Set # 2 Ross Program, Number Theory June 20, 2006 Answer the questions, then question the answers. – Glenn Stevens

Terminology

Q1. What is the "greatest common divisor" of two integers?

Exploration

- P1. Factor $a^n b^n$ and $a^n + b^n$, for $n = 2, 3, 5, 7, \ldots$ Any conjectures?
- P2. Perform Euclid's Algorithm on the numbers 163 and 519. Use it to do the following:
 - (a) Find the greatest common divisor of 163 and 519.
 - (b) Use "forward substitution" to find integers x and y satisfying 163x + 519y = 1.
 - (c) Use "backward substitution" to express 1 as a combination of 163 and 519.
- P3. Continue your work from P2:

(a) Show that

$$\frac{519}{163} = 3 + \frac{1}{5 + \frac{1}{2 + \frac{1}{3 + \frac{1}{4}}}}.$$

This is usually denoted as $\frac{519}{163} = [3, 5, 2, 3, 4]$, and is called the (simple) continued fraction for $\frac{519}{163}$. (b) Using this notation, simplify the continued fractions: [4], [3, 4], [2, 3, 4], [5, 2, 3, 4], [3, 5, 2, 3, 4]. Where have you seen these numerators and denominators?

(c) Now simplify the continued fractions: [3], [3, 5], [3, 5, 2], [3, 5, 2, 3], [3, 5, 2, 3, 4]. What do you notice? Note: These are called the convergents to the continued fraction [3, 5, 2, 3, 4].

(d) Finally, construct the "Magic Table" for the fraction $\frac{519}{163}$ as mentioned in class. Where have you seen these numbers before?

Prove or Disprove and Salvage if Possible

P4. $-1 \cdot -1 = 1$

- P5. For $n \ge 0$, $(-1)^n = \begin{cases} 1 & \text{if } n \text{ is even} \\ -1 & \text{if } n \text{ is odd} \end{cases}$.
- P6. $a|b \Rightarrow b|a$ for all a and b in **Z**.
- P7. $n \in \mathbb{Z}$ and $2 \nmid n \Rightarrow 8 \mid (n^2 1)$.
- P8. d|a and $d|b \Rightarrow d|(ar + bs)$ for every r and s. True in **Z**.
- P9. $a = bq + r \Rightarrow (a, b) = (b, r)$. True in **Z**.

Numerical Problems (Some food for thought)

- P10. List all the perfect squares in U_3 . How many are there? Do the same for U_5 . For U_7 . For U_{11} . For U_{13} . Conjectures?
- P11. Find an integral solution to the diophantine equation 7469x + 2463y = 1. Find the multiplicative inverse of 2463 (mod 7469).

Extra problems for advanced students.

A1. (i) Given b > 0, does every n have a unique base b expression $n = \sum_{k \ge 0} r_k b^k$ where $0 \le r_k < b$? (ii) Does n have a unique factorial-base expression $n = \sum_{k \ge 1} s_k k!$ where $0 \le s_k \le k$?

A2. A polynomial f is called *integer-valued* if $f(n) \in \mathbb{Z}$ for every $n \in \mathbb{Z}$. Certainly every $f \in \mathbb{Z}[x]$ in integer-valued. What about $\frac{1}{5}x^5 + \frac{2}{3}x^3 + \frac{2}{15}x$? Find all the integer-valued polynomials.

A3. Recall how Pascal's triangle is built. Label the rows so that row 0 is: 1, and row 1 is: 1, 1. Write out the first ten rows of the "mod 2" Pascal triangle (all entries in \mathbb{Z}_2) and contemplate the patterns. Here are some questions that come to mind:

For which n is the n^{th} row all odd?

Can you find a formula for the number of odd entries appearing in row n?

Cut off the triangle after n rows. For which n does that "equilateral triangle" have rotational symmetry?

A4. Which two digit numbers a, b have the longest euclidean algorithm? Which three digit numbers?

A5. On the set of ordered pairs of integers (x, y) define operations L and R by: L(x, y) = (x - y, y) and R(x, y) = (x, y - x). If (a, b) is a pair of relatively prime positive integers, must there be a sequence of L's and R's reducing it to (1, 0)? For example, for (5, 7) we find RRLLR(5, 7) = (1, 0). Is that sequence of Rs and Ls unique?