — or adduce by way of chal-
lenging the substitutionist dogma — that one can no longer simply assume
that if one has a proof IT of a genuinely valid sequent A : ¢ (with A satis-
fiable and ¢ distinct from L), then any non-trivial substitution instance oIl
of the proof IT will automatically establish the genuine validity of the sequent
oA : op. The opponent of EFQ will point out that non-trivial substitutions,
by increasing logical complexity, are liable on occasion to turn a (non-empty)
satisfiable set A of premises into an unsatisfiable one. In such a case (where oA
is unsatisfiable), according to one kind of opponent of EFQ (namely, the one
who recommends adopting a more exigent relation | of ‘genuine’ consequence
in place of the conventional relation =), the absurdity constant L will be the
sole genuine consequence of oA. One would simply be in error to think that
one had (after such substitution) a proof to the effect that oy genuinely follows
from o A.

Let us illustrate this general point with a very simple example to show that
the taking of substitution instances can wreak havoc with the results of one’s
deductive labors. One can produce, say, the perfectly innocent little proof

A B
ANB

(using propositional atoms A and B) and judge it to establish the validity of
the argument (or sequent)

A,B: ANB.

Logical consequence also obeys a rule of closure under uniform substitution.
[Emphasis added.]

Note that Williamson’s talk here is all about the semantic notion of logical consequence,
and not about the syntactic notion of deducibility.
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Now, without looking too closely, imagine one decides to create from this little
proof the substitution instance

A A
AN A @

Although with such a degenerate example it is highly unlikely that one would
fail to see the inconsistency that is now staring one in the face, one might not
register this, and one might take oneself to have a proof establishing the validity,
now, of the sequent

A=A AN-A.

But (according to the extreme opponent of EFQ) nothing could be more wrong.
For the new set of used premises (after the substitution) is not satisfiable. So,
according to this opponent, it does not genuinely logically imply any sentence
at all — not even the apparently correctly drawn conclusion A A —A.

This little example is a highly degenerate one, to be sure. And it takes
some epistemic imagination (or humility) to realize that one might not register
the above inconsistency that would be staring one in the face. But this worry
about the cogency of the line of thought being pursued is easily dispelled by
considering the possibility of more recondite cases, where the post-substitution
inconsistency of the ‘new’ set of premises is much more difficult to detect. We
are always giving hostage to fortune in (dogmatically?) assuming that, upon
taking a substitution instance oIl of a proof II, that new proof oIl will estab-
lish/prove/warrant /ensure/make certain ... the genuine logical validity of the
argument it purports to establish — namely, the argument whose premises are
the substitution instances of the premises of the proof IT, and whose conclusion
is the substitution instance of the conclusion of the same.

9.1.2.  Substitutions can turn perfectly valid sequents into ones that are not
perfectly valid
Recall that a valid sequent is called perfectly valid just in case every one of
its proper subsequents is invalid. In the case of a perfectly valid sequent, every
sentence involved (either as a premise or as the conclusion) is needed for validity.
We shall see in what follows that substitutions can destroy perfect validity.
Consider the proof

(1)
A A—B
IT: B B—C
C
A—C

of the perfectly valid sequent
A—B, B—»C : A—C.
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The proof IT has the following two technically legitimate substitution instances.
But they are pointless or unenlightening. The first one results from substituting
PA=P for A; the second one results from substituting Q — @ for C:

(H—

(1)

PA—-P (PA-P)—B A A—B
B BoC B B-(Q-Q) -
#(1) Q—Q 1)
(PA-P)=C A= (Q—Q)

These substitutions turn the erstwhile conclusion A — C' of IT into logical truths
— (PA=P)—=C and A— (Q — Q) respectively. Accordingly, each of these can
be proved from the empty set of premises:

@— —(@2

-P P —(1)
(1) T
%(2) Q—Q i
—) A= (Q—
(PA-P)—=C @=Q)

The original proof II before the substitutions were made no longer serves any
purpose with regard to the argument (i.e., the sequent to be proved) that results
from either of the substitutions in question.

Let us introduce a word here to describe substitutions like these, and use the
word even before it is fully explicated. We shall call these two substitutions, in
this particular proof II, ‘silly’.

Next we shall give an example of an even sillier substitution in IT — that of
replacing all occurrences of B in II with an occurrence of A:

(1H—

A A=A
A A—=C .
C
A—=C

The result of this substitution is a ‘proof’ of A— C' from a set of premises that
includes A— C. The other ‘premise’ is the logical truth A— A, which is of no
use at all as a premise in any passage of deductive reasoning. It is well known
that logically true premises can always be suppressed.

A similar extreme silliness results if one replaces C' in II with A:

(1)—
A A—B
B B—A -
A )
A— A

20z el L€ uo 1senb Aq /$2529//1009eiUARWIYA/EE01 01/10p/a[oNJe-00uBAPE/ARWIIYd/WOD dNO DlWspeoe)/:SA]Y Wolj paPEojuMOQ



26 ° Tennant

The conclusion is now a logical truth, and the two contingent premises A — B
and B — A are not needed to establish it.

Silly substitutions like these are the extremal companions of our earlier
substitution of = A for B in the one-step proof

A B
ANB

which produced the proof

A A
AN-A

whose premise set has no model — as is shown by the one-step proof

A A
I

We see, then, that substitutions run the risk of overdoing things. They can turn
satisfiable sets of premises into unsatisfiable ones; and they can turn falsifiable
conclusions into unfalsifiable ones. And even when neither of these extremes
(unsatisfiable premises, or unfalsifiable conclusion) is its outcome, a substitution
can turn [a proof of] a perfectly valid sequent (i.e., a valid sequent that has no
valid proper subsequents) into [a proof of] a valid sequent that is not perfectly
valid, and whose premise set is satisfiable and whose conclusion is falsifiable.
An example demonstrating this possibility is [any proof of] the perfectly valid
sequent

A—B, A—-C: A—(BAC).
Upon substituting A for B it becomes
A=A, A—C: A= (ANC),
which is valid but not perfectly valid, since it has the valid proper subsequent

A—C: A= (ANC).

9.1.3. More carefully considered reasons why one would wish certain proofs
to be closed under substitutions
Why should one wish to have easy (but frequently misguided) access to sub-
stitution instances of proofs that one has discovered? What epistemic concern
drives this felt need for ‘preservation of persuasive force’ of a proof upon taking
a non-trivial substitution instance of it?

More generally: what reason do we ever have, to find pairs of proofs one
of which is a non-trivial substitution instance of the other and each of whose
proven arguments is genuinely valid? One can give an obvious answer to this
question without succumbing to the temptation to regard every substitution
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instance of a proof of a genuinely valid argument as establishing a genuinely
valid argument. But to obtain the answer in question, one has to reverse the
direction of the all-important operation: we have to inquire, not after non-
trivial substitutions (which refine displayed logical structure) but after non-
trivial coarsenings.

Quine put forward a famous maxim, now known as the Maxim of Shal-
low Analysis: do not expose more logical structure in a valid argument than
what is needed in order to prove it. In other words, try to get by with the
coarsest possible exposure of logical structure. This is a maxim worth following
because, in following it, one never incurs any increased risk of inconsistency
among one’s premises. For, consider: one is usually working within a math-
ematical theory whose set of axioms, one is morally certain, has a model.
And one may be attempting to derive a theorem ¢ (in the language of the
theory) from some of the axioms along with certain lemmas already proven
from them. Call the entertained premise set A. What a discerning, logically
sophisticated mathematician would do is seize on any opportunity that might
present itself to show that some coarsening of premises in A will allow one to
prove the accompanying coarsening of the would-be conclusion . Call the
coarsened sequent that this mathematician seeks to prove, A*™ : ¢*. Note
that A™ is at lower risk — or at least no greater risk — of being unsatis-
fiable than A is. So, when the mathematician succeeds in applying Quine’s
maxim by discovering a proof II* of the argument A* : ¢*, s/he knows
that it most certainly establishes a genuine validity if its desired substitution
instance does.

This is the only real methodological source of a logician’s interest in being
able to take substitution instances of found proofs, and regard them as estab-
lishing genuinely valid arguments. The value of such pursuits at a ‘higher level’
(actually, a coarsened level) of revelation of logical structure is that the result-
ing proofs (the ‘starred’ ones) could well turn out to be more widely applicable
within mathematics at large, even in theories with different primitive non-
logical expressions than the theory in which the mathematician happens to be
working.

10. HOW CAN EXTREME OPPOSITION TO EFQ FIND FORMAL
EXPRESSION?
It would not be unfair to say that the proponent of EFQ (the Explosionist)
thinks that any logical encounter with L puts one on a slippery logical slope
to everywhere. We venture to offer here, by contrast, on behalf of the extreme
opponent of EFQ, a radical re-framing of the significance that L could (and
perhaps should) hold for us deducers. Here is how the re-framing goes.

What L tells us is that we should avoid the slippery logical slope altogether.
We need to turn around (metaphorically speaking) to re-examine the assump-
tions that have led us there (i.e., to L). Nothing follows from absurdity (except
absurdity itself); and therefore nothing other than absurdity follows from any
set of assumptions that has led us to absurdity. L stops one dead in one’s logical
tracks, allowing one to go nowhere (else).
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We propose the following metalogical principle:

If one can prove L by means of a proof whose premises form the set A,
then only L follows (as a genuine logical consequence) from A.

In other words, the proposal is that we should adopt Implosion in place of
Explosion.?? Tt is high time to examine the consequences of doing so. It turns
out that they are all epistemically benign.

This is rather extraordinary and unexpected. While the advocate of Explo-
sion regards an inconsistent set as a logical big bang, the advocate of Implosion
regards it as a logical black hole. There appears to be no prospect here of being
able to take an Aristotelian ‘middle position’ on the matter of the logical power
of an incoherent set of sentences.

What would it take to refute the contention that there really are only these
two extreme polar opposites? One might think it possible to allow inconsistent
premise sets to imply some sentences but not all of them. For such a position the
devil would lie in the details. The basic problem, for the relevantist, would be
difficult to banish — the problem of avoiding licensing a sentence (other than 1)
as logically implied by a premise set simply because of a deeply buried inconsis-
tency. In cases where the implication can be secured without any reliance on a

24To the best of the author’s knowledge, there are only two contemporary sources for
a suggestion along these lines. Neither of them uses the term ‘implosion’.

The first contemporary source is [Wagner, 1991]. Wagner’s proposal, however, was con-
fined to the limited logical environment of knowledge-base management, and in particular
to what he termed ‘conservative’ or ‘skeptical’ systems. He disavowed any intention of
insisting that the new principle ‘ex contradictione nihil sequitur’ be applied to logic in its
usual and most important application, namely in formalizing mathematical reasoning. He
wrote (p. 538)

. the classical principle ex contradictione sequitur quodlibet has been considered
fundamental by most logicians and philosophers. Clearly, it makes sense for mathe-
matics [fn] where it amounts to the postulate that contradictions in a theory must
not be tolerated and have to be removed ...

The Implosionist proposal being investigated in this study, however, is that the principle
‘ex contradictione nihil [sive falsum] sequitur’ should be applied also in logic’s primary
domain of application: mathematics.

The second contemporary source is [Priest, 1999]. Priest characterized the ‘null’ account
of negation (p. 141) as one according to which ‘a contradiction has no content. Accordingly,
a A -« entails nothing.” He went on to say (p. 142) that ‘the most simple-minded way’ ‘to
make sense of the idea that a contradiction has no content’ is to say that

Y E a iff ¥ is consistent, and X F a.

His focus on consistency and deducibility () in the definiens show that his relation |=
of entailment is thoroughly syntactic. On our implosionist approach, however, we seek
to characterize a new semantic notion of consequence, to match to an independently
furnished account of deducibility (+).
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deeply buried inconsistency, it should be possible to extract from the premise
set some members of it that are jointly consistent and that collectively imply
the desired sentential conclusion. But in such a situation the Core logician can
furnish a proof to that effect; so there is no loss involved in simply eschewing the
inconsistent premise set as the ‘global’ justification for the conclusion in ques-
tion. What the Implosionist can assert at this stage is that there is no extant
treatment of logical implication of certain sentences by inconsistent premise sets
that does not result in explosion. Moreover, the Implosionist offers a coherent,
well-defined notion of genuine logical consequence according to which L is the
sole logical consequence of any unsatisfiable set of premises. It is clean, simple,
and elegant. The Implosionist commends it for careful consideration, on behalf
of the Core logician. It may well be all or nothing.

We shall therefore in due course leave behind the orthodoxy of ‘all’, and
undertake to examine with an open mind the heterodox ‘nothing’.

11. TOWARDS A SEMANTICAL CONCEPT OF RELEVANT
CONSEQUENCE
Here is how the inferentialist (at the meta-level) can capture the notion = of
standard logical consequence. The inferentialist supplies for it an introduction
rule and a harmoniously balancing elimination rule. In the rule I, ‘M’ is a
sortal parameter for models, occurring only where indicated; in the rule EE,
‘M’ is a sortal term for a model. 2 is a set of sentences; 6 is a sentence.

()

Ml QL6 MIFQ
=1 : FE MIF 0

Mo,

QL0

Given these rules, we can prove the following.

LEMMA 3 (Transitivity of Tarskian consequence; or, ‘cuUT for |=7).

Ay oT'EY
AT EY
EE—
MIFA,T "
MIFA,T 4
AEe MIFA - MEAT
Proof. M- MIFT O
o I'E=v M, T
M IF

S
AT EY
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The proof just given (in the metalanguage) is a Core proof. It uses the defini-
tional rules of introduction and elimination for the Tarskian notion of logical
consequence; but note that it does not use any rule of CUT in the metalanguage.
It is worth noting that the transitivity of classical logical consequence (in the
form of unrestricted cuT for |=) is constructively (and relevantly) derivable
using the inference rules =I and =E above.

11.1. A New Relation of Genuine Validity of Argument
We embark now on the following task:

Define a formal notion of ‘genuine’ logical consequence (let us denote
it by |F) guided by the idea that it consists in the preservation of truth
from premises to conclusions under all possible interpretations of the non-
logical vocabulary — of which there is at least one — that make the
premises true.

Thus if we have Alkp (for ¢ # L), then we shall be able to infer that there
is at least one interpretation of the non-logical vocabulary involved (i.e., some
model M) that satisfies A:

IM M - A.

Apart from this novel requirement, the rest of the conceptual content is as
before — that is, every model that satisfies A will make ¢ true:

VM(M IFA = MIF ).

We can ensure this outcome for | by means of the following introduction and
elimination rules for this new pasigraph. The sortal parameter M (in italics)
for models in the two introduction rules and in the elimination rule |FE3 is to
be understood as occurring only where indicated. Boldface M in the three rules
in which it occurs is a term for a model.

(@)

MIFA
. AlFL MIFA
SE. N
L,
AlEL
(1) (1)
MIFA MIFA
Alke MIFA
1 s - e SRS
MIA Mig Ake ¥,
Al (2
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LEMMA 4. EFQ is super-fallacious: it has no valid instance.

Proof. For the application of | Ez in the formal metalinguistic proof below we
are taking A to be the singleton of falsum:

(1)
(2) M(a)

1
J‘”:(p—*(l) |EEs

1
(2)
Ll

O

LEMMA 5. Lewis’s First Paradox is fallacious. That is, it is not the case that
A,-A|EB.

Proof.
E—)
MIH{A,-AY
MIF—A MIF{A,-A}
MIf A MIFA
A-AFB (1) s
1

The relation | is transitive in the sense afforded by the following lemma.

LEMMA 6.
Alre
e, LIy ¢ = AT [y
A, T satisfiable
— ()
MIFA,T
—(1)
Alry  MIFA ks MIFAT
MIF ¢ MIFT
Proof. MIEo T
2) 907]-—‘”:’(/} e ) |EE;
ulFAT P 1) [t
3IM MIFA,T ATy

ATy
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11.2. The Reason Why the Core Systems Are Perfect for the
Formalization of Mathematical Reasoning
One frequently encounters criticism of Core Logic (for intuitionistic mathemati-
cal reasoning) and of Classical Core Logic (for classical mathematical reasoning)
from the following under-informed vantage point.

Mathematical theories are based on effectively decidable sets of axioms; and mathe-
maticians prove their mathematical theorems by interpolating many lemmas on the
way to them, from those axioms. As an interpolant, a lemma might stand as the
major premise of an elimination for the proof of the eventual theorem. Consider,
for example, a proof IT of lemma A from a set A of axioms, combined with a subse-
quent proof X of the eventual theorem 6 from lemma A in combination with further

axioms I':
A
11
N
N ——
b
0

Some of those premise occurrences of X\ in the proof ¥ might well be major premises
for eliminations. But, even if they aren’t, they all have non-trivial proof-work
(namely, II) above them; so this overall proof that we wish to be able to con-
struct cannot be a proof in either of the Core systems. Moreover, if you try to
turn it into a proof of the latter kind, there will in general be hyperexponential
explosion in the length of proof, as is well known from the proof-theoretic literature
on normalization and cut-elimination.

This objection from a conventional proof theorist has to be taken seriously —
and it can be, head-on. The objector grants us soundness of classical core proof.
We therefore know, on the basis of the proofs IT and 3, that

AEX and AT E0.

Moreover, the mathematical reasoners whose reasoning is to be regimented are
all morally certain that A UT is satisfiable. We share that belief. So now we
know that

AlEX and AT E6.

At this point we can appeal to our metalinguistic Lemma 6 and conclude (at
the meta-level) that

AT |6.

That is, we know that 6 is true in any model of the axioms. We have rigorously
justified certainty in the truth of the theorem that has been proved. We have
not even needed to construct an ‘overall’ Core, or Classical Core, proof of
from A UT. All that we need to construct (as users of the Core systems) are
the proofs of the bits of reasoning that lie strictly between the interpolants
(the lemmas) that have been employed on the deductive journey from axioms
to theorem. There is no specter of hyperexponential explosion in length of
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proof to have us quaking in our regimenting boots. There is no point at all in
confounding the hyperlogarithmic reduction in overall length of proof that is
effected by judicious lemma interpolation. And that is why the Core systems
provide such clean, direct, elegant, and economical regimentations of informally
rigorous mathematical reasoning as we find it. The Core systems are designed
to regiment informally rigorous mathematical reasoning ezactly as it is found
on the page, lemmas and all. This is the methodological and epistemological
impact of Conditions (1)—(6) (in §6). It is also the reason why we conjecture
that Classical Core Logic meets Condition 7.

11.3. The ‘Logical Power’ of an Unsatisfiable Set

Logicians (and mathematicians, and thinkers in general) have to be hyper-
vigilant. The threat of unsatisfiability is everywhere. One can be proceeding
innocently, making permitted inferential moves in an unsuspecting way, when
suddenly an unsatisfiability visits itself upon us. Note that we speak here of
unsatisfiability, not inconsistency, even though at first order a set of sentences
is unsatisfiable if and only if it is inconsistent. Inconsistency can visit itself
upon us by means of an explicit disproof — a proof of L from the accumulated
premises in question. The danger under discussion here is more insidious than
that. It is that our accumulated premises can form an unsatisfiable set without
our being aware that this is so. If we become aware that this is so, it will be
by virtue of a proof of L from the premises in question. On closer examination
one can then (usually) detect the source of the inconsistency, come to under-
stand how things had gone wrong, and take steps to revise one’s premises (one’s
ultimate starting points) so as to form a satisfiable set.

The Implosionist maintains that one can learn to live with the exigent
restriction proposed here on consequences of unsatisfiable sets of sentences.?®
Remember, we have (3) to fall back on:

If A is a set of sentences that has no model, then there is an S-proof of
absurdity (L) from premises in A.

A formally correct proof ‘of’ a sentence ¢ (not: L) ‘from’ a set A of used
premises establishes that the sequent A: ¢ is genuinely valid (i.e., that A [ ¢)
provided only that the set A is itself satisfiable. And unfortunately, because
of Church’s Undecidability Theorem for first-order logic, there is no effective
method for determining, of any given set of premises of a proof, whether it is
indeed satisfiable (equivalently: consistent in CT). One just has to live with the
ever-present specter of as yet undetected unsatisfiability of the premise set of
any formally correct proof that one has constructed.

That predicament, however, does not afflict the Implosionist alone. It also
afflicts the FEzxplosionist. Having EFQ in one’s system does not in any way

25Note that one could replace ‘can’ here with ‘must’, if one cannot go along with
‘cannot’.
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afford protection against the specter of as yet undetected unsatisfiability of the
premise set of any formally correct proof that one has constructed.

If A is indeed incoherent (unsatisfiable), then we can, in principle, discover
this to be the case — Condition (3) above. And we can do so without making
any use of EF(Q. In the meantime, however, we might think we have made some
deductive progress on the basis of A — when in fact we have made no progress
at all. (Note that this remark applies equally well to the Explosionist.) No proof
of ours ‘of” a sentence ¢ ‘from’ an unsatisfiable premise set A (actually making
use of all of them) can possibly establish the genuine validity of the argument
(sequent) A: . For no proof can.?®

11.4. What Does a Proof of ¢ (# L) from A Show, if A is
Unsatisfiable?
A final nagging worry that the orthodox logician might have (whose orthodoxy
involves subscribing to EFQ) is the following. What sense can be made of a
proof of the form

A
IT, where p # L
¥

in cases where the set A of premises is unsatisfiable? We shan’t always be able
to recognize when such a case obtains, for any particular set A of premises that
we have used. As already observed above, we have no effective method (because
of Church’s Theorem) of deciding whether any given finite set A of sentences
has a model. Nor, for the same reason, can we tell whether the conclusion ¢,
although syntactically distinct from L, is logically false; or whether it is logically
true; or whether it is contingent. All we can know, on the basis of II, is that
if A has any model at all, then ¢ will be true in it. But, for all we know, A
might have no model. In that case there will be a proof 3, say, of L from some
A" C A. Without loss of generality this proof ¥ can be taken to be a classical
core proof.

It would appear that the subscriber to EFQ will find no epistemic value at
all in having such a proof II as displayed above, unless already morally cer-
tain (on the basis of whatever reflective reasons) that its set A of premises
is satisfiable. And that happens to be the case in mathematics only when
A is a subset of some set of axioms (such as those for Peano Arithmetic)
firmly believed to be consistent (hence satisfiable). The extreme opponent of
EFQ — the Implosionist — is no worse off, epistemically, for insisting that
arguments with conclusions other than 1 can be genuinely valid only if their

26We are talking here about genuine progress of an apodeictic kind — the kind that
involves presenting the set A of one’s axioms-for-use, furnishing a proof of ¢ from (and
using all of) those axioms, and then claiming that one knows, on the basis of one’s proof,
that ¢ is true. That kind of ‘progress’ is illusory if the set A is unsatisfiable.
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premise sets are satisfiable. Both parties to the debate about the acceptabil-
ity of EFQ itself find themselves in the same epistemic predicament, with
proof IT in hand, when they are not morally certain that its premise set A is
satisfiable.

If this ‘tie’ in such a situation is to be broken, then it should, arguably, be
broken in favor of the Implosionist. For the Explosionist should be worried that
a disproof of A might be lurking within his EFQ-using proof IT of the form
displayed above, because of the way that the applications of EFQ therein can
render the as yet not explicitly detected inconsistency of the premise set A
less clear and distinct. The Implosionist at least has some confidence that a
Classical Core proof IT of ¢ from A, since it lacks any applications of EFQ),
will be unlikely to be ‘trading on’ any hidden inconsistency of its premise set.
Any disproof ¥ of that premise set is likely to be quite unrelated, in its line of
argument, to the proof II, whose conclusion ¢ could not have been arrived at
courtesy of any applications of EFQ.

12. HOW DOES IMPLOSION COHERE WITH THE GODEL
PHENOMENA?

The quick answer to this section’s titular question is: it coheres just fine. At
the metalevel, any system of S-proof of the kind under consideration here
(indeed: even a constructive one),?” regardless of whether it permits EFQ,
delivers derivations of Godel’s famous Incompleteness Theorems. This is the
case even for arithmetical theories that are closed under full Classical Logic.
Our epistemic situation with regard to the consistency of arithmetic (or, equiv-
alently: its having the natural model N as a model for its axioms) is unchanged,
even for one who eschews EFQ.

That we live with the specter of inconsistency in our mathematical theorizing
— of all areas — is underscored by Goédel’s Second Incompleteness Theorem.
It states that

No consistent, sufficiently strong theory T of arithmetic can prove its
own consistency statement Cony (which is formulated, via coding, in the
language of T').

No such theory 7', then, can really validate its own theorems. When we have a
proof of ¢ from axioms of T, we are unable to prove, from the vantage point of
T, that T has a model and that ¢ is therefore true in any such model.

The ensuing discussion will reach its conclusion independently of the ques-
tion of how best to express the consistency of T in the language of T. We
note without proof that the derivability conditions (on the logic of the object
language and the provability predicate for T') to which one appeals in the
metaproof of the Second Incompleteness Theorem, using Cong in a form that
really does express the consistency of T', will be satisfied by any logic S that

27See [Tennant, 2023].
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this study concerns.”® The reader should revisit the requirements (1), (2), (3),
(4), (5), and (6) that were laid down on a logic S in §6.

Suppose our theory T is, for example, the infinitely axiomatized theory PA
of Peano Arithmetic. Suppose we have an S-proof of ¢ ‘in PA’, i.e. an S-proof
of ¢ whose premises are axioms of PA. Then, if PA is satisfiable at all, we
presume that one of the models of PA is the standard model N; whence, by (4),
the PA-theorem ¢ is true in N. That is what underlies our proof-based pursuit
of theorems derivable from the axioms of PA. We believe those theorems are
true in N, because we believe that N is a model of PA.

But what if PA has no model? The only way we could discover this to be the
case would be to have an actual S-proof of L from a certain finite subset (T,
say) of the infinite axiom set of PA; call such a proof an S-disproof. We would
then at the very least have to give up, as erstwhile presumed truths in N, every
S-theorem whose every known S-proof has I' included in its premise set. Prima
facie, this would still leave in the running all those S-theorems of PA that we
have proved whose premise sets do not include any premise set (consisting of
PA-axioms) of any known S-disproof. Certain subsets of the set of axioms of
PA might still have models. But it is hard to predict how the mathematical
community would react to a first-ever, confirmed, checked, correct S-proof of L
from premises that are all axioms of PA. Would there be a scramble to identify
such subsets?

Such a discovery would certainly rock the mathematical community’s boat.
It is hard to know whether they would be ‘all hands on deck’ to determine
a new communal choice of axioms for the natural numbers, or jumping ship
to different epistemic islands whose axiom sets had not yet been proved to be
inconsistent.

We contend, though, that whatever might transpire in this eventuality will
have nothing to do with whether mathematicians believe that any set of sen-
tences whose inconsistency, surprisingly, has just been revealed, logically implies
any sentence whatsoever. The Implosion vs. Explosion debate is orthogonal to
these epistemic concerns. For mathematicians, proving L from any of their
favorite sets of axioms will be ‘bad enough’. EFQ will play no role at all in how
they react to such a formal discovery. Moreover, EFQ will play no essential role
at all in leading to such a discovery. If there really is an inconsistency in PA,
but thus far undetected, then (as (3) and Lemma 2 together tell us) there is
an EFQ-eschewing S-proof of L from axioms of PA, ‘out there’, waiting to be
discovered.

And the same holds for any theory in place of PA.

APPENDIX
FORMAL EXPLICATION OF RELEVANCE IN CLASSICAL CORE LOGIC
Core Logic, in both its constructive and its classical forms, is a relevant logic,
in an interesting and deeper sense than that provided merely by the assurance

28Gee in this connection [Jeroslow, 1973; Raatikainen, 2021].
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that the logic does not allow derivation of the Lewis Paradox (in either its
positive or its negative form). We confine ourselves here to the propositional
system in explaining the formal explication of deductive relevance that is to
be had from Core Logic. This task involves spelling out the details of a very
exigent form of ‘variable-sharing’ (or, in our terminology, sharing of atoms). To
this end we need to supply the following definitions. The reader is assumed to
be familiar with the notions of positive and negative subformula occurrences
within a formula.

DEFINITION 1. + ¢ =4f some atom occurs both positively and negatively in .
(Note that £ is a metalinguistic predicate, not a function sign.)

DEFINITION 2. ¢ &~ A =4 some atom has the same parity (positive or
negative, at some occurrence) in ¢ as it has in some member of A.

DEFINITION 3. Suppose ¢ # ¥. Then ¢ <11 =4¢ some atom has the opposite
parity at some occurrence in ¢ from the parity it has at some occurrence in ).

DEFINITION 4. ©1,...,¢n (n > 1) is a d-path connecting p1 to on in A =qf
for 1 <i<m, p;isin A, and for 1 < i < n, @; X Qit1.

DEFINITION 5. A set A of formulae is <-connected =qg¢ for all ¢, ¥ in A, if
 # 1), then there is a p<-path connecting ¢ to v in A.

DEFINITION 6. A component of A is an inclusion-maximal p<-connected subset
of A (where the p<-connections are established via members of A).

Relevance Metatheorem about Core Logic. A Classical Core proof of a
conclusion ¢ from a set A of undischarged assumptions establishes that A is
relevantly connected both within itself and to ¢, in the sense that exactly one
of the following three conditions holds:

(1) A is non-empty, ¢ is L, and:
if A'is a singleton {d}, then =+ §; otherwise, A is tx-connected.

(2) A is non-empty, ¢ is not L, and:
the components A1,..., Ay (m > 1) of A are such that for 1 < i < m,
we have p ~ A;.

(3) A is empty, ¢ is not L, and + .

Cases (1) and (3) cover the two logical extremes. In case (1) we have a proof
of the joint inconsistency of the premises in A. In that case A itself is the only
component of A. In case (3) we have a proof of a logical theorem ¢. In that
case o will contain some atom both positively and negatively.

Case (2) covers the ‘middle range’, so to speak, and it is this case that reveals
the most interesting structure involving both A and ¢. The set A of premises
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is partitioned into components A1, ..., A, (n > 1), each of which, if not a sin-
gleton, is p<-connected. Moreover, each component A; bears a special relation
to ¢, to wit: some atom occurs with the same parity in ¢ as it does in some
member of A;.
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