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Abstract
Meta-analysis is increasingly used in ecology and evolutionary biology. Yet, in these fields this technique has an

important limitation: phylogenetic non-independence exists among taxa, violating the statistical assumptions

underlying traditional meta-analytic models. Recently, meta-analytical techniques incorporating phylogenetic

information have been developed to address this issue. However, no syntheses have evaluated how often

including phylogenetic information changes meta-analytic results. To address this gap, we built phylogenies for

and re-analysed 30 published meta-analyses, comparing results for traditional vs. phylogenetic approaches and

assessing which characteristics of phylogenies best explained changes in meta-analytic results and relative model

fit. Accounting for phylogeny significantly changed estimates of the overall pooled effect size in 47% of

datasets for fixed-effects analyses and 7% of datasets for random-effects analyses. Accounting for phylogeny

also changed whether those effect sizes were significantly different from zero in 23 and 40% of our datasets

(for fixed- and random-effects models, respectively). Across datasets, decreases in pooled effect size

magnitudes after incorporating phylogenetic information were associated with larger phylogenies and those

with stronger phylogenetic signal. We conclude that incorporating phylogenetic information in ecological meta-

analyses is important, and we provide practical recommendations for doing so.
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INTRODUCTION

Meta-analysis is now an important tool in ecology and evolutionary

biology where it is widely used to infer general patterns from primary

studies. Meta-analyses synthesise data by calculating effect sizes, which

measure the magnitude and direction of experimental outcomes in

standardised units to facilitate among-study comparisons. Since the

first quantitative meta-analysis in ecology and evolutionary biology

(Gurevitch et al. 1992), hundreds of additional meta-analyses have

been conducted (Fig. 1). Often, ecological and evolutionary meta-

analyses summarise data from experiments involving different species,

ranging from studies of a single taxonomic group (e.g. Insecta;

Huberty & Denno 2004) to studies across multiple divergent groups

(e.g. animals, plants and fungi; Persson et al. 2010).

A traditional (non-phylogenetic) meta-analysis that synthesises

studies from different species can violate two statistical assumptions.

First, samples are not independent because they share evolutionary

history to varying degrees, and this shared history often leads to a

correlated data structure. For example, one review of ecological traits

measured in comparative studies found that nearly 90% of datasets

had at least one trait with significant phylogenetic dependence

(Freckleton et al. 2002). Thus, in most situations different species

cannot be considered statistically independent. Second, samples are

not drawn from a normally distributed population with a common

variance because species come from lineages that have evolved at

different rates (Lajeunesse 2009). Incorporating phylogenetic infor-

mation into ecological meta-analyses can ameliorate both of these

problems (Adams 2008; Lajeunesse 2009). Furthermore, incorporating

a phylogeny yields smaller variance estimates, reducing Type I error

rates when parameter estimates are equal to zero and giving more

powerful tests otherwise (Rohlf 2006). One potential challenge to the

increased use of phylogenetic information in meta-analyses is that

available phylogenies are often not fully resolved (leaving a number of

soft polytomies). However, phylogenetic comparative methods appear

to be relatively robust to some lack of resolution (Rohlf 2006; Stone

2011).

With increasing awareness of the dependence of species traits and

ecological processes on phylogeny, meta-analyses now often use

methods to account for phylogenetic history when effect sizes can be

assigned to individual species (Fig. 1 inset). In perhaps the simplest

form of a phylogenetic meta-analysis, taxonomic rank (e.g. genus or

family) is included in analyses as a grouping variable to assess

taxonomic differences in effect sizes (e.g. Marczak et al. 2007). If the

effects of phylogenetic history play out only at coarse scales of

taxonomic resolution, then complete phylogenies may not be

necessary. Indeed, some traits that mediate ecological interactions

are highly conserved at the family, subfamily or genus level; for

example, among the subfamilies of leguminous plants, nitrogen

fixation is nearly ubiquitous in the Mimosoideae and Papilionoideae,

but rare in the Caesalpinioideae (de Faria et al. 1989). Another method

to account for phylogenetic dependence uses pairwise distances

(phylogenetic branch lengths) between pairs of species as a covariate
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in the meta-analysis (e.g. Morales & Traveset 2009). A third approach

accounts for phylogenetic dependence by transforming effect sizes

prior to meta-analysis using phylogenetically independent contrasts

(Abouheif & Fairbairn 1997; Dubois & Cezilly 2002). Finally, a recent

development, proposed by Adams (2008), weights effect sizes by their

relative sampling error (as in traditional meta-analysis) and then re-

weights them using phylogenetic covariances. In a refinement to this

method, Lajeunesse (2009) proposed simultaneously weighting effect

sizes by relative sampling error and phylogenetic distances; this latter

approach is quickly gaining use among ecologists (e.g. Carmona et al.

2011; DelBarco-Trillo 2011; Meunier et al. 2011; Munguı́a-Rosas et al.

2011).

Despite the increasing use of phylogenetic meta-analysis, there is no

empirical assessment of how often, and under which circumstances,

phylogenetic meta-analysis is important. Put simply, we do not know

how often accounting for phylogenetic relatedness among taxa

changes the outcome or interpretation of a meta-analysis. As

incorporating phylogenetic information can take substantial effort,

a broader understanding of the effects of incorporating phylogenetic

history into ecological and evolutionary meta-analyses is timely.

Herein, we re-analyse datasets from previously published meta-

analytic studies, comparing results of traditional and phylogenetic

meta-analyses. In addition, we attempt to explain variation in the

effect of phylogenetic information on meta-analytic outcomes by

examining characteristics of phylogenies. We ask: (1) how does

accounting for phylogenetic non-independence change results of

individual meta-analyses? and (2) across datasets, what characteristics

of phylogenies explain changes in effect size for phylogenetic vs.

traditional meta-analyses? As a complement to our main questions, in

Appendix A, we also ask (3) how does accounting for phylogenetic

non-independence affect model fit of individual meta-analyses? and

(4) across datasets, what characteristics of phylogenies explain

variation in the relative fit of phylogenetic meta-analyses? Despite

the many compelling reasons to incorporate phylogenetic information

into meta-analyses that involve multiple species, investigators often

use model comparison criteria, such as Akaike�s Information Criterion

(AIC) to assess fit of phylogenetic vs. traditional meta-analytic models.

We found a clear bias in relation to phylogeny size for one of the two

methods currently used to quantify relative model fit (Q-based AIC),

thus our findings have important implications for meta-analysts using

such model comparisons (see Appendix A for details).

METHODS

Data selection criteria

To select datasets for our study, we conducted a comprehensive

search for published meta-analyses using ISI Web of Science (http://

www.isiknowledge.com). On 25 October 2010, we searched

�meta-analys* or metaanalys*� within the ISI ecology and evolutionary

biology subject areas, which yielded 937 journal articles published

since 1992. From this set, we retained meta-analytic datasets that met

three criteria. First, the effect sizes reported must have assessed a

response at the level of individual taxa (i.e. species) for three or more

taxa. In this way, we excluded datasets for which a phylogenetic meta-

analysis would have been impossible (e.g. meta-analyses on a single

focal species or on community-level responses, such as diversity or

evenness). Second, effect size data must have been provided, either

within the article itself or in an online archive. Third, some measure of

uncertainty (e.g. variance) around the effect size estimate (or the data

necessary to calculate it) must have been provided. Of the 56 meta-

analytic datasets that met these three criteria, we randomly selected 30

for our analyses. Data and phylogenies for each dataset are provided

in Appendix B.

It was not possible to fully re-create all analyses from the original

datasets, which often included multiple meta-analyses per dataset,

multiple grouping variables per meta-analysis and ⁄ or multiple effect

sizes per species. From each study, we selected a single meta-analysis

and a single grouping variable (if included in the original dataset), in

both cases maximising the number of effect sizes (number of species

or genera) to maximise statistical power. Grouping variables were

utilised in many datasets to compare effect sizes among categories

using a range of criteria, including habitat types, experimental

methodology and functional categorisation (see Appendix C for

details). Where more than one meta-analysis or grouping variable

yielded the same sample size, we made selections at random. When a

given meta-analysis reported multiple effect sizes for the same species,

we pooled effect sizes for that species using a fixed-effect meta-

analysis (Shadish & Haddock 1994).

Phylogeny reconstruction

We created phylogenetic trees with branch lengths for each dataset

using a variety of methods. Plant-only phylogenies used the topology

from the Davies et al. (2004) supertree (through the Phylomatic web

service; Webb & Donoghue 2005) and node age estimates from

Wikström et al. (2001). Topology and branch lengths for bird-only

phylogenies were obtained from Hackett et al. (2008), with additional

taxa added using the online tree of life (Maddison et al. 2007). For

datasets including divergent animal taxa, we manually built phylo-

genies in MESQUITE v. 2.73 (Maddison & Maddison 2010) using

information from multiple published phylogenies (see references in

Figure 1 Bars show the number of published meta-analyses subject to potential

phylogenetic non-independence (i.e. effect sizes were measured at the species level

for at least three species; n = 301) from 1 January, 1992 to 25 October, 2010. For

the subset of 56 meta-analyses that also made the dataset available and reported a

measure of uncertainty (our full criteria for consideration in our re-analysis), the

inset figure indicates the proportions that performed a phylogenetic meta-analysis

(black; n = 2), assessed whether effect sizes differed among taxonomic categories

using traditional meta-analysis (dark grey; n = 19) or conducted traditional meta-

analyses only (light grey; n = 35). See Methods for details about the search criteria.
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Appendix Table D1); we then added branch lengths by ageing all

possible internal nodes with TimeTree (Hedges et al. 2006). Node ages

relied primarily on TimeTree�s weighted average estimates and

secondarily on TimeTree�s Expert Results. For each phylogeny, we

used the algorithm bladj in Phylocom (Webb et al. 2008) to interpolate

ages for undated nodes. Branch lengths are presented in millions of

years. When phylogenies could not be fully resolved, we retained

polytomies rather than removing species with uncertain evolutionary

relationships.

Finally, tree topology and branch lengths for the MacKenzie et al.

(2003) fish dataset were obtained by building a molecular phylogeny

using sequences (12s and 16s rRNA) obtained from GenBank

(Appendix Table D2). Genes were aligned with Clustal multiple

alignment using BioEdit v.7.0.9 (Hall 1999). Genes were aligned

separately and then concatenated. We used MrBayes v.3.1.2 (Huel-

senbeck et al. 2001; Ronquist & Huelsenbeck 2003) to build the

phylogeny, with gamma-distributed rate variation across sites and a

proportion of invariable sites (GTR model), with 1 000 000 gener-

ations. All 30 phylogenies are provided in Appendix D as plotted trees

and in newick format and in Appendix B as individual text files.

Predictors of phylogenetic meta-analysis outcomes

In an attempt to explain variation in the effects of incorporating

phylogeny across datasets, we analysed relationships between meta-

analytic results (changes in effect size) and six predictor variables

(phylogeny size, phylogenetic signal, phylogeny age, phylogenetic

resolution and two metrics that quantify tree shape). As these analyses

were intended to be exploratory, we included a broad selection of

predictors that we thought might affect phylogenetic meta-analysis

results. We quantified phylogeny size because larger phylogenies have

more species and thus greater statistical power to detect phylogenetic

effects (Freckleton et al. 2002; Rezende et al. 2007). We also quantified

phylogeny age (age of the root node in millions of years, compiled

from http://www.timetree.org), phylogenetic resolution (the propor-

tion of dichotomous nodes in the phylogeny) and phylogenetic signal

(Blomberg�s K; Blomberg et al. 2003) in the effect sizes. We expected

that datasets with a strong phylogenetic signal would be most sensitive

to phylogenetic meta-analytic methods. Values of K close to zero

indicate that closely related species do not share similar trait (in this

case, effect size) values, whereas values of K approaching and larger

than one suggest that closely related species do share similar trait

values (Fig. 2). Finally, we quantified two measures of tree shape from

reconstructed phylogenies: Colless� yule, Ic (a measure of tree balance;

Colless 1982) and c (a measure of the distribution of internal nodes

between the root and the tips; Davies et al. 2011). Smaller values of Ic

indicate that a phylogeny is more balanced with speciation events

spread equally across clades, whereas larger values of Ic indicate that a

phylogeny is less balanced with speciation events occurring asymmet-

rically across the phylogeny (Fig. 2). Smaller values of c suggest that

speciation was concentrated early in a phylogeny, whereas larger

values of c indicate that speciation occurred relatively recently in time

(Fig. 2).

The number of species, phylogenetic signal and phylogeny age were

all log10 transformed prior to analysis. Our continuous predictors were

only moderately correlated with each other, if at all (mean |r| = 0.41).

We omitted a number of additional predictors that were highly

correlated with our final set (r > 0.8), including phylogenetic breadth

(R branch lengths), mean phylogenetic distance and alternative

measures of phylogeny shape (e.g. the beta-splitting index; Blum &

François 2006). We did not use organismal group as a predictor

because it was confounded with some of our other predictors (e.g.

mean phylogeny age was greater for our set of plant-only phylogenies

than it was for our set of bird-only phylogenies).

Data analysis

Comparison of traditional and phylogenetic meta-analyses within datasets: We

performed traditional and phylogenetic meta-analyses for each of the

30 selected datasets, comparing the overall pooled effect sizes and

their 95% confidence intervals (CI) from both methods. For datasets

with grouping variables, we also assessed effect sizes and 95% CIs for

each group. We present results for both fixed- and random-effects

models because neither is the clear method of choice (i.e. both have

caveats associated with their use). On one hand, multiple ecological

datasets are unlikely to share one true underlying effect size, as

assumed by fixed-effects models (Gurevitch et al. 2001). On the other

hand, there are no established methods for estimating random effects

when effect sizes are correlated (e.g. via shared evolutionary history).

While fixed-effects analyses assume all replicates come from a single

distribution and share a common variance, traditional random-effects

analyses add an additional variance component (tau [s]) to each

replicate. As an estimate of between-replicate variance, s represents

additional variation in the dataset due to each replicate being drawn

from a unique distribution. However, by adding the same value of s to

all replicates in a meta-analysis, existing phylogenetic random-effects

models assume that the distributions underlying those replicates are

Figure 2 Characteristics of phylogenies (phylogenetic signal, tree balance and the

distribution of node ages) that may influence the magnitude of differences in results

between traditional and phylogenetic meta-analyses. See Methods for further

description of these metrics.
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no more similar for closely related taxa than they are for distantly

related taxa.

Both traditional and phylogenetic meta-analyses were performed

with PhyloMeta v.1.2 (Lajeunesse 2009, 2011), with data extraction

and collation automated using R v. 2.13.1 (R Development Core Team

2011; code for running PhyloMeta from R available at http://

schamberlain.github.com/2011/04/phylometa-from-r-udpate/). Although

we focus on the Lajeunesse (2009) method, we also compare it with

another method used in the literature that of Adams (2008).

Appendix E compares effect sizes obtained via these two methods

and finds they do not significantly differ for the majority of our

datasets.

What characteristics of phylogenies explain changes in effect size for phylogenetic

relative to traditional meta-analyses? In some cases, traditional and

phylogenetic methods estimated similar effect sizes, whereas in others

the outcomes were quite different. We attempted to explain this

variation across datasets by conducting a meta-analysis of meta-

analyses; we refer to this as a meta–meta-analysis (MMA). We assessed

differences in the overall effect size (d) for each dataset using Hedges�
d, which we calculated as:

d ¼ jdpj � jdt j
s

J ;

where dp and dt are the effect sizes from phylogenetic and traditional

meta-analyses, s is the pooled standard deviation and J corrects for

bias due to small sample size (Hedges & Olkin 1985). We used the

absolute value of effect sizes to calculate Hedges� d because our

datasets varied with respect to the expected sign of an effect (e.g. plant

biomass increases in response to mycorrhizal inoculation [Hoeksema

et al. 2010], but herbivore performance declines in water-stressed

plants [Huberty & Denno 2004]). Values of d = 0 indicate no dif-

ference in effect sizes between a traditional and phylogenetic meta-

analysis. Positive values of d indicate that accounting for phylogeny

increases the magnitude of an effect, making it more likely that d
would differ significantly from zero; negative values indicate that

accounting for phylogeny decreases the magnitude of an effect,

making it less likely that d would differ significantly from zero.

Hedges� d was calculated for both fixed- and random-effects meta-

analyses.

We used fixed-effects weighted linear models (PROC GLM; SAS

v. 9.1) to explain variation in d across datasets for the MMA. All

models were weighted by the inverse of variance in d (Hedges &

Olkin 1985). In most cases, the inclusion of all six predictor

variables yielded an over-parameterised model, thus we adopted a

variable selection and model averaging approach to better assess the

importance of individual predictors. For both sets of MMA analyses

(fixed- and random-effect models), we sequentially removed indi-

vidual variables from the full model and repeated the analysis until

an intercept-only model remained. As our criteria for variable

elimination, we calculated Z-statistics which are more appropriate

than F-statistics for inferences in meta-analysis where each effect

size has its own variance (Hedges 1994); in each step we eliminated

the predictor for which Z was closest to zero. The Z-statistic is

calculated as bJ ⁄ (SEJ ⁄ �MSE), where bJ and SEJ are the estimate and

standard error for parameter J, and MSE is the mean square error.

We calculated the small-sample bias-corrected version of AIC and

Akaike weights for all seven candidate models, ranking models by

their Akaike weights (Burnham & Anderson 2002; Johnson &

Omland 2004). Akaike weights are interpreted as the probability of

model i being the best model for the observed data given the set of

models examined, where RAWi = 1. We selected the first M models

for which RAW ‡ 0.95. This reduced set of candidate models was

the basis for inferences regarding the importance of, and parameter

estimates for, individual predictors.

We assessed the importance of an individual predictor using the

sum of Akaike weights (re-normalised so that RAW = 1) for all

models in which that term appeared. This sum is called the

importance weight (Burnham & Anderson 2002), and we took a

conservative approach by assessing the potential influence of

parameters with an importance weight ‡ 0.25. We calculated

model-averaged parameter estimates and standard errors (SE),

weighting single-model estimates by their re-normalised Akaike

weights (Burnham & Anderson 2002; Johnson & Omland 2004). We

estimated 95% CI around model-averaged parameter estimates as the

parameter estimate ± 2 SE, and we consider a parameter to be

significant if the 95% CI excludes zero (Burnham & Anderson

2002).

We checked residuals for normality, dropping outliers to yield a

reduced dataset that met this statistical assumption for each of the

individual MMAs that we intended to compare (e.g. for both fixed-

and random-effect models). Individual MMA results were qualitatively

unaffected by the exclusion of these outliers.

RESULTS

How does accounting for phylogenetic non-independence change

results of individual meta-analyses?

We conducted traditional and phylogenetic meta-analyses using

datasets derived from 30 published meta-analyses. These datasets

varied in size from 8 to 287 species, varied in phylogeny age from 53

to 2622 mya and varied taxonomically from plant-only or animal-only

datasets to datasets spanning multiple kingdoms. The questions

addressed in these primary meta-analyses were diverse (see Appendix

C for more details) from the effect of predator removals on breeding

bird population sizes (Côté & Sutherland 1997) to the effect of

experimental warming on litter decomposition rates of various plant

species (Aerts 2006).

Accounting for phylogenetic relationships changed effect sizes to

a much greater extent for fixed-effects analyses than for random-

effects analyses, including both overall pooled effect sizes and

effect sizes for individual groups (Figs 3 and 4). For fixed-effects

models, overall pooled effect sizes differed significantly (95% CIs

did not overlap) for phylogenetic vs. traditional meta-analyses in

47% of our datasets (14 of 30), and at least one effect size differed

in 63% of them (19 of 30; Fig. 3). As expected, incorporating

phylogenetic information into meta-analyses did not change effect

sizes in a consistent direction: in six datasets effect sizes only

increased, in five datasets they only decreased and eight datasets

had a combination of increasing and decreasing effect sizes (Fig. 3).

Incorporating phylogenetic information also changed whether an

effect size was significantly different from zero in seven of our 30

datasets (23%), and there was no directional pattern to this change

(Fig. 3).

For random-effects models, traditional and phylogenetic effect

sizes differed in only 7% of datasets (one overall pooled effect size

and one for a single level of the grouping variable; Fig. 4).
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However, incorporating phylogenetic information into random-

effects models did change whether an effect size differed

significantly from zero in 40% of datasets (12 of 30). In 10 of

these 12 cases, effect sizes from traditional meta-analyses were

significantly different from zero, but those from phylogenetic meta-

analyses were not (Fig. 4).

Relative to traditional meta-analyses, incorporating phylogenetic

information increased within-group heterogeneity (Qw) in all 30

datasets. On average, this increase was nearly nine times the Qw values

for traditional meta-analyses (mean factor of increase = 8.7,

median = 5.3, range: 1.4–77.6). As a result, for 63% of all datasets

for which Qw was non-significant in traditional meta-analysis,

incorporating phylogeny lead to significant within-group heterogeneity

(see Appendix C). This increase in heterogeneity resulted in larger CIs

around effect size estimates for phylogenetic vs. traditional meta-

analyses (Figs 3 and 4), often affecting whether those effect sizes

differed significantly from zero.

Which characteristics of phylogenies explain changes in effect size

for phylogenetic vs. traditional meta-analyses?

We quantified the degree to which including phylogenetic information

changed meta-analysis effect sizes using Hedges� d (|phylogenetic|

) |traditional| effect sizes) in a MMA. Our predictor variables

explained more variation in d for fixed-effects models than they did

for random-effects models (r2 range: 0.37–0.47 and 0.15–0.37 for

fixed- and random-effects models, respectively). However, because

the magnitude of effect size change was lower for random- than fixed-

effects models (see Fig. 5), there was also significantly less variation in

random-effects models that could be explained by our predictors

(Levene�s test: F = 11.06, P = 0.002).

For fixed-effects models, phylogenetic meta-analyses conducted

using large phylogenies and those with strong phylogenetic signal had

the largest decreases in effect size magnitude; in other words, the

likelihood of changing one�s conclusions after accounting for

Figure 3 Traditional vs. phylogenetic fixed-effects meta-analysis results (mean pooled effect size and 95% CI) for individual datasets (a–dd). Datasets are sorted alphabetically;

a key to the dataset identifier codes is given in Appendix Table D1. Open circles: phylogenetic meta-analysis. Filled circles: traditional meta-analysis. Overall pooled effect sizes

are labelled by �A� (indicating �all data�) and are shaded in grey. Two-letter codes indicate grouping levels within �A� (see Appendix C for code definitions). Asterisks indicate

datasets or groups for which the traditional and phylogenetic meta-analysis outcomes differed significantly.
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phylogeny would be greatest using these types of datasets (Fig. 5;

Table 1). The relationship between species number and effect size

change was particularly strong; for seven of our ten datasets with at

least 40 species, the magnitude of the overall pooled effect size from

phylogenetic meta-analysis was significantly lower than that from

traditional meta-analysis (Fig. 5; see Table A1 for phylogeny size data).

For random-effects models, phylogeny size was unrelated to

variation in effect size change, although increased phylogenetic signal

did lead to decreased effect size magnitudes after incorporating

phylogenetic information (Fig. 5; Table 1). Accounting for phyloge-

netic information in random-effects analyses also led to decreased

effect size magnitude in datasets with phylogenies in which the root

node was more ancient (Fig. 5; Table 1).

Our metrics of tree shape were relatively unimportant for explaining

variation in Hedges� d (all IW < 0.25), despite having model-averaged

parameter estimates that were significantly different from zero (see

Table 1). Thus, in response to incorporating phylogenetic information,

effect size magnitudes from fixed-effects analyses declined weakly with

increasingly unbalanced trees (large Ic), and those from random-effects

analyses declined weakly in phylogenies with internal nodes that were

nearer to the tips (large c). Phylogenetic resolution did not explain

variation in effect size change for either fixed- or random-effects

analyses (i.e. it was absent as a predictor from all of our best-fit models).

DISCUSSION

By conducting traditional and phylogenetic meta-analyses across

multiple datasets, and by assessing results from phylogenetic meta-

analyses in relation to key characteristics of phylogenies, we provide

the first empirical assessment of how this relatively new statistical

method can affect meta-analytic inferences. Incorporating phylogeny

often changed meta-analytic results, including quantitative changes to

effect size estimates and whether those effect sizes were significantly

different from zero. We found that the magnitude of effect size

change following inclusion of phylogenetic data was strongly related

to phylogenetic signal (as may be expected), phylogeny size (for fixed-

effects models) and phylogeny age (for random-effects models). Our

metrics of phylogeny shape (Ic and c) also explained significant

variation in effect size change, although neither metric was particularly

important relative to our other predictors. Finally, we found that our

Figure 4 Traditional vs. phylogenetic random-effects meta-analysis results (mean pooled effect size and 95% CI) for individual datasets. See Fig. 3 caption for details.
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predictors explained little variation in effect size change for random-

effects models relative to fixed-effects models; we discuss some

implications of this distinction below.

How does incorporating phylogenies into meta-analysis affect

overall pooled effect sizes?

For most individual datasets, incorporating phylogeny altered effect

size estimates and whether those effect sizes were significantly

different from zero (more so for fixed-effects than random-effects

models). The decision to use a phylogenetic vs. a traditional meta-

analysis may therefore have crucial implications for the inferences and

ultimate conclusions resulting from a meta-analytic investigation.

Averaged across all of our datasets, incorporating phylogeny into

traditional meta-analyses did not significantly alter effect sizes. The

lack of such an average effect suggests there is no overall expected

direction of effect size change when comparing phylogenetic with

a traditional meta-analysis, a pattern also found when incorporating

phylogenetic information into analyses based on other statistical

techniques, e.g. regression (Rohlf 2006). We reiterate that there are

clear and compelling statistical reasons to incorporate phylogenetic

information into meta-analyses that synthesise information across

multiple species. However, because incorporating phylogenetic

information often affects meta-analytic inferences, and because this

approach is being used with increasing regularity, it is critical to better

understand the characteristics of trees and datasets most closely tied to

changes in effect size.

When does conducting a phylogenetic meta-analysis result in large

effect size changes?

Datasets with the largest phylogenies and the strongest phylogenetic

signal showed decreases in overall effect size magnitude following the

incorporation of phylogenetic information in fixed-effects analyses.

The statistical assumption of independence among effect sizes is

increasingly likely to be violated as closely related species are added to

a given phylogeny. Of course, such a pattern will not arise if effect

sizes are not phylogenetically conserved. However, the combination

(a)

(b)

(c)

Figure 5 Explaining the magnitude of the difference between effect sizes from

traditional and phylogenetic meta-analyses: Hedges� d in relation to (a) phylogeny

size (number of species), (b) phylogenetic signal (the degree to which closer

relatives have more similar trait values) and (c) phylogeny age (root age, mya).

Results from fixed-effects models are depicted by circles (solid line shows best fit),

and those from random-effects models are depicted by triangles (dashed line shows

best fit). Note that these linear fits depict simple bivariate relationships without

accounting for additional predictors that were included in our statistical models.

Table 1 Model-averaging results for meta-meta-analysis of Hedges� d, which

measures change in overall meta-analytic effect sizes from incorporating phyloge-

netic information

Model term Imp. wt Estimate (SE) 95% CI

Hedges� d (fixed-effects models)

Intercept 1.00 8.04 (0.77) (6.49, 9.58)

Number of species* 1.00 )6.34 (0.92) ()8.18, )4.51)

Phylogenetic signal (K)* 0.43 )2.82 (0.37) ()3.56, )2.07)

Tree balance (Ic) 0.13 )0.55 (0.06) ()0.68, )0.42)

Distribution of node ages (c) – – –

Phylogeny age* – – –

Hedges� d (random-effects models)

Intercept 1.00 2.14 (1.33) ()0.52, 4.80)

Number of species* – – –

Phylogenetic signal (K)* 0.93 )2.01 (0.53) ()3.08, )0.94)

Tree balance (Ic) – – –

Distribution of node ages (c) 0.21 )0.15 (0.04) ()0.23, )0.08)

Phylogeny age* 0.76 )1.73 (0.19) ()2.11, )1.35)

Shown here are the parameter importance weights, model-averaged parameter

estimates (1 SE) and the 95% confidence interval (CI) around the model-averaged

estimate. Parameter estimates significantly different from zero indicate that sig-

nificant variation in the magnitude of effect size change relative to traditional meta-

analysis is explained by a given predictor. Estimates greater than zero indicate an

increase in the absolute value of effect sizes following incorporation of phylogeny;

those less than zero indicate a decrease. Effects in bold are significant based on the

95% CI and considered important (Imp wt ‡ 0.25); those in italics are significant

but not important (Imp wt < 0.25).

All analyses run with 26 datasets (PrE05, BP05, HE10 and PeE10 excluded).

*log10-transformed predictor variables.
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of many related species and phylogenetic conservatism should both

yield relatively large phylogenetic corrections, resulting in down-

weighted phylogenetic effect sizes within groups of closely related

species, as we observed. Interestingly, although the ability to detect

significant phylogenetic signal increases with phylogeny size (Blom-

berg et al. 2003), across our datasets phylogeny size and phylogenetic

signal were negatively correlated (r = )0.54, P = 0.002), suggesting

that the effect of phylogeny size on meta-analytic outcomes was

independent of phylogenetic signal.

For random-effects analyses, we found the same negative relation-

ship between phylogenetic signal and phylogenetic effect size change

as we did for fixed-effects analyses, although phylogeny size was no

longer significant. Perhaps this reflects the positive correlation

between the random-effects estimate (s) and phylogeny size

(Spearman�s rho = 0.37, P = 0.063, n = 26), which could have

contributed to the relationship between phylogeny size and effect

size change we observed from fixed-effects analyses. If this correlation

is common across datasets, then one fortuitous outcome of using

random-effects rather than fixed-effects analyses may be that

underlying patterns in the data are more readily identified once the

effect of phylogeny size is minimised.

For random-effects analyses, we also found that phylogenies for

which the root node was more ancient had decreased effect-size

magnitudes after incorporating phylogenetic information. Thus,

parameter estimates for phylogeny age and signal were both negative,

despite phylogenetic signal and phylogeny age being negatively

correlated (r = )0.61, P < 0.001, n = 30). The correlation reflects a

pattern whereby phylogenetic signal was strongest in phylogenies for

which the root node was younger and which generally encompassed

less phylogenetic breadth. The effects of phylogenetic signal and

phylogeny age therefore appear to be independent; however, the

underlying relationships between phylogeny age, phylogenetic breadth,

phylogenetic signal and effect size change are likely to be complex.

We emphasise that although we have identified some intriguing

relationships between meta-analysis outcomes and key characteristics

of phylogenies, more work is needed. These meta-meta-analytic data

are purely observational, and disentangling the independent effects of

various phylogenetic characteristics on phylogenetic meta-analyses

ultimately requires an experimental approach. This is particularly true

for aspects of phylogenies, such as tree balance and the distribution of

node ages, which were significantly related to Hedges� d despite being

relatively unimportant across our datasets. Future simulation work will

allow quantification of the relative importance of various phylogeny

characteristics that are likely to be highly variable among meta-analysis

datasets and also critically important for meta-analysis outcomes.

Random-effects vs. fixed-effects models for phylogenetic meta-

analyses

In contrast to analyses based on fixed-effects models, our predictors

explained relatively little variation in phylogenetic meta-analytic

outcomes for random-effects models. In part, this reflects the fact

that in our meta-meta-analyses, there was less variation in Hedges� d to

be explained for random- vs. fixed-effects models. Random effects are

incorporated into meta-analytic datasets as an increase in the within-

study variance associated with each effect size (by the estimated

between-study variance, s). By adding this additional variance

component, our results suggest that random-effects meta-analyses

may have at least partially accounted for the increased variation

inherent in variance-covariance matrices from larger phylogenies. This

suggests an unexpected potential benefit of using random-effects

meta-analytic models within the phylogenetic context.

However, our findings also highlight a current statistical problem in

meta-analysis: identifying the best way to calculate true random effects

independent from incorporating phylogenetic information. The

method we used (PhyloMeta v.1.2; Lajeunesse 2009, 2011) calculates

s from non-phylogenetically corrected data rather than first incorpo-

rating phylogenetic corrections, thereby assuming that estimates of s
are independent with respect to phylogeny. One consequence of this

order of operations is that in some cases, the between study variance

estimate (s) may be inflated, not only accounting for random variation

but also for variation that could otherwise be attributed to

phylogenetic relationships. Ideally, a random-effects phylogenetic

meta-analysis would incorporate phylogenetic information before

calculating an estimate for s. However, optimising the methodology

for estimating s in datasets with non-zero covariance (i.e. those

accounting for pairwise phylogenetic distances) is a challenging issue

facing statisticians (Riley et al. 2007; Jackson et al. 2010). Further

developments in this field will greatly enhance our ability to conduct

random-effects phylogenetic meta-analyses. In the meantime, we note

that the assumption of independence in s across species is one that

may commonly be violated, and we recommend some degree of

caution when interpreting random-effects phylogenetic meta-analyses

using current methods.

CONCLUSION

Closely related species often share similar traits (Harvey & Purvis

1991) and occupy similar niches (cf. niche conservatism; Harvey &

Pagel 1991). Despite these patterns, ecologists have rarely incorpo-

rated phylogenetic history into ecological meta-analyses either to

account for non-independence due to shared ancestry or to test

specific evolutionary hypotheses. Here, we have shown that incorpo-

rating phylogenies influences ecological meta-analysis outcomes, in

many cases changing whether the observed effect size differs

significantly from zero. We also show that the degree of difference

between traditional and phylogenetic meta-analyses depends on key

characteristics of phylogenies. Despite this potential complication, we

strongly recommend incorporating phylogenetic information into

ecological meta-analyses to account for species non-independence.

To conclude, we outline three recommendations for the use of

phylogenetic meta-analyses in ecology and evolutionary biology:

(1) Use phylogenetic meta-analysis, but note that some response metrics are less

likely to be affected by phylogenetic methods: Incorporating phylogenetic

relationships in meta-analysis addresses the non-independence of

effect sizes from species with shared evolutionary history, thus

solving a clear violation of statistical assumptions. However,

phylogenetic corrections may have little effect on meta-analytic

outcomes when effect sizes are not conserved and are therefore

essentially independent. Conservation of effect sizes can be

tested by determining if there is significant phylogenetic signal in

the effect size.

(2) Include as many species as possible: For a phylogenetic meta-analysis

each data point represents an individual species, which can limit

statistical power in cases where many effect sizes come from the

same study species. Larger datasets (c. > 20 species) also permit

greater statistical power to detect phylogenetic signal; a signif-
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icant phylogenetic signal provides additional justification for

conducting a phylogenetic meta-analysis. Although maximising

sample size is always beneficial from the perspective of increasing

statistical power, we suggest that in the context of phylogenetic

meta-analyses, conducting a comprehensive data search is

particularly critical. Thus, we caution against the use of search

criteria that target only a few key journals or a limited number of

publication years where phylogenetic meta-analyses are to be

conducted.

(3) Be aware that phylogeny shape may influence meta-analytic outcomes: As

expected, phylogenetic signal and phylogeny size were the most

important factors explaining how effect size magnitudes changed

when incorporating phylogenetic information. Yet, despite being

relatively unimportant in our analyses, both phylogeny balance

(Ic) and the distribution of internal nodes between the root and

the tips (c) also influenced meta-analytic inferences. Planned

simulation studies will allow us to better quantify the direct

effects of phylogeny shape on meta-analytic outcomes. In the

meantime, we recommend caution when conducting phyloge-

netic meta-analysis using highly unbalanced phylogenies and

phylogenies with either very large or very small values of c.
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