What can be the limit of ergodic averages?

Máté Wierdl

University of Memphis

Ergodic theory seminar, OSU
April 11, 2024
Plan

1. Goals, motivation
2. Good sequences
3. Limit measures
4. Recurrence
5. Main question
6. Furstenberg's conjecture
7. Proof
Plan

1. Goals, motivation
2. Good sequences
3. Limit measures
4. Recurrence
5. Main question
6. Furstenberg's conjecture
7. Proof
Plan

1. Goals, motivation
2. Good sequences
3. Limit measures
4. Recurrence
5. Main question
6. Furstenberg's conjecture
7. Proof
Plan

1. Goals, motivation
2. Good sequences
3. Limit measures
4. Recurrence
5. Main question
6. Furstenberg's conjecture
7. Proof
Plan

1. Goals, motivation
2. Good sequences
3. Limit measures
4. Recurrence
5. Main question
6. Furstenberg's conjecture
7. Proof
Plan

1. Goals, motivation
2. Good sequences
3. Limit measures
4. Recurrence
5. Main question
6. Furstenberg’s conjecture
7. Proof
Plan

1. Goals, motivation
2. Good sequences
3. Limit measures
4. Recurrence
5. Main question
6. Furstenberg’s conjecture
7. Proof
Goals, motivation

Goal: Determine all possible limits in the mean ergodic theorem along subsequences of times and weights.

Why? Besides its intrinsic interest, identification of the limit plays a role in recurrence, almost sure convergence and is the starting point of the Hardy-Littlewood circle method (Wahring-Goldbach, Roth...).
Goal: Determine all possible limits in the mean ergodic theorem along subsequences of times and weights.

Why? Besides its intrinsic interest, identification of the limit plays a role in recurrence, almost sure convergence and is the starting point of the Hardy-Littlewood circle method (Wahring-Goldbach, Roth...).
Notations

\[A_t f. \] For a finite set \(t \) and function \(f \) defined on \(t \), we define the **arithmetic average** \(A_t f \) of \(f \) on \(t \) by

\[
A_t f = \frac{1}{\# t} \sum_{t \in t} f(t)
\]

\(e(\theta). \) We use Weyl’s notation, \(e(\theta) := e^{2\pi i \theta} \).

\([N]. \) We borrow from combinatorics \([N] := \{1, 2, \ldots, N\}\).

\(\nu f. \) We use the functional notation for integral:

\[
\nu f = \int f \, d\nu \quad \nu_{x \in X} f(x) = \int_X f(x) \, d\nu(x)
\]

\(\nu e^n. \) The \(n \)th Fourier coefficient of the measure \(\nu \) on the torus \(\mathbb{T} = \mathbb{R}/\mathbb{Z} \) is

\[
\nu e^n = \hat{\nu}(n).
\]
\[\textbf{Notations} \]

\(\mathbf{A}_t f. \) For a finite set \(t \) and function \(f \) defined on \(t \), we define the \textbf{arithmetic average} \(\mathbf{A}_t f \) of \(f \) on \(t \) by

\[
\mathbf{A}_t f = \mathbf{A}_{t \in t} f(t) := \frac{1}{\# t} \sum_{t \in t} f(t)
\]

\(\mathbf{e}(\theta). \) We use Weyl’s notation, \(\mathbf{e}(\theta) := e^{2\pi i \theta} \).

\([N]. \) We borrow from combinatorics \([N] := \{1, 2, \ldots, N\} \).

\(\nu f. \) We use the functional notation for integral:

\[
\nu f = \int f \, d\nu \quad \nu_{x \in X} f(x) = \int_X f(x) \, d\nu(x)
\]

\(\nu e^n. \) The \textbf{nth Fourier coefficient} of the measure \(\nu \) on the torus \(\mathbb{T} = \mathbb{R}/\mathbb{Z} \) is \(\nu e^n = \hat{\nu}(n) \).
Notations

\(\mathbf{A}_t f \). For a finite set \(t \) and function \(f \) defined on \(t \), we define the arithmetic average \(\mathbf{A}_t f \) of \(f \) on \(t \) by

\[
\mathbf{A}_t f = \mathbf{A}_{f \in t} f(t) := \frac{1}{\# t} \sum_{t \in t} f(t)
\]

\(e(\theta) \). We use Weyl’s notation, \(e(\theta) := e^{2\pi i \theta} \).

\([N]\). We borrow from combinatorics \([N] := \{ 1, 2, \ldots, N \}\).

\(\nu f \). We use the functional notation for integral:

\[
\nu f = \int f \, d\nu \quad \nu_{x \in X} f(x) = \int_X f(x) \, d\nu(x)
\]

\(\nu e^n \). The \(n \)th Fourier coefficient of the measure \(\nu \) on the torus \(\mathbb{T} = \mathbb{R}/\mathbb{Z} \) is

\[
\nu e^n = \hat{\nu}(n).
\]
Notations

\[\mathcal{A}_t f. \] For a finite set \(t \) and function \(f \) defined on \(t \), we define the **arithmetic average** \(\mathcal{A}_t f \) of \(f \) on \(t \) by

\[
\mathcal{A}_t f = \mathcal{A}_{t \in t} f(t) := \frac{1}{\#t} \sum_{t \in t} f(t)
\]

\[e(\theta). \] We use Weyl’s notation, \(e(\theta) := e^{2\pi i \theta} \).

\[[N]. \] We borrow from combinatorics \([N] := \{ 1, 2, \ldots, N \} \).

\[\nu f. \] We use the functional notation for integral:

\[
\nu f = \int f \, d\nu \quad \nu_{x \in X} f(x) = \int_X f(x) \, d\nu(x)
\]

\[\nu e^n. \] The \textbf{n}th Fourier coefficient of the measure \(\nu \) on the torus \(\mathbb{T} = \mathbb{R}/\mathbb{Z} \) is \(\nu e^n = \hat{\nu}(n) \).
Notations

\(A_t f \). For a finite set \(t \) and function \(f \) defined on \(t \), we define the **arithmetic average** \(A_t f \) of \(f \) on \(t \) by

\[
A_t f = \frac{1}{\# t} \sum_{t \in t} f(t)
\]

\(e(\theta) \). We use Weyl’s notation, \(e(\theta) := e^{2\pi i \theta} \).

\([N]\). We borrow from combinatorics \([N] \) := \{ 1, 2, \ldots, N \}.

\(\nu f \). We use the functional notation for integral:

\[
\nu f = \int f \, d\nu \quad \nu_{x \in X} f(x) = \int_X f(x) \, d\nu(x)
\]

\(\nu e^n \). The **nth Fourier coefficient** of the measure \(\nu \) on the torus \(\mathbb{T} = \mathbb{R} / \mathbb{Z} \) is \(\nu e^n = \hat{\nu}(n) \).
Good sequences

Good times A sequence $t = (t_n)_{n \in \mathbb{N}}$ is called **good times** if in any probability measure systems $(X, \mu, T), f \in L^2(X)$, the limit $\lim_{N \to \infty} \sum_{n \in [N]} f(T^n x)$ exists in L^2-norm.

Good weights A sequence $w = (w(n))_{n \in \mathbb{N}}$ is called a **good weight** if in any probability measure systems $(X, \mu, T), f \in L^2(X)$, the limit $\lim_{N \to \infty} \sum_{n \in [N]} w(n)f(T^n x)$ exists in L^2-norm.
Good sequences

Good times A sequence $t = (t_n)_{n \in \mathbb{N}}$ is called **good times** if in any probability measure systems $(X, m, T), f \in L^2(X)$, the limit $\lim_{N} A_{n \in [N]} f(T^{t_n} x)$ exists in L^2-norm.

Good weights A sequence $w = (w(n))_{n \in \mathbb{N}}$ is called a **good weight** if in any probability measure systems $(X, m, T), f \in L^2(X)$, the limit $\lim_{N} A_{n \in [N]} w(n)f(T^{t_n} x)$ exists in L^2-norm.
Equivalent formulations

By the spectral theorem, we have the following reformulations of good sequences.

Good times For every real number α, the limit $\lim_{N} A_{n \in [N]} e(t_n \alpha)$ exists.
For every real number α, the limit $\lim_{N} A_{n \in [N]} \delta_{t_n \alpha}$ exists.

Good weights For every real number α, the limit $\lim_{N} A_{n \in [N]} w(n) e(n \alpha)$ exists.
For every real number α, the limit $\lim_{N} A_{n \in [N]} w(n) \delta_{n \alpha}$ exists.
Equivalent formulations

By the spectral theorem, we have the following reformulations of good sequences.

Good times For every real number α, the limit $\lim_{N \to \infty} \mathbf{A}_{n \in [N]} e(t_n \alpha)$ exists.

For every real number α, the limit $\lim_{N \to \infty} \mathbf{A}_{n \in [N]} \delta_{t_n \alpha}$ exists.

Good weights For every real number α, the limit $\lim_{N \to \infty} \mathbf{A}_{n \in [N]} w(n) e(n \alpha)$ exists.

For every real number α, the limit $\lim_{N \to \infty} \mathbf{A}_{n \in [N]} w(n) \delta_{n \alpha}$ exists.
Limit measures

For a good time $t = (t_n)$, we define the limit measure $\Lambda_{t, \alpha}$ by

$$\Lambda_{t, \alpha} = \lim_{N} \sum_{n \in \mathbb{N}} \delta_{t_n \alpha}$$

For a good weight $w = (w(n))$, we define the limit measure $\Lambda_{w, \alpha}$ by

$$\Lambda_{w, \alpha} = \lim_{N} \sum_{n \in \mathbb{N}} w(n) \delta_{n \alpha}$$

Identification of the limit will be done in terms of limit measures: Which Borel probability measure can be a limit measure?
Limit measures

For a good time $t = (t_n)$, we define the limit measure $\Lambda_{t, \alpha}$ by

$$\Lambda_{t, \alpha} := \lim_{N} \mathbf{A}_{n \in [N]} \delta_{t_n \alpha}$$

For a good weight $w = (w(n))$, we define the limit measure $\Lambda_{w, \alpha}$ by

$$\Lambda_{w, \alpha} := \lim_{N} \mathbf{A}_{n \in [N]} w(n) \delta_{n \alpha}$$

Identification of the limit will be done in terms of limit measures: Which Borel probability measure can be a limit measure?
Limit measures

For a good time $t = (t_n)$, we define the limit measure $\Lambda_{t,\alpha}$ by

$$\Lambda_{t,\alpha} := \lim_{N} \mathbb{A}_{n \in [N]} \delta_{t_n,\alpha}$$

For a good weight $w = (w(n))$, we define the limit measure $\Lambda_{w,\alpha}$ by

$$\Lambda_{w,\alpha} := \lim_{N} \mathbb{A}_{n \in [N]} w(n) \delta_{n,\alpha}$$

Identification of the limit will be done in terms of limit measures: Which Borel probability measure can be a limit measure?
Examples

We denote by λ the Lebesgue probability measure on the torus \mathbb{T}.

\[
\Lambda_{N,\alpha} = \lim_{N \to \infty} \prod_{n \in [N]} \delta_{n \alpha} = \begin{cases}
A_{b \in [q]} \delta_{b/q} & \text{if } \alpha = \frac{a}{q}, \gcd(a, q) = 1 \\
\lambda & \text{if } \alpha \text{ is irrational}
\end{cases}
\]

\[
\Lambda_{S,\alpha} = \lim_{N \to \infty} \prod_{n \in [N]} \delta_{n^2 \alpha} = \begin{cases}
A_{b \in [q]} \delta_{a(b^2/q)} & \text{if } \alpha = \frac{a}{q}, \gcd(a, q) = 1 \\
\lambda & \text{if } \alpha \text{ is irrational}
\end{cases}
\]

\[
\Lambda_{P,\alpha} = \lim_{N \to \infty} \prod_{n \in [N]} \delta_{p_n \alpha} = \begin{cases}
A_{b \in [q]} \delta_{b/q} & \text{if } \alpha = \frac{a}{q}, \gcd(a, q) = 1 \\
\lambda & \text{if } \alpha \text{ is irrational}
\end{cases}
\]
We denote by λ the Lebesgue probability measure on the torus \mathbb{T}.

$$
\Lambda_{\mathbb{N}},\alpha = \lim_{N} \prod_{n \in [N]} \delta_{n^\alpha} = \begin{cases}
\lambda & \text{if } \alpha \text{ is irrational} \\
\left\{ \begin{array}{ll}
A_{b \in [q]} \delta_{b/q} & \text{if } \alpha = \frac{a}{q}, \gcd(a, q) = 1 \\
\lambda & \text{if } \alpha \text{ is irrational}
\end{array} \right.
\end{cases}
$$

$$
\Lambda_{\mathbb{S}},\alpha = \lim_{N} \prod_{n \in [N]} \delta_{n^2 \alpha} = \begin{cases}
\lambda & \text{if } \alpha \text{ is irrational} \\
\left\{ \begin{array}{ll}
A_{b \in [q]} \delta_{a(b^2/q)} & \text{if } \alpha = \frac{a}{q}, \gcd(a, q) = 1 \\
\lambda & \text{if } \alpha \text{ is irrational}
\end{array} \right.
\end{cases}
$$

$$
\Lambda_{\mathbb{P}},\alpha = \lim_{N} \prod_{n \in [N]} \delta_{p^n \alpha} = \begin{cases}
\lambda & \text{if } \alpha \text{ is irrational} \\
\left\{ \begin{array}{ll}
A_{b \in [q]} \delta_{b/q} & \text{if } \alpha = \frac{a}{q}, \gcd(a, q) = 1 \\
\lambda & \text{if } \alpha \text{ is irrational}
\end{array} \right.
\end{cases}
$$
Examples

We denote by λ the Lebesgue probability measure on the torus \mathbb{T}.

$$\Lambda_{\mathbb{N}, \alpha} = \lim_{n \to \infty} A_{n \in [N]} \delta_{n^\alpha} = \begin{cases} A_{b \in [q]} \delta_{b/q} & \text{if } \alpha = \frac{a}{q}, \text{gcd}(a, q) = 1 \\ \lambda & \text{if } \alpha \text{ is irrational} \end{cases}$$

$$\Lambda_{\mathbb{S}, \alpha} = \lim_{n \to \infty} A_{n \in [N]} \delta_{n^2 \alpha} = \begin{cases} A_{b \in [q]} \delta_{a(b^2/q)} & \text{if } \alpha = \frac{a}{q}, \text{gcd}(a, q) = 1 \\ \lambda & \text{if } \alpha \text{ is irrational} \end{cases}$$

$$\Lambda_{\mathbb{P}, \alpha} = \lim_{n \to \infty} A_{n \in [N]} \delta_{p_n^\alpha} = \begin{cases} A_{b \in [q]} \delta_{b/q} & \text{if } \alpha = \frac{a}{q}, \text{gcd}(a, q) = 1 \\ \lambda & \text{if } \alpha \text{ is irrational} \end{cases}$$
Examples

We denote by λ the Lebesgue probability measure on the torus \mathbb{T}.

\[
\Lambda_{\mathbb{N}, \alpha} = \lim_{N} \prod_{n \in [N]} \delta_{n\alpha} = \begin{cases}
\prod_{b \in [q]} \delta_{b/q} & \text{if } \alpha = \frac{a}{q}, \gcd(a, q) = 1 \\
\lambda & \text{if } \alpha \text{ is irrational}
\end{cases}
\]

\[
\Lambda_{\mathbb{S}, \alpha} = \lim_{N} \prod_{n \in [N]} \delta_{n^2\alpha} = \begin{cases}
\prod_{b \in [q]} \delta_{a(b^2/q)} & \text{if } \alpha = \frac{a}{q}, \gcd(a, q) = 1 \\
\lambda & \text{if } \alpha \text{ is irrational}
\end{cases}
\]

\[
\Lambda_{\mathbb{P}, \alpha} = \lim_{N} \prod_{n \in [N]} \delta_{p_n\alpha} = \begin{cases}
\prod_{b \in [q]} \delta_{b/q} & \text{if } \alpha = \frac{a}{q}, \gcd(a, q) = 1 \\
\lambda & \text{if } \alpha \text{ is irrational}
\end{cases}
\]
Recurrence

Let $t = (t_n)$ be a good time. In a probability measure preserving system (X, m, T) let $E \subset X$ be a measurable set with $m(E) > 0$.

By the spectral theorem, there is a Borel measure $\mu = \mu_E$ on \mathbb{T} so that

$$\lim_{N} \mathbb{A}_{n \in [N]} m(E \cap T^{-tn}E) = \lim_{N} \mathbb{A}_{n \in [N]} \mu_{\alpha \in \mathbb{T}} e^{tn}(\alpha)$$

$$= \mu_{\alpha \in \mathbb{T}} \left(\lim_{N} \mathbb{A}_{n \in [N]} e(t_n \alpha) \right)$$

$$= \mu(\Lambda \alpha e)$$

with introducing $N := \{ \alpha \in \mathbb{T} : \Lambda \alpha e \neq 0 \}$

$$= \mu_{\alpha \in N}(\Lambda \alpha e)$$

Note that $\lambda(N) = 0$, and, more generally, $\nu(N) = 0$ for every Rajchman measure ν ($\lim_{n \rightarrow \infty} \nu e^n = 0$).
Recurrence

Let \(t = (t_n) \) be a good time. In a probability measure preserving system \((X, m, T)\) let \(E \subset X \) be a measurable set with \(m(E) > 0 \).

By the spectral theorem, there is a Borel measure \(\mu = \mu_E \) on \(\mathbb{T} \) so that

\[
\lim_N \sum_{n \in [N]} m(E \cap T^{-t_n} E) = \lim_N \sum_{n \in [N]} \mu_{\alpha} e^{t_n}(\alpha) \\
= \mu_{\alpha} \left(\lim_N \sum_{n \in [N]} e(t_n \alpha) \right) \\
= \mu(\Lambda_{\alpha} e)
\]

with introducing \(\mathcal{N} := \{ \alpha \in \mathbb{T} : \Lambda_{\alpha} e \neq 0 \} \)

\[
= \mu_{\alpha \in \mathcal{N}}(\Lambda_{\alpha} e)
\]

Note that \(\lambda(\mathcal{N}) = 0 \), and, more generally, \(\nu(\mathcal{N}) = 0 \) for every Rajchman measure \(\nu \)
\((\lim_{|n| \to \infty} \nu e^n = 0)\).
Let $t = (t_n)$ be a good time. In a probability measure preserving system (X, m, T) let $E \subset X$ be a measurable set with $m(E) > 0$.

By the spectral theorem, there is a Borel measure $\mu = \mu_E$ on \mathbb{T} so that

$$\lim_{N} \sum_{n \in [N]} m(E \cap T^{-t_n} E) = \lim_{N} \sum_{n \in [N]} \mu_{\alpha \in \mathbb{T}} e^{t_n}(\alpha)$$

$$= \mu_{\alpha \in \mathbb{T}} \left(\lim_{N} \sum_{n \in [N]} e(t_n \alpha) \right)$$

$$= \mu(\Lambda_{\alpha} e)$$

with introducing $\mathcal{N} := \{ \alpha \in \mathbb{T} : \Lambda_{\alpha} e \neq 0 \}$

$$= \mu_{\alpha \in \mathcal{N}}(\Lambda_{\alpha} e)$$

Note that $\lambda(\mathcal{N}) = 0$, and, more generally, $\nu(\mathcal{N}) = 0$ for every Rajchman measure ν ($\lim_{|n| \to \infty} \nu e^n = 0$).
Results

Let $\mathbb{T}_q = \left\{ \frac{b}{q} : b \in [q] \right\}$, the set of qth roots of unity.

Theorem (Lesigne-Quas-Rosenblatt-Wierdl (2024)).

1. Suppose the probability measure ν is supported on \mathbb{T}_q, and $\alpha = \frac{a}{q}$, $\gcd(a, q) = 1$. Then there is a good time $t = (t_n)$ so that $\nu = \Lambda_{t, a/q}$.

2. If $t = (t_n)$ is a good time and α is irrational then $\Lambda_{t, \alpha}$ is a continuous measure.
Main question

Let $t = (t_n)$ be a good time. What measure can $\Lambda_{t,\alpha}$ be?

▶ We have seen that if α is rational then $\Lambda_{t,\alpha}$ can be any probability measure.
▶ If α is irrational, can it be any continuous measure?
Main question

Let \(t = (t_n) \) be a good time. What measure can \(\Lambda_{t,\alpha} \) be?

- We have seen that if \(\alpha \) is rational then \(\Lambda_{t,\alpha} \) can be any probability measure.
- If \(\alpha \) is irrational, can it be any **continuous** measure?
Main question

Main question.
Let $t = (t_n)$ be a good time.
What measure can $\Lambda_{t,\alpha}$ be?

- We have seen that if α is rational then $\Lambda_{t,\alpha}$ can be any probability measure.
- If α is irrational, can it be any continuous measure?
Limit measure can be any Rajchman measure

Theorem (Lesigne-Wierdl (2024)).
Suppose ν is a Rajchman probability measure, that is, $\lim_{|n| \to \infty} \nu e^n = 0$, and let α be irrational.
Then there is a good time $t = (t_n)$ so that $\nu = \Lambda_{t,\alpha}$.
If ν is absolutely continuous with respect to λ then $t = (t_n)$ can be pointwise good.

Definition (Representation of a measure).
Let ν be a Borel probability measure on \mathbb{T} and $\alpha \in \mathbb{R}$.
We say ν can be represented at α, if $\nu = \Lambda_{t,\alpha}$ for a good time $t = (t_n)$.
Limit measure can be any Rajchman measure

Theorem (Lesigne-Wierdl (2024)).
Suppose \(\nu \) is a Rajchman probability measure, that is, \(\lim_{|n| \to \infty} \nu e^n = 0 \), and let \(\alpha \) be irrational.
Then there is a good time \(t = (t_n) \) so that \(\nu = \Lambda_{t,\alpha} \).
If \(\nu \) is absolutely continuous with respect to \(\lambda \) then \(t = (t_n) \) can be pointwise good.

Definition (Representation of a measure).
Let \(\nu \) be a Borel probability measure on \(\mathbb{T} \) and \(\alpha \in \mathbb{R} \).
We say \(\nu \) can be represented at \(\alpha \), if \(\nu = \Lambda_{t,\alpha} \) for a good time \(t = (t_n) \).

▶ If \(\nu \) is not Rajchman, so \(\limsup_{|n| \to \infty} |\nu e^n| > 0 \), then
\(\lambda\{ \alpha \in \mathbb{T} : \nu \text{ cannot be represented at } \alpha \} = 1 \). (Lesigne-Quas-Rosenblatt-Wierdl (2024))
▶ There is a continuous, non-Rajchman measure which can be represented at an irrational \(\alpha \). (Cuny-Parreau (2024))
Limit measure can be any Rajchman measure

Theorem (Lesigne-Wierdl (2024)).
Suppose \(\nu \) is a Rajchman probability measure, that is, \(\lim_{|n| \to \infty} \nu e^n = 0 \), and let \(\alpha \) be irrational.
Then there is a good time \(t = (t_n) \) so that \(\nu = \Lambda_{t, \alpha} \).
If \(\nu \) is **absolutely** continuous with respect to \(\lambda \) then \(t = (t_n) \) can be **pointwise** good.

Definition (Representation of a measure).
Let \(\nu \) be a Borel probability measure on \(\mathbb{T} \) and \(\alpha \in \mathbb{R} \).
We say \(\nu \) can be **represented at** \(\alpha \), if \(\nu = \Lambda_{t, \alpha} \) for a good time \(t = (t_n) \).

- If \(\nu \) is **not Rajchman**, so \(\lim \sup_{|n| \to \infty} |\nu e^n| > 0 \), then
 \[\lambda \{ \alpha \in \mathbb{T} : \nu \text{ cannot be represented at } \alpha \} = 1. \] (Lesigne-Quas-Rosenblatt-Wierdl (2024))
- There is a continuous, non-Rajchman measure which can be represented at an irrational \(\alpha \). (Cuny-Parreau (2024))
Limit measure can be any Rajchman measure

Theorem (Lesigne-Wierdl (2024)).

Suppose ν is a Rajchman probability measure, that is, $\lim_{|n|\to\infty} \nu e^n = 0$, and let α be irrational.

Then there is a good time $t = (t_n)$ so that $\nu = \Lambda_{t,\alpha}$.

If ν is absolutely continuous with respect to λ then $t = (t_n)$ can be pointwise good.

Definition (Representation of a measure).

Let ν be a Borel probability measure on \mathbb{T} and $\alpha \in \mathbb{R}$.

We say ν can be represented at α, if $\nu = \Lambda_{t,\alpha}$ for a good time $t = (t_n)$.

- If ν is not Rajchman, so $\limsup_{|n|\to\infty} |\nu e^n| > 0$, then
 $\lambda\{\alpha \in \mathbb{T} : \nu \text{ cannot be represented at } \alpha\} = 1$. (Lesigne-Quas-Rosenblatt-Wierdl (2024))

- There is a continuous, non-Rajchman measure which can be represented at an irrational α. (Cuny-Parreau (2024))
Furstenberg’s conjecture

For a good time $t = (t_n)$ and $\varepsilon > 0$, define the level set L_ε by $L_\varepsilon = \{ \alpha \in \mathbb{T} : |\Lambda_{t,\alpha} e| > \varepsilon \}$ and let $L = \bigcup_{\varepsilon > 0} L_\varepsilon$.

Lemma (Lesigne-Quas-Rosenblatt-Wierdl 2024).

1. For every $\varepsilon > 0$ the level set L_ε must be nowhere dense.
2. The set L is of first Baire category.

Let ν be a continuous Borel probability measure on \mathbb{T} which is invariant with respect to multiplication by 2 and 3: for every $p \in \mathbb{Z}$, $\nu e^p = \nu e^{p2/3^k}$ for every $j, k \in \mathbb{N}$.

Suppose $\nu = \Lambda_{t,\alpha}$ for an irrational α. We claim, $\nu = \lambda$. Suppose to the contrary: $\nu e^p = \Lambda_{t,\alpha} e^p \neq 0$ for some $p \in \mathbb{Z} \setminus \{ 0 \}$. Then

$$\nu e^p = \nu e^{p2/3^k} = \Lambda_{t,\alpha} e^{p2/3^k} = \Lambda_{t,\alpha p2/3^k} e$$

But by Furstenberg’s theorem, the set $\{ 2^j3^k (\rho \alpha) : j, k \in \mathbb{N} \}$ is dense in \mathbb{T}. \Rightarrow with Lemma/1.
Furstenberg’s conjecture

For a good time $t = (t_n)$ and $\varepsilon > 0$, define the **level set** L_ε by $L_\varepsilon = \{ \alpha \in \mathbb{T} : |\Lambda_{t,\alpha} e| > \varepsilon \}$ and let $L = \bigcup_{\varepsilon > 0} L_\varepsilon$.

Lemma *(Lesigne-Quas-Rosenblatt-Wierdl 2024).*

1. For every $\varepsilon > 0$ the level set L_ε must be nowhere dense.
2. The set L is of first Baire category.

Let ν be a continuous Borel probability measure on \mathbb{T} which is invariant with respect to multiplication by 2 and 3: for every $p \in \mathbb{Z}$, $\nu e^p = \nu e^{p2^j3^k}$ for every $j, k \in \mathbb{N}$.

Suppose $\nu = \Lambda_{t,\alpha}$ for an irrational α. We claim, $\nu = \lambda$. Suppose to the contrary: $\nu e^p = \Lambda_{t,\alpha} e^p \neq 0$ for some $p \in \mathbb{Z} \setminus \{0\}$. Then

$$\nu e^p = \nu e^{p2^j3^k} = \Lambda_{t,\alpha} e^{p2^j3^k} = \Lambda_{t, p2^j3^k, \alpha} e$$

But by Furstenberg’s theorem, the set $\{ 2^j3^k (p\alpha) : j, k \in \mathbb{N} \}$ is dense in \mathbb{T}, \implies with Lemma/1.
Furstenberg’s conjecture

For a good time \(t = (t_n) \) and \(\varepsilon > 0 \), define the **level set** \(L_{\varepsilon} \) by \(L_{\varepsilon} = \{ \alpha \in \mathbb{T} : |\Lambda_{t, \alpha} e| > \varepsilon \} \) and let \(L = \bigcup_{\varepsilon > 0} L_{\varepsilon} \).

Lemma (Lesigne-Quas-Rosenblatt-Wierdl 2024).

1. For every \(\varepsilon > 0 \) the level set \(L_{\varepsilon} \) must be nowhere dense.
2. The set \(L \) is of first Baire category.

Let \(\nu \) be a continuous Borel probability measure on \(\mathbb{T} \) which is invariant with respect to multiplication by 2 and 3: for every \(p \in \mathbb{Z}, \nu e^p = \nu e^{p2^j3^k} \) for every \(j, k \in \mathbb{N} \).

Suppose \(\nu = \Lambda_{t, \alpha} \) for an irrational \(\alpha \). We claim, \(\nu = \lambda \). Suppose to the contrary: \(\nu e^p = \Lambda_{t, \alpha} e^p \neq 0 \) for some \(p \in \mathbb{Z} \setminus \{0\} \). Then

\[
\nu e^p = \nu e^{p2^j3^k} = \Lambda_{t, \alpha} e^{p2^j3^k} = \Lambda_{t, p2^j3^k \alpha} e
\]

But by Furstenberg’s theorem, the set \(\{ 2^j3^k(p\alpha) : j, k \in \mathbb{N} \} \) is dense in \(\mathbb{T} \). \(\implies \) with Lemma/1.
Furstenberg’s conjecture

For a good time $t = (t_n)$ and $\varepsilon > 0$, define the **level set** L_ε by $L_\varepsilon = \{ \alpha \in \mathbb{T} : |\Lambda_{t, \alpha} e| > \varepsilon \}$ and let $L = \bigcup_{\varepsilon > 0} L_\varepsilon$.

Lemma (Lesigne-Quas-Rosenblatt-Wierdl 2024).

1. For every $\varepsilon > 0$ the level set L_ε must be nowhere dense.
2. The set L is of first Baire category.

Let ν be a continuous Borel probability measure on \mathbb{T} which is invariant with respect to multiplication by 2 and 3: for every $p \in \mathbb{Z}$, $\nu e^p = \nu e^{2^j 3^k}$ for every $j, k \in \mathbb{N}$.

Suppose $\nu = \Lambda_{t, \alpha}$ for an irrational α. We claim, $\nu = \lambda$. Suppose to the contrary: $\nu e^p = \Lambda_{t, \alpha} e^p \neq 0$ for some $p \in \mathbb{Z} \setminus \{0\}$. Then

$$\nu e^p = \nu e^{2^j 3^k} = \Lambda_{t, \alpha} e^{2^j 3^k} = \Lambda_{t, 2^j 3^k \alpha} e$$

But by Furstenberg’s theorem, the set $\{2^j 3^k (p\alpha) : j, k \in \mathbb{N}\}$ is dense in \mathbb{T}. \implies with Lemma/1.
Furstenberg’s conjecture

For a good time $t = (t_n)$ and $\varepsilon > 0$, define the **level set** L_ε by $L_\varepsilon = \{ \alpha \in \mathbb{T} : |\Lambda_{t,\alpha} e| > \varepsilon \}$ and let $L = \bigcup_{\varepsilon > 0} L_\varepsilon$.

Lemma (Lesigne-Quas-Rosenblatt-Wierdl 2024).

1. For every $\varepsilon > 0$ the level set L_ε must be nowhere dense.
2. The set L is of first Baire category.

Let ν be a continuous Borel probability measure on \mathbb{T} which is invariant with respect to multiplication by 2 and 3: for every $p \in \mathbb{Z}$, $\nu e^p = \nu e^{p \cdot 2^j 3^k}$ for every $j, k \in \mathbb{N}$.

Suppose $\nu = \Lambda_{t,\alpha}$ for an irrational α. We claim, $\nu = \lambda$. Suppose to the contrary: $\nu e^p = \Lambda_{t,\alpha} e^p \neq 0$ for some $p \in \mathbb{Z} \setminus \{ 0 \}$. Then

$$\nu e^p = \nu e^{p \cdot 2^j 3^k} = \Lambda_{t,\alpha} e^{p \cdot 2^j 3^k} = \Lambda_{t,p \cdot 2^j 3^k \alpha} e$$

But by Furstenberg’s theorem, the set $\{ 2^j 3^k (p\alpha) : j, k \in \mathbb{N} \}$ is dense in \mathbb{T}. \equiv with Lemma/1.
Furstenberg’s conjecture

For a good time \(t = (t_n) \) and \(\varepsilon > 0 \), define the level set \(L_\varepsilon \) by \(L_\varepsilon = \{ \alpha \in \mathbb{T} : |\Lambda_{t,\alpha} e| > \varepsilon \} \) and let \(L = \bigcup_{\varepsilon > 0} L_\varepsilon \).

Lemma (Lesigne-Quas-Rosenblatt-Wierdl 2024).

1. For every \(\varepsilon > 0 \) the level set \(L_\varepsilon \) must be nowhere dense.
2. The set \(L \) is of first Baire category.

Let \(\nu \) be a continuous Borel probability measure on \(\mathbb{T} \) which is invariant with respect to multiplication by 2 and 3: for every \(p \in \mathbb{Z}, \nu e^p = \nu e^{p2^j3^k} \) for every \(j, k \in \mathbb{N} \).

Suppose \(\nu = \Lambda_{t,\alpha} \) for an irrational \(\alpha \). We claim, \(\nu = \lambda \). Suppose to the contrary: \(\nu e^p = \Lambda_{t,\alpha} e^p \neq 0 \) for some \(p \in \mathbb{Z} \setminus \{0\} \). Then

\[
\nu e^p = \nu e^{p2^j3^k} = \Lambda_{t,\alpha} e^{p2^j3^k} = \Lambda_{t,p2^j3^k,\alpha} e
\]

But by Furstenberg’s theorem, the set \(\{ 2^j3^k(p\alpha) : j, k \in \mathbb{N} \} \) is dense in \(\mathbb{T} \). \(\Rightarrow \) with Lemma/1.
Furstenberg’s conjecture

For a good time $t = (t_n)$ and $\varepsilon > 0$, define the level set L_ε by $L_\varepsilon = \{ \alpha \in \mathbb{T} : |\Lambda_t \alpha| > \varepsilon \}$ and let $L = \bigcup_{\varepsilon > 0} L_\varepsilon$.

Lemma (Lesigne-Quas-Rosenblatt-Wierdl 2024).

1. For every $\varepsilon > 0$ the level set L_ε must be nowhere dense.
2. The set L is of first Baire category.

Let ν be a continuous Borel probability measure on \mathbb{T} which is invariant with respect to multiplication by 2 and 3: for every $p \in \mathbb{Z}$, $\nu e^p = \nu e^{p2^j3^k}$ for every $j, k \in \mathbb{N}$.

Suppose $\nu \equiv \Lambda_{t,\alpha}$ for an irrational α. We claim, $\nu \equiv \lambda$. Suppose to the contrary: $\nu e^p = \Lambda_{t,\alpha} e^p \neq 0$ for some $p \in \mathbb{Z} \setminus \{0\}$. Then

$$\nu e^p = \nu e^{p2^j3^k} = \Lambda_{t,\alpha} e^{p2^j3^k} = \Lambda_{t,2^j3^k\alpha} e$$

But by Furstenberg’s theorem, the set $\{ 2^j3^k(p\alpha) : j, k \in \mathbb{N} \}$ is dense in \mathbb{T}. $\Rightarrow \Leftarrow$ with Lemma/1.
Question

Question.
Is there a Borel probability measure ν on \mathbb{T} so that for every irrational α there is $\varepsilon > 0$ so that the set

$$\{ n\alpha : n \in \mathbb{Z}, |\hat{\nu}(n)| > \varepsilon \}$$

is dense in a nondegenerate subinterval of \mathbb{T}?

If there is such a measure, then it cannot be represented anywhere.
Question

Is there a Borel probability measure ν on \mathbb{T} so that for every irrational α there is $\varepsilon > 0$ so that the set

$$\{ n\alpha : n \in \mathbb{Z}, |\hat{\nu}(n)| > \varepsilon \}$$

is dense in a nondegenerate subinterval of \mathbb{T}?

If there is such a measure, then it cannot be represented anywhere.
Proof

Theorem (Lesigne-Wierdl (2024)).

Suppose \(\nu \) is a Rajchman probability measure, that is, \(\lim_{|n| \to \infty} \nu e^n = 0 \), and let \(\alpha \) be irrational.

Then there is a good time \(t = (t_n) \) so that \(\nu = \Lambda_{t, \alpha} \).

If \(\nu \) is **absolutely** continuous with respect to \(\lambda \) then \(t = (t_n) \) can be **pointwise** good.

We first construct a good weight \(w \) with \(\Lambda_{w, \alpha} = \nu \): For an appropriately fast increasing \(N_1 < N_2 < \ldots \), if \(N_k \leq N < N_{k+1} \) then \(\Lambda_{w, \beta} e \) is approximated by

\[
\Lambda_{\alpha \in [N]} \rho_k(n \alpha) e(n \beta) = \Lambda_{\alpha \in [N]} \left(\sum_{h \in [-k, k]} \nu(e^h) \left(1 - \frac{|h|}{k+1} \right) e(-hn \alpha) \right) e(n \beta)
\]

which is

\[
\sum_{h \in [-k, k]} \nu(e^h) \left(1 - \frac{|h|}{k+1} \right) \Lambda_{\alpha \in [N]} e(n(\beta - h \alpha)) \quad \text{for} \quad \beta \in \mathbb{T}
\]

Major arcs centered at \(h \alpha, h \in [-k, k] \). Usual major arcs are centered at rational points.

We then randomly “construct” the good time \(t \) so that \(\Lambda_{t, \beta} e = \Lambda_{w, \beta} e \).
Proof

Theorem (Lesigne-Wierdl (2024)).
Suppose ν is a Rajchman probability measure, that is, $\lim_{|n| \to \infty} \nu e^n = 0$, and let α be irrational.
Then there is a good time $t = (t_n)$ so that $\nu = \Lambda_{t,\alpha}$.
If ν is absolutely continuous with respect to λ then $t = (t_n)$ can be pointwise good.

| We first construct a good **weight** w with $\Lambda_{w,\alpha} = \nu$: For an appropriately fast increasing $N_1 < N_2 < \ldots$, if $N_k \leq N < N_{k+1}$ then $\Lambda_{w,\beta} e$ is approximated by
| $A_{n \in [N]} \rho_k(n \alpha) e(n \beta) = A_{n \in [N]} \left(\sum_{h \in [-k,k]} \nu(e^h) \left(1 - \frac{|h|}{k+1} \right) e(-hn\alpha) \right) e(n \beta)$ which is
| $\sum_{h \in [-k,k]} \nu(e^h) \left(1 - \frac{|h|}{k+1} \right) A_{n \in [N]} e(n(\beta - h\alpha))$ for $\beta \in \mathbb{T}$

Major arcs centered at $h\alpha, h \in [-k, k]$. Usual major arcs are centered at rational points.

| We then randomly “construct” the good time t so that $\Lambda_{t,\beta} e = \Lambda_{w,\beta} e$.

April 11, 2024 15/15
Theorem (Lesigne-Wierdl (2024)).
Suppose \(\nu \) is a Rajchman probability measure, that is, \(\lim_{|n| \to \infty} \nu e^n = 0 \), and let \(\alpha \) be irrational.
Then there is a good time \(t = (t_n) \) so that \(\nu = \Lambda_{t, \alpha} \).
If \(\nu \) is **absolutely** continuous with respect to \(\lambda \) then \(t = (t_n) \) can be **pointwise** good.

► We first construct a good **weight** \(w \) with \(\Lambda_{w, \alpha} = \nu \): For an appropriately fast increasing \(N_1 < N_2 < \ldots \), if \(N_k \leq N < N_{k+1} \) then \(\Lambda_{w, \beta} e \) is approximated by

\[
A_{n \in [N]} \rho (n \alpha) e(n \beta) = A_{n \in [N]} \left(\sum_{h \in [-k, k]} \nu(e^h) \left(1 - \frac{|h|}{k+1} \right) e(-hn \alpha) \right) e(n \beta)
\]

which is

\[
\sum_{h \in [-k, k]} \nu(e^h) \left(1 - \frac{|h|}{k+1} \right) A_{n \in [N]} e(n(\beta - h \alpha)) \quad \text{for} \quad \beta \in \mathbb{T}
\]

Major arcs centered at \(h \alpha, h \in [-k, k] \). Usual major arcs are centered at rational points.
► We then randomly “construct” the good time \(t \) so that \(\Lambda_{t, \beta} e = \Lambda_{w, \beta} e \).