PRESSURE METRICS FOR DEFORMATION SPACES
OF QUASIFUCHSIAN GROUPS WITH PARABOLICS

LIEN-YUNG “NYIMA" KAO (S &EE)

JOINT WITH HARRY BRAY AND DICK CANARY

THE GEORGE WASHINGTON UNIVERSITY
WASHINGTON, DC

OSU Ergodic Theory Seminar
09/17/2020 @ the Virtual Universe



OUTLINE

» Goal:
» Dynamics:
» A study of non-compact systems
» Geometry:
» Construct a metric on quasifuchsian spaces
» Entropy rigidity type results
» What have been done
» Setup and our results
» Model Example: Teichmiiller spaces of closed surfaces
» From Fuchsian to quasifuchsian
» From compact to non-compact
» How does the proofs look like in compact cases

» What failed in non-compact cases and remedies



Let § = §,, be an orientable surface with g genus and

n punctures and negative Euler characteristic.

FUCHSIAN REPRESENTATIONS:

p € Hom(m1(5), PSL(2 R)) is discrete & faithful we

is a hyperbollc surface .

,' has only one flxed pomt _
3 which is on the boundary §

e ete——
t which are both on the boundary §



QUASIFUCHSIAN REPRESENTATIONS:
Let m(S) = I' < PSL(2,R) be a Fuchsian group s.t. I'\H* has finite area.

Wesay p: ' — PSL(2 C) quaszfuchsmn it there exists a qualsconformal home-

omorphism ¢ : C — C sudl that p(~y ) gmgb ! for all s F

maps smaII Clrd? tz: s(m)alzb?lll)ﬁelhb)dd )?(resrl
.e. lim su Sup , P(T)) - r,z)=r i
0 (@6, 60e)) - d(a,2) =) =0

‘;orlentatlon preservmg |sometr|es on H

Equivalently, p : I' — PSL(2,C) is quasﬁuchsmn if and only it ,0( ) is para,bohc

and p(I') preserves a Jordan curve in C. AN e F S e

4

QC(T) C\‘FI@{n(F, PSL(2, C))@é the space of all ‘i i e Sen ta tions.
credit: Jeff Brock ‘;d.u:: =:‘=-: q: -Fu m ‘—né;;c}lt’J‘é;B:c'k

Pt S e cdmssstad s o ® T . erml ol Lwe VGuades



TEICHMULLER SPACE
T(S) := Hom;P(71(S), PSL(2,R))/ ~

= conjugacy classes of type-preserving finite area Fuchsian reps.

- < =

1

(Firere o o momarpham + i) O X, =

! sending hyperbolic elements to hyperbolic elements  § has finite area |
¢t and parabolic elements to parabolic elements [ 1 SO

QUASIFUCHSIAN SPACE
QF(S) = QC(T)/PSL(2,C)  Hom,, (I, PSL(2,C))//PSL(2,C)

Qr($) 2T(5) x T(S) S

The Fuchsian locus F'(S) C QF(S) is the set of fuchsian reps



INTERSECTION NUMBER

1 L[y
I =
(,017,02) Tlmoo \Rm (T)\ ERE:(T) l1 7

where R, (1) ={v: li[7] < T}

Remark 1: also known as geodesic stretch

Remark 2: alternatively, I(p;, p,) := lim 2[

1o (7]

the translation length: “
11[7] mm{d(x pl(y) X) x € Hz};

%z E 7T1( 1S equ1dlstr1buted W.T. t the Bowen—l\/[arguhs measure as n — oo

RENORMALIZED INTERSECTION NUMBER

h(p2) 1 L2l
J(p1, — lim s
P12 = o) 75 TR, <T>\WERZp ol




WHAT HAVE BEEN DONE (FOR PRESSURE METRICS)

» When S is a closed surface:

» Thurston: the Hessian of [ : 7 (5) X I (5) is positively definite,
and thus defines a Riemannian metric on 5 (S)

» Wolpert (86): Thurston’ S Rlemanman metric is exactly the Weil-

Petersson metric Thermodynamlc Formallsm
» McMullen (08) ree v red Th_u_rstonsRlemanmanAmetrlc'by

» Also, PoII Sh rp(16)

M "the"p‘ressu re'metrlc "
3 Brid gen n (10): b Ided ug the oressure for uasn‘uchsnan space_

> Bndgeman Canary, Labourie, Sambarino (15): higher rank
generalizations; also, Pollicott, Sharp (16, 18)

» When S is NOT compact and has cusps (i.e., not convex cocompact)

» K. (19): construct the pressure metric for 7 (5)




» When S is a metric graph

» Pollicott, Sharp (13), K. (17): the pressure metric
geometry is different from Weil-Petersson metric
geometry

» General (dynamical) setting:

» Giulietti, Kloeckner, Lopes, Marcon (18): a Riemannian
metric of the cohomologus space of normalized pressure
zero Holder potentials of SFT (a slightly different pressure
metric)

» Lopes, Ruggiero (19): this space is non-negatively curved



OUR RESULT

Theorem (Bray, Canary, /. If ,0,77 c QC’ ( ) t_‘, a
equalzty hOlds zﬁ P and 7 are canjugate L Isom(H?’)

ee A' (Br, Caar ) The Hausdar dznzo 0 lzz ~_
A(p ) varies analytically in QC(T). Both L(p, n)aend J(p.n) vary.analytzcall"
0ver QC I') x QC’ F \ }

Mod(S) D1ff+( )/Dllcfo( )

1 €. h the topologlcal entropy of the geodesm over N
Theorem C ( ay, Canary, K) The pfressu're f07°m P Hess(J(p, )) on

QF (S) induces aMod(S)-invariant ath metmc, which 15 an analytic Rzeman— :
_{. nian metric on the complement of the Fuchsid@® locus. ,
§ Moreover, if v € T,(QF(S)), then P(v,v) = 0 % p is Fuchsian and v is a pure
bendz g vector. \ :

WW%A 2% = D P S T T e DI S e O P DI P VAPV T 0  CHP P S e L b o e e e s
e 5 - ’ S Ve 2 . e o - v 2 e . e BV S v ;° = e o~ i BV o = o g

— o s T SO R PSS O3 % Wy i AR o s o e o ria 3 oars . — o a7

1. v= %pt, po € F(S), and p_; = pg for all ¢ " dIP mf{/ \/P dt}

B oo il ) sy Az Sc Lot 7 B TS TR S S e BT S JON TS =

2. T,QF(S) = T,F(S) & B, |



THE CONSTRUCTION OF PRESSURE METRIC

FOR TEICHMULLER SPACES OF CLOSED SURFACES

—through symbolic dynamics of the geodesic flow

» Let S be a closed surface and h be a hyperbolic metric on S.

» g, T'S — T'S can be understood by the .‘i___I‘

» 0,: X, —> X, where (Z,0)isaSFT and the r is constructed
by the BowenSeries coding, '

Te S, i={(z,t): €3, 0<t<r(zx)} with the identification
) &

', (3, Y00

TR L e =00

1 \\

| o e the suspension flow o] :

(9(,0) (Woc)oYZ 2ip = Ly Ut(aj S) (CU t—|—8) for —8<t<7“( )—3

3 More prec:|se|y, r = log | T’| where T A(F) — A(F) is the Bowen Serles
map

(the limit set of I on oH’ |

» 7is (bounded) Holder conti.



» One observe that the symbolic model is stable under perturbation
of the hyperbolic metric

» Structure stability of Anosov flows

» Bowen's formula:

Let (X1, 0,r) be the suspensmn flow model for geodesm flow over the hyper-

. ‘ " p— — ng(x)
)4 here P(g) : 11_>m - log EEF: is the

bolic surface X, then

topological pressure of g

» In general, P(—hy - ry) = 0 where Ay is the topologlcal entropy of

the geodesic flow over X
§ mis aeq. state for f

= Jim L2 10 < 7) (e s

y Liouville measure (Bowen-Margulis): m; «—




» Dynamics interpretation of the intersection number: Let p;, p,

be two cocompact Fuchsian representations, and 7, 7, be the
corresponding roof functions , then

where is m_ the eqwllbrlum state for Tl

Recall I(p1 ,02) = hm 2L/
oo | Ry, (T') ,YER%:(T) ]

| on closed orbits. On the other hand,

,u,[ is the lift of the eq. state m, .



» Intersection Rigidity

Theorem (Thurston). Let p1, p2 be two fuchsian reps, then I(p1,p2) > 1, and
the equality holds iff p1 and p2 are conjugate in PSL(2,R).

{ ) 0=PCn)=him_)— |5pdm, 2=him_,) - sz dm,

',,‘ y 0=P(=7)) =h(m_,)— |7, dm,

i » l(p,p)) =1 < m_,isaneq.statefor—7, <= 1, ~ 1,

oo .
4 ~g = f—g=h—h°‘

» T, ~ T, < p;~ p, by marked length spectrum rigidity

» The pressure metric

Theorem (Thurston). Let {p;} C T(S) be an analytic path. Then 1(pg, ps) is
d2
real analytic, and a2 I(po, p¢) is non-degenerate. Hence, the Hessian of 1
t=0

gwes a Riemannian metric on T (S)



» Thermodynamic mapping
» Y :T5(S)— P: {pressure zero functions}/ ~
» d¥: r,7(S) — T_TPP = KerD_TpP

» Analyticity of pressure

» Pressure metricis given by

Var(zg, m_ )

ool s =113 15 =
} O H:D. O H:D. fTodm_TO

» Second derivative of pressure

O - dQP(—Tt)
o de?

. — (D_TOP)(—%())-F(DZ_TOP)(_7'_0) — _/7.;0 meo_Fvar(_%OamTo)



» Relation with I:

4 dzI(pO,,Ot) )
di¢? .

» Degeneracy criterjor?”

- Since ——for any closed geodesic aand 7(S)

t is determined by finitely many closed geodesics i;



SUMMARY

» Sis a closed surface and p,, p, € T ()
» Asuspension flow model: 6'i(x, 1) : 2. — X,
» (Bowen-Series coding of the geodesics flow)

» same base space ¥ and "nice” roof functions r,

» stable under perturbation
» Bowen's formula: P(—h(p) - r,) =0
» Dynamics interpretation of I(p;, p,)

» Good regularity (analyticity) of the pressure P over Z*

, Degeneracy criterion: P(v,v) =0 < e L, (@) =0 for any closed geodesic a and

=0
d
_ p, =V
=0



EXAMPLE: CODING FOR SCHOTTKY GROUPS

The ideal world: when reps
are convex cocompact

» cutting sequence/coding of limit set:

» A {x,} C {g1,g2}" such that z12o...2, (Do) — € and w : BT — A(T)

» What is the associated dynamics on A(I')
» Bowen-Series map T: canceling the first element

T (&) = g, (€) where w™1(§) = z122...



Properties:
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¥ det 7(x) i= In|T"|(w=(@)), then I(3) = ra(x) i= Y r(o’(2)
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where B¢(x,y) :=lim, ¢ d(z, 2) — d(y, 2) is the Busemann function



FROM FUCHSIAN TO QUASIFUCHSIAN

Lemma . If p € QC(I'), then there exists a p-equivariant bi-Holder continuous

map
£, : A(T) = Ap(T)).
Moreover, if x € A(I'), then £,(x) varies complex analytically over QC(I).

Suppose WSt A(F) is Codlg for A(F) then fp oW : IS - A( (F)
LAr) |

{ % The roof fuctlo Tp ) = B€ (o) (0 p(gxl o) where @ = 2125...

' If x —xlazg :cn E FlX then l (gwlg@ ga;n)pA S ~'

Regularity of T ? Behaviors under perturbation?

t What is the degenerate criterion ? }



FROM COMPACT TO NON-COMPACT

ISSUES

» cutting sequence is not unique around parabolic limit pts
» Bowen-Series map T doesn’t expanding at these parabolic pts
» regularity of the geometric potentials/first returning map:

» one needs at least |T’|>1 to have geometric potential well-defined
» 7,is unbounded

» regularity of the pressure (phase transition)

» reparametrizing the flow might lose thermodynamic data
» Cipriano-lommi

» Identify where the degeneracy of the variance happens



REMEDIES

» upgrade Bowen-Series coding to Stadlbauer-Ledrappier-Sarig coding

» which code the geodesic flow through a Countable State Markov
Shift

» moreover, it is topologically mixing and has BIP

» nice properties of 7, (locally H6lder and eventually expanding)
» pressure behaves well away from phase transition

» study the places where phase transitions taking place

» variance degeneracy criterion

» the reparametrization (time change) function is bounded



SUMMARY

» Sis a punctured surface and p, n € QF(S)
» Stadlbauer-Ledrappier-Sarig coding: o' (x, 1) : pr — Z’fp
» same base space X' and “nice” roof functions Tp(x) = prow(x)(o,p(gxl)o)
» Lemma: stable under perturbation
3 Tp(x) varies analytically over QC(I') forall x € =
» Dynamics interpretation of I(p, #) remains the same (analyticity)

» Pressure P behaves analytically away from the phase transition

Degeneracy criterion: P(v,v) =0 < e hp,) - 1,(@) = 0 for any closed
=0

4

, d
geodesic a and —| =y < vis a pure bending vector
=0



Thank you!!
BE

kam-sia !l (Taiwanese)



