PRESSURE METRICS FOR DEFORMATION SPACES OF QUASIFUCHSIAN GROUPS WITH PARABOLICS

LIEN-YUNG "NYIMA" KAO (高連庸)

JOINT WITH HARRY BRAY AND DICK CANARY

THE GEORGE WASHINGTON UNIVERSITY

WASHINGTON, DC

OSU Ergodic Theory Seminar

09/17/2020 @ the Virtual Universe

OUTLINE

- Goal:
 - Dynamics:
 - A study of non-compact systems
 - Geometry:
 - Construct a metric on quasifuchsian spaces
 - Entropy rigidity type results
- What have been done
- Setup and our results
- Model Example: Teichmüller spaces of closed surfaces
- From Fuchsian to quasifuchsian
- From compact to non-compact
 - How does the proofs look like in compact cases
 - What failed in non-compact cases and remedies

Let $S = S_{g,n}$ be an orientable surface with g genus and n punctures and negative Euler characteristic.

FUCHSIAN REPRESENTATIONS:

QUASIFUCHSIAN REPRESENTATIONS:

Let $\pi_1(S) \cong \Gamma \leq \text{PSL}(2,\mathbb{R})$ be a Fuchsian group s.t. $\Gamma \setminus \mathbb{H}^2$ has finite area.

We say $\rho: \Gamma \to \mathrm{PSL}(2,\mathbb{C})$ quasifuction if there exists a quaisconformal homeomorphism $\phi: \mathbb{C} \to \mathbb{C}$ such that $\rho(\gamma) = \phi \gamma \phi^{-1}$ for all $\gamma \in \Gamma$.

orientation preserving isometries on \mathbb{H}^3

maps small circles to small ellipse with bdd axes ratio
i.e.
$$\limsup_{r \to 0} \frac{\sup\{(d(\phi(z), \phi(x)) : d(x, z) = r\}}{\inf\{(d(\phi(z), \phi(x)) : d(x, z) = r\}} \le K$$

of a quast-Pachatina arocredit: Jeff

tations.

Equivalently, $\rho : \Gamma \to \mathrm{PSL}(2, \mathbb{C})$ is quasifuchsian if and only if $\rho(\partial S)$ is parabolic and $\rho(\Gamma)$ preserves a Jordan curve in $\hat{\mathbb{C}}$.

$$N_{\rho} := \rho(\Gamma) / \mathbb{H}^{3} \cong S \times (-1, 1)$$

$$QC(\Gamma) \subset \operatorname{Hom}(\Gamma, \operatorname{PSL}(2, \mathbb{C})) \text{ be the space of all } \operatorname{Grief contraction}$$

credit: Jeff Brock

TEICHMULLER SPACE

 $\mathcal{T}(S) := \operatorname{Hom}_{\mathbf{F}}^{\operatorname{tp}}(\pi_1(S), \operatorname{PSL}(2, \mathbb{R})) / \sim$

= conjugacy classes of type-preserving finite area Fuchsian reps.

if there exists an isomorphism $\iota: \rho_1(\pi_1(S)) \to \rho_2(\pi_1(S))$ $X_\rho := \rho(\pi_1(S))/\mathbb{H}$ sending hyperbolic elements to hyperbolic elements and parabolic elements to parabolic elements

has finite area

QUASIFUCHSIAN SPACE

 $QF(S) = QC(\Gamma)/PSL(2,\mathbb{C}) \subset Hom_{tp}(\Gamma, PSL(2,\mathbb{C}))//PSL(2,\mathbb{C})$

 $QF(S) \cong \mathcal{T}(S) \times \mathcal{T}(S)$

The Fuchsian locus $F(S) \subset QF(S)$ is the set of fuchsian reps

WHAT HAVE BEEN DONE (FOR PRESSURE METRICS)

When S is a **closed surface**:

- Thurston: the Hessian of I : $\mathcal{T}(S) \times \mathcal{T}(S)$ is positively definite, and thus defines a Riemannian metric on $\mathcal{T}(S)$
- Wolpert (86): Thurston's Riemannian metric is exactly the Weil-Petersson metric
 Thermodynamic Formalism
- McMullen (08): recovered Thurston's Riemannian metric by
 - Also, Pollicott, Sharp (16)

the pressure metric

- Bridgeman (10): builded up the pressure for quasifuchsian space
- Bridgeman, Canary, Labourie, Sambarino (15): higher rank generalizations; also, Pollicott, Sharp (16, 18)
- When S is NOT compact and has cusps (i.e., not convex cocompact)
 - **K.** (19): construct the pressure metric for $\mathcal{T}(S)$

- When *S* is a metric graph
 - Pollicott, Sharp (13), K. (17): the pressure metric geometry is different from Weil-Petersson metric geometry
- General (dynamical) setting:
 - Giulietti, Kloeckner, Lopes, Marcon (18): a Riemannian metric of the cohomologus space of normalized pressure zero Hölder potentials of SFT (a slightly different pressure metric)
 - **Lopes, Ruggiero** (19): this space is non-negatively curved

OUR RESULT

Theorem A (Bray, Canary, K.). If $\rho, \eta \in QC(\Gamma)$, then $J(\rho, \eta) \geq 1$ and the equality holds iff ρ and η are conjugate in $Isom(\mathbb{H}^3)$.

Theorem B (Bray, Canary, K.). The Hausdorff dimension of the limit set $\Lambda(\rho(\Gamma))$ varies analytically in $QC(\Gamma)$. Both $I(\rho, \eta)$ and $J(\rho, \eta)$ vary analytically over $QC(\Gamma) \times QC(\Gamma)$.

 $Mod(S) = Diff^+(S)/Diff_0(S)$

i.e. h_{ρ} the topological entropy of the geodesic over N_{ρ}

 $d_{\mathbb{P}}(\rho,\eta) = \inf\{\int_{0}^{1} \sqrt{\mathbb{P}(\gamma'(t),\gamma'(t))} dt\}$

Theorem C (Bray, Canary, K.). The pressure form $\mathbb{P} := \text{Hess}(J(\rho, \cdot))$ on QF(S) induces a Mod(S)-invariant path metric, which is an analytic Riemannian metric on the complement of the Fuchsion locus. Moreover, if $v \in T_{\rho}(QF(S))$, then $\mathbb{P}(v, v) = 0$ iff ρ is Fuchsian and v is a pure

bending vector.

1.
$$v = \frac{d}{dt}\rho_t, \ \rho_0 \in F(S), \ \text{and} \ \rho_{-t} = \overline{\rho_t} \ \text{for all} \ t$$

2. $T_{\rho}QF(S) = T_{\rho}F(S) \oplus B_{\rho}$

THE CONSTRUCTION OF PRESSURE METRIC FOR TEICHMÜLLER SPACES OF CLOSED SURFACES –through symbolic dynamics of the geodesic flow

- Let *S* be a closed surface and *h* be a hyperbolic metric on *S*.
- $g_t: T^1S \to T^1S$ can be understood by the suspension flow:
 - $\sigma_r: \Sigma_r \to \Sigma_r$ where (Σ, σ) is a SFT and the root function r is constructed by the Bowen-Series coding.

- More precisely, $r = \log |T'|$ where $T : \Lambda(\Gamma) \to \Lambda(\Gamma)$ is the Bowen-Series map the limit set of Γ on $\partial \mathbb{H}^2$
- *r* is (bounded) Hölder conti.

- One observe that the symbolic model is stable under perturbation of the hyperbolic metric
 - Structure stability of Anosov flows
- Bowen's formula:

Let (Σ^+, σ, r) be the suspension flow model for geodesic flow over the hyperbolic surface X, then P(-r) = 0 where $P(g) := \lim_{n \to \infty} \frac{1}{n} \log \sum_{x \in I} e^{S_n g(x)}$ is the $x \in \operatorname{Fix}^n$ topological pressure of g

In general, $P(-h_X \cdot r_X) = 0$ where h_X is the topological entropy of the geodesic flow over Xm is a eq. state for $f \iff P(f) = h(m) + \int f \ dm$

$$h_X = \lim_{T \to \infty} \frac{1}{T} \{ \lambda : l(\lambda) \le T \}$$

Liouville measure (Bowen-Margulis): $m_L \leftrightarrow \frac{m_{r_X} \times dt}{r_X}$

• Dynamics interpretation of the intersection number: Let ρ_1 , ρ_2 be two cocompact Fuchsian representations, and τ_1 , τ_2 be the corresponding roof functions, then

$$\mathbf{I}(\rho_1, \rho_2) = \frac{\int_{\Sigma^+} \tau_2 \, \mathrm{d}m_{\tau_1}}{\int_{\Sigma^+} \tau_1 \, \mathrm{d}m_{\tau_1}}$$

where is m_{τ_1} the equilibrium state for τ_1 .

Recall:
$$I(\rho_1, \rho_2) = \lim_{T \to \infty} \frac{1}{|R_{\rho_1}(T)|} \sum_{\gamma \in R_{\rho_1}(T)} \frac{l_2[\gamma]}{l_1[\gamma]}$$

where $R_{\rho_1}(T) = \{\gamma : l_{\rho_1}[\gamma] < T\}$

Idea: the mme μ_{τ_1} of Σ_{τ_1} is equidistributed on closed orbits. On the other hand, μ_{τ_1} is the lift of the eq. state m_{τ_1} .

Intersection Rigidity

Theorem (Thurston). Let ρ_1, ρ_2 be two fuchsian reps, then $I(\rho_1, \rho_2) \ge 1$, and the equality holds iff ρ_1 and ρ_2 are conjugate in $PSL(2, \mathbb{R})$.

$$0 = P(-\tau_2) = h(m_{-\tau_2}) - \int \tau_2 \ dm_{\tau_2} \ge = h(m_{-\tau_1}) - \int \tau_2 \ dm_{\tau_1}$$

$$0 = P(-\tau_1) = h(m_{-\tau_1}) - \int \tau_1 \ dm_{\tau_1}$$

$$I(\rho_1, \rho_2) = 1 \iff m_{-\tau_1} \text{ is an eq. state for } -\tau_2 \iff \tau_1 \sim \tau_2$$

$$\tau_1 \sim \tau_2 \iff \rho_1 \sim \rho_2 \text{ by marked length spectrum rigidity}$$

$$cohomology:$$

$$f \sim g \iff f - g = h - h \circ \sigma$$

The pressure metric

Theorem (Thurston). Let $\{\rho_t\} \subset \mathcal{T}(S)$ be an analytic path. Then $I(\rho_0, \rho_t)$ is real analytic, and $\frac{d^2}{dt^2}\Big|_{t=0} I(\rho_0, \rho_t)$ is non-degenerate. Hence, the Hessian of I gives a Riemannian metric on $\mathcal{T}(S)$

- Thermodynamic mapping
 - ▶ $\Psi : \mathcal{T}(S) \to P : \{ \text{pressure zero functions} \} / ~$

•
$$d\Psi: T_{\rho}\mathcal{T}(S) \to T_{-\tau_{\rho}} \mathbf{P} = \mathrm{Ker} D_{-\tau_{\rho}} \mathbf{P}$$

- Analyticity of pressure
- Pressure metric is given by

$$||\dot{\rho}_{0}||_{\mathbb{P}}^{2} := ||\dot{\tau}_{0}||_{\mathbb{P}}^{2} := \frac{\operatorname{Var}(\dot{\tau}_{0}, m_{-\tau_{0}})}{\int \tau_{0} \, dm_{-\tau_{0}}}$$

Second derivative of pressure

$$0 = \left. \frac{\mathrm{d}^2 P(-\tau_t)}{\mathrm{d}t^2} \right|_{t=0} = (D_{-\tau_0} P)(-\ddot{\tau}_0) + (D_{-\tau_0}^2 P)(-\dot{\tau}_0) = -\int \ddot{\tau}_0 \,\mathrm{dm}_{\tau_0} + \mathrm{Var}(-\dot{\tau}_0, \mathrm{m}_{\tau_0})$$

$$\left. \frac{\mathrm{d}^{2} \mathrm{I}(\rho_{0}, \rho_{t})}{\mathrm{d}t^{2}} \right|_{t=0} = \frac{\int \ddot{\tau} \,\mathrm{d}m_{\tau_{0}}}{\int \tau_{0} \,\mathrm{d}m_{\tau_{0}}} = \frac{\mathrm{Var}(\dot{\tau}_{0}, m_{\tau_{0}})}{\int \tau_{0} \,\mathrm{d}m_{\tau_{0}}} = ||\dot{\tau}_{0}||_{\mathrm{P}}^{2}$$

Degeneracy criterion:

$$\operatorname{Var}(\dot{\tau}_0, \mathbf{m}_{\tau_0}) = 0 \iff \dot{\tau}_0 \sim 0 \iff \dot{\rho}_0 = 0$$
$$\dot{\tau}_0 \in \operatorname{Ker}_{-\tau_0} P \iff \int \dot{\tau}_0 \, dm_{\tau_0} = 0$$

Since $\frac{d\alpha}{dt}$ for any closed geodesic α and $\mathcal{T}(S)$ is determined by finitely many closed geodesics

SUMMARY

- S is a closed surface and $\rho_1, \rho_2 \in \mathcal{T}(S)$
- A suspension flow model: $\sigma^{r_i}(x, t) : \Sigma_{r_i} \to \Sigma_{r_i}$
 - (Bowen-Series coding of the geodesics flow)
 - ▶ same base space Σ^+ and ``nice" roof functions r_i
 - stable under perturbation
- Bowen's formula: $P(-h(\rho) \cdot r_{\rho}) = 0$
- > Dynamics interpretation of $I(\rho_1, \rho_2)$
- Good regularity (analyticity) of the pressure P over Σ^+

Degeneracy criterion: $\mathbb{P}(v, v) = 0 \iff \frac{d}{dt} \bigg|_{t=0} l_{\rho_t}(\alpha) = 0$ for any closed geodesic α and

$$\left. \frac{d}{dt} \right|_{t=0} \rho_t = v$$

EXAMPLE: CODING FOR SCHOTTKY GROUPS The ideal world: when reps are convex cocompact cutting sequence/coding of limit set:

 $\exists \{x_n\} \subset \{g_1, g_2\}^{\mathbb{N}} \text{ such that } x_1 x_2 \dots x_n(D_0) \to \xi \text{ and } \omega : \Sigma^+ \to \Lambda(\Gamma)$

is a bijection where $\Sigma^+ = \{x = (x_n) \in \{g_1^{\pm}, g_2^{\pm}\}^{\mathbb{N}} : x_n \neq x_{n+1}^{-1}\}$

- What is the associated dynamics on $\Lambda(\Gamma)$
 - Bowen-Series map T: canceling the first element $T(\xi) = g_{x_1}^{-1}(\xi)$ where $\omega^{-1}(\xi) = x_1 x_2 ...$

where $B_{\xi}(x, y) := \lim_{z \to \xi} d(x, z) - d(y, z)$ is the Busemann function

FROM FUCHSIAN TO QUASIFUCHSIAN

Lemma . If $\rho \in QC(\Gamma)$, then there exists a ρ -equivariant bi-Hölder continuous map

 $\xi_{\rho}: \Lambda(\Gamma) \to \Lambda(\rho(\Gamma)).$

Moreover, if $x \in \Lambda(\Gamma)$, then $\xi_{\rho}(x)$ varies complex analytically over $QC(\Gamma)$.

★ Suppose $\omega : \Sigma^+ \to \Lambda(\Gamma)$ is a coding for $\Lambda(\Gamma)$, then $\xi_\rho \circ \omega : \Sigma^+ \to \Lambda(\rho(\Gamma))$ for $\Lambda(\rho(\Gamma))$

 \bigstar The roof function $\tau_{\rho}(x) := B_{\xi_{\rho}(\omega(x))}(o, \rho(g_{x_1})o)$ where $x = x_1 x_2 \dots$

$$\bigstar \text{ If } x = \overline{x_1 x_2 \dots x_n} \in \text{Fix}^n, \text{ then } l_\rho(g_{x_1} g_{x_2} \dots g_{x_n}) = S_n \tau_\rho(x)$$

Regularity of τ_o ? Behaviors under perturbation?

What is the degenerate criterion ?

FROM COMPACT TO NON-COMPACT

ISSUES

- cutting sequence is not unique around parabolic limit pts
- Bowen-Series map T doesn't expanding at these parabolic pts
- regularity of the geometric potentials/first returning map:
 - one needs at least |T'|>1 to have geometric potential well-defined
 - τ_{ρ} is unbounded
- regularity of the pressure (phase transition)
- reparametrizing the flow might lose thermodynamic data
 - Cipriano-Iommi
- Identify where the degeneracy of the variance happens

REMEDIES

- upgrade Bowen-Series coding to Stadlbauer-Ledrappier-Sarig coding
 - which code the geodesic flow through a Countable State Markov Shift
 - moreover, it is topologically mixing and has BIP
 - nice properties of τ_{ρ} (locally Hölder and eventually expanding)
- pressure behaves well away from phase transition
 - study the places where phase transitions taking place
 - variance degeneracy criterion
- the reparametrization (time change) function is bounded

SUMMARY

- S is a punctured surface and ρ , $\eta \in QF(S)$
- Stadlbauer-Ledrappier-Sarig coding: $\sigma^{\tau_{\rho}}(x, t) : \Sigma_{\tau_{\rho}} \to \Sigma_{\tau_{\rho}}$
 - same base space Σ^+ and ``nice" roof functions $\tau_{\rho}(x) := B_{\xi_{\rho} \circ \omega(x)}(o, \rho(g_{x_1})o)$
 - **Lemma**: stable under perturbation
 - ► $\tau_{\rho}(x)$ varies analytically over $QC(\Gamma)$ for all $x \in \Sigma^+$
- > Dynamics interpretation of $I(\rho, \eta)$ remains the same (analyticity)
- Pressure P behaves analytically away from the phase transition

Degeneracy criterion: $\mathbb{P}(v, v) = 0 \iff \frac{d}{dt} \bigg|_{t=0} h(\rho_t) \cdot l_{\rho_t}(\alpha) = 0$ for any closed geodesic α and $\frac{d}{dt} \bigg|_{t=0} \rho_t = v \iff v$ is a pure bending vector

Thank you!!

感謝!!

kám-siā !! (Taiwanese)