

A New Alternating Direction Method for Linear Programming

Sinong Wang Ness Shroff
The Ohio State University

Research Problems

We are interested in designing the fast algorithm to solve the general linear programing (LP) problem of the form,

$$egin{aligned} \mathbf{min} & \mathbf{c}^T \mathbf{x} \ \mathbf{x} \in \mathbb{R}^n & \mathbf{s}.t. & \mathbf{A}\mathbf{x} = \mathbf{b}, x_i \geq 0, i \in [n_b] \end{aligned}$$

Applications of LP in machine learning:

- 11-regularized support vector machine (SVM) problem.
- Nonnegative matrix factorization problem.
- Sparse inverse covariance matrix estimation problem.
- Markov decision process (MDP) problem.
- Maximum a posterior estimation problem

Basic features of LP in machine learning: large-scale, sparse

$$nnz(\mathbf{A}) \ll mn$$

Existing Algorithms including simplex method and interior point method: complexity is at least quadratic in the problem dimension.

Research objective: design an algorithm to exploit the sparse structure.

Related Works

First-order algorithm requires a matrix vector multiplication **Ax** in each iteration with complexity linear in nnz(A).

- Subgradient descent method
- Augmented Lagrangian Method (ALM) [2]
- Alternating Directional Method of Multiplier (ADMM)
 [1]

Tail Convergence of the Existing ADMM Method [1]

Observations:

- It converges fast in the initial phase, but exhibits a slow and fluctuating tail convergence.
- Theoretically, it can be recovered by an inexact Uzawa method (local second-order approximates augmented Lagrangian function)

New Variable Splitting Method

We separate the equality and inequality constraints by adding another group of variables y.

The Augmented Lagrangian function of the primal problem is $L(\mathbf{x}, \mathbf{y}, \mathbf{z}) = \mathbf{c}^T \mathbf{x} + g(\mathbf{y}) + \mathbf{z}^T (\mathbf{A}_1 \mathbf{x} + \mathbf{A}_2 \mathbf{y} - \overline{\mathbf{b}}) + \frac{\rho}{2} ||\mathbf{A}_1 \mathbf{x} + \mathbf{A}_2 \mathbf{y} - \overline{\mathbf{b}}||^2$

Gauss–Seidel type update:

- Primal: $\mathbf{x}^{k+1} = \arg\min_{\mathbf{x} \in \mathbb{R}^n} L(\mathbf{x}, \mathbf{y}^k, \mathbf{z}^k) \quad \mathbf{y}^{k+1} = \arg\min_{\mathbf{y} \in \mathbb{R}^n} L(\mathbf{x}^{k+1}, \mathbf{y}, \mathbf{z}^k)$
- Dual update: $\mathbf{z}^{k+1} = \mathbf{z}^k + \rho(\mathbf{A}_1\mathbf{x}^{k+1} + \mathbf{A}_2\mathbf{y}^{k+1} \overline{\mathbf{b}})$

Basic **feature** of this algorithm:

• Update of x can be reduced to solving a well-conditioned linear system

$$\mathbf{x}^{k+1} = \rho^{-1} (\mathbf{I} + \mathbf{A}^T \mathbf{A})^{-1} \mathbf{d}^k$$

• Update of y can be solved in closed-form expression.

Global Linear Convergence of New Splitting Method

Lemma 1 (Convergence [3]). Let $\mathbf{p}^k = \mathbf{z}^k - \rho \mathbf{A}_2 \mathbf{y}^k$, then $\|\mathbf{p}^{k+1} - [\mathbf{p}^{k+1}]_{G^*}\|^2 \le \|\mathbf{p}^k - [\mathbf{p}^k]_{G^*}\|^2 - \|\mathbf{p}^{k+1} - \mathbf{p}^k\|^2$

Distance to optimal solution set monotonically decreases.

Lemma 2 (Geometry of the optimal solution set of LP)

- Feasibility: $\mathbf{A}\mathbf{x}^* = \mathbf{b}$, $\mathbf{x}^* = \mathbf{y}^*$ and $-\mathbf{A}^T\mathbf{z}_{\mathbf{x}}^* \mathbf{z}_{\mathbf{y}}^* = \mathbf{c}$ $y_i^* \ge 0, z_{y,i}^* \le 0, i \in [n_b]; z_{y,i}^* = 0, i \in [n] \setminus [n_b]$
- Strong duality: $\mathbf{c}^T \mathbf{x}^* + \mathbf{b}^T \mathbf{z}_x^* = 0$

Optimal set of LP is described by a convex polyhedron.

Lemma 3 (Hoffman bound [4]) $S = \{x \in \mathbb{R}^d | Ex = t, Cx \leq d\}$

$$\|\mathbf{x} - [\mathbf{x}]_{\mathcal{S}}\|^2 \le \theta_S(\|\mathbf{E}\mathbf{x} - \mathbf{t}\|^2 + \|[\mathbf{C}\mathbf{x} - \mathbf{d}]_+\|^2$$

Bound distance by residuals (constraint violations).

Lemma 4 (Estimation of residuals)

$$\begin{cases} \mathbf{A}_{1}\mathbf{x}^{k+1} + \mathbf{A}_{2}\mathbf{y}^{k} - \overline{\mathbf{b}} = (\mathbf{p}^{k+1} - \mathbf{p}^{k})/\rho, \\ \mathbf{c} + \mathbf{A}_{1}^{T}\mathbf{z}^{k} = \mathbf{A}_{1}^{T}(\mathbf{p}^{k} - \mathbf{p}^{k+1}), \\ \mathbf{c}^{T}\mathbf{x}^{k+1} + \mathbf{b}^{T}\mathbf{z}_{x}^{k} = (\mathbf{A}_{1}\mathbf{x}^{k+1} - \mathbf{z}^{k}/\rho)^{T}(\mathbf{p}^{k} - \mathbf{p}^{k+1}), \\ y_{i}^{k} \geq 0, z_{y,i}^{k} \leq 0, i \in [n_{b}]; z_{y,i}^{k} = 0, i \in [n] \setminus [n_{b}]. \end{cases}$$

Theorem 1 (Global linear convergence) To guarantee that $\|\mathbf{z}^k - \mathbf{z}^*\| \le \epsilon$, it suffices to run $K = 2\gamma^2 \log(2D_0/\epsilon)$ ADMM iterations with solving accuracy $\epsilon_k \le \epsilon^2/8K^2$.

Theorem 2 (Overall Complexity) If we use the ACDM[5] to solve the inner linear system, the overall complexity of algorithm 1 is $O(a_m \theta_{S^*}^2 (R_x || \mathbf{A} || + R_z)^2 nnz(\mathbf{A}) \log^2(1/\epsilon))$

The complexity of existing ADMM [1] is

$$O(a_m \mu^2 (a_m R_x + d_m R_z)^2 (\sqrt{mn} + ||\mathbf{A}||_F)^2 nnz(\mathbf{A}) \log(1/\epsilon))$$

Algorithm 1 Alternating Direction Method of Multiplier with Inexact Subproblem Solver

Initialize $\mathbf{z}^0 \in \mathbb{R}^{m+n}$, choose parameter $\rho > 0$.

- 1. Primal update: update x by solving the linear system with accuracy ϵ_k , $\mathbf{x}^{k+1} = \rho^{-1}(\mathbf{I} + \mathbf{A}^T\mathbf{A})^{-1}\mathbf{d}^k$, with $\mathbf{d}^k = -\mathbf{A}_1^T[\mathbf{z}^k + \rho(\mathbf{A}_2\mathbf{y}^k \overline{\mathbf{b}})] \mathbf{c}$.
- 2. Primal update: for each i, let $y_i^{k+1} = \left[x_i^{k+1} + z_{y,i}^{k}/\rho\right]_{V_i}$.
- 3. Dual update: $\mathbf{z}_{x}^{k+1} = \mathbf{z}_{x}^{k} + \rho(\mathbf{A}\mathbf{x}^{k+1} \mathbf{b}), \ \mathbf{z}_{y}^{k+1} = \mathbf{z}_{y}^{k} + \rho(\mathbf{x}^{k+1} \mathbf{y}^{k+1}).$ **until** $\|\mathbf{A}\mathbf{x}^{k+1} - \mathbf{b}\|_{\infty} \le \epsilon$ and $\|\mathbf{x}^{k+1} - \mathbf{y}^{k+1}\|_{\infty} \le \epsilon$

Simulation Results

Timing Results (in sec. long means > 60 hours)

Data	m	n	$nnz(\mathbf{A})$	LPADMM		ALCD		ADMM	
				Time	Iterations	Time	Iterations	Time	Iterations
bp1	17408	16384	8421376	22	3155	864	14534	long	long
bp2	34816	32768	33619968	79	4657	2846	19036	long	long
bp3	69632	65536	134348800	217	6287	12862	24760	long	long
arcene	50095	30097	1151775	801	15198	1978	176060	21329	2035415
real-sim	176986	135072	7609186	955	4274	1906	18262	19697	249363
sonar	80912	68224	2756832	258	5446	659	13789	3828	151972
colon	217580	161040	8439626	395	216	455	1288	7423	83680
w2a	12048256	12146960	167299110	19630	2525	45388	8492	long	long
news20	2785205	2498375	53625267	7765	2205	9173	6174	long	long

- 2X-40X speed up compared with state-of-arts.
- Significantly faster than commercial software CPLEX
- Flexibility to tackle various problems.

[1] Jonathan Eckstein, Dimitri P Bertsekas. An Alternating Direction Method for Linear Programming, 1990.

[2] Ian En-Hsu Yen, et al. Sparse Linear Programming via Primal and Dual Augmented Coordinate Descent. *NIPS* 2015.

[3] Eckstein, Jonathan, Dimitri P. Bertsekas. "On the Douglas-Rachford Splitting Method and the Proximal Point Algorithm for Maximal Monotone Operators." *Mathematical Programming*, 1992. [4] Alan J Hoffman. On Approximate Solutions of Systems of Linear Inequalities. Journal of Research of the National Bureau of Standards, 1952.

[5] Zeyuan Allen-Zhu, et al. Even Faster Accelerated Coordinate Descent Using Non-uniform Sampling. In *ICML* 2016.