Multiple Oxidation States of Manganese

Purple KMnO₄ solutions change colors during the reduction of manganese from Mn⁷⁺ to Mn²⁺

Chemicals Needed

- d-H₂O
- KMnO₄ **F5**
- NaOH **G1**
- Sucrose N4
- EDTA solution prep lab
- Oxalic acid N3
- MnSO₄ 4 H₂O **F3**
- Drop bottle of concentrated $H_2SO_4 K2$

Equipment Needed

- 3-300 mL tall beakers Q2
- 1 L beaker **Q1**
- 500 mL Erlenmeyer flask P1
- 5 petri dish lids P3
- 2-10 mL graduated cylinders Q3
- 4 weighing dishes A3
- 3 glass stirring rods U1
- Magnetic stir bar U1
- Light box A4
- Stir plate A4

Hazards

- KMnO₄ can stain skin and clothing
- NaOH is a strong base. If it comes in contact with skin, it can cause chemical burns. Flush with water and seek medical attention as needed

Preparation

- Pour 800 mL d-H₂O into the large beaker, add a small amount of KMnO₄, and stir until the solution is a uniform pink/fuchsia/magenta. Add more solid if needed for a darker solution.
- Divide the solution between the 300 mL beakers and the Erlenmeyer flask (200 mL in each). Label glassware and lids (for beakers) 1-4.
- Measure out the following compounds into the weighing dishes, and label:
 - two samples of 10 mL EDTA solution (graduated cylinders)
 - o 2 g sucrose
 - 3 g NaOH
 - 0.5 g oxalic acid
 - Tip of a microspatula of MnSO₄
- On delivery, place the glassware and stirplate in front of the light box, and arrange the measured compounds according to the diagram below:

Presentation

- Beaker #1 Reference solution (Mn⁷⁺)
- Beaker #2 Add sucrose and NaOH while the magnetic stirrer is on. The solution will first turn purple
 → blue → green (Mn⁶⁺).
 - Allow the solution to keep stirring, and the manganese will continue to oxidize green → yellow → colloidal amber [formation and suspension of MnO_2 (s)] (Mn^{4+})
 - \circ $\;$ The change to the amber Mn^{4+} state will take at least 5 minutes.
- **Beaker #3** Add EDTA and stir. The solution will turn rose (Mn^{3+})
- Beaker #4 Add EDTA and stir. Add oxalic acid, MnSO₄, 5 drops concentrated H₂SO₄ and stir. The solution will slowly turn from yellow to colorless (takes about 20 min) (Mn²⁺)

Clean-Up

• All other solutions can be poured down the drain with plenty of water.

NOTES: The original protocol used KCN and NaOH to get the Mn⁶⁺ state, and sodium formate to obtain the Mn⁴⁺ state. This protocol seems sager, though it does take a little longer to get to the Mn⁴⁺ state

Multiple Oxidation States of Manganese Instructions for Lecturer

- **Beaker #1** Reference solution (Mn⁷⁺)
- Beaker #2 Add sucrose and NaOH while the magnetic stirrer is on. The solution will first turn purple → blue → green (Mn⁶⁺).
 - O Allow the solution to keep stirring, and the manganese will continue to oxidize green → yellow → colloidal amber [formation and suspension of MnO₂ (s)] (Mn⁴⁺)
 - The change to the amber Mn⁴⁺ state will take at least 5 minutes.
- Beaker #3 Add EDTA and stir. The solution will turn rose (Mn³⁺)
- Beaker #4 Add EDTA and stir. Add oxalic acid, MnSO₄, 5 drops concentrated H₂SO₄ and stir. The solution will slowly turn from yellow to colorless (takes about 20 min) (Mn²⁺)