
Research Problems

We are interested in designing the fast algorithm to solve the 
general linear programing (LP) problem of the form,

Related Works

First-order algorithm requires a matrix vector multiplication 
Ax in each iteration with complexity linear in nnz(A).
• Subgradient descent method
• Augmented Lagrangian Method (ALM) [2]
• Alternating Directional Method of Multiplier (ADMM) 
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Simulation Results

Timing Results (in sec. long means > 60 hours)

Global Linear Convergence of New Splitting Method

Basic feature of this algorithm:
• Update of x can be reduced to solving  a well-conditioned 

linear system

• Update of y can be solved in closed-form expression.
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Applications of LP in machine learning:
• l1-regularized support vector machine (SVM) problem.
• Nonnegative matrix factorization problem.
• Sparse inverse covariance matrix estimation problem.
• Markov decision process (MDP) problem.
• Maximum a posterior estimation problem
Basic features of LP in machine learning: large-scale, sparse

Existing Algorithms including simplex method and interior
point method: complexity is at least quadratic in the problem
dimension.

Research objective: design an algorithm to exploit the 
sparse structure.
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• It converges fast in the initial

phase, but exhibits a slow and
fluctuating tail convergence.

• Theoretically, it can be recovered
by an inexact Uzawa method
(local second-order approximates
augmented Lagrangian function)

New Variable Splitting Method 
We separate the equality and inequality constraints by adding 
another group of variables y.

Primal Dual

The Augmented Lagrangian function of the primal problem is

Gauss–Seidel type update:
• Primal: 
• Dual update:

Lemma 1 (Convergence [3]). Let                               , then

Distance to optimal solution set monotonically decreases.

Lemma 2 (Geometry of the optimal solution set of LP)
• Feasibility:                                   and

• Strong duality:
Optimal set of LP is described by a convex polyhedron.
Lemma 3 (Hoffman bound [4]) 

Bound distance by residuals (constraint violations). 

Lemma 4 (Estimation of residuals)

Theorem 1 (Global linear convergence) To guarantee that
, it suffices to run                                    ADMM 

iterations with solving accuracy                      .
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Theorem 2 (Overall Complexity) If we use the ACDM[5] 
to solve the inner linear system, the overall complexity of 
algorithm 1 is

The complexity of existing ADMM [1] is

• 2X-40X speed up compared with state-of-arts.
• Significantly faster than commercial software CPLEX
• Flexibility to tackle various problems.


