Set \# 2
Ross Program, Number Theory
June 20, 2006
Answer the questions, then question the answers. - Glenn Stevens

Terminology

Q1. What is the "greatest common divisor" of two integers?

Exploration

P1. Factor $a^{n}-b^{n}$ and $a^{n}+b^{n}$, for $n=2,3,5,7, \ldots$ Any conjectures?
P2. Perform Euclid's Algorithm on the numbers 163 and 519. Use it to do the following:
(a) Find the greatest common divisor of 163 and 519.
(b) Use "forward substitution" to find integers x and y satisfying $163 x+519 y=1$.
(c) Use "backward substitution" to express 1 as a combination of 163 and 519.

P3. Continue your work from P2:
(a) Show that

$$
\frac{519}{163}=3+\frac{1}{5+\frac{1}{2+\frac{1}{3+\frac{1}{4}}}} .
$$

This is usually denoted as $\frac{519}{163}=[3,5,2,3,4]$, and is called the (simple) continued fraction for $\frac{519}{163}$. (b) Using this notation, simplify the continued fractions: $[4],[3,4],[2,3,4],[5,2,3,4],[3,5,2,3,4]$. Where have you seen these numerators and denominators?
(c) Now simplify the continued fractions: $[3],[3,5],[3,5,2],[3,5,2,3],[3,5,2,3,4]$. What do you notice? Note: These are called the convergents to the continued fraction $[3,5,2,3,4]$.
(d) Finally, construct the "Magic Table" for the fraction $\frac{519}{163}$ as mentioned in class. Where have you seen these numbers before?

Prove or Disprove and Salvage if Possible

P4. $-1 \cdot-1=1$
P5. For $n \geq 0,(-1)^{n}=\left\{\begin{aligned} 1 & \text { if } n \text { is even } \\ -1 & \text { if } n \text { is odd }\end{aligned}\right.$.
P6. $a|b \Rightarrow b| a$ for all a and b in \mathbf{Z}.
P7. $n \in \mathbf{Z}$ and $2 \nmid n \Rightarrow 8 \mid\left(n^{2}-1\right)$.
P8. $d \mid a$ and $d|b \Rightarrow d|(a r+b s)$ for every r and s. True in \mathbf{Z}.
P9. $a=b q+r \Rightarrow(a, b)=(b, r)$. True in \mathbf{Z}.

Numerical Problems (Some food for thought)

P10. List all the perfect squares in \mathbf{U}_{3}. How many are there? Do the same for \mathbf{U}_{5}. For \mathbf{U}_{7}. For \mathbf{U}_{11}. For \mathbf{U}_{13}. Conjectures?

P11. Find an integral solution to the diophantine equation $7469 x+2463 y=1$. Find the multiplicative inverse of $2463(\bmod 7469)$.

Extra problems for advanced students.

A1. (i) Given $b>0$, does every n have a unique base b expression $n=\sum_{k \geq 0} r_{k} b^{k}$ where $0 \leq r_{k}<b$?
(ii) Does n have a unique factorial-base expression $n=\sum_{k \geq 1} s_{k} k$! where $0 \leq s_{k} \leq k$?

A2. A polynomial f is called integer-valued if $f(n) \in \mathbf{Z}$ for every $n \in \mathbf{Z}$. Certainly every $f \in \mathbf{Z}[x]$ in integer-valued. What about $\frac{1}{5} x^{5}+\frac{2}{3} x^{3}+\frac{2}{15} x$? Find all the integer-valued polynomials.

A3. Recall how Pascal's triangle is built. Label the rows so that row 0 is: 1 , and row 1 is: 1,1 . Write out the first ten rows of the "mod 2" Pascal triangle (all entries in \mathbf{Z}_{2}) and contemplate the patterns. Here are some questions that come to mind:
For which n is the $n^{\text {th }}$ row all odd?
Can you find a formula for the number of odd entries appearing in row n ?
Cut off the triangle after n rows. For which n does that "equilateral triangle" have rotational symmetry?

A4. Which two digit numbers a, b have the longest euclidean algorithm? Which three digit numbers?

A5. On the set of ordered pairs of integers (x, y) define operations L and R by: $L(x, y)=(x-y, y)$ and $R(x, y)=(x, y-x)$. If (a, b) is a pair of relatively prime positive integers, must there be a sequence of L 's and R 's reducing it to $(1,0)$? For example, for $(5,7)$ we find $R R L L R(5,7)=(1,0)$.
Is that sequence of $R \mathrm{~s}$ and $L \mathrm{~s}$ unique?

