
Encoders and Decoders

Lab Summary

In this lab, you gain additional experience in gate-level logic design, VHDL, and ModelSim. The

two designs incorporated in the lab are commonly used in digital circuitry, the decoder and

encoder. These two circuits can be used to change digital data or states from Binary to

Hexadecimal or Binary Coded Decimal representation.

Lab Supplies

• None

Lab Videos

• ModelSim
• VHDL Part 1

Part 1: Decoder

If needed, you may wish to review the videos ModelSim and Introduction to VHDL.

Remember that the address you need to type under EDA Tool Options is:

C:\intelFPGA_lite\18.1\modelsim_ase\win32aloem .

You will design a 2 to 4 Decoder. Begin by constructing a Karnaugh map for each output to find the

associated Boolean expressions. From the Boolean expressions, construct the circuit in a new .bdf file

using the required gate symbols.

Below is the truth table for the 2 to 4 decoder.

Figure 1. Truth Table for 2 to 4 Decoder

By this point in the semester you should be well experienced with Karnaugh maps to simplify the
circuitry for digital design. Use this technique to derive each of the four equations for the D0, D1,
D2, and D3 outputs in terms of the A0 and A1 inputs. You will set up four very simple Karnaugh
maps of the form:

You can then construct the decoder schematic (HINT: you should only need NOT gates and AND

gates. Of course, you should include your derived equations and the schematic in your report.

Simulate your design using ModelSim. Set your inputs the same way you did for the AND gate in the

previous lab, by making two clocks with one input having twice frequency of the other clock.

Checkpoint 1: Show the ModelSim simulation of your 2 to 4 Decoder to your Lab Monitor or TA.

To compare the process, you will next design the same 2 to 4 decoder in VHDL. Start by creating a
new VHDL file. Below is the code for the 2 to 4 decoder with the Boolean expressions edited out.

Figure 2. VHDL Code for 2 to 4 Decoder

Some of the expressions you may (or may not) use for your Boolean expressions are: and, or, not,
nor, nand. For example in VHDL you would write

D(2) <= A(1) and not A(0);

Once you finish typing your code for the 2 to 4 decoder, set the VHDL file as your top-level entity
and recompile your project.

Note: You do not have to create a symbol file for the VHDL file if you’re only testing it in
ModelSim. Also, make sure to name your VHDL file for your 2 to 4 decoder with a different name
than the one that you used for your 2 to 4 decoder block diagram file.

Once, the project is compiled, run the simulation on ModelSim. You should be able to see the
same results as when you simulated the block diagram.

Checkpoint 2: Show the VHDL code of your 2 to 4 Decoder and ModelSim simulation to your

Lab Monitor or TA.

Part 2: Encoder

Now you will design a 4 to 2 encoder, using the same steps you went through to create the 2 to 4

decoder. Include your derived equations and the schematic in your report.

Below is the truth for the 4 to 2 encoder.

Figure 3. Truth Table for 4 to 2 Encoder

Any input combination other than the four combinations listed in the truth table will create a “don’t

care” output. Place an 'X' in the "don't care" locations, populate and derive equations using the

following Karnaugh map. Recall that you can group “don’t care” outputs with ones, in order to reduce

the amount of hardware required. (HINT: You should only need two identical gates for this design).

Once you derive the expressions using Karnaugh maps, design the encoder using gates in a new .bdf file.

Simulate your encoder in ModelSim. For the encoder use clocks with periods of 50 ps, 100 ps, 200ps and

400 ps. With 50 ps being the period of the clock input for the least significant bit. This way you generate

all the possible input combinations for a 4-bit input. Run the simulation for at least 1000 ps. Move the

yellow cursor all the way to the left, and expand the waveforms with the + magnifying glass until all 4

inputs are visible. You must have at least one complete cycle of all encoder combinations visible when

you save the image for your report.

Figure 4. Simulation for 4 to 2 Encoder

Verify that you are getting the right output for all four input combinations.

Checkpoint 3: Show the Block Diagram File and ModelSim simulation of your 4 to 2 encoder to your

Lab Monitor or TA.

Next, you will design the same 4 to 2 encoder using VHDL. Refer to your Decoder VHDL code if you
need help starting the code. Once you type the VHDL code, simulate it in ModelSim as well.

Checkpoint 4: Show the VHDL code of your 4 to 2 Encoder and ModelSim simulation to your Lab

Monitor or TA.

Checkpoint 5: Clean up and show your workbench to the lab monitor or TA.

Discussion Questions

1. If you wanted to design a circuit to monitor the state of 16 discrete digital inputs using

the least number of bits on an 8-bit input port, what circuit would you design?

2. If you wanted to control the state of 14 discrete digital outputs using the least number of bits

from an 8-bit microcontroller output port, what intermediate circuit would you design? How

many output port bits are required? Are there any unused input combinations? If so, how
many?

3. The Boolean functions for the outputs of an encoder can be easily derived from looking at

the truth table. The outputs are simply an ‘or’ of the inputs that are ‘1’ when the output is
also 1. For example, for the 4 to 2 encoder, D1 = A3 + A2. Using this logic, derive the
simplified Boolean expressions for the outputs for an 8 to 3 encoder (aka the Octal to Binary
encoder) from the truth table below (without using Karnaugh maps).

