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12. COUPLING OF ELECTRONIC AND NUCLEAR MOTION 

12.1. The Displaced Harmonic Oscillator Model 

Here we will discuss the displaced harmonic oscillator (DHO), a widely used model that 

describes the coupling of nuclear motions to electronic states. Although it has many applications, 

we will look at the specific example of electronic absorption experiments, and thereby gain 

insight into the vibronic structure in absorption spectra. Spectroscopically, it can also be used to 

describe wavepacket dynamics; coupling of electronic and vibrational states to intramolecular 

vibrations or solvent; or coupling of electronic states in solids or semiconductors to phonons. As 

we will see, further extensions of this model can be used to describe fundamental chemical rate 

processes, interactions of a molecule with a dissipative or fluctuating environment, and Marcus 

Theory for nonadiabatic electron transfer. 

The DHO and Electronic Absorption  

Molecular excited states have geometries that are different from the ground state configuration as 

a result of varying electron configuration. This parametric dependence of electronic energy on 

nuclear configuration results in a variation of the electronic energy gap between states as one 

stretches bond vibrations of the molecule. We are interested in describing how this effect 

influences the electronic absorption spectrum, 

and thereby gain insight into how one 

experimentally determines the coupling of 

between electronic and nuclear degrees of 

freedom. We consider electronic transitions 

between bound potential energy surfaces for a 

ground and excited state as we displace a 

nuclear coordinate q. The simplified model 

consists of two harmonic oscillators potentials 

whose 0-0 energy splitting is EeEg and which 

depends on q. We will calculate the absorption 

spectrum in the interaction picture using the time-correlation function for the dipole operator.  

 We start by writing a Hamiltonian that contains two terms for the potential energy 

surfaces of the electronically excited state |Eۧ and ground state |Gۧ	

	 0 G EH H H   (12.1) 

These terms describe the dependence of the electronic energy on the displacement of a nuclear 

coordinate q. Since the state of the system depends parametrically on the level of vibrational 
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excitation, we describe it using product states in the electronic and nuclear configuration, 

,elec nuc   , or in the present case 

  , ,g eG g n E e n   (12.2) 

Implicit in this model is a Born-Oppenheimer approximation in which the product states are the 

eigenstates of H0, i.e. | ( ) |
gG g nH G E E G    .   

 The Hamiltonian for each surface contains an electronic energy in the absence of 

vibrational excitation, and a vibronic Hamiltonian that describes the change in energy with 

nuclear displacement. 
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For our purposes, the vibronic Hamiltonian is harmonic and has the same curvature in the ground 

and excited states, however, the excited state is displaced by d relative to the ground state along a 

coordinate q. 
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The operator q acts only to changes the degree of vibrational excitation on the |Eۧ or |Gۧ surface.  

 We now wish to evaluate the dipole correlation function  
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Here p  is the joint probability of occupying a particular electronic and vibrational state, 

, ,elec vibp p p   . The time propagator is 

 0 / / /G EiH t iH t iH te G e G E e E       (12.7) 

 We begin by making the Condon Approximation, which states that there is no nuclear 

dependence for the dipole operator. It is only an operator in the electronic states. 

  ge egg e e g     (12.8) 

This approximation implies that transitions between electronic surfaces occur without a change 

in nuclear coordinate, which on a potential energy diagram is a vertical transition.  
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Under typical conditions, the system will only be on the ground electronic state at 

equilibrium, and substituting eqs. (12.7) and (12.8) into (12.6), we find:   

    2 / / /e g g e
i E E t iH t iH t

egC t e e e         (12.9) 

Here the oscillations at the electronic energy gap are separated from the nuclear dynamics in the 

final factor, the dephasing function: 
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 (12.10) 

The average ۦ … ۧ in equations (12.9) and (12.10) is only over the vibrational states |ngۧ. Note 

that physically the dephasing function describes the time-dependent overlap of the nuclear 

wavefunction on the ground state with the time-evolution of the same wavepacket initially 

projected onto the excited state  

      g eF t t t   (12.11) 

This is a perfectly general expression that does not depend on the particular form of the potential. 

If you have knowledge of the nuclear and electronic eigenstates or the nuclear dynamics on your 

ground and excited state surfaces, this expression is your route to the absorption spectrum.1  

 To evaluate F(t) for this problem, it helps to realize that we can write the nuclear 

Hamiltonians as 

  † 1
0 2gH a a   (12.12) 

 †ˆ ˆ
e gH DH D  (12.13) 

Here D̂  is the spatial displacement operator  

  ˆ ˆexpD ipd    (12.14) 

which shifts an operator in space as: 

 †ˆ ˆˆ ˆDqD q d   (12.15) 

                                                 
1.  For further on this see: 

Schatz, G. C.; Ratner, M. A., Quantum Mechanics in Chemistry. Dover Publications: Mineola, NY, 2002; Ch. 9. 

Reimers, J. R.; Wilson, K. R.; Heller, E. J., Complex time dependent wave packet technique for thermal 
equilibrium systems: Electronic spectra. J. Chem. Phys. 1983, 79, 4749-4757. 
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Note p̂  is only an operator in the vibrational degree of freedom. We can now express the excited 

state Hamiltonian in terms of a shifted ground state Hamiltonian in eq. (12.13), and also relate 

the time propagators on the ground and excited states 

 
// †ˆ ˆge

iH tiH t D De e    (12.16) 

Substituting eq. (12.16) into eq. (12.10) allows us to write  
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 (12.17) 

This says that the effect of the nuclear motion in the dipole correlation function can be expressed 

as a time-correlation function for the displacement of the vibration.   

 To evaluate eq. (12.17) we write it as  

 ˆ ˆ( )/ (0)/( ) idp t idpF t e e    (12.18) 

since    †ˆ ˆ 0g gp t U p U  (12.19) 

The time-evolution of p̂  is obtained by expressing it in raising and lowering operator form,  
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m
p i a a


 


 (12.20) 

and evaluating eq. (12.19) using eq. (12.12). Remembering †a a n , we find  
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which gives 

    0 0†0ˆ
2

i t i tm
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 (12.22) 

 So for the dephasing function we now have   

      0 0† †exp expi t i tF t d a e a e d a a          
 (12.23) 

where we have defined a dimensionless displacement variable 
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Since †a  and a do not commute †([ , ] 1)a a   , we split the exponential operators using the 

identity 
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or specifically for †a  and a, 
1† †
2a a aae e e e      (12.26) 

This leads to 
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 Now to simplify our work further, let’s specifically consider the low temperature case in 

which we are only in the ground vibrational state at equilibrium 0gn  . Since 0 0a   and 
†0 0a  ,  
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and 

   0 †2
0 exp exp 0i tdF t d a d ae e         

 
 (12.29) 

In principle these are expressions in which we can evaluate by expanding the exponential 

operators. However, the evaluation becomes much easier if we can exchange the order of 

operators. Remembering that these operators do not commute, and using 
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we can write  
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 (12.31) 

 So finally, we have the dipole correlation function: 

    0
2

exp 1i t
eg egC t i t D e 

          (12.32) 

D is known as the Huang-Rhys parameter (which should be distinguished from the displacement 

operator D̂ ). It is a dimensionless factor related to the mean square displacement 
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 (12.33) 

and therefore represents the strength of coupling of the electronic states to the nuclear degree of 

freedom. Note our correlation function has the form  
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Here g(t) is our lineshape function  

    0 1i tg t D e    (12.35) 

To illustrate the form of these functions, below is plotted the real and imaginary parts of ( )C t , 

F(t), g(t) for D = 1, and eg = 100. g(t) oscillates with the frequency of the single vibrational 

mode. F(t) quantifies the overlap of vibrational wavepackets on ground and excited state, which 

peaks once every vibrational period. ( )C t has the same information as F(t), but is also 

modulated at the electronic energy gap eg. 
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Absorption Lineshape and Franck-Condon Transitions 

The absorption lineshape is obtained by Fourier transforming eq. (12.32) 
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If we now expand the final term as  
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the lineshape is 
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The spectrum is a progression of absorption peaks rising from eg, separated by 0 with a 

Poisson distribution of intensities. This is a vibrational progression accompanying the electronic 

transition. The amplitude of each of these peaks are given by the Franck–Condon coefficients for 

the overlap of vibrational states in the ground and excited states 
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The intensities of these peaks are dependent on D, which is a measure of the coupling strength 

between nuclear and electronic degrees of freedom.   

Illustrated below is an example of the normalized absorption lineshape 
corresponding to the correlation function for D = 1 on the previous page. 
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 Now let’s investigate how the absorption lineshape depends on D . 

 

 

 

For D = 0, there is no dependence of the electronic energy gap eg on the nuclear coordinate, and 

only one resonance is observed. For 1D  , the dependence of the energy gap on q is weak and 

the absorption maximum is at eg, with the amplitude of the vibronic progression falling off as 

Dn. For 1D  , the strong coupling regime, the transition with the maximum intensity is found for 

peak at n D . So D  corresponds roughly to the mean number of vibrational quanta excited from 

0q   in the ground state. This is the Franck-Condon principle, that transition intensities are 

dictated by the vertical overlap between nuclear wavefunctions in the two electronic surfaces. 

 To investigate the envelope for these transitions, we can perform a short time expansion 

of the correlation function applicable for 01t  and for D≫1. If we approximate the oscillatory 

term in the lineshape function as 

   2 2
0 0 0

1
2exp 1i t i t t       (12.40) 

then the lineshape envelope is 



   12-9

 

    

 

 

0

2 21
0 02

2 210 02

2

2

2

exp 1eg

eg

eg

env eg

eg

eg

D i ti ti t

D i t ti t

i D t D t

dt

dt e

dt

e

e e

e e

e



  

   

  









    







 

 

  













 (12.41) 

This can be solved by completing the square, giving 
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The envelope has a Gaussian profile which is centered at Franck–Condon vertical transition 

 0eg D     (12.43) 

Thus we can equate D with the mean number of vibrational quanta excited in |Eۧ on absorption 

from the ground state. Also, we can define the vibrational energy vibrational energy in |Eۧ on 

excitation at 0q    

 2 21
0 02D m d     (12.44) 

 is known as the reorganization energy. This is the value of He at q=0, which reflects the excess 

vibrational excitation on the excited state that occurs on a vertical transition from the ground 

state. It is therefore the energy that must be dissipated by vibrational relaxation on the excited 

state surface as the system re-equilibrates following absorption. 
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Illustration of how the strength of coupling D influences the absorption lineshape  
(12.38) and dipole correlation function C (12.32). Also shown, the Gaussian 
approximation to the absorption profile (12.42), and the dephasing function (12.31). 
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Fluorescence 

The DHO model also leads to predictions about the form 

of the emission spectrum from the electronically excited 

state. The vibrational excitation on the excited state 

potential energy surface induced by electronic absorption 

rapidly dissipates through vibrational relaxation, typically 

on picosecond time scales. Vibrational relaxation leaves 

the system in the ground vibrational state of the 

electronically excited surface, with an average 

displacement that is larger than that of the ground state. In 

the absence of other non-radiative processes relaxation 

processes, the most efficient way of relaxing back to the 

ground state is by emission of light, i.e., fluorescence. In 

the Condon approximation this occurs through vertical transitions from the excited state 

minimum to a vibrationally excited state on the ground electronic surface. The difference 

between the absorption and emission frequencies reflects the energy of the initial excitation 

which has been dissipated non-radiatively into vibrational motion both on the excited and ground 

electronic states, and is referred to as the Stokes shift. 

 From the DHO model, the emission lineshape can be obtained from the dipole correlation 

function assuming that the initial state is equilibrated in , 0e , centered at a displacement q d , 

following the rapid dissipation of energy  on the excited state. Based on the energy gap at 

, we see that a vertical emission from this point leaves  as the vibrational energy that 

needs to be dissipated on the ground state in order to re-equilibrate, and therefore we expect the 

Stokes shift to be 2 
 

             

q d
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Beginning with our original derivation of the dipole correlation function and focusing on 

emission, we find that fluorescence is described by  

 
   

2 *

, 0 0 ,0 ( )

( )eg

fl

i t

eg

C e t e C t

e F t





 







 


 (12.45) 

 

   

 0

2 *

†

,0 0 ,0 ( )

( )

( )

exp 1

eg

fl

i t

eg

e g

i t

C e t e C t

e F t

F t U U

D e







 









 





   

 (12.46) 

We note that ( ) ( )C t C t 
    and *( ) ( )F t F t  . Then we can obtain the fluorescence spectrum   
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This is a spectrum with the same features as the absorption spectrum, although with mirror 

symmetry about eg. 

 

A short time expansion confirms that the splitting between the peak of the absorption and 

emission lineshape envelopes is 2D԰0, or 2. Further, one can establish that  
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Note that our description of the fluorescence lineshape emerged from our semiclassical treatment 

of the light–matter interaction, and in practice fluorescence involves spontaneous emission of 

light into a quantum mechanical light field. However, while the light field must be handled 

differently, the form of the dipole correlation function and the resulting lineshape remains 

unchanged. Additionally, we assumed that there was a time scale separation between the 

vibrational relaxation in the excited state and the time scale of emission, so that the system can 

be considered equilibrated in , 0e . When this assumption is not valid then one must account for 

the much more complex possibility of emission during the course of the relaxation process. 

Readings 

1. Mukamel, S., Principles of Nonlinear Optical Spectroscopy. Oxford University Press: New 
York, 1995; p. 189, p. 217. 

2. Nitzan, A., Chemical Dynamics in Condensed Phases. Oxford University Press: New York, 
2006; Section 12.5. 

3. Reimers, J. R.; Wilson, K. R.; Heller, E. J., Complex time dependent wave packet technique 
for thermal equilibrium systems: Electronic spectra. J. Chem. Phys. 1983, 79, 4749-4757. 

4. Schatz, G. C.; Ratner, M. A., Quantum Mechanics in Chemistry. Dover Publications: 
Mineola, NY, 2002; Ch. 9. 
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12.2. Coupling to a Harmonic Bath 

It is worth noting a similarity between the Hamiltonian for this displaced harmonic oscillator 

problem, and a general form for the interaction of an electronic “system” that is observed in an 

experiment with a harmonic oscillator “bath” whose degrees of freedom are invisible to the 

observable, but which influence the behavior of the system. This reasoning will in fact be 

developed more carefully later for the description of fluctuations. While the Hamiltonians we 

have written so far describe coupling to a single bath degree of freedom, the DHO model is 

readily generalized to many vibrations or a continuum of nuclear motions. Coupling to a 

continuum, or a harmonic bath, is the starting point for developing how an electronic system 

interacts with a continuum of intermolecular motions and phonons typical of condensed phase 

systems. 

 So, what happens if the electronic transition is coupled to many vibrational coordinates, 

each with its own displacement? The extension is straightforward if we still only consider two 

electronic states (e and g) to which we couple a set of independent modes, i.e., a bath of 

harmonic normal modes. Then we can write the Hamiltonian for N vibrations as a sum over all 

the independent harmonic modes  
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each with their distinct frequency and displacement. We can specify the state of the system in 

terms of product states in the electronic and nuclear occupation, i.e., 
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Additionally, we recognize that the time propagator on the electronic excited potential energy 
surface is  
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Defining 2( 2 )D d m     

 

 

†( ) ( ) ( )

exp 1

g e

i t

F U U

D e 

  






   

   

 (12.53) 



   12-15

the dipole correlation function is then just a product of multiple dephasing functions that 

characterize the time-evolution of the different vibrations. 

    2 ( )

1

eg

N
i t

egC t e F t 




 



   (12.54) 

or    2
egi t g t

egC t e 
     (12.55) 

with    1i tg t D e 




   (12.56) 

In the time domain this is a complex beating pattern, which in the frequency domain appears as a 

spectrum with several superimposed vibronic progressions that follow the rules developed above. 

Also, the reorganization energy now reflects to total excess nuclear potential energy required to 

make the electronic transition: 

 D 


    (12.57) 

 Taking this a step further, the generalization to a continuum of nuclear states emerges 

naturally. Given that we have a continuous frequency distribution of normal modes characterized 

by a density of states,  W  , and a continuously varying frequency-dependent couplingD(), 

we can change the sum in eq. (12.56) to an integral over the density of states: 

       1i tg t d W D e       (12.58) 

Here the product    W D  is a coupling-weighted density of states, and is commonly 

referred to as a spectral density. 

 What this treatment does is provide a 

way of introducing a bath of states that the 

spectroscopically interrogated transition 

couples with. Coupling to a bath or continuum 

provides a way of introducing relaxation 

effects or damping of the electronic coherence 

in the absorption spectrum. You can see that if 

 g t is associated with a constant, we 

obtain a Lorentzian lineshape with width . 

This emerges under certain circumstances, for 

instance if the distribution of states and 

coupling is large and constant, and if the 

integral in eq. (12.58) is over a distribution of 
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low frequencies, such that 1i t i te     . More generally the lineshape function is complex, and 

the real part describes damping and the imaginary part modulates the primary frequency and 

leads to fine structure. We will discuss these circumstances in more detail later.  

An Ensemble at Finite Temperature 

As described above, the single mode DHO model above is for a pure state, but the approach can 

be readily extended to describe a canonical ensemble. In this case, the correlation function is 

averaged over a thermal distribution of initial states. If we take the initial state of the system to 

be in the electronic ground state and its vibrational levels (ng) to be occupied as a Boltzmann 

distribution, which is characteristic of ambient temperature samples, then the dipole correlation 

function can be written as a thermally averaged dephasing function: 

    2
egi t

egC t e F t
    (12.59) 

 †( ) ( )
g

g g g e g
n

F t p n n U U n  (12.60) 

 
0

( )
gn

g

e
p n

Z

 




 (12.61) 

Evaluating these expressions using the strategies developed above leads to   

       0 0
2

exp 1 1 1egi t i t i t
egC t e D n ne e  

              
 (12.62) 

n  is the thermally averaged occupation number of the harmonic vibrational mode.  

  0
1

1n e  
   (12.63) 

Note that in the low temperature limit, 0n  , and eq. (12.62) equals our original result eq. 

(12.32). The dephasing function has two terms underlined in (12.62), of which the first describes 

those electronic absorption events in which the vibrational quantum number increases or is 

unchanged (ne≥ng), whereas the second are for those processes where the vibrational quantum 

number decreases or is unchanged (ne≤ng). The latter are only allowed at elevated temperature 

where thermally excited states are populated and are known as “hot bands”.   

 Now, let’s calculate the lineshape. If we separate the dephasing function into a product of 

two exponential terms and expand each of these exponentials, we can Fourier transform to give 

         2 2 1
0

0 0

1
! !

j k
jD n k

abs eg eg
j k

D
n n j k

j k
e      

 
 

 

 
     

 
  (12.64) 
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Here the summation over j describes ne≥ng transitions, whereas the summation over k describes 

ne≤ng. For any one transition frequency, (eg+n0), the net absorption is a sum over all possible 

combination of transitions at the energy splitting with n=(jk). Again, if we set 0n  , we 

obtain our original result eq. (12.38). The contributions where k<j leads to the hot bands.  

 
Examples of temperature dependence to lineshape and dephasing functions for D = 1. The real 

part changes in amplitude, growing with temperature, whereas the imaginary part is unchanged.  
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 We can extend this description to describe coupling to a many independent nuclear 

modes or coupling to a continuum. We write the state of the system in terms of the electronic 

state and the nuclear quantum numbers, i.e., 1 2 3; , ,E e n n n  , and from that: 

       exp 1 1 1j j
j j j

j

i t i t
F t D n ne e          

  (12.65) 

or changing to an integral over a continuous frequency distribution of normal modes 

characterized by a density of states,  W   

             exp 1 1 1i t i tF t d W D n ne e               (12.66) 

 D   is the frequency dependent coupling. Let’s look at the envelope of the nuclear structure 

on the transition by doing a short-time expansion on the complex exponential as in eq. (12.40) 

        
2 2

exp 2 1
2

t
F t d D W i t n

   
  

     
  

  (12.67) 

The lineshape is calculated from 

     2 21
2exp expegi t

abs dt e i t t
    

 


         (12.68) 

where we have defined the mean vibrational excitation on absorption 

 
   

/

d W D    









 (12.69) 

and  

       2 2 2 1d W D n        (12.70) 

2  reflects the thermally averaged distribution of accessible vibrational states. Completing the 

square, eq.  gives 

    2

2

2 2

2
exp

2

eg

abs eg

    
 

   
 
 
 

 (12.71) 

The lineshape is Gaussian, with a transition maximum at the electronic resonance plus 

reorganization energy. Although the frequency shift ۦۧ is not temperature dependent, the width 

of the Gaussian is temperature-dependent as a result of the thermal occupation factor in eq. 

(12.70).  
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12.3 Semiclassical Approximation to the Dipole Correlation Function 

In introducing the influence of dark degrees of freedom on the spectroscopy of a bright state, we 

made some approximations that are not always valid, such as the Condon approximation and the 

Second Cumulant Approximation. To develop tools that allow us to work outside of these 

approximations, it is worth revisiting the evaluation of the dipole correlation function and 

looking at this a bit more carefully. In particular, we will describe the semiclassical 

approximation, which is a useful representation of the dipole correlation function when one 

wants to describe the dark degrees of freedom (the bath) using classical molecular dynamics 

simulations.   

For a quantum mechanical material system interacting with a light field, the full 

Hamiltonian is 

 H  H
0
V (t)  (12.72) 

 V (t)  m E(t) (12.73) 

m  z
i
r

ii is the quantum mechanical dipole operator, where zi are charges. The absorption 

lineshape is given by the Fourier transformation of the dipole autocorrelation function C: 

 C
µµ

   m(t)m(0)  Tr 
eq

m(t)m(0)   (12.74) 

and the time dependence in mis expressed in terms of the usual time-propagator 

 m(t)  Û
0
†mÛ

0
 (12.75) 

  (12.76) 

In principle, the time development of the dipole moment for all degrees of freedom can be 

obtained directly from ab initio molecular dynamics simulations.   

For a more practical expression in which we wish to focus on one or a few bright degrees 

of freedom, we next partition the Hamiltonian into system and bath 

 H
0
 H

S
(Q) H

B
(q) H

SB
(Q,q)  (12.77) 

For purposes of spectroscopy, the system HS refers to those degrees of freedom (Q) with which 

the light will interacts, and which will be those in which we calculate matrix elements. The bath 

HB refers to all of the other degrees of freedom (q), and the interaction between the two is 

accounted for in HSB. Although the interaction of the light depends on how mvaries with Q, the 

dipole operator remains a function of system and bath coordinates: m(Q,q).   
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We now use the interaction picture transformation to express the time propagator under 

the full material Hamiltonian Û
0
 in terms of a product of propagators in the individual terms in 

H0:  

 Û
0
U

S
U

B
U

SB
 (12.78) 

  (12.79) 

 H
SB

(t)  ei HSHB t H
SB

e i HSHB t  (12.80) 

Then the dipole autocorrelation function becomes 

 C
µµ
 p

n
n
 n U

SB
† U

B
†U

S
†mU

S
U

B
U

SB
m n  (12.81) 

Where p
n
 n eH0 n / Tr eH0  . 

Further, to make this practical, we make an adiabatic separation between the system and 

bath coordinates, and say that the interaction between the system and bath is weak. This allows 

us to write the state of the system as product states in the system (a) and bath (, n  a, :  

 H
S
 H

B  a,  E
a
 E  a,  (12.82) 

With this we evaluate eq. (12.81) as 

 

  

Cµµ  pa p
a ,
 a, U

SB
† U

B
†U

S
†mU

S
U

B
U

SB
m a,

 pa p
a ,b


  a USB
† US

† U B
†mU B USUSB b mba 

 (12.83) 

where m
ba
 b m a , and we have made use of the fact that HS and HB commute. Also, 

p
a
 eEa kT Q

S
. Now, by recognizing that the time propagators in the system and system-bath 

Hamiltonians describe time evolution at the system eigenstate energy plus any modulations that 

the bath introduces to it 

 
  
U

S
U

SB
b  e iHSt b e

 i d t  Eb ( t )
0

t

  b e
 i d t Eb ( t )

0

t

  (12.84) 

and we can write our correlation function as 

 Cµµ  pa p
a,b


  e
i d t Ea ( t )

0

t

 U
B
†m

ab
U

B
e
 i d t Eb ( t )

0

t

 m
ba   (12.85) 

 C
µµ
 m

ab
(t)m

ba
(0)e

 i d t ba ( t )
0

t


B

 (12.86) 
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 m
ab

(t)  e iHBtm
ab

e iHBt  (12.87) 

Equation (12.86) is the first important result. It describes a correlation function in the dipole 

operator expressed in terms of an average over the time-dependent transition moment, including 

its orientation, and the fluctuating energy gap. The time dependence is due to the bath and  

refers to a trace over the bath degrees of freedom. 

Let’s consider the matrix elements. These will reflect the strength of interaction of the 

electromagnetic field with the motion of the system coordinate, which may also be dependent on 

the bath coordinates. Since we have made an adiabatic approximation, to evaluate the matrix 

elements we would typically expand the dipole moment in the system degrees of freedom, Q. As 

an example for one system coordinate (Q) and many bath coordinates q, we can expand: 

  (12.88) 

m
0
is the permanent dipole moment, which we can take as a constant. In the second term, 

m Q  is the magnitude of the transition dipole moment. The third term includes the 

dependence of the transition dipole moment on the bath degrees of freedom, i.e., non-Condon 

terms. So now we can evaluate 

 

m
ab
 a m

0

m

Q
Q 

2 m

Qq
 Qq b


m

Q
a Q b 


q

 m

Q
a Q b q

 (12.89) 

We have set 
  

a m
0

b  0. Now defining the transition dipole matrix element, 

 
ab

m

Q
a Q b  (12.90) 

we can write  

 m
ab
 

ab
1


ab

q
 q







 (12.91) 

Remember that 
ab

 is a vector. The bath can also change the orientation of the transition dipole 

moment. If we want to separate the orientational and remaining dynamics this we could split the 

matrix element into an orientational component specified by a unit vector along m Q  and a 

scalar that encompasses the amplitude factors: 
ab
 û

ab


ab
. Then eq. (12.86) becomes 

 C
µµ
 û

ab
(t)û

ab
(0)m

ab
(t)m

ba
(0)e

 i d t ba ( t )
0

t


B

 (12.92) 
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Mixed quantum-classical spectroscopy models apply a semiclassical approximation to equation 

(12.86). Employing the semiclassical approximation says that we will replace the quantum 

mechanical operator m
ab

(t) with a classical Mab
(t), i.e., we replace the time propagator UB with 

classical propagation of the dynamics. Also, the trace over the bath in the correlation function 

becomes an equilibrium ensemble average over phase space.  

How do you implement the semiclassical approximation? Replacing the time propagator 

UB with classical dynamics amounts to integrating Newton’s equations for all of the bath degrees 

of freedom. Then you must establish how the bath degrees of freedom influence
ba

(t) and 

mab
(t). For the quantum operator m(Q,q,t), only the system coordinate Q remains quantized, 

and following eq. (12.91) we can express the orientation and magnitude of the dipole moment 

and the dynamics depends on the classical degrees of freedom .  

  (12.93) 

a is a (linear) mapping coefficient, , between the bath and the transition dipole 

moment.   

In practice, use of this approximation has been handled in different ways, but practical 

considerations have dictated that 
ba

(t) and mab
(t)are not separately calculated for each time 

step, but are obtained from a mapping of these variables to the bath coordinates q. This mapping 

may be to local or collective bath coordinates, and to as many degrees of freedom as are 

necessary to obtain a highly correlated single valued mapping of 
ba

(t) and mab
(t). Examples of 

these mappings include correlating ba with the electric field of the bath acting on the system 

coordinate.  

Appendix 

Let’s evaluate the dipole correlation function for an arbitrary HSB and an arbitrary number of 

system eigenstates. From eq. (12.83) we have  

 C
µµ
 p

a
p

abcd


  a U
SB
† c U

B
† c U

S
†mU

S
d U

B
d U

SB
b b m a   (12.94) 

 c U
S
†mU

S
d  e i EdEc tm

cd
  (12.95) 

 m
cd

(t) U
B
†m

cd
U

B
 (12.96) 
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SB
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i d t
0

t

 HSB ( t )
c  exp i d t

0

t

 H
SB

 ac
( t )





 (12.97) 
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 C
µµ
 p

a
abcd
 e idcte

i d t HSB ac
( t )

0

t

 m
cd

e
 i d t HSB db

( t )
0

t

 m
ba

B

 (12.98) 

 C
µµ
 m

cd
(t)m

ba
(0) exp i

dc
t  i d t

0

t

 H
SB

 db
( t ) H

SB
 ac

( t )
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
 B

 (12.99) 

Readings 

1. Auer, B. M.; Skinner, J. L., Dynamical effects in line shapes for coupled chromophores: 
Time-averaging approximation. J. Chem. Phys. 2007, 127 (10), 104105. 

2. Corcelli, S. A.; Skinner, J. L., Infrared and Raman Line Shapes of Dilute HOD in Liquid 
H2O and D2O from 10 to 90 °C. J. Phys. Chem. A 2005, 109 (28), 6154-6165. 

3. Gorbunov, R. D.; Nguyen, P. H.; Kobus, M.; Stock, G., Quantum-classical description of the 
amide I vibrational spectrum of trialanine. J. Chem. Phys. 2007, 126 (5), 054509. 

4. Mukamel, S., Principles of Nonlinear Optical Spectroscopy. Oxford University Press: New 
York, 1995. 

 


