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observed (combination 1),11 strongly indicating that ammonia serves
as the nitrogen source of “CN”. It was interesting to note that the
carbon source of “CN” was supplied from the dimethylamino
moiety rather than formyl group of DMF (combinations 2 and 3).12

In addition, while the use of N,N-dimethylacetamide resulted in
just a moderate product yield relative to that for DMF, its
diethylamino derivative did not afford 2a (combinations 4 and 5),
implying that the N,N-dimethylamino moiety of amides is an
efficient carbon source of “CN” in the present cyanation protocol.

Although the details of this way of generating the cyano unit
“CN” are not clear at the present stage, it is proposed that the copper
complex is presumably involved in the single electron transfer (SET)
step to give an imine species A, which is attacked by ammonia to
provide an amidine intermediate B (Scheme 3).13 C-N bond
cleavage in B is envisioned to occur under the aerobic conditions,
leading to “CN” (major pathway).14 It was observed that the reaction
is completely inhibited in the presence of 2,2,6,6-tetramethyl-1-
piperidinyloxy (TEMPO).15 On the basis of the above isotope
experiments (Scheme 2), a path generating “CN” from the formyl
group of DMF and ammonia can be regarded as a minor contribu-
tion. However, an alternative route to cyanation that, instead of
using prior-generated “CN”, proceeds via reaction of the substrate
with proposed amidine species such as B to form an intermediate
D cannot be completely ruled out at the moment. On the other hand,
it is postulated that the palladium catalyst is involved only in the
C-H bond activation of 1a, and a large intramolecular kinetic
isotope effect (kH/kD ) 3.3) was observed from 1a-d.16

Irrespective of the exact mechanistic path offering the “CN” unit,
the standard cyanation conditions were briefly applied to a range
of substrates (Table 2). 2-(2-Pyridyl)arenes bearing various sub-
stitutents at the para, meta, or ortho position were readily cyanated,
although electron-deficient groups led to slightly lower product
yields (2a-j). A substituted pyridyl group did not cause any
difficulties (2k). Cyanation of arenes containing other pyridine-
like directing groups also proceeded smoothly. In fact, the reactions
of 1-phenylisoquinoline (2l), benzo[h]quinoline (2m), and 2-phe-
nylpyrimidine (2n) afforded the corresponding cyanated products
in high efficiency. It should be noted that the reaction is highly
regioselective, affording only one isomeric product in cases where
two different reacting sites are present (e.g., 2h, 2i, and 2j).

Since the present cyanation protocol employs two different
sources for the in situ generation of “CN”, it was envisioned that
doubly labeled benzonitriles could readily be obtained. Indeed, when
isotopic aqueous ammonia (15NH3) and N,N-dimethyl-13C2 DMF
were used under our conditions, a doubly labeled product was
isolated in 40% yield17 with >96% isotopic incorporation at each
carbon and nitrogen of “CN” (eq 1), representing to the best of
our knowledge the first example of making such nitriles.

In summary, we have discovered a new protocol for generating
a cyano “CN” unit from two readily available precursors, NH3(aq)
and DMF. Its synthetic utility has been demonstrated in the Pd-
catalyzed cyanation of aryl C-H bonds. Mechanistic studies on
the detailed path of generating the cyano group are underway.
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Scheme 3. Mechanistic Proposal for the “CN” Formation Table 2. Pd-Catalyzed Cyanation with NH3(aq) and DMFa

a Substrate (0.3 mmol), NH3(aq, 28%), DMF (1.5 mL), and O2 (1
atm). b Reaction time 48 h. c Using 2.2 equiv of CuBr2 and 8.8 equiv of
NH3(aq) for 48 h.
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