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ABSTRACT

One third of tumor suppressors are haploinsufficient
transcriptional regulators, yet it remains unknown
how a 50% reduction of a transcription factor is trans-
lated at the cis-regulatory level into a malignant tran-
scriptional program. We studied CUX1, a haploin-
sufficient transcription factor that is recurrently mu-
tated in hematopoietic and solid tumors. We deter-
mined CUX1 DNA-binding and target gene regulation
in the wildtype and haploinsufficient states. CUX1
binds with transcriptional activators and cohesin at
distal enhancers across three different human cell
types. Haploinsufficiency of CUX1 altered the expres-
sion of a large number of genes, including cell cycle
regulators, with concomitant increased cellular pro-
liferation. Surprisingly, CUX1 occupancy decreased
genome-wide in the haploinsufficient state, and bind-
ing site affinity did not correlate with differential gene
expression. Instead, differentially expressed genes
had multiple, low-affinity CUX1 binding sites, fea-
tures of analog gene regulation. A machine-learning
algorithm determined that chromatin accessibility,
enhancer activity, and distance to the transcription
start site are features of dose-sensitive CUX1 tran-
scriptional regulation. Moreover, CUX1 is enriched at
sites of DNA looping, as determined by Hi-C analy-
sis, and these loops connect CUX1 to the promoters
of regulated genes. We propose an analog model for
haploinsufficient transcriptional deregulation medi-
ated by higher order genome architecture.

INTRODUCTION

Tumor suppressor genes outnumber oncogenes, and one
third of tumor suppressor genes encode transcriptional reg-
ulators (1,2). Many tumor suppressors are thought to be
haploinsufficient, i.e. inactivation of one allele contributes
to tumorigenesis (1,2). Tumor suppressors present a thera-
peutic challenge, as it is relatively easier to develop a drug
that inhibits the gain of function of an oncogenic protein,
compared to restoring the normal function of an inacti-
vated tumor suppressor. An alternative approach is to target
aberrant downstream pathways of haploinsufficient tran-
scriptional regulators. Yet, it remains unknown how a 50%
reduction of a transcription factor (TF) is deciphered at
the molecular level into a malignant transcriptional pro-
gram. Uncovering this mechanism, and identifying ‘dose-
sensitive’ target genes, is essential to determine new thera-
peutic strategies.

CUX1 encodes a haploinsufficient TF that is recurrently
mutated in cancer (3,4). CUX1 (named cut in Drosophila)
is highly conserved, ubiquitous, and essential in mice and
Drosophila (5–8). We previously demonstrated that deletion
or inactivation of a single allele of CUX1 leads to a 50%
reduction in CUX1 protein and a tumorigenic phenotype
(3). Indeed, CUX1/Cut is exquisitely dosage-sensitive; un-
der or over-expression alters the fate of numerous cell types
(8–11). In Drosophila, Cut abundance is tightly controlled,
and specific levels of Cut alternately direct lineage specifica-
tion, proliferation, or survival (12,13).

The full-length p200 CUX1 protein has one home-
odomain and three CUT repeat DNA-binding domains.
Post-translation cleavage of p200 removes one CUT repeat,
generating the p110 isoform. An alternative start site gen-
erates the p75 isoform, which contains one CUT repeat
and the homeodomain (14). While p200 has a similar DNA
binding affinity compared to the DNA binding domains of
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the short isoforms, full-length CUX1 has a faster on/off
rate (15). These rates were determined by electromobility
shift assays measuring the formation and stability of CUX1
binding to an oligonucleotide probe over time. Thus p200
CUX1 is thought to bind more transiently to DNA com-
pared to the other isoforms. Reporter assays indicate that
the p200 isoform represses gene expression, while the other
isoforms can both activate or repress gene expression (14).
Little is know about the tissue-specificity or genome-wide
function of these isoforms. To date, there has been scant
analysis of CUX1 transcriptional activity (4,16), and no
study of endogenous, genome-wide CUX1/Cut DNA bind-
ing activity in any species.

The cis-regulatory logic of TF concentration and gene ex-
pression is well studied in TF morphogen gradients (17).
Some TF morphogens fit an ‘affinity-threshold model,’
wherein target genes with high-affinity TF DNA binding
motifs respond at low TF concentration. Genes with low-
affinity binding motifs require the TF to reach a higher con-
centration threshold for activation. In the affinity-threshold
model, target gene expression is ‘on’ or ‘off’ in a binary fash-
ion. Other TFs ascribe to a linear or ‘analog’ gene regu-
lation model, wherein target genes have graded transcrip-
tional responses proportional to TF abundance (18–20).
Linearity is associated with multiple TF binding sites per
target gene, low-affinity TF binding, and an excess number
of competing binding sites (18–20).

To test if CUX1 fits one of these models, and to char-
acterize CUX1 genomic functions, we performed RNA-
seq and CUX1 ChIP-seq in the wildtype and haploinsuf-
ficient states. We intersected these data to determine dose-
sensitive CUX1 target genes. To identify genomic properties
of CUX1 DNA binding, we took advantage of the extensive
functional genomics datasets of the ENCODE consortium
(21). We demonstrate that CUX1 binds distal enhancers,
along with the transcriptional co-activator EP300 and co-
hesin components in three human cell types. Long-distance
CUX1 binding sites loop to the promoter of dose-sensitive
genes. We identified additional genomic features associated
with the transcriptional response to CUX1 haploinsuffi-
ciency. Finally, we provide evidence that p200 CUX1 best
fits the analog model of gene regulation. In summary, we
provide the first comprehensive analysis of CUX1 func-
tional DNA binding genome-wide and a model for haploin-
sufficient CUX1 target gene deregulation.

MATERIALS AND METHODS

Cell culture and transfections

K562 cells stably expressing shCUX1-A, shCUX1-B
and control shRNA were maintained as described (3).
shCUX1.338, shCUX1.775, shCUX1.810 and control
shRNA targeting renilla-luciferase were provided by Mir-
imus in the LT3GEPIR vector (22). shRNA sequences are
provided in Supplemental Table S1. K562 cells were trans-
fected by Lipofectamine (Thermo Fisher), selected with 3
�g/ml puromycin (Invitrogen), and shRNAs induced with
2 �g/ml of doxycycline (Thermo Fisher). Cell viability was
measured by CellTiter-Glo® (Promega).

Western blot

Ten microgram total protein was electrophoresed on a 4–
15% Mini-PROTEAN TGX Gradient gel (Bio-Rad), trans-
ferred to nitrocellulose, and probed with anti-�-actin (C4,
sc-47778), anti-HSC-70 (sc-1059), or anti-CUX1 (B-10, sc-
514008) from Santa Cruz. Secondary antibodies were anti-
mouse-HRP (A9044, Sigma) or anti-goat HRP (sc-2020,
Santa Cruz), detected with Chemiluminescence Supersignal
West Pico kit (Thermo Scientific), and quantified with Im-
ageJ (23).

ChIP-seq

We followed the Myers Lab ChIP-seq Protocol v042211.2
(www.encodeproject.org). Two biological replicates of
ChIP-seq were performed on 100 E6 K562 cells stably ex-
pressing shCUX1-A, shCUX1-B, or non-specific control
shRNA with 10 �g of anti-CUX1 (sc-6327 Santa Cruz)
(3). Libraries were made with Ovation Ultralow Library kit
(NuGEN) and size selected with SPRIselect beads (Beck-
man Coulter). 50 bp single-end sequencing was obtained by
Illumina HiSeq. Alignment statistics are provided in Sup-
plemental Table S2. Sequencing data are available in the
GEO Database (accession no.: GSE92882).

Peak calling and occupancy analysis

We aligned reads to hg19 using bwa (version 0.7.5)
(24) and called peaks using Q (25) with input control.
We combined replicates with the Irreproducibility Dis-
covery Rate (IDR) (26) and removed peaks in poor
mapability regions (ENCODE Data Coordination
Center, DCC, ENCSR365LFZ). ENCODE (27) data
was retrieved from the UCSC genome browser (28) or
www.encodeproject.org. We assigned peaks to the single
nearest transcription start site (TSS) within 1 Mb using
GREAT (29). We used the same pipeline to call peaks with
ENCODE CUX1 ChIP-seq data (DCC ENCSR000DYR,
ENCSR000EFO and ENCSR049KIZ) with input con-
trols (DCC ENCSR000FAK, ENCSR000EYX and
ENCSR000EVT).

We used DiffBind (30) for occupancy analysis. Within the
control peaks (IDR 0.10), we counted the number of reads
per peak in each replicate, normalized by input control and
library size. We compared the mean occupancy from the
two controls to the mean occupancy across the four knock-
downs. Occupancy data are provided in Supplemental Table
S3.

ChIP-seq comparison with other datasets

Chromatin state predictions were derived from hidden
Markov model analysis of eight chromatin marks and
CTCF ChIP-seq data (31). TF binding sites were ob-
tained from Uniform Peak calls (wgEncodeRegTfbsClus-
teredWithCellsV3hg19.bed). To obtain a background bed
file of open chromatin, we merged all sites bound by any fac-
tor. To establish the enrichment between different genomic
regions, we used permutation tests (32). We shuffled regions
throughout the genome or open chromatin with Bedtools
(v2) (33).
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DNase-seq were from ENCODE (DCC ENCSR000E
PC, ENCSR000EMT, and ENCFF000SQM). We counted
the number of DNase cuts in a region and generated average
footprint profiles centered on the ATCRAT motif (34). To
control for sequence bias of DNase-I (35), the same analy-
sis was performed on regions of open chromatin containing
the ATCRAT motif not bound by CUX1.

RNA-seq analysis

K562 expressing shCUX1.338, shCUX1.810, or shRen con-
trol were treated with 2 �g/mL of doxycycline (Thermo
Fisher) to induce shRNA expression for four days. We per-
formed three biological replicates as we performed previ-
ously (3). We used the generalized linear model option in
EdgeR (36) to derive P-values, creating effects for batch
and shRNA, and corrected for multiple testing (37). Sup-
plemental Table S4 contains RNA-seq analysis results. Se-
quencing data are available in the GEO Database (accession
GSE92882).

Machine learning model

We used support vector machines (38) with leave-one-out
cross validation. We calculated the area under the curve
(AUC), statistical significance, and confidence intervals us-
ing bootstrapping and pROC (39). To determine the signifi-
cance of individual features, we used a resampling-based ap-
proach. For each variable, we reshuffled the values of that
variable and tested whether the model was as accurate. If
the reshuffled values were equally accurate to the unshuf-
fled values, the variable was deemed not useful to the model.
Separately, we performed a regression-based analysis to pre-
dict the log-fold change of gene expression based on the
characteristics of the associated site.

For enhancer RNA quantification, we downloaded
poly-A depleted RNA-seq data from ENCODE ex-
periments (DCC ENCSR000COS, ENCSR000CPG, and
ENCSR000CPD). We counted the number of RNA-seq
reads in a CUX1 peak.

Hi-C data

We obtained Hi-C data from (40). Rather than processing
it independently, we relied on the analysis from (41), which
produced a list of 96 137 interacting loci between genomic
locations. For each putative contact, we built a window of
5 kb surrounding the contact point. Any sites or gene tran-
scription start sites falling within this window were consid-
ered to be participating in Hi–C loops.

RESULTS

CUX1 binds distal enhancers

To identify CUX1 genomic targets, we studied human EN-
CODE cell lines, which are richly annotated with func-
tional genomic datasets (21). ENCODE-generated CUX1
ChIP-seq data were available for three cell types: K562 blast
phase chronic myelogenous leukemia cells (42), GM12878 B
lymphoblastoid cells (43) and HepG2 hepatoblastoma cells
(44). We identified which CUX1 isoforms these cell types

express by Western blot. K562 predominantly express the
p200 isoform, HepG2 largely express the p75 isoform, while
lymphoblastoid cells express both (Figure 1A). We did not
detect the p110 isoform.

We analyzed the two available CUX1 ChIP-seq replicates
for each cell line (21). We called peaks for each replicate and
combined replicates according to ENCODE standards us-
ing an Irreproducible Discovery Rate (IDR) cut-off of 5%
(25,26,45). This analysis yielded 4942 peaks in K562, 2215
in GM12878 and 13 104 in HepG2.

To identify endogenous, in vivo CUX1 DNA-binding mo-
tif preferences, we performed de novo motif analysis (46).
In agreement with prior studies (16,47) the ATCRAT mo-
tif (where R represents A or G) was the most significantly
enriched, centrally located motif in each cell type, and was
present in 21.0–38.5% of peaks (Figure 1B and C). De-
spite this association, the vast majority of ATCRAT motifs
within open chromatin lacked a CUX1 peak. Of the ∼30
000 ATCRAT motifs present in DNase-I hypersensitivity
sites in each cell type, <4% contained a CUX1 peak. Thus,
there is a large reservoir of available CUX1 binding sites
that are unoccupied. This suggests that the number of po-
tential CUX1 binding sites outnumbers the available CUX1
protein in the cell, and CUX1 genomic occupancy remains
unsaturated, a feature of analog TFs (18,19).

CUX1 binding shared certain similarities across cell
types. For example, CUX1 peaks were most often distant
from the transcription start site (TSS) of the nearest gene,
even compared to 62 other TFs assayed by ENCODE (Fig-
ure 1D). While all TFs showed some enrichment at the
TSS compared to randomly permuted intervals (P < 0.01),
CUX1 showed one of the lowest fractions of binding sites at
the TSS, compared to other TFs. This tendency towards dis-
tal binding was also present in GM12878 and HepG2 (Sup-
plemental Figure S1). Thus in comparison to other TFs,
CUX1 binds distal to the promoter, rather than at the pro-
moter. This is of interest because distal cis-regulatory ele-
ments are associated with cell type–specific gene expression
(48).

CUX1 binding in all cell types also showed stable pref-
erences for particular chromatin states. We used chromatin
state predictions derived from published hidden Markov
model analysis of eight chromatin marks and CTCF ChIP-
seq data for each cell type (31). CUX1 was most enriched at
predicted ‘enhancer’ chromatin states, comprising 50–76%
of CUX1 peaks, and enriched for H3K4me1, H3K4me2,
and H3K27ac (Figure 1E). Promoter binding was second-
most common, with repressive and repetitive chromatin
binding less common. Thus, across cell types and protein
isoforms, CUX1 binds distal cis-regulatory elements asso-
ciated with gene activation, i.e. enhancers.

CUX1 p75 has a stronger DNase-I footprint than p200

p200 CUX1 binds weakly to DNA, with a faster off-rate,
compared to p75 in vitro (15). We tested this finding in vivo
by examining the patterns of DNase-I protection afforded
by CUX1 binding. Strong, direct binding of a protein to
DNA protects the DNA from DNase-I digestion, produc-
ing a characteristic signature of read depletion within the
bound region (the footprint). It has been suggested that TFs
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Figure 1. CUX1 binds to distal enhancers across three cell types. (A) Western blot of CUX1 in human cell lines from three cell types: myeloid leukemia
(K562), lymphoblastoid (GM12814 and GM6984) and liver (HepG2). (B) The ATCRAT DNA binding motif is enriched in CUX1 binding sites. The
position weight matrix from MEME-ChIP (46) analysis of K562 peaks (IDR < 0.05) is shown. The position weight matrix was similar in the other cell
types. The frequency of the ATCRAT DNA binding motif within CUX1 peaks across cell types is indicated. (C) The ATCRAT motif is enriched in the
center of CUX1 binding sites. The graph shows the probability of an ATCRAT motif for each base pair upstream and downstream of the center of K562
CUX1 peaks (P < 4.1e–38). The graph was similar in the other cell types. (D) Graph shows the density of CUX1 sites (in red) in relationship to the
absolute distance from the single nearest protein-coding genes’ transcription start site (TSS). Blue lines represent the same densities calculated for 62 other
ENCODE transcription factor (TF) datasets in K562. The yellow dashed line represents all 62 TFs pooled together. TSSs were defined by Gencode V.24
annotation. Data are representative of other cell types (shown in Supplemental Figure S1). (E) CUX1 is enriched in predicted enhancer chromatin states.
Chromatin states are derived from hidden Markov analysis of eight chromatin marks and CTCF ChIP-seq data in each cell type (31). The height of each
bar indicates the proportion of peaks in each cell type that fall within the predicted chromatin state for the respective cell type.

with short DNA residence times (such as nuclear hormone
receptors) lack such footprints, while factors with longer
residency times (such as CTCF and AP1) have deeper foot-
prints (49,50). To search for a CUX1 footprint, we exam-
ined DNase-seq cuts surrounding ATCRAT motifs within
CUX1 peaks. We observed a strong depletion of DNase-
seq cuts in the central region of HepG2 CUX1 peaks (Fig-
ure 2, P < 0.005, permutation test), but no similar signa-
ture of DNase protection in K562 (P > 0.10). GM12878,
which contains both isoforms, showed an intermediate de-
pletion of cuts in the central six base pairs, suggesting a
potentially weak (albeit nonsignificant, P > 0.10) footprint
present only in a subset of sites. These observations are con-

sistent with higher affinity binding by the p75 isoform in
HepG2 compared to p200 in K562.

CUX1 co-occupies sites with transcriptional activators and
cohesin

An alternative explanation for differences in DNase-I sen-
sitivity of p75 in HepG2 and p200 in K562 is that CUX1
could potentially form a complex with another TF in
HepG2 that contributes to DNase footprinting. To deter-
mine the frequency of CUX1 co-occupancy with other pro-
teins, we compared CUX1 peaks to 140 different factors
with publically available ChIP-seq data in K562, GM12878,
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Figure 2. CUX1 p75 has a DNase footprint in HepG2, while CUX1 p200 in K562 does not. Each panel shows the DNase-seq cuts per base pair, as a
function of the position within each peak centered on the ATCRAT motif. To control for sequence bias in DNase-I cleavage (35), the data are normalized
to the DNase cuts centered at ATCRAT motifs in open chromatin not bound by CUX1. While HepG2 shows a significant (P < 0.01) depletion of cuts
in the center of CUX1 sites, indicative of a footprint, DNase data from other cell types showed no significant depletion in the central seven base pairs of
sites. The number of ATCRAT-containing CUX1 peaks is indicated.

or HepG2. Of the factors, 28 had data in all three lines.
The frequency of CUX1 sites co-bound with each of the 28
factors is shown in Figure 3 (Supplemental Table S5 pro-
vides data for all 140 factors). We discovered some consis-
tent relationships that replicated across cell types. For exam-
ple, RNA polymerase II (POLR2A) frequently co-occurred
with CUX1, occupying to 32–49% of CUX1 sites. The
histone acetyltransferase and transcriptional co-activator,
EP300, bound 34–70% of CUX1 sites. We did not observe
increased co-occupancy of any TF with CUX1 in HepG2
that could explain the DNase-seq footprints observed in
Figure 2. Overall, across cell types and CUX1 isoforms,
CUX1 most frequently associated with transcriptional ac-
tivators.

There was also significant CUX1 co-occupancy with
components of the cohesin complex, which is involved in
DNA looping (51). Of the cohesin complex members with
available data, RAD21 was found at 11–37% of CUX1
peaks and SMC3 at 9–29%. Overall 20–55% of CUX1 sites
contained a RAD21 and/or SMC3 protein. This result im-
plies that CUX1 overlaps sites involved in DNA loops and
may participate in higher-order chromatin architecture. In
summary, CUX1 co-occurs most often with transcriptional
activators and cohesin across cell types and isoforms.

CUX1 regulates cell viability pathways

We sought to identify those genes that change expression
in response to CUX1 haploinsufficiency. We focused on
the K562 myeloid leukemia cells, as we identified CUX1
inactivation in half of high-risk myeloid leukemias (3),
whereas CUX1 mutations are uncommon in liver and lym-
phoid cancers (52). To this end, we generated K562 cells
stably expressing inducible shRNA targeting CUX1. Of
three shRNAs tested, shCUX1.338 and shCUX1.810 best
modeled haploinsufficiency, with 55% residual CUX1 pro-
tein (Figure 4A). To identify differentially expressed genes
(DEGs) after CUX1 knockdown, we performed RNA-seq
on control and two independent shRNAs targeting CUX1.
There was a significant concordance between gene expres-
sion changes after knockdown with shCUX1.810 compared

to shCUX1.338 (Spearman’s r = 0.68, P = 2.2e–16). So we
identified DEGs from a combined analysis of shCUX1.338
and shCUX1.810 using a generalized linear model (36).

CUX1 knockdown led to 1175 DEGs at a 5% false dis-
covery rate (FDR). The effect size was modest across this
large number of DEGs (Figure 4B). 45.6% of DEGs went
down after knockdown. Restricting the analysis to genes
bound by CUX1 (n = 254), 42.1% went down after knock-
down, indicating that in this cell type, CUX1 can both acti-
vate or repress target genes.

We looked for pathways altered by CUX1 haploinsuf-
ficiency and identified ‘GO:0000278∼mitotic cell cycle’ as
the most significant pathway of up-regulated genes (FDR
= 2.60E–15), and ‘GO:0042981∼regulation of apoptosis’
as the most significant pathway for down-regulated genes
(FDR = 5.74E–04, Supplemental Table S6) (53). In accor-
dance with alteration of these pathways, CUX1 knockdown
led to increased K562 cell viability when grown in reduced
serum conditions (Figure 4C). Thus, CUX1 regulates via-
bility pathways in K562 cells.

CUX1 fits an analog model of dose-sensitive gene regulation

We then identified the DEGs that are direct targets of
CUX1 binding. Genes were categorized as DEG, un-
changed, or not expressed in K562 cells. The fraction of
genes with one, or more than one, CUX1 binding site
was quantified (Figure 4D). CUX1-bound genes were more
likely to be expressed, but were not significantly associated
with differential expression upon a 50% reduction of CUX1
(P = 0.14). Notably, the presence of multiple CUX1 bind-
ing sites was correlated with DEGs. Specifically, 9.49% of
DEGs had two or more CUX1 binding sites, significantly
more than other expressed genes (Figure 4D, P = 0.0069).
Overall, these data implicate the analog model for CUX1
target gene regulation, in which target genes have multiple
TF binding sites and modest effect sizes on expression (Fig-
ure 4B).

We next tested the affinity-threshold model. We de-
fined CUX1 binding sites as ‘dose-sensitive’ when they
were associated with DEGs, and all other binding sites
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Figure 3. CUX1 sites are co-bound with the p300 transcriptional co-activator, RNA polymerase II, and cohesin components. The graph shows the fraction
of CUX1 sites that overlap with 28 other factors. The factors are ranked by the mean overlap with CUX1 across the three cell types. The significance of
the overlap was determined by obtaining a random expectation (P = 0.05) via permutation of the peaks for each factor over open chromatin, which was
defined as any region of the genome bound by any factor from the Uniform Peak calls for each respective cell type. * Indicates P < 0.05. Supplemental
Table S5 contains the complete list of factors with overlap frequencies and enrichment.

as ‘dose-resistant.’ Per the affinity-threshold model, dose-
sensitive sites should be lower affinity. Assuming that CUX1
has higher affinity for the ATCRAT motif (16,47), dose-
sensitive sites would be predicted to lack the ATCRAT
motif. This result was not evident, as dose-sensitive sites
had a similar frequency of the ATCRAT motif compared
to dose-resistant sites (P > 0.05). De novo motif analysis
(46) did not reveal underlying sequence differences at dose-
resistant or dose-sensitive sites. Indeed, Jensen–Shannon
divergence analysis (54), of all possible k-mers from 1–10
bp in size, failed to uncover significant differences of the
DNA sequence at dose-sensitive and dose-resistant sites. In
summary, these results conflict with the affinity-threshold
model.

As a second approach to test the affinity-threshold
model, we directly measured CUX1 genomic occupancy in
the wildtype and haploinsufficient states by ChIP-seq. If
CUX1 adheres to the affinity-threshold model, we would
expect to observe low- and high-affinity CUX1 binding
sites. To test this, we used K562 cells stably expressing
CUX1-targeting shRNA-A or shRNA-B, with 24% and
55% residual CUX1 protein, respectively (3). ChIP-seq was
performed on two biological replicates for each shRNA and
a control shRNA. Of the 2591 CUX1 peaks identified in our
control shRNA line (IDR 0.10), 1497 (57.8%) of these were
also called in the ENCODE K562 dataset (IDR 0.05).

We predicted that low-affinity binding sites would ex-
hibit less occupancy in the haploinsufficient state compared
to high-affinity sites. As such, a density plot of CUX1 oc-
cupancy would be bimodal, reflecting two populations of
sites with either high- or low-occupancy (Figure 5A, dashed
line). To test this, we quantified CUX1 occupancy in control
peaks before and after CUX1 knockdown. As shown in Fig-
ure 5A, CUX1 occupancy showed a unimodal distribution
in the control cells. After knockdown, CUX1 occupancy

unimodally decreased. The finding that the vast majority
of CUX1 peaks decrease after CUX1 knockdown confirms
the specificity of the CUX1 peaks identified. This unimodal
distribution has also been reported for MYC, which is more
analog than binary (55). We did not observe a class of lower-
occupancy sites that were particularly dose-sensitive. In-
deed, we did not identify any significantly differentially oc-
cupied peaks after knockdown after multiple testing correc-
tion (30). These results argue against the affinity-threshold
model.

Further refuting the affinity-threshold model, CUX1
change in occupancy did not correlate with differential gene
expression. First we binned CUX1 peaks according to their
fold change in occupancy. This produced an affinity-rank of
binding sites with lower affinity binding sites exhibiting the
largest change in occupancy (Figure 5B). However, those
genes targeted by low-affinity CUX1 binding did not have
greater gene expression changes compared to other binding
sites (Figure 5C). We also determined that peaks at DEGs
did not have significantly different occupancy in the control
or haploinsufficient state, nor did they have significantly dif-
ferent change in occupancy (P > 0.05). To remove the po-
tential effects of using different thresholds for occupancy or
expression changes, we also tested RNA fold change in ex-
pression versus ChIP-seq fold change in occupancy across
all peaks and did not observe a correlation (Spearman r
= -0.004, P = 0.840). Overall, these data disagree with the
affinity-threshold model for CUX1 transcriptional regula-
tion.

In contrast, several features of CUX1 invoke the ana-
log model (19). p200 CUX1 has low-affinity DNA binding
(Figure 2 and ref.(15)), there is a large excess of unbound
CUX1 binding sites, and there are multiple CUX1 bind-
ing sites at dose-sensitive genes (Figure 4C) (18–20). Collec-
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Figure 4. CUX1 tends towards transcriptional activation and regulates cellular viability. (A) K562 cells were transfected with doxycycline-inducible vectors
expressing three independent shRNAs targeting CUX1. A vector expressing shRNA targeting Renilla luciferase (shRen) was used as a control. CUX1
protein was measured by western blot after 7 days of doxycycline treatment. One representative blot of three independent experiments is shown. The
graph depicts the quantification of CUX1 protein levels across the three independent experiments, with standard deviations. (B) RNA-seq was performed
after four days of doxycycline treatment of K562 cells expressing shCUX1.810, shCUX1.338 or shRen control. Three independent biological replicates
were performed. Volcano plot of differentially expressed genes from combined analysis of sh.338 and sh.810 by a generalized linear model. Red indicates
differentially expressed genes with FDR < 0.05. (C) Doxycycline-treated K562 cells expressing shCUX1.775 or shRenilla control were cultured in 0.1%
FBS containing media. ATP-lite luminescence was measured starting on day 0. One representative experiment of three independent experiments is shown.
Three technical replicates were performed within each experiment. (D) Genes were categorized as not-expressed if they had a mean of <1 log counts per
million reads (CPM), expressed but unchanged after CUX1 knockdown, or differentially expressed after CUX1 knockdown (FDR < 0.05). The number
of genes within each category is indicated. Within each category, the fraction of genes targeted by one or more than one CUX1 peak is plotted. CUX1
peaks from ENCODE were assigned to the single nearest gene within 1 Mb. **** indicates P < 0.0001 chi-squared test compared to expressed genes. **
indicates P = 0.0069 chi-squared test compared to expressed, unchanged genes.

tively, these data argue against the affinity-threshold model,
and in favor of the analog model of CUX1 gene regulation.

Cis-regulatory features of dose-sensitive CUX1 binding sites

Similar to other TFs (56), most genes associated with
CUX1-binding sites genes do not change in expression af-
ter CUX1 knockdown. CUX1 directly binds 2314 genes
by ChIP-seq, of which 254 are DEG after CUX1 knock-
down. To better understand the differences between dose-
sensitive and dose-resistant binding sites, we adopted a ma-
chine learning approach. We sought to predict whether a
given binding site affected the nearest gene’s expression,
contingent on characteristics of the site.

We annotated the binding sites with functional genomic
features generated by ENCODE, such as measures of open
chromatin, other TF ChIP-seq peaks, and chromatin marks.

We found that dose-sensitivity was readily predictable us-
ing only three genomic characteristics. A support-vector
machine-based model was able to achieve extremely accu-
rate performance with leave-one-out cross validation (Fig-
ure 6A; area under the curve (AUC) = 0.89; P < 0.001).
We replicated the AUC with multiple methods (39,57). The
most informative features of dose-sensitive binding sites
were: distance between each binding site and the nearest
TSS; the number of DNase-seq reads mapping to each peak;
and the number of RNA reads mapping to each peak (en-
hancer RNA) (58). We found that the three characteristics
differed in the extent to which they improved classifier per-
formance (Figure 6B), but worked much better in combi-
nation than individually, suggesting interactions between
the features. No single feature showed a statistically signif-
icant difference between dose-sensitive and -resistant sites
(P > 0.05). To control for a possible threshold effect of us-
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Figure 5. Binding site affinity does not correlate with dose-sensitive gene
regulation. ChIP-seq was performed in K562 cells expressing shRNA tar-
geting CUX1 (shCUX1-A or shCUX1-B) or control shRNA. Two bio-
logical replicates were performed for each shRNA. (A) CUX1 occupancy
after CUX1 knockdown shows a unimodal reduction. We identified peaks
in the control shRNA cells (IDR 0.10), and then counted the number of
ChIP-seq reads within those regions in the control and the haploinsuffi-
cient conditions. Occupancy was defined as the log2 read counts per peak,
input subtracted and normalized to library size. The mean occupancy for
control (blue) and knockdown (red) conditions is plotted. The dashed line
indicates a hypothetical bimodal density plot. (B) Peaks were binned by
fold change in occupancy. The bins are ranked from largest fold change to
least. The mean CUX1 ChIP-seq occupancy in the control and haploinsuf-
ficient conditions is plotted per bin. (C) Peaks were assigned to genes. The
boxplots depict the fold change in RNA expression after CUX1 knock-
down for genes within the same bins as (B).

ing a 5% FDR cut-off for DEGs, we also tested the predic-
tion accuracy when using fold change in gene expression in-
stead. This result was also significant (P = 0.045). We con-
clude that enhancer activity (enhancer RNA and DNase-
seq reads) and distance to the TSS are important features
of CUX1 function.

CUX1 is enriched at sites of DNA looping

We inferred that CUX1 regulates genes via looping to tar-
get promoters for the following reasons: (i) CUX1 binds to
distal enhancers (Figure 1D and E); (ii) CUX1 cobinds with
cohesin (Figure 3) and (iii) Enhancer RNAs are associated
with promoter looping (Figure 6B) (58). To test the rela-
tionship between CUX1 and DNA looping, we used Hi–C
data from K562 cells (41). For each Hi–C contact, we built
a window of 5 kb surrounding the contact loci, a distance
based on the resolution limits of Hi–C data (41). Any CUX1
peak or gene TSS within this window was considered to be
participating in DNA loops.

We found that 54.2% of CUX1 binding sites fell within
a Hi–C contact. This was a significant enrichment of 2679
overlaps compared to 1374 expected by chance (P < 0.01,
permutation test over open chromatin). We next assessed
how looping relates to differential expression of CUX1 tar-
get genes. First, we plotted the proportion of dose-sensitive
CUX1 binding sites as a function of the distance from
the nearest gene (Figure 6C). This analysis revealed distal
CUX1 peaks to be enriched for dose-sensitive targets. The
fraction of dose-sensitive peaks did not plateau even at a
distance as far as 1.7 Mb (14.3 on the natural log scale, Fig-
ure 6C). To determine if we could improve upon the peak to
gene association by accounting for distal DNA looping, we
repeated the analysis after incorporating Hi–C contact in-
formation. For CUX1 binding sites within 5 kb of one end
of a Hi–C contact, the distance of the other end of the Hi–C
contact to the nearest TSS is plotted. With this analysis, a
greater proportion of dose-sensitive CUX1 sites is proximal
to the TSS, and a maximum dose-sensitive fraction is appar-
ent close to the TSS (Figure 6D). Therefore dose-sensitive
CUX1 binding sites loop to promoters.

DISCUSSION

The CUX1 transcription factor is a conserved, essential,
and ubiquitous protein recurrently mutated across cancer
types. The genome-scale properties and targets of endoge-
nous CUX1 DNA-binding have remained unknown, in any
species, creating a substantial gap in our knowledge of
CUX1 function. In this study, we provide the first identifica-
tion of CUX1 genome-wide binding across multiple human
cell types and the cis-regulatory features of haploinsufficient
gene targets.

We showed that CUX1 predominantly binds distal en-
hancers, which is significant because distal cis-regulatory
elements are associated with cell type–specific gene expres-
sion (48). CUX1 is exceptional in this regard when com-
pared to other TFs, which are more likely to bind promoter-
proximal regions (Figure 1D). Distal enhancer binding may
be an integral property of CUX1, which dictates unique
pathways across a breadth of cell types (59).
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Figure 6. Dose-sensitive CUX1 binding sites loop to the promoter. (A) A Support-Vector Machine approach can accurately classify dose-sensitive and
non-sensitive sites. A receiver-operator curve shows an area-under-the-curve (AUC) value of 0.89, significantly above 0.5 (P < 0.01), indicating correct
classification of dose-sensitive sites. (B) The support vector machine makes use of three characteristics for each site. Length of each bar indicates the
decrease in AUC value when that variable is removed from the classifier. (C) CUX1 peaks more distal from the TSS are more likely to be dose-sensitive.
Graph shows the proportion of dose-sensitive CUX1 sites (on the y-axis) as a function of the absolute distance from the TSS (plotted as the natural log
of the base pair number on the x-axis). (D) Dose-sensitive CUX1 binding sites loop to the promoter. As in (C), the graph shows the proportion of dose-
sensitive CUX1 sites as a function of the distance from the TSS distance, but after incorporating Hi-C contact information. For CUX1 binding sites within
5 kb of one end of a Hi-C contact, the distance of the other end of the Hi-C contact to the nearest TSS is plotted. CUX1 binding sites not assigned to Hi-C
contacts are also included.

A previous study performed chromatin affinity purifica-
tion of an exogenously expressed, tagged, p110 isoform of
CUX1 (16). Binding sites were identified by microarrays,
which were limited to probes for promoter and coding re-
gions. Based on our results, those microarrays likely missed
the majority of CUX1 binding sites. Despite that limitation,
the authors observed the ATCRAT motif in just under half
of binding sites, and noted that most ATCRAT motifs on
the array remained unbound, similar to our findings. Af-
ter knockdown of CUX1, they determined that some DEG
were bound distally from the TSS, indicating that p110 may
function similarly to p200 in long-distance gene regulation.

We found that the p75 isoform of CUX1 is associated
with greater DNase-I protection, consistent with higher
affinity binding. In contrast, the full-length p200 isoform
afforded less DNase-I protection, in agreement with prior
EMSAs demonstrating faster on-off rates of p200 DNA
binding. Despite weaker DNA binding in K562 cells, 1,175
DEGs were identified after 50% CUX1 knockdown, reveal-
ing that CUX1 is transcriptionally active in this cell line.
Reporter assays previously showed that p200 CUX1 is a
transcriptional repressor (14). We observed that CUX1 in
K562 cells, which predominantly express the p200 isoform,
had both activating and repressive transcriptional activities,
in agreement with prior microarray data (4). These appar-
ently dual activities may result from activating functions of

the low level of p75 in K562. However, prior reporter assays
lacked a native chromatin context and architecture, thus it
remains possible that p200 CUX1 may have a role in gene
activation in a chromosomal context.

p200 CUX1 gene regulation is more analog than bi-
nary. Supporting this, p200 CUX1 had low-affinity bind-
ing and a large reservoir of unoccupied binding sites. DEGs
contained more than one CUX1 binding site and exhib-
ited modest changes in expression. In contrast to a bi-
nary model, analog regulation may provide a more nu-
anced means for CUX1 to regulate a broad range of
pathways across a large concentration range. Stewart-
Ornstein et al. proposed that gene expression in proportion
to TF dosage might also enable stoichiometric activation
of a group of genes (19). This property may explain how
changes in CUX1/Cut abundance can to lead to prolifer-
ation, lineage fate, or apoptosis, within a single cell type
(12,13).

Directly or indirectly, CUX1 is associated with DNA
looping. CUX1 binding sites were enriched for cohesin
components and Hi-C contact points that linked binding
sites to the promoters of dose-sensitive genes. In line with
this finding, Pollard and colleagues recently queried hun-
dreds of functional genomic datasets to identify features
of interacting enhancer-promoter pairs (60). They indepen-
dently identified CUX1 binding to be highly predictive of
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Figure 7. Model for haploinsufficient CUX1 target gene deregulation. At a normal concentration, CUX1 binds at sites of chromatin contacts between
distal enhancers and gene promoters, promoting their expression. When CUX1 dosage is halved, CUX1 binding decreases across binding sites. At the
single cell level, this may manifest as reduced probability of CUX1 binding at any specific locus; in a population of cells, this is seen as decreased occupancy
at all loci. Binding sites characterized by looping to the promoter and the interaction of other genomic characteristics (Figure 6B) will have a quantitative
impact on gene expression. It remains to be determined if either: (i) CUX1 promotes DNA looping; or (ii) CUX1 is recruited to pre-existing DNA loops.

looping (60). It remains to be determined if either: (i) CUX1
promotes DNA looping; or (ii) CUX1 is recruited to pre-
existing DNA loops. Intriguingly, SATB1, a member of the
CUT homeobox superclass, regulates gene expression by
fostering DNA looping and TF recruitment (61). In future
work, it will be key to test if CUX1 directly facilitates DNA
looping and TF recruitment in a manner similar to SATB1.
Most factors show a significant enrichment for binding with
CUX1 (Figure 3 and Supplemental Table S5), implying that
CUX1 may promote TF recruitment.

In conclusion, we propose a model for CUX1 haploin-
sufficient target gene deregulation (Figure 7). At a normal
concentration, CUX1 binds distal enhancers and regulates
target genes via DNA loops. When CUX1 concentration is
halved, CUX1 binding decreases across binding sites. At the
single cell level, this may manifest as reduced probability
of CUX1 binding at any specific locus; in a population of
cells, this is seen as decreased occupancy at all loci. Binding
sites characterized by looping to the promoter and the in-
teraction of other cis-regulatory features (Figure 6B) have a
quantitative impact on gene expression. We speculate that
given the distinct features of CUX1 genomic binding prop-
erties compared to other TFs, this model may be unique
to CUX1 and not generalizable to most other haploinsuffi-
cient transcriptional regulators.
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