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Core Tarski and Core McGee

Neil Tennant

Abstract We furnish a core-logical development of the Godel numbering
framework that allows metamathematicians to attain limitative results about
arithmetical truth without incorporating a genuine truth predicate into the
language in a way that would lead to semantic closure.

We show how Tarski’s celebrated theorem on the arithmetical undefinability
of arithmetical truth can be established using only core logic in both the object
language and the metalanguage. We do so at a high level of abstraction, by aug-
menting the usual first-order language of arithmetic with a primitive predicate Tr
and then showing how it cannot be a truth predicate for the augmented language.

McGee established an important result about consistent theories that are in
the language of arithmetic augmented by such a “truth predicate” 7r and that use
Godel numbering to refer to expressions of the augmented language. Given the
nature of his sought result, he was forced to use classical reasoning at the meta
level. He did so, however, on the additional and tacit presupposition that the
arithmetical theories in question (in the object language) would be closed under
classical logic. That left open the dialectical possibility that a constructivist (or
intuitionist) could claim not to be discomfited by the results, even if they were
to “give a pass” on the unavoidably classical reasoning at the meta level. In this
study we “constructivize” McGee’s result, by presuming only core logic for the
object language. This shows that the perplexity induced by McGee’s result will
confront the constructivist (or intuitionist) as well.

1 Preliminaries
1.1 Definitions and terminology

Definition 1 N is the standard model of arithmetic.
R is Raphael Robinson’s only-infinitely-axiomatizable arithmetic.
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2 Neil Tennant

Q is Raphael Robinson’s finitely axiomatizable arithmetic (which is slightly
stronger than R).

L is the first-order language of arithmetic with extralogical primitives 0, s, +, X.

n is the numeral for the number 7 (i.e., the term ss . . . 0 with n occurrences of ).

Th(N) is the set of all sentences of L that are true in N: {¢ € L | N I ¢}.

Tr is a monadic primitive predicate.

L is the first-order language that augments L with the monadic predicate 7.

T, A, Q are sets of L-sentences.

I1, £, 2 are proofs (in a logical system specified in the context).

¢, ¥, 0, x are formulas or sentences in L.

A, B, C are propositional placeholders.

A system g of Godel numbering is presumed fixed for all expressions of the lan-
guage L. For any such expression £, "E™ is the numeral for the Godel number g(E)
of E.

A Tarskian biconditional is a sentence (in £) of the form Tr("¢") <> ¢; and any
sentence ¢ for which this is taken to hold we shall say is being regarded, or treated,
as Tarskian.

Tarskian biconditionals are instances of the famous schema (T).

We abbreviate such instances Tr("¢") <> ¢ as 7(¢).

The set of all Tarskian biconditionals is called 7. (This is a subset of L.)

¢ is an enumeration, presumed fixed, of all the Tarskian biconditionals in L.

I is intuitionistic logic.

C is classical logic.

C is core logic.

CT is classical core logic.

k1 is deducibility in intuitionistic logic.

F is deducibility in core logic.

Fc+ is deducibility in classical core logic.

1.2 The rules of core logic C and classical core logic C* The reader familiar with
the rules of the core systems and with basic results about those systems may advance
to Section 2. For the reader not familiar with the core systems, their rules and basic
results about them will be set out here.

The rules are stated rather more fastidiously than is usually the case in traditional
presentations of natural deduction a la Gentzen and Prawitz.

In the graphic statements of natural deduction rules below, a box appended to
the discharge stroke over an “assumption for the sake of argument” indicates that
one must have made use of that assumption in deriving the subordinate conclusion,
whereas a diamond indicates that “vacuous discharge” is permitted.

Note that vertically descending dots in the following graphic rules indicate that
nontrivial proof work may be involved in descending from the assumptions indicated
to the subordinate conclusion in question. The absence of such descending dots
above a premise (which will be a major premise for an elimination) indicates that the
premise in question stands proud, with no nontrivial proof work above it.

In the list of rules below, the introduction and elimination rules of natural deduc-
tion are stated on the left; the corresponding right and left logical rules of the sequent
calculus are stated on the right.'
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The foregoing rules form the system C of core logic. We obtain the system C*
of classical core logic by adding the following classical rule of dilemma (natural
deduction form on the left; sequent calculus form on the right).
O—@ H0—®
1 %
. Aoy [—e:y/L

(Dil) Ty

vyl
v

@)

1.3 Earlier results about core logic C and classical core logic C* that will find appli-
cation in this study The reader not completely familiar with the core systems might
find the following results of some use in tracking our subsequent discussion. Proofs
can be found in Tennant [16] and in the various papers cited therein.
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A¥L

Metatheorem 1 Abro

} = Alop.

Metatheorem 2 (Cut admissibility for [classical] core proof)

There is an effective method [ , | that transforms any two [classical] core proofs
A x. T
IT by (where y ¢ T" and T may be empty)
X 0

into a [classical] core proof [I1, X] of 6 or of L from (some subset of) A U T.

The square bracketing indicates that Metatheorem 2 holds when it is read uniformly
with “core” and when it is read uniformly with “classical core.”

The following corollaries of Metatheorem 2 hold both with - read as ¢ through-
out, and with I read as -+ throughout.

Corollary 1 (Admissibility of cut for absurdity, or “cut for L")
IfAF-@pandT,p - L, then A, T - L.

Corollary 2 (Admissibility of cut on consistent premises)
IfFAV¥ Land AT and T F o, then A F .

2 Two-Level Descriptors

S1
)
to characterize reasoning at the meta level using logical system Sy, about either the
object-level logical system S, itself or theories at the object level that are closed
under deducibility in S,.
Some well-known results can be described as follows. Gddel’s proof of the com-
pleteness of classical first-order logic C was of kind
C
Lcl

The core logician’s reworking of Henkin’s method of proof for this result would be
of kind

We use the descriptor

oy
[C
and we would be inclined to call it Core Henkin. And the part of it that delivers the
Godel-Glivenko—Gentzen theorem would be of kind
g

L C.
Kripke’s proof of the completeness of intuitionistic logic I with respect to his
possible-worlds frame semantics was of kind

H

The core logician’s reworking of this result would be of kind

<]

and we would be inclined to call it Core Kripke.

)

)
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Veldman [18] and De Swart [6] produced intuitionistic proofs at the meta level of
the completeness of intuitionistic first-order logic. These are results of kind

[T
. I '
The core logician’s reworking of this result, if it were ever to come to pass, would be

of kind
C
| C

and we would be inclined to call it Core de Swart—Veldman.
Our own studies Tennant [14] and [15] were of kind

)

In our later study Tennant [17] we conducted an investigation of type

<)

There we were concerned to establish, using only core logic C at the meta level,
Goel’s first incompleteness theorem for suitably strong and consistent arithmetical
theories closed under C (hence the title “Core Godel”). The incompleteness theorem
is at its strongest, of course, when the theory-closure at the object level is by means
of (what would appear to be) the strongest possible logic, namely, classical logic C.
The investigation could equivalently be described as one of kind

)

since the theories at the object level were assumed to be consistent, and classical core
logic C proves the same consequences as does classical logic C from any consistent
set of sentences.

Restricting the logic for closure of one’s theorizing from classical logic to core
logic is neither idiosyncratic nor philosophically irrelevant. After all, intuitionistic
logic (hence also, this author would add, core logic) suffices for the metalinguistic
derivations of all instances of Tarski’s T-schema from his original recursive defini-
tion of satisfaction and truth.” Hence, core logic suffices to establish the material
adequacy of Tarski’s theory of truth (for any first-order language). This is a result of

kind
€
cl

Perhaps it would merit the title “Core-ur-Tarski.” It should be pointed out, though,
that when Tarski proved bivalence—that for every sentence ¢ of the object language,
either ¢ is true or —¢ is true—he had to resort to using strictly classical reasoning at
the meta level.” This could charitably be described as a result of kind

=

One can see that labeling a result as Core NN implies that an important result of
NN is being “core-ified” at either the meta level or the object level (perhaps both). At
which level this innovation is effected will depend on the kind of result NN proved.
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The reader will see that in this study Core Tarski and Core McGee are so-called
for slightly different reasons. Tarski’s result about the indefinability of arithmetical
truth is core-ified at both the meta level and the object level. McGee’s result about
the extraordinary power of arithmetical instances of the T-schema can be core-ified
only at the object level (without, though, detracting from the philosophical interest
it commands—in this regard it would be comparable with Core Kripke). What uni-
fies our two chosen instances here of Core NN into a single study is their use of
the same metamathematical materials and results. They deal with sufficiently strong
and consistent subtheories of arithmetic; they appeal to representability of recur-
sive relations; they make use of fixed points; and they explore the behavior of an
elusive predicate Tr—whose two letters hint at the same philosophically important
concept—in the arithmetical setting.

3 Formal Deducibilities in Core Logic

We shall be appealing to the fact that in core logic, cur for I is admissible when its
concluding sequent is either of the form ® - y with ® consistent, or of the form
OF03Ge,®: 1)

Bear in mind that any sequent provable in intuitionistic logic has a subsequent
provable in core logic. We can therefore help ourselves to intuitionistic proofs in the
object language, secure in the knowledge that the core logician can obtain results just
as strong (if not even stronger).

Lemma 1 Suppose that the sequents I, A : = A, and T, =~ A : A are core-provable.
Then T is core-inconsistent.

Proof  Suppose that we have both
(1) ILAF -4 and 2) T,-AF A

We shall show that we would then be able construct a core proof of the inconsis-
tency of I". Our demonstration of this will be metalogical, using core logic in the
metalanguage, and it will be formulated by means of core-deducibility statements.

Supposition (1) and the fact that = A, A - 1 ensure, by Curror L, that ", A - L.
If I' F L, then we are done. Otherwise, I', A = L is true by virtue of a proof that
uses A as an undischarged assumption. In this case it follows by —I in the object
language that

3) T'F-A.
From supposition (2) along with (3) it follows by Cut ApwmissiBILITY FOR CORE
Proor that
either i I'HA or Gi) 'k L.
We proceed with proof by cases. In case (ii) we are done. It remains to consider only

case (i). So suppose that I' = A. Then I', =4 F L. This, with (3), ensures by Cur
For | that T' - L. Now we are completely done. O

Lemma 2 Suppose I', B ¥ 1 and that T, A = B < C (by core proof T11, say);
and T', B<> C = A (by core proof T1,, say). Then T, B - C <> A.

Proof = We can construct the following intuitionistic proof.
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—(D —(D

C r, 4
', B&C M,
~———
, B B«(C
A
)
C<A
This proof shows that I', B -y C <> A. Since by main supposition I, B ¥ 1, it
follows by Metatheorem 1 that I, B - C <> A. O

Lemma 3 Suppose T, C <> A ¥ L and, as for Lemma 2, that T, A+ B < C (by
core proof Ty, say) and T, B <> C = A (by core proof T, say). Then T',C <> A
——B.

Proof  First we construct the following intuitionistic proof E.

n_—

C C+A
A r
—__(1)
T, C< A, —B w_ T B -B
—B =
% A O
B<C r
N——
I1,
A

Using &, we can now form the following intuitionistic proof X.

— (1)

IC< A, —B
— 1) ~———
I C<~ A, -B B
I CsA —_— A T
N——— . )
b : A CeA I,
——B C B« C
—@
B —B
L
_|_|B
Thus we have
F, CA l_I ——B.
Since by main supposition
ILCA¥FL,
it follows by Metatheorem | that
IC«+AF ——B. O

Note that the classical logician could apply classical reductio at the final step labeled
(1) in the last displayed proof, so as to infer the conclusion B. But the constructivist
cannot do this. The constructivist has to rest content with ——B.
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The main suppositions of consistency in Lemmas 2 and 3 will be sustained or
fulfilled in all subsequent contexts in which those lemmas find application. This will
be the case with the proofs of Lemmas 6, 7, 8, Corollary 5, and Lemma 9, all of
which lead to Theorem 3 (constructivized McGee).

4 Discussion of Method

The metatheorem that Q affords representability of recursive functions is construc-
tive at both the object level and the meta level. That is, the turnstiles of the interde-
ducibilities that are called for in the representation of recursive functions can all be
read as deducibility in core logic C; and the meta-level reasoning involved in estab-
lishing the representability theorem can also be carried out in C. This was established
in Tennant [17].

In their classic monograph [8], Tarski, Mostowski, and R. Robinson established
the representability of all recursive functions in R (R. Robinson’s well-known infin-
itely axiomatized proper subtheory of his finitely axiomatized theory Q). In doing
so they worked with J. Robinson’s definition of recursive functions that she gave in
her paper Robinson [5]. For the version of representability with Q in place of R, but
with Godel’s definition of general recursive functions, see Boolos and Jeffrey [1] and
Tennant [9]. That all the extant formal explications of computable functions due to
Turing, Church, Godel, Kleene, and others are coextensive is well known, and it is
what makes the celebrated Church—Turing thesis highly plausible.

Inspection of the informally rigorous proofs of all the results mentioned in the
previous paragraph reveals them to be completely constructive, and therefore fully
formalizable in intuitionistic (hence also in core) logic. We conjecture that the equiv-
alence of J. Robinson’s definition of general recursive functions with Godel’s defini-
tion of the same will likewise admit of completely constructive proof. Indeed, if this
were not the case, then her (J. Robinson’s) definition would be a singular outlier. We
note the general emphatic claim of Odifreddi [4]:

It should be noted that the equivalence proofs among different notions of com-
putability are effective ... . Effectiveness means that for any pair of notions
there is a recursive function that, given the code of a recursive function relative
to one notion, produces a code of the same recursive function relative to the other
notion. (p. 101)

If our conjecture holds, then all of our subsequent discussion of matters modulo Q
could be systematically strengthened so as to be matters modulo the slightly weaker
theory R.

We shall proceed, however, with all our deducibility statements being modulo Q
rather than modulo R, in order to ensure that we satisfy the classically captious. The
reader nevertheless has the assurance that if and when our conjecture is rigorously
established, one would be able to revert to expressing all the deducibilities modulo R
rather than Q throughout our subsequent discussion. The “philosophical loss” of
proceeding thus (in an abundance of caution) modulo Q rather than modulo R is not
at all significant. Q is already a “weak enough” arithmetical theory to make the “core
version” of the main results below arresting.

Theorem 1 (Representability) For every recursive function f(X) there is an L-
formula ¢(X, y) such that for all n

p(i.a) "o a = f(i)
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with the parameter a not occurring in ¢(X, y).

Definition 2 A binary formula §(x, y) is a diagonal for A just in case for every
unary formula ¥ (x) we have

§(Y'a) Aak a ="y (YN,
with a parametrical.
Lemma4  Q has a diagonal.

Proof  Suppose # is a coding of unary formulas and [ is a coding of sentences. The
mapping

ne IJ[#_1 (n)(g)]
is effective. By Church’s thesis it is recursive. Hence by the representability theorem
there is a formula 6(x, y) such that for all n we have

§(n,a) "ot a = [# ' (m)®)].

If ¢ is a unary formula, let "y = #y, and if 0 is a sentence, let "0 = M Then for
all unary formulas i we have

S(#y.a) "ot a = f1[#7 Gy)(#yY)].

that is,
§(ya) "k a ="y (Y O

For any theory that affords numeral-wise representability of all recursive functions,
the following important corollary holds. And the reasoning from representability to
this corollary is, like the reasoning that establishes representability in the first place,
thoroughly constructive, hence formalizable in core logic.

Corollary 3 (Fixed points) For every unary formula \(x) there is a sentence 0
(called a fixed point for ) that is uniquely determined relative to one’s chosen system
of Godel numbering, and is such that

6 Aot v ("),
that is,

Q.0 F (07
and

Q,y(0") - 6.

Proof  This is a well-known corollary of numeral-wise representability of recursive
functions in Q. We shall prove it as follows.

Let §(x, y) be the diagonal for Q guaranteed by Lemma 4.

Let the unary formula y(x) be

Vy (e, y) = v(»).
Let 6 be y(Tx"), that is,
Vy(@ECx y) = ¥ ().
We now have to show that
0 -k v (0.
First we show that Q, 8 - v ("67).
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By Lemma 4 there is a parametric core proof
Q.a ="y
I(a)
§(x%a)
Substituting "y ("x")" for a in I1(a) we obtain the core proof
Q. () ="y’
I (%)
SCo T xY
Now we can construct the core proof”

Q’ I_X(I—X—I)—I — I—X(I_XT)—I

0,i.e.,

I (xH" Vy@(xhy) = v ()
STy Tx(x ST () = (T (X
Y (Tx ().
ie., ¥ (9

So we have shown that Q, 8 F ¢ ("0").
Second we show that Q, v ("6") - 6.

By Lemma 4 once again, but in the converse direction, there is a parametric core
proof

Q.8("y".a)
~————
X(a)

a = I_X (I—X—I)—l

Now we can construct the core proof

o)
Q5("x"a)
——
@) Yo, ie.,
a="x(x" ¥
1//((1) (1)
8("x'.a) = ¥(a)
Vy(@(Tx.y) = v(»)).
ie., 0

So we have shown that Q, v ("67") - 6. O

Corollary 3 can be glossed as saying that the fixed point 6 for a predicate ¥ “says
of itself” (modulo Q, and via the chosen system of Godel numbering) that it has the
property expressed by . Note that the construction that produces 6 ensures that ¥ is
a subformula within 8. Also, 6 contains an occurrence of the augmenting predicate
Tr if and only if ¥ does.

Note that neither R nor Q contains any sentences involving Tr. L-extensions of
either of these two theories might contain sentences that involve the predicate 7r; but
also might not contain any (except for sentences containing 7r that are logically true,
such as, for example, Vx (Tr(x) — Tr(x))).” Examples of consistent L-extensions
of R, none of whose sentences contains 7r are: Robinson’s arithmetic Q; Peano
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arithmetic PA; PA + Conpa; PA + —Conp,; and so on. We can even add Th(N) to
this list.

We are now in a position, with enough preliminary details laid out, to embark
on our “twin study” of philosophically important results of Tarski and of McGee
about Tr that require, for their development, the foregoing remarks and results about
representability of recursive functions in sufficiently strong and consistent theories
of arithmetic, the existence of fixed point for unary formulas, and so on.

An important point to appreciate at the outset is that the predicate 7r that augments
L is not being treated as a truth predicate. The question to be addressed in the two
main parts of this study (Sections 5 and 6) is: Could it be?

5 Tarski

5.1 On possible interpretations of Tr To be sure, 7r will be featuring in bicondi-
tionals of the form 7r("¢') <> ¢, some (but not all) of which can be members of the
(consistent) sets of L-sentences, or L-theories, with which we shall be concerned.

Recall that L is the unaugmented language of first-order arithmetic based on 0, s,
+, and X, and therefore does not contain any sentence involving the predicate 7r. The
predicate 7r is, as it were, uninterpreted from the point of view of the theorist using
only the language L. But one could provide an interpretation for 7r in the standard
model N by assigning to 7r as its extension any set of natural numbers (including the
empty set!). The question is only: Would whatever predicate-extension is chosen for
Tr allow one to construe Tr("¢") as expressing the truth of ¢, on the understanding
that "¢ denotes ¢?

Indeed, one very full such extension for 7+ would be the set of all Godel numbers
of sentences true in N. The standard model N, with this extension supplied for the
predicate Tr, would make true every Tarskian biconditional

Tr(7) > ¢
for sentences ¢ in L. And the £-theory
Th(N) U{Tr("¢) < ¢ | ¢ € L}

would be consistent. No “paradox” would arise. The same holds true if one were to
assign to 7r the set of all Godel numbers of sentences false in N. But in this devious
(yet, still, consistent) case the predicate 7r would be better understood as expressing
falsity rather than truth. (And the “Tarskian biconditionals” would in fact be true.)

The only context in which insuperable problems arise (for an interpretation of
Tr) is where the sentences ¢ on the right-hand sides of Tarskian biconditionals are
allowed to contain occurrences of Tr itself.

5.2 Back to fixed-point considerations From the standpoint of the L£-user, the Godel-
coding function g is firmly determined and settled upon.® It ensures (see Corollary 3)
that every predicate (unary formula) v (x) in £ will have a fixed point 6, in the sense
that
0 - v ("7).

We have already observed that 6 contains an occurrence of 7r if and only if ¥
does. The question then immediately arises: Can such 6, for whatever pertinent
Tr-involving formula v (x) happens to be chosen, consistently feature on the right-
hand side of a Tarskian biconditional? That is, can one consistently assert, against
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the background of the coding-affording and consistent theory Q, the biconditional
Tr("0™) <> 8 — so that for the (presumed consistent) theory S = Q U{Tr("07") < 0},
one has

0 A Tr("0M) ?
The answer to this question is negative. It is impossible, given Q, for every sentence
of L to be Tarskian. This is established by the following theorem.

Theorem 2 (Tarski) It is not the case that for every L-predicate ¥ (x), its fixed
point 6 can core-consistently be taken, modulo Q, as an instance of schema-T.

Proof Let ¢ (x) be —=Tr(x). The fixed point € for this choice of v (x) will feature
thus:

0 o —=Tr("07).
Now suppose for reductio that # can core-consistently be taken, modulo Q, as an

instance of schema-T. It would then follow that we would have, for the core-consistent
theory S = Q U {Tr("6™") <> 0}, that

0 HsH Tr ("0,

and consequently also

Tr("0") dsk —=Tr("67).
But now recall Lemma 1: if the sequents I, A : —A, and I',=A : A are core-
provable, then I' is core-inconsistent. Take S for I', and 7r("6") for A. The reason-
ing in Lemma 1 showed that S would then be core-inconsistent, contradicting our
assumption for reductio. Theorem 2 follows. [

In summary: by Corollary 3 we do have
0 -k —Tr("0);
so by Theorem 2 we cannot have
0 s Tr("07).

Tarski’s schema-T cannot have as instances all fixed-point sentences for 7r-
involving predicates. This is the enduring legacy of the liar in the era of Godel
numbering. Note, however, that the sentence 0 here has to contain an occurrence
of Tr.

Corollary 4 (Tarski) Arithmetical truth is not definable by any arithmetical predi-
cate.

Proof  Any such arithmetical predicate y(x) would have to satisfy all instances of
schema-T; and its negation would admit of a fixed point. Now apply Theorem 2 with
x(x) in place of Tr(x). O

Note that this is not a logico-semantic paradox. It is a straightforward impossibility
result: it is impossible to define Tr(x) by means of a unary formula y(x) in the 7r-
augmented language £ of arithmetic so that it “behaves like a truth predicate” in
accordance with Tarski’s famous material adequacy condition on a theory of truth—
that is, so that for every sentence 6 of that language we have

0 ok Tr(T0).
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5.3 Arithmetical impossibility vs. logico-semantic paradox Theorem 2 and Corol-
lary 4 reveal an impossibility—no pun intended—at the very core of our conceptual
scheme. This is because the inconsistency established is core inconsistency, not sim-
ply (as in the usual treatments) classical inconsistency. Every core-inconsistent set
is obviously classically inconsistent. But the converse does not, at first order, hold.”
At first order there are classically inconsistent sets that are not core-inconsistent. An
example is the singleton {—Vx(Fx VvV = Fx)}. Since it is “easier” for a set of first-
order sentences to be core-consistent than it is for it to be classically inconsistent,
Theorem 2 arguably has a philosophical edge over the version that Tarski actually
gave us, in which all the reasoning at the object level is taken, by default, to be clas-
sical reasoning.

That the difficulty with the concept of truth “lies deep” in the way brought out
by core-logical analysis of its indefinability in arithmetic is of a piece (in a way
meriting further investigation) with the fact (so this author contends) that one needs
only core-logical reasoning in order to reveal the paradoxicality of any set of sen-
tences whose inconsistency presents, intuitively, as a logico-semantic paradox. By
the author’s proof-theoretic criterion of paradoxicality, the disproofs involved with
genuine paradoxes of this kind cannot be brought into normal form.® Their reduction
sequences—in pursuit of normal form—do not terminate after finitely many steps.
This is engendered by explicitly treating the truth predicate as a logical predicate,
subject to introduction and elimination rules that appear to be in harmony. The
nonnormalizability of the resulting disproofs—all of which are furnished in core
logic—that are associated with logico-semantic paradoxes engendered in this way
is the symptom, in this context (where the truth predicate is taken to be a logical
predicate) of the same deep problem whose manifestation, in the context of attempt-
ing to frame an arithmetical definition of truth-in-arithmetic, is the straightforward,
nonparadoxical, core-inconsistency of any attempt to do so.

6 McGee

McGee [3] proved an interesting and deep result (his THEOREM 1 on p. 237) about
the existence of maximally consistent sets of instances of schema (T), and how
they reveal the extraordinary power of having a “truth predicate” Tr as part of the
object language—which McGee took to be the first-order language of arithmetic,
augmented by the primitive predicate 7r (remember we are calling this language £).
The “having” of a “truth predicate” was a matter of having 7r feature in Tarskian
biconditionals—not all of them (on pain of inconsistency, as shown in Section 5),
but rather in as many as possible of them, short of such inconsistency. Details will
emerge presently.

McGee proved his metatheorem using classical logic C. It concerned consistent
theories at the object level that contained R and were themselves, also, closed under
classical logic. So his investigation was of type

¢ or, equivalentl cr
C £ 9 q y7 ? .

We say “equivalently” for the same reason as before: classical core logic C* proves
the same consequences as C does from any consistent set of sentences.’ In this part
of our study, by contrast, the investigation is of type
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, Or, equ1v alently, et K

We are allowing ourselves full classical logic C (equivalently, for the reason
already expounded, classical core logic C*) to prove an analog, for the construc-
tivist, of McGee’s THEOREM 1 (to be stated below). As already remarked, McGee’s
(classical) metatheorem concerned classically closed theories at the object level. We,
by contrast, want to show that the metatheorem goes through virtually to the same
effect for theories at the object level that are closed only under core logic C. Thus the
discombobulation (or philosophical puzzlement) effected by McGee’s original result
can afflict the core logician just as acutely (at least, to “within an epsilon”—which,
in this context, is a double-negation).

In McGee’s statement of his original THEOREM 1 (and accordingly in its subse-
quent proof) there is consideration of consistent £-extensions S of Robinson arith-
metic R. As is well known, R is an infinitely axiomatized arithmetical theory (in
the language of arithmetic unsupplemented, of course, by the predicate 7r), which
suffices for the representation of all recursive functions. Here is an exact statement
of the original theorem:

Let A be an S-consistent set of sentences of £. Then there is a set I' of
instances of (T) such that (1) all the members of A are S-entailed by I, (2)
I' is S-consistent, (3) any set of instances of (T) which properly includes I"
is S-inconsistent, and (4) I' U R is a complete first—order theory [in £L—NT].
(p. 237 infra)
McGee provoked his reader to consider
. what our response to the liar paradox would look like if it were developed
under this constraint alone[:] ... that it not restrict [Tarski’s Schema] (T) more
severely than necessary (p. 236)
and he developed the question further:
[T]his is such an important constraint that it is worthwhile to study its effects by
asking what our response to the liar paradox would look like if it were developed
under this constraint alone, without any other considerations. (p. 236; emphasis
added)
McGee then went on to state the philosophically surprising conclusion (for the adher-
ent of classical logic, at least, who claims to be committed to a version of minimal-
ism) that
... the mere desire to preserve as many instances of (T) as possible will give us

too little to go on in constructing a consistent alternative to the naive theory of

truth. (p. 237)
Our overarching concern in this section of our study is to determine whether the
thinker who insists on dealing with consistent object-language theories closed only
under intuitionistic logic (equivalently: under core logic) can be similarly discom-
fited. And we shall determine that this is indeed the case.

McGee’s proof of his theorem contains the following brief passage (p. 238), con-

sideration of which, at this stage, does not require an explanation of the sentence By
(though explanation will come in due course).

... By (p<Tr("By "))
is a theorem of R. It follows by truth-functional logic that

¢ < (Tr("By") <> By)
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is a theorem of R.

This appeal to “truth-functional logic” is of course an appeal to strictly classical
logic—which McGee was assuming as the default logic for the object language.'’
A< (B <> C) logically implies B <> (C <> A) in classical logic, but not in intuition-
istic logic.

McGee was not concerned with the possibility of constructivizing his result, in
the sense of assuming that the object language is governed by a constructive logic
(even if, perforce, one needs a degree of classicism in establishing his result in the
metalanguage). Without any interest in or concern about this possibility, no special
attention was paid to either the left-to-right direction of the second biconditional in
the quote above:

¢ — (Tr(qu;l) <> B¢)
or its right-to-left direction:
(Tr('_B¢—') <> B¢) — (b

McGee appeared to leave open the dialectical possibility that a constructivist (or
intuitionist) could claim not to be discomfited by his result, if it could somehow be
shown that its proof went through only because of the “strict classicism” that had
been presumed for the logic of the object language.

We proceed now to close off that dialectical possibility. We investigate how best
to constructivize McGee’s result, so that semantic closure (in the sense of allowing
nestings of Tr) is as powerfully discomfiting for the constructivist at the object level
as it is for the classicist. In the course of so doing we shall pay particular attention to
the difference between the two directions of the biconditional.

The outcome of this investigation is that one has further confirmation, from an
interestingly different angle, of the present author’s contention (for which, see Ten-
nant [16], and our earlier discussion at the end of Section 5.3) that the deductive
reasoning at the object level that is involved in establishing the paradoxicality of any
(sets of) sentences in a semantically closed object language in which Tr is to play
the logical role of a truth predicate can always be carried out in core logic. The
core reasoning in this case reveals the same baffling surprises, to a closely similar
extent, that McGee’s classical reasoning uncovered for any attempt to maximize the
bounty of Tarskian biconditionals that one might aspire to garner in one’s hunt to
approximate, as best one can, the material adequacy of one’s “theory of 7r” in the
arithmetical setting.

6.1 The expansion method

Lemma 5 (Expansions) Let ® be a compact property of sets of sentences—that
is, ® holds of a set Q if and only if ® holds of every finite subset of Q. Let y be a
countable enumeration of sentences, of order type w. Suppose that ®(2). Define

Qo =dr Q

Q _ Qp Uy} if @(R2, U{yn})
n+1 =df .
Q,, otherwise

QY =t Uszn.
n

Then ®(Q7).
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Proof At the outset we point out the classicism involved in the foregoing inductive
definition of QY. The definition’s inductive step requires one, at stage n + 1, to
determine whether the property ® is enjoyed by the set 2, U {y,}, where 2, has
been “produced” by stage n. If ® is not an effectively decidable property, then the
definition is not constructive. And in this setting, where ® involves determination of
consistency at first order, it is definitely not effectively decidable. The classicism at
this point is unavoidable.

We proceed, then, with a classical proof of the sought result. First we show by
mathematical induction that Vm ®(2,,).

By main supposition, we have ®(£2¢). This accomplishes the basis for the induc-
tion. From the inductive step in the definition it is clear that if ®(£2,), then ®(2,+1).
Hence by mathematical induction we have

Vm®(Q2pm). ()

Now suppose for reductio that
-P(Q7).

Since ® is compact, it follows by classical logic again (at the meta level) that there
is some finite subset—’, say—of Q¥ such that =®(Q2’). By definition of Q¥ as
(U, S2n, it follows that some stage Q, say, includes €. So we have

-d(Q)) ; Q' finite; Q' S Q.
Since ® is compact, we now have
—®(Q),

contrary to (*). By classical reductio, discharging the reductio assumption —®(Q27),
it follows that

B(QY).!! O

Usually the compact property ® is consistency of some kind.'” In this study our
choice of the property @ of sets of L-sentences will be consistency with Q. (See the
comments in Section 4.) Note also that the enumeration y can be of sentences in
some restricted class that includes 2. For example, €2 could be a set of Tarskian
biconditionals, and y could be an enumeration of Tarskian biconditionals. The
important point is that relative to a particular enumeration y presumed given, QY
is uniquely determined.

In due course we shall use an enumeration of Tarskian biconditionals in an appli-
cation of the foregoing expansion method. The choice of such an enumeration is of
course arbitrary. There are uncountably many of them. This should be borne in mind
as one further source (in our core logical reconstruction of McGee’s result), over
and above the contribution of the initial set €2 itself, of the multiplicity of maximal
consistent sets of instances of the T-schema that McGee emphasizes in his paper. '

6.2 Constructivizing McGee’s result The constructivization of McGee’s results—
in the sense of treating the closure of theories in the object language as effected
constructively—can definitely go through with Q taking the place occupied by R in
McGee’s seminal study.'* Note that since R is a subtheory of Q we are entitled to
reprise all of McGee’s deducibilites modulo R as deducibilites modulo Q.
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We turn now to our investigation of what the core logician can accomplish within
the setting that McGee so resourcefully created, which he did by means of a fixed-
point construction using the cleverly chosen predicate ¢ <> Tr(x).

Definition 3 For any sentence ¢, let By be the “fixed point” (modulo Q) for the
unary formula ¢ <> Tr(x).

Note that By is a notation that we have taken over from McGee, to make comparison
with his paper easier. By is not to be confused with our propositional placeholder B.

The fixed point By “says of itself” (modulo the theory Q) that it is true if and only
if ¢. For consider again what Corollary 3 provides:

0 -k v (0.
By Corollary 3, if we take ¢ <> Tr(x) for the predicate ¥ (x) and take By for the
fixed-point sentence 6, we have
B¢ —|Q|— ¢<—>TF(FB¢—I).
In McGee’s hands, in the classical setting (in the object language) this entails
¢ —|Q'— B¢ <> Tr(l—Bd,—l).
We shall in due course, however, see that for the core logician, by contrast, it yields
(from Lemmas 6 and 7) “only”
—'—'qb —|Q|— B¢<—>Tr('—B¢—')
—at least, in the right-to-left direction.
Definition 4 For any sentence ¢, let 8(¢) be the Tarskian biconditional 7(Bg),
that is,
T}"('—Bq;') <> B¢.
Tarskian biconditionals of this form will be called fixed-point Tarskian bicondition-
als.

Note that fixed-point Tarskian biconditionals are quite a rare breed among
Tarskian biconditionals generally. Tarskian biconditionals such as

Tr((0=50")«0=s0
Tr(™—=0=50") <>—=0=s0
Tr("Conpa ') <> Conpa
Tr("—Conpya ') <> —Conpp

are definitely not fixed-point Tarskian biconditionals. But the Tarskian biconditionals

Tr("Bo=s0 ") < Bo=so
Tr("B-0=s0") <> B-o=s0
Tr(r—BCOT'IpA—l) <~ BConpA
Tr(rB—'ConpA—l) <~ B—'ConpA

definitely are.
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Definition 5 For any set A of sentences, let BA be the set {B(¢) | ¢ € A}.

Recall Definition 3, which defines By as the fixed point for the unary formula
¢ <> Tr(x), so that we have, for any ¢ in L,

B¢ —|Q|— ¢ <> Tr('_B¢-').
Definition 6 By the special substitution we shall mean the following substitution
for the placeholders I', A, B, and C in Lemmas 2 and 3:

r A B C

L
Q B¢ ¢ Tr('_B¢-')

The substituend ¢ that is involved in the special substitution is itself a placeholder for
L-sentences. We shall see in due course that upon applying the special substitution
to Lemmas 2 and 3, their consistency suppositions will be satisfied.

Lemma 6 Suppose Q, ¢ ¥ L. Then Q, ¢ - B(¢)—that is,
Q.¢ F Tr("By") < By.
Proof By Corollary 3 (fixed points) we have
Q. By =< Tr("By))
and
Q.¢<Tr("By") F By.
The result follows by Lemma 2, using the special substitution. O

So: modulo Q, any sentence ¢ consistent with Q core-implies the Tarskian bicon-
ditional for the fixed-point sentence that “says of itself” that it is true if and only

if ¢.
Lemma 7 Suppose Q, B(¢p) ¥ L. Then Q, B(¢) = ——¢ ; that is,
Q, Tr(’_B¢7) <> B¢ H —'—'¢ .

Proof  Once again, by Corollary 3 (fixed points) we have

Q. By -od<Tr("By ")
and

Q.¢<Tr("By") F By.
The result follows by Lemma 3, once again using the special substitution. O

So: modulo Q, the Tarskian biconditional for the fixed-point sentence (that “says of
itself” that it is true if and only if ¢ is the case) core-implies the double negation of ¢
—provided only that that Tarskian biconditional is consistent with Q.

Lemma 8 Suppose Q, A ¥ L. Then Q, BA ¥ L.

Proof  For (constructive) reductio ad absurdum, suppose that Q, BA + L. Thus
for some finite A’ € A we have Q, BA’ I L. Take any ¢ in A. Clearly Q, ¢ ¥ L.
By Lemma 6 we therefore have Q, ¢ = B(¢). Hence by (multiple, but only finitely
many applications of) cut for L, it follows that Q, A’ F L, whence also Q, A - L,
contrary to main supposition. Thus Q, BA ¥ L. O

Corollary 5 Suppose Q, A ¥ L. Then Q, (BA)® ¥ L.
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Proof Immediate by Lemmas 5 and 8. O

Lemma 9 Suppose Q, A ¥ L. Suppose y is an enumeration of all Tarskian
biconditionals. Then for every sentence ¥ we have either Q, (BA)Y + ——=y or
Q. (BA)Y F =y
Proof  Suppose y is an enumeration of all Tarskian biconditionals. Let i be an
arbitrary sentence. Now make the main supposition:

QA F L.

By Lemma 8 we have
Q.BA ¥ L.

In other words, we have ®(BA), where ® is the compact property of Q-consistency.
Hence by Lemma 5 we have

Q.(BA) ¥ L. ()

Now suppose for the sake of argument that

Q.(BA) .y = L.

By (¥) it is clear that this deducibility statement would have to be witnessed by a
(dis)proof that uses ¥ as an assumption. By the rule —I of core logic (which does
not allow vacuous discharge) it would then follow that

Q. (BA)Y F —v.

Suppose further, for the sake of argument, that
Q, (BA), =y L.
By cut For _L it would follow that
Q, (BA)Y + L.
But this contradicts (7).
It therefore follows by classical logic at the meta level that
either Q,(BA), v ¥ L or Q,(BA) .-y ¥ L.

We now proceed to investigate each of these cases.
Case (i): Q, (BA)Y, ¢ ¥ L.
Clearly Q, ¥ ¥ L. By Lemma 6 we therefore have

Qv FBW).

Suppose for reductio that

Q. (BA) . B(Y) = L.

By cur For L it would follow that
Q.(BA) . ¢ = L,
contradicting our case assumption. We therefore conclude by reductio that

Q. (BA). B(y) ¥ L.

Clearly, then,
Q. (BA)Y ¥ L.

By Lemma 7 we therefore have

Q.(BA) ==y
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Hence by V-Introduction we have

either Q, (BA)Y F—=—=¢ or Q,(BA)" F —y.

Case (ii): Q, (BA)Y, =y ¥ L. Clearly, then,
Q,—y ¥ L.
By Lemma 6 we therefore have
Q. =y = B(=y).
Suppose for reductio that
Q. (BA). B(—y) - L.
By cut For L it would follow that
Q.(BA) .~y F L,
contradicting our case assumption. We therefore conclude by reductio that

Q.(BA)Y, B(=y) ¥ L.
Clearly, then,
By Lemma 7 we therefore have
Q. (BA) ===y

Since Q, (BA)Y ¥ L and ———y¢ F —y, we now have by Corollary 2 (Cut oN
CoNSISTENT PREMISES) that

Q. (BA)Y F =y
Hence by Vv-Introduction we have
either Q,(BA)Y F ==y or Q,(BA) F —y.

That concludes our exploration of each case, arriving at the same disjunctive conclu-
sion in each. It now follows (by proof by cases) that

either Q, (BA) F——y or Q,(BA)Y F —y. O

Theorem 3 (Constructivized McGee) Suppose Q, A ¥ 1.
Let ¢ be a fixed enumeration of all Tarskian biconditionals in L.
Then

1. for every ¢ € A we have Q, (BA)® = ——¢; and
2. for every sentence \r we have either Q, (BA)? = ==y or Q, (BA)¢ = —y.

Note that the title of this Theorem—“Constructivized McGee”—adverts to the fact
that in our version of McGee’s result the object-linguistic deducibilities involved are
all core deducibilities.

Proof Suppose Q, A ¥ L. By Lemma 8, we have Q, BA ¥ L.
Ad (1): Suppose ¢ € A. Clearly Q, 8(¢) ¥ L. By Lemma 7 we therefore have

Q. B F ——¢.
But B(¢) € BA C (BA)?. Hence
Q. (BA) F ——¢.
Ad (2): This is Lemma 9. O]
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6.3 Some final thoughts Theorem 3 says that if A is Q-consistent, then the expanded
Q-consistent set (BA)® of Tarskian biconditionals has extraordinary strength:
(1) modulo Q, (BA)?® core-implies =—A; and

(2) modulo Q, the set (BA)? is, constructively, “almost complete.”

To attain McGee’s original THEOREM 1, all one need do is classicize the logic
of the object language by appending, say, the rule of double negation elimination
(so as to obtain classical core logic C*). That makes (BA)¢ imply A modulo Q,
and also makes (BA)? classically complete, modulo Q. For then we have, for every
sentence ¥/,

either Q,(BA)’ Fe+ ¥ or Q,(BA) b+ —.

One possible choice for A is . Part (1) of Theorem 3 is then trivial; but part (2)
in this case says that for every sentence i we have

either Q,?° - ——y or Q,@° F —y.

Marching down the list of all Tarskian biconditionals, starting empty-handed, con-
sidering them one-by-one in the order dictated by ¢, and putting them into one’s bag
if and only if doing so preserves the Q-consistency of its contents, one ends up in
the infinite limit with a complete consistent arithmetical £-theory ¢ extending Q.
In particular, #¢ will core-decide every sentence in L, the arithmetical language free
of Tr.

Another possible choice for A is Th(N) itself. Note that because of Lemma 6
(for all ¢ core-consistent with Q, we have Q,¢ F B(¢)) and the truth of Q, the
set B(Th(N)) consists only of truths. The set (8(Th(N)))® must, however, on pain of
inconsistency, fail to contain all Tarskian biconditionals, regardless of the enumera-
tion &.

We sometimes have to pinch ourselves to be reminded that (8(Th(N)))® is just a
set of Tarskian biconditionals involving the predicate Tr—which, if Tr really were a
truth predicate, would all be regarded (especially by the Horwichian minimalist) as
“trivially true.”

It is then surprising, if one is a constructivist, to learn that this set (8(Th(N)))®
of supposed trivialities, in conjunction with the very weak arithmetical theory Q,
logically implies the whole “constructive content” ——Th(N) of the set Th(N) of
classical arithmetical truths; and just as surprising, if one is a classicist, to learn that,
again in conjunction with Q, it logically implies the whole set Th(N) itself. How can
apparently trivial truths about truth do that?

One final thought in closing: on the universally accepted assumption that Th(N) is
consistent, the set (8(Th(N)))? is of course not effectively enumerable; for, if it were,
one could effectively filter out from such an enumeration just those sentences in it
that do not contain 7r, thereby achieving an effective enumeration of Th(N), contrary
to Godel’s first incompleteness theorem.

Notes

1. The reader will find these rules in Tennant [16], pp. 161-164.

2. See Tennant [11], pp. 130 and 198. (What the present author called intuitionistic relevant
logic at the time of that work he now calls core logic.) Note that the set of all Tarskian
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13.
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biconditionals does not force the predicate 7r to satisfy the principle of bivalence, that
is, for all ¢, either Tr(¢) or not-Tr(¢).

See Tarski [7]. The bivalence result is THEOREM 2, p. 197. The reader will find that
strictly classical reasoning intrudes in Tarski’s proof of LEmma B on p. 198, on which
his THEOREM 2 depends.

In order to limit sideways spread, we use here the serial forms of VE and of —E rather
than their parallelized forms.

Thanks are owed here to an anonymous referee for pointing out this possible exception.
The caveat is necessary if we take the “theories” in question to be logically closed, rather
than sets of axioms that are not logically closed.

We avoid saying “fixed” here, to avoid any confusion with the fixed points that the func-
tion g will afford.

In propositional logic, every classically inconsistent set is core-inconsistent.

The proof-theoretic criterion of paradoxicality was put forward in Tennant [10] and
refined in Tennant [12]. See also Tennant [13].

Note that an analogous observation holds in the constructive case: core logic C and
intuitionistic logic I prove the same consequences from any consistent set of sentences.
Note further that these pairs of systems (C and I, and C* and C) also prove the same
inconsistencies.

In reprising this part of McGee’s argument, Cieslifiski [2], p. 697, likewise assumes that
it is classical logic that is being used for closure.

Note that the classicality of reductio at the final step here is tied to our use of ® as a
“primitive placeholder” for the property with respect to which the expansion is being
carried out. In the context of our present concerns, however, ® will be instantiated as
some sort of consistency of the sets being constructed. It would therefore be regimentable
as Q; ¥ L for the i-th stage of expansion, and as Q¥ ¥ L for the final result Q¥ of
the expansion. This would enable us to take Q¥ - L as our reductio assumption for this
final step, and to use the constructive rule —-I to draw our final conclusion QY ¥ 1.
The other points of “classicality” pointed out above, however, do not admit of any such
constructive work-around.

® could also be the property of being a conservative extension of some base theory
in a particular sublanguage. See the use made of this kind of & by Cieslinski [2], in
Theorem 1 on p. 698. It asserts the existence of maximal conservative extensions of PA,
in a language extending the language of arithmetic by including a truth predicate.

Thanks to Steven Dalglish for making me aware of the expository need to stress this
point explicitly; and thanks also to an anonymous referee for pointing out that the initial
set 2 itself is a separate source of the multiplicity in question.

But as pointed out in Section 4 the plausible conjecture lies close at hand that we can
do the same without (in an abundance of caution) thus substituting the slightly stronger
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theory Q for R. If our conjecture holds, then the upshot would be that all our subsequent
‘modulo Q’ turnstiles could be ‘modulo R’ turnstiles that could be read as deducibility
in core logic.
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