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Urban agriculture is increasing worldwide. A history of

contamination within urban landscapes may negatively impact

the biota necessary for sustainable crop production, including

arthropod natural enemies. This investigation revealed that

heavy metal contamination can influence the composition of

natural enemy communities and exposure can have

reproductive, developmental, immunological and behavioral

impacts on predators and parasitoids. Natural enemies

exposed to heavy metals typically live shorter lives, take longer

to develop and exhibit a reduced reproductive potential.

Further, they may incur significant energy costs though the

production of detoxification enzymes [47_TD$DIFF]. This is a new and

relatively unexplored area for biological control research, with

important implications for our understanding of urban

agricultural food web interactions.

Addresses
1Department of Entomology, The Ohio State University, Columbus, OH

43210, USA
2Department of Entomology, University of Kentucky, Lexington, KY

40546, USA

Corresponding author: Gardiner, Mary M (gardiner.29@osu.edu)

Current Opinion in Insect Science 2017, 20:45–53

This review comes from a themed issue on Parasites/Parasitoids/

Biological control

Edited by James D Harwood and Mary Gardiner

For a complete overview see the Issue and the Editorial

Available online 1st April 2017

http://dx.doi.org/10.1016/j.cois.2017.03.007

2214-5745/ã 2017 Published by Elsevier Inc.

Introduction
Agriculture has long been part of the urban landscape,

from home gardens to small scale farms [1�� [55_TD$DIFF]] but in recent

decades, interest in producing food in cities has grown

dramatically [2��]. It is estimated that more than 30% of

the global urban population is engaged in some form of

urban agriculture (UA) [3]. Furthermore, households with

limited access to fresh produce are more likely to engage

in UA [4], resulting in greater acquisition of fruits, vege-

tables, eggs, and other agricultural products within low

income communities. Urban greenspaces, including com-

munity gardens and farms, have also been demonstrated

to reduce human health risks via provision of additional

biophysical ecosystem services [5] including filtration of

pollutants from the air, reduction of the heat island effect,

supplying space for physical activity, and improved

neighborhood aesthetics [1�� [50_TD$DIFF],2��].

UA often occupies vacant land that formerly supported

industrial, commercial, or residential land use (Figure 1).

These habitats frequently have a history of contamination

[6��] by heavymetal (HM) pollutants, with soils serving as

the major sink [6��,7�]. HM’s include both nonessential

elements (arsenic, cadmium, chromium, lead, mercury,

and nickel) and elements essential to life that become

toxic at higher concentrations (cobalt, copper, manga-

nese, selenium, and zinc) [8�]. There are a multitude

of routes to contamination that have facilitated HM

pollution including vehicle exhaust, coal combustion,

interior and exterior paint, smelting and waste disposal

[6��]. HM thresholds for UA sites has focused on lead (Pb)

caused by its ubiquity as an urban soil contaminant,

correlation with the presence of other HM contaminants,

and the documented exposure risks to human health

[2��]. Worldwide Pb thresholds vary widely from 85–

500 ppm [2��], with differences found between countries,

and in some instances even among regions of a country.

These thresholds are aimed at limiting human exposure

to Pb via the consumption of contaminated produce or

accidental soil ingestion or inhalation.

Research and regulations to ensure UA produces food safe

for human consumption is paramount, but these contami-

nants also have important environmental impacts which

are less clearly understood or regulated. Key among these

is how HM contamination influences the beneficial

arthropod fauna that support the ecosystem services

necessary for sustainable UA. HMs can impact UA by

influencing both top-down and bottom-up processes [9��].
In this article, we examine the impacts of HM contami-

nation on crop plant – pest – natural enemy food webs. In

particular, we focus on howHM contamination influences

the composition and fitness of natural enemies foraging in

contaminated landscapes and identify the potential

impacts of HM exposure on biological control within UA.

Heavy metals, crop plants, and herbivores
Production of crops in HM contaminated soils can result

in decreased seed germination, reduced growth and

development, abnormalities in morphology, altered

enzyme activity, disruptions in metabolic pathways,

reduced ability to uptake essential nutrients and water,

chlorosis, early senescence and phytotoxicity [10�]. Given
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the potential human and plant health consequences,

urban growers employ several strategies to limit HM

uptake by crop plants. These actions can be extensive,

including upper level soil removal or ‘capping’ wherein a

barrier is applied to a site and soil for plant production is

added above it, although the latter approach is typically

cost prohibitive [2��]. More typical recommendations

involve the use of raised beds, frequently with HM free

potting medium and compost added [11], or amending

existing soil to reduce the bioavailability of HMs. Soil

properties including pH, cation exchange capacity, oxides

and organic matter can affect plant uptake of HMs [6��].
For example, soils with high organic matter content and

neutral or alkaline pH generally have a lowered bioavail-

ability of HM to flora and fauna [6��]. Thus, the applica-

tion of phosphorus-based fertilizers or organic amend-

ments such as biosolids or compost are recommended to

reduce the likelihood for uptake of Pb [2��]. Management

practices such as soil tillage to mix surface and subsoil can

reduce bioavailable HM [6��,12] as can the presence of

earthworms and mycorrhizal fungi [13]. Establishing turf

or mulching areas between UA plantings can also limit

recontamination of managed areas with HM dust from

unmanaged areas of an urban farm.

The exposure of herbivores to HM contaminated host

plants can alter weight gain, growth, survival, fecundity

and eclosion success [9��]. Interestingly, the strength and

direction of these relationships are influenced by the

concentration of HM contamination. In some cases, pre-

dictable negative impacts of HM exposure on herbivore

population growth have been documented. For example,

the net reproductive rate of the English grain aphid,

Sitobion avenae (Hemiptera: Aphididae), and the number

of offspring per female decreased with increasing cad-

mium (Cd) concentration [14]. However, at low
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(a) Urban agricultural production is growing worldwide, particularly in cities where protracted economic decline and home foreclosure have

resulted in a significant amount of vacant land [22�]. (a) When foreclosed or abandoned homes hold little to no property value they are eventually

torn down by municipalities. (b) Demolition involves removal of debris from the site, but this process could be a source of additional HM soil

contamination from materials such as lead-based paints. (c) Following demolition, a vacant lot plant community establishes that may contain

seeded grasses and/or grasses and forbs from the existing seed bank. Vacant lots are maintained as early-successional habitats with periodic

mowing. (d) Communities are reimagining a portion of available vacant land as a resource for agricultural production.
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concentrations, which may be more typical of managed

beds within UA, HM contamination can lead to increased

growth rates of herbivores. For example, low concentra-

tions of Cd promoted population increase of the beet

armyworm, Spodoptera exigua (Lepidoptera: Noctuidae),

whereas high doses within their diet inhibited growth in

population [15]. Exposure to HMs is also highly depen-

dent on host plant selection and feeding strategy. In

general, HM concentrations decrease from roots > lea-

ves > stem > inflorescences > seeds, however this can

vary by plant species [16]. Furthermore, some plants

are considered hyperaccumulators, able to sequester high

concentrations of metals in their tissues [17], thus con-

sumption of these plants could result in an increased

likelihood of an herbivore ingesting a significant concen-

tration of HM contaminants. Feeding strategy can also

influence impacts of HM; for example, feeding on host

plants containing nickel (Ni) led to reduced survival of

leaf and root chewing herbivores but not phloem feeders

[18].

Natural enemies in a contaminated landscape
The composition, configuration, and contamination leg-

acy of the urban landscape is likely to have a significant

impact on contamination present within natural enemies

supplied to UA [19]. Many of the natural enemies impor-

tant in the suppression of UA pests immigrate into crop

production beds from surrounding greenspaces such as

vacant lots [20–23], unlikely to be managed for HM. For

example, in Cleveland Ohio, U.S.A. soil Pb concentra-

tions were four times higher in vacant lots than nearby

urban farms (Figure 2a, b). Factors, such as neighborhood

housing age, concentration of major roadways and prox-

imity to historic sources of HM pollutions such as smel-

ters, could influence the contamination present within

these source habitats. Therefore, even if urban farm soils

are free of HM contamination, populations of natural

enemies may encounter HM via their diet, water con-

sumption and soil contact within source habitats. For

example, no difference in Pb concentrations were found

within sheet web spiders (Araneae: Linyphiidae) col-

lected from vacant lots and nearby farm sites

(Figure 2c). Thus it is important to consider that the

biological control function of natural enemies found

within UA could be altered by contamination, even if

soil testing and management practices are employed to

reduce bioavailable HM on-farm.

At the community level, foraging in a contaminated

landscape often results in reduced natural enemy rich-

ness, abundance and altered community composition

[23–26]. However, these community properties can be

unaffected, or even positively correlated, with HM con-

tamination [27,28]. Bioindication research demonstrates

that HM contamination in natural enemies often corre-

lates with habitat contamination but can vary greatly

within and between species. Variables such as life stage,

sex and seasonal diet changes influence HM concentra-

tions within a species collected from a contaminated

habitat [29,30]. Among species, several traits including

capacity for dispersal, prey choice, ability to store or

excrete HMs and seasonal occurrence can influence con-

centrations of HMs found within natural enemies [31–

36,37�� [51_TD$DIFF]]. For example, seasonality was found to influence

Pb contamination of sheet web spiders (Araneae: Liny-

phiidae) in vacant lots and urban farms; those collected in

early June contained significantly greater concentrations

of Pb than those present in July or August (Figure 2d).

Although its unknown why this variation occurred, sea-

sonal food web changes could alter exposure risk. Diet

variation is known to influence predator contamination,

for example, ground beetles (Coleoptera: Carabidae) that

fed on larger snails and earthworms accumulated higher

concentrations of Cd than species that consumed small

snails or a diversity of invertebrates and carrion [37��].

Impacts of HM contamination on natural
enemies and biological control
To fully understand the influence of contamination on

biological control, it is necessary document how HM

exposure alters the physiology and behavior of natural

enemies. Studies documenting these impacts have

focused predominantly on predatory taxa, with significant

focus on a small number of ground beetle and spider

species. These studies have revealed reproductive, devel-

opmental, immunological and behavioral impacts of con-

tamination on the studied natural enemy fauna (Table 1).

Reproduction

HM exposure can influence the probability of mating,

fecundity, and egg hatch among natural enemies [38–43].

For example, females of the wolf spider, Pirata piraticus
(Araneae: Lycosidae), from uncontaminated sites exhib-

ited a decreased probability of copulation when food

deprived, whereas females collected from polluted sites

did not [43]. In general, HM contaminated predators

produced fewer, larger eggs, with reduced hatching suc-

cess. One exception was reported by Babczy�nska
et al. [41] who found that funnel web spiders, Agelena
labyrinthica (Araneae: Agelinidae), collected from contam-

inated habitats produced a larger number of eggs, albeit

smaller ones, and these eggs exhibited reduced hatching

success relative to uncontaminated females.

Development time and body size

HM exposure can alter natural enemy development time,

adult weight, longevity and starvation tolerance. HM

contaminated prey or water sources have been revealed

to lengthen development time [44–48]. For example,

when feeding on hosts contaminated with copper (Cu),

Nasonia vitripennis (Hymenoptera: Pteromalidae), exhib-

ited lengthened developmental time and reduced emer-

gence of adult parasitoids from the pupal stage [45]. The

adult wasps also had a shortened adult life span and

Influence of heavy metal contamination on urban natural enemies and biological control Gardiner and Harwood 47
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Figure 2
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(a) The city of Cleveland, Ohio U.S.A. has over 100 UA operations occupying formerly-vacant land. These sites vary in distance from historic

smelting sites and are embedded within landscapes where factors such as housing age and roadway density can influence HM soil contamination.

Within four UA sites and four nearby vacant lots we measured the Pb concentration of soils and sheet-web spiders (Linyphiidae). (b) Pb

concentrations within vacant lot soils were significantly higher than nearby urban farms (F = 35.94, p < 0.001). Relative to the Cuyahoga County

background soil Pb level of 51.7 ppm [74], vacant lot soils contained nearly four times the Pb, whereas urban farms averaged close to the

background Pb concentrations. (c) Interestingly, despite the difference in soil contamination we found no difference in Pb concentrations within

sheet-web spiders (Araneae: Linyphiidae) collected from urban farm and vacant lot habitats (F = 1.42, p = 0.23). (d) However, variation in linyphiid

contamination was detected by month, with greater Pb levels found in spiders collected in June than July or August (F = 9.65, P < 0.001).
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Table 1

Summary of studies examining the reproductive, developmental, behavioral and physiological impacts of HM exposure on predator and

parasitoid arthropods. Both laboratory bioassays and analyses of field-contaminated arthropods are included

HMa Effects of HM exposure Ref.

Araneae: Agelenidae

Agelena labyrinthica M Increased detoxifying enzyme (CarE) activity [57]

Agelena labyrinthica M Increased activity of detoxifying enzymes (GPOX and GSTPX) in females [58]

Agelena labyrinthica M Increased metallothionein protein concentrations, reduced mitochondrial

potential, higher ADP/ATP ratio

[59]

Agelena labyrinthica M Increased metallothionein protein concentrations correlated with

concentrations of Zn, but not Cd, Cu, or Pb

[36]

Agelena labyrinthica M Enhanced egg production, reduced hatching success [41]

Agelena labyrinthica Mg Lengthened developmental time, reduced survivorship, similar web

construction but greater variation in placement

[60]

Araneae: Araneidae

Araneus diadematus M Increased metallothionein protein concentrations correlated with

concentrations of Cd, Pb, and Zn but not Cu

[36]

Araneae: Linyphiidae

Linyphia triangularis M Increased metallothionein protein concentrations correlated with

concentrations of Pb and Zn, but not Cd or Cu

[36]

Araneae: Lycosidae

Pardosa astrigera Pb, Zn Increased developmental time, reduction in body weight at high metal

concentrations, production of fewer eggs

[65]

Pardosa lugubris M Increased detoxifying enzyme (CarE) activity [57]

Pardosa saltans Reduced body size, delayed reproductive period for females, production of

fewer, larger eggs

[66]

Pirata piraticus M Negative relationship between fluctuating asymmetry and clutch size [61]

Pirata piraticus M Reduced fecundity and clutch size, production of larger eggs [39]

Pirata piraticus M Production of larger eggs, decreased growth rate [62]

Pirata piraticus M More likely to reproduce under food stress than females collected from

uncontaminated habitat

[43]

Pirata subpiraticus Cd Lengthened developmental time and reduced starvation tolerance [46]

Pirata subpiraticus Cd Increased metallothionein protein concentrations, decreased growth rate,

decreased survival

[63]

Pirata subpiraticus Mg Increased activity of detoxification enzyme GSH, reduced activity of SOD,

CAT, and GST

[64]

Xerolycosa nemoralis M Reduced egg production, similar hatching success compared with females

from uncontaminated sites

[41]

Coleoptera: Carabidae

Carabus splendens Cd No effect on prey consumption, increased mortality [53]

Poecilus cupreus Zn No difference in body mass at pupal emergence, decreased body mass

following overwintering

[67]

Pterostichus melanarius M Reduced fat content in adults [68]

Pterostichus oblongopunctatus M Reduced tolerance to food deprivation, increased susceptibility to pesticide

exposure

[55]

Pterostichus oblongopunctatus Zn Reduced egg production, increased development time and body size of

laboratory-reared F1 generation

[40]

Pterostichus oblongopunctatus M Higher detoxification enzyme activity (GST and CarE) in female beetles

within some contaminated sites relative to reference site, no difference in

enzyme activity among male beetles

[50]

Pterostichus oblongopunctatus M Decreased detoxification enzyme activity when exposed to Cd (GPOX), Pb

(SOD), or Zn (GST), increased activity when exposed to Pb (GSTPX, GR) Cu

(GPOX), and Cd (GSTP, GR)

[69]

Pterostichus oblongopunctatus M Larger body mass [49]

Pterostichus oblongopunctatus M No difference in laboratory-reared F2 generation in susceptibility to

starvation or insecticide exposure

[40]

Pterostichus oblongopunctatus Zn Reduced elytra length [70]

Pterostichus oblongopunctatus Zn Greater egg production, reduced egg hatch, no effect on laboratory-reared

F1 generation survivorship or developmental rate

[40]

Pterostichus oblongopunctatus Cd,

Zn

Increased whole-organism respiration rate [52]

Coleoptera: Curculionidae

Phyllobius betalae M Reduced detoxification enzyme activity when exposed to Cu (GPOX), Pb

(GSTP), or Zn (GSTP)

[69]
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emales exhibited reduced fecundity [45]. Interestingly,

exposure to HMs results in reduced body mass in some

predators [48] and greater body mass in others [49]. For

example, the ground beetle, Pterostichus oblongopunctatus
(Coleoptera: Carabidae), collected from HM contami-

nated sites had a greater body mass [49]; the authors

speculated this pattern may be caused by reduced com-

petition with other predators.

Detoxification, immunity and energy costs

HM exposure can influence the production of metal-

lothioneins and enzymes involved in detoxification,

including carboxyesterases (CarE), catalases (CAT), glu-

tathiones (GSH), glutathione-S-transferases (GST),

gluthione reductase (GR), superoxide dismutases

(SOD), and selenium-dependent (GPOX) and sele-

nium-independent (GSTPX) glutathione peroxidases

[36,50,57–59,63,64,69]. HM exposure frequently leads

to greater detoxification enzyme activity; however, varia-

tion exists both within and between species, often varying

by sex [36,50]. Induction of detoxification enzymes above

normal levels may have fitness consequences for

arthropods as energetic demands shift from maintenance

and reproduction. In ants, for example, encapsulation

rates (a measure of immunity) actually increased with

moderate HM contamination but decreased in heavily

contaminated ants [51�]. Whole-organism respiration

rates have also been shown to increase with HM concen-

tration, suggesting that natural enemies can incur energy

costs with toxicity [52].

Biocontrol services

Few studies have focused on the impact of HM contami-

nation on predator–prey interactions and biological con-

trol. However, we can infer some potential impacts from

studies examining how predator fitness and behavior are

altered by HM contamination. For example, feeding on

contaminated prey is likely to reduce the longevity of

biocontrol services provided by an individual natural

enemy. Although the predation rate of the ground beetle,

Carabus splendens (Coleoptera: Carabidae), was not

affected by consuming Cd contaminated snails, the bee-

tles experienced significantly greater mortality [53]. In

some cases, HM contamination has been demonstrated to

50 Parasites/Parasitoids/Biological control

Table 1 (Continued )

HMa Effects of HM exposure Ref.

Coleoptera: Scarabaeidae

Geotrupes stercorosus M Increased detoxification enzyme activity when exposed to Cd (GSTP, GR),

Cu (GSTP, GST), Pb (SOD, GSTP, GPOX, GR), and Zn (GPOX, GR), reduced

activity when exposed to Cd (GST)

[69]

Coleoptera: Staphylinidae

Staphylinus caesareus M Increased detoxification enzyme activity when exposed to Cd (SOD, GSTP,

GPOX), Cu (SOD, GPOX, GST), Pb (SOD, GPOX), Zn (GST), reduced activity

when exposed to Pb (GST, GR), and Cd (GST, GR)

[69]

Hemiptera: Pentatomidae

Podisus maculiventris Se Longer developmental time, reduced adult weight, increased mortality [48]

Podisus maculiventris M Longer developmental time, reduced adult weight, no effect on survivorship [47�]

Hymenoptera: Formicidae

Formica aquilonia M Increased encapsulation at moderate and decreased encapsulation at high

levels of HM exposure

[51�]

Formica aquilonia M Reduced mound volume (indicative of reduced colony size), no difference in

worker morphological characteristics

[71]

Formica aquilonia Cu Reduced intraspecific aggression [54]

Parasitoids

Hymenoptera: Braconidae

Aphidius ervi Cd Cd alone and in combination with imidacloprid insecticide reduced adult

emergence from host

[56]

Glyptapanteles liparidis M No effect on parasitization success [72]

Hymenoptera: Diapriidae

Coptera occidentalis M No effect on parasitoid fecundity or percentage of females produced in

laboratory-reared F1 generation

[38]

Coptera occidentalis Cd, Cu Equal parasitism of control and HM contaminated hosts, reduced

emergence of females from contaminated hosts, no effect on developmental

rate, life span, or fecundity

[44]

Hymenoptera: Ichneumonidae

Pimpla turionellae Cd, Pb Reduced life span [73]

Hymenoptera: Pteromalidae

Nasonia vitripennis Cu Reduced growth and increased developmental time, reduced emergence of

adults, shortened adult life span, reduced fecundity in females

[45]

a M = multiple heavy metals (more than 2) studied.

Current Opinion in Insect Science 2017, 20:45–53 www.sciencedirect.com



reduce the aggressiveness of natural enemies, which

could alter their efficiency as a predator [54]. For exam-

ple, ants exposed to contamination from a Cu smelter

were less likely to demonstrate aggressiveness to foreign

colonies, a behavior hypothesized to be either a result of

direct toxicity or changes in resource availability [54].

Exposure to HMmay also make natural enemies less able

to tolerate cyclic prey populations common in UA. The

ground beetle, Pterostichus oblongopunctatus (Coleoptera:
Carabidae), collected from HM polluted sites exhibited

increased susceptibility to food depravation [55]. HM

exposure may also alter outcomes of integrated pest

management programs by causing greater sensitivity of

natural enemies to pesticides [55,56]. For example, the

parasitoid, Aphidius ervi (Hymenoptera: Braconidae),

exposed to aphids feeding on plants grown in soil con-

taminated with Cd exhibited reduced adult emergence,

an effect that was magnified when imidacloprid was

applied to the soil [56].

Future research directions
Herein, we identify HM as a factor that could influence

biological control, a key ecosystem service provided to

UA. The data presented here illustrate reduced survivor-

ship, altered developmental time and reproductive out-

put, and energetic investment into the production of

detoxification enzymes. However, will these impacts

translate into measureable reductions in biological con-

trol? Testing this hypothesis is complex, as the likelihood

and extent of natural enemy contamination by HM is

dependent on identifying contamination risk within mul-

tiple dimensions of niche space. For example, factors

such as the extent of surface soil contact, use of alterna-

tive prey and non-prey foods, overwintering strategies,

and capacity for dispersal vary extensively among com-

mon natural enemies. Such factors could all influenceHM

contamination and the biological control services afforded

by different species, and thus should be investigated.

Further, the field studies reviewed here are predomi-

nately gradient analyses wherein natural enemies were

collected within semi-natural habitats at [52_TD$DIFF]successive dis-

tances from a point source of contamination such as a

former mining site or smelter. Within an UA context,

however, focal habitats are embedded in a landscape with

varying sources and levels of contamination, not neces-

sarily one identifiable source of HM pollution. Therefore,

identifying how a species niche influences contamination

risk and its potential to provide biological control services

should [53_TD$DIFF]be studied within the content of the surrounding

urban landscape matrix.
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Bouchè, Braconidae hym.). Arch. Environ. Contam. 1993,
24:421-426.

73. Ortel J, Vogel W: Effects of lead and cadmium on oxygen
consumption and life expectancy of the pupal parasitoid,
Pimpla turionellae. Entomol. Exp. Appl. 1989, 52:83-88.

74. Ohio EPA: Evaluation of background metal soil concentrations
in CuyahogaCounty—Cleveland area. Summary Report for Ohio
EPA’s Voluntary Action Program 2013. 134 pages.

Influence of heavy metal contamination on urban natural enemies and biological control Gardiner and Harwood 53

www.sciencedirect.com Current Opinion in Insect Science 2017, 20:45–53

http://refhub.elsevier.com/S2214-5745(17)30045-7/sbref0240
http://refhub.elsevier.com/S2214-5745(17)30045-7/sbref0240
http://refhub.elsevier.com/S2214-5745(17)30045-7/sbref0240
http://refhub.elsevier.com/S2214-5745(17)30045-7/sbref0245
http://refhub.elsevier.com/S2214-5745(17)30045-7/sbref0245
http://refhub.elsevier.com/S2214-5745(17)30045-7/sbref0245
http://refhub.elsevier.com/S2214-5745(17)30045-7/sbref0245
http://refhub.elsevier.com/S2214-5745(17)30045-7/sbref0245
http://refhub.elsevier.com/S2214-5745(17)30045-7/sbref0250
http://refhub.elsevier.com/S2214-5745(17)30045-7/sbref0250
http://refhub.elsevier.com/S2214-5745(17)30045-7/sbref0250
http://refhub.elsevier.com/S2214-5745(17)30045-7/sbref0250
http://refhub.elsevier.com/S2214-5745(17)30045-7/sbref0250
http://refhub.elsevier.com/S2214-5745(17)30045-7/sbref0255
http://refhub.elsevier.com/S2214-5745(17)30045-7/sbref0255
http://refhub.elsevier.com/S2214-5745(17)30045-7/sbref0255
http://refhub.elsevier.com/S2214-5745(17)30045-7/sbref0260
http://refhub.elsevier.com/S2214-5745(17)30045-7/sbref0260
http://refhub.elsevier.com/S2214-5745(17)30045-7/sbref0260
http://refhub.elsevier.com/S2214-5745(17)30045-7/sbref0260
http://refhub.elsevier.com/S2214-5745(17)30045-7/sbref0265
http://refhub.elsevier.com/S2214-5745(17)30045-7/sbref0265
http://refhub.elsevier.com/S2214-5745(17)30045-7/sbref0265
http://refhub.elsevier.com/S2214-5745(17)30045-7/sbref0265
http://refhub.elsevier.com/S2214-5745(17)30045-7/sbref0265
http://refhub.elsevier.com/S2214-5745(17)30045-7/sbref0270
http://refhub.elsevier.com/S2214-5745(17)30045-7/sbref0270
http://refhub.elsevier.com/S2214-5745(17)30045-7/sbref0270
http://refhub.elsevier.com/S2214-5745(17)30045-7/sbref0275
http://refhub.elsevier.com/S2214-5745(17)30045-7/sbref0275
http://refhub.elsevier.com/S2214-5745(17)30045-7/sbref0275
http://refhub.elsevier.com/S2214-5745(17)30045-7/sbref0275
http://refhub.elsevier.com/S2214-5745(17)30045-7/sbref0280
http://refhub.elsevier.com/S2214-5745(17)30045-7/sbref0280
http://refhub.elsevier.com/S2214-5745(17)30045-7/sbref0280
http://refhub.elsevier.com/S2214-5745(17)30045-7/sbref0280
http://refhub.elsevier.com/S2214-5745(17)30045-7/sbref0285
http://refhub.elsevier.com/S2214-5745(17)30045-7/sbref0285
http://refhub.elsevier.com/S2214-5745(17)30045-7/sbref0285
http://refhub.elsevier.com/S2214-5745(17)30045-7/sbref0285
http://refhub.elsevier.com/S2214-5745(17)30045-7/sbref0290
http://refhub.elsevier.com/S2214-5745(17)30045-7/sbref0290
http://refhub.elsevier.com/S2214-5745(17)30045-7/sbref0290
http://refhub.elsevier.com/S2214-5745(17)30045-7/sbref0290
http://refhub.elsevier.com/S2214-5745(17)30045-7/sbref0295
http://refhub.elsevier.com/S2214-5745(17)30045-7/sbref0295
http://refhub.elsevier.com/S2214-5745(17)30045-7/sbref0295
http://refhub.elsevier.com/S2214-5745(17)30045-7/sbref0295
http://refhub.elsevier.com/S2214-5745(17)30045-7/sbref0295
http://refhub.elsevier.com/S2214-5745(17)30045-7/sbref0300
http://refhub.elsevier.com/S2214-5745(17)30045-7/sbref0300
http://refhub.elsevier.com/S2214-5745(17)30045-7/sbref0300
http://refhub.elsevier.com/S2214-5745(17)30045-7/sbref0300
http://refhub.elsevier.com/S2214-5745(17)30045-7/sbref0305
http://refhub.elsevier.com/S2214-5745(17)30045-7/sbref0305
http://refhub.elsevier.com/S2214-5745(17)30045-7/sbref0305
http://refhub.elsevier.com/S2214-5745(17)30045-7/sbref0305
http://refhub.elsevier.com/S2214-5745(17)30045-7/sbref0310
http://refhub.elsevier.com/S2214-5745(17)30045-7/sbref0310
http://refhub.elsevier.com/S2214-5745(17)30045-7/sbref0310
http://refhub.elsevier.com/S2214-5745(17)30045-7/sbref0315
http://refhub.elsevier.com/S2214-5745(17)30045-7/sbref0315
http://refhub.elsevier.com/S2214-5745(17)30045-7/sbref0315
http://refhub.elsevier.com/S2214-5745(17)30045-7/sbref0315
http://refhub.elsevier.com/S2214-5745(17)30045-7/sbref0320
http://refhub.elsevier.com/S2214-5745(17)30045-7/sbref0320
http://refhub.elsevier.com/S2214-5745(17)30045-7/sbref0320
http://refhub.elsevier.com/S2214-5745(17)30045-7/sbref0320
http://refhub.elsevier.com/S2214-5745(17)30045-7/sbref0325
http://refhub.elsevier.com/S2214-5745(17)30045-7/sbref0325
http://refhub.elsevier.com/S2214-5745(17)30045-7/sbref0325
http://refhub.elsevier.com/S2214-5745(17)30045-7/sbref0325
http://refhub.elsevier.com/S2214-5745(17)30045-7/sbref0330
http://refhub.elsevier.com/S2214-5745(17)30045-7/sbref0330
http://refhub.elsevier.com/S2214-5745(17)30045-7/sbref0330
http://refhub.elsevier.com/S2214-5745(17)30045-7/sbref0330
http://refhub.elsevier.com/S2214-5745(17)30045-7/sbref0335
http://refhub.elsevier.com/S2214-5745(17)30045-7/sbref0335
http://refhub.elsevier.com/S2214-5745(17)30045-7/sbref0335
http://refhub.elsevier.com/S2214-5745(17)30045-7/sbref0340
http://refhub.elsevier.com/S2214-5745(17)30045-7/sbref0340
http://refhub.elsevier.com/S2214-5745(17)30045-7/sbref0340
http://refhub.elsevier.com/S2214-5745(17)30045-7/sbref0345
http://refhub.elsevier.com/S2214-5745(17)30045-7/sbref0345
http://refhub.elsevier.com/S2214-5745(17)30045-7/sbref0345
http://refhub.elsevier.com/S2214-5745(17)30045-7/sbref0345
http://refhub.elsevier.com/S2214-5745(17)30045-7/sbref0350
http://refhub.elsevier.com/S2214-5745(17)30045-7/sbref0350
http://refhub.elsevier.com/S2214-5745(17)30045-7/sbref0350
http://refhub.elsevier.com/S2214-5745(17)30045-7/sbref0350
http://refhub.elsevier.com/S2214-5745(17)30045-7/sbref0355
http://refhub.elsevier.com/S2214-5745(17)30045-7/sbref0355
http://refhub.elsevier.com/S2214-5745(17)30045-7/sbref0355
http://refhub.elsevier.com/S2214-5745(17)30045-7/sbref0360
http://refhub.elsevier.com/S2214-5745(17)30045-7/sbref0360
http://refhub.elsevier.com/S2214-5745(17)30045-7/sbref0360
http://refhub.elsevier.com/S2214-5745(17)30045-7/sbref0360
http://refhub.elsevier.com/S2214-5745(17)30045-7/sbref0360
http://refhub.elsevier.com/S2214-5745(17)30045-7/sbref0365
http://refhub.elsevier.com/S2214-5745(17)30045-7/sbref0365
http://refhub.elsevier.com/S2214-5745(17)30045-7/sbref0365
http://refhub.elsevier.com/S2214-5745(17)30045-7/sbref0370
http://refhub.elsevier.com/S2214-5745(17)30045-7/sbref0370
http://refhub.elsevier.com/S2214-5745(17)30045-7/sbref0370

	Influence of heavy metal contamination on urban natural enemies and biological control
	Introduction
	Heavy metals, crop plants, and herbivores
	Natural enemies in a contaminated landscape
	Impacts of HM contamination on natural enemies and biological control
	Reproduction
	Development time and body size
	Detoxification, immunity and energy costs
	Biocontrol services

	Future research directions
	Acknowledgements
	Appendix A Supplementary data
	References and recommended reading


