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13. FLUCTUATIONS IN SPECTROSCOPY 

Here we will describe how fluctuations are observed in experimental observables, as is common 
to experiments in molecular condensed phases. As our example, we will focus on absorption 
spectroscopy and how environmentally induced dephasing influences the absorption lineshape. 
Our approach will be to calculate a dipole correlation function for transition dipole interacting with 
a fluctuating environment, and show how the time scale and amplitude of fluctuations are encoded 
in the lineshape. Although the description here is for the case of a spectroscopic observable, the 
approach can be applied to any such problems in which the deterministic motions of an internal 
variable of a quantum system are influenced by a fluctuating environment.  

We also aim to establish a connection between this problem and the Displaced Harmonic 
Oscillator model. Specifically, we will show that a frequency-domain representation of the 
coupling between a transition and a continuous distribution of harmonic modes is equivalent to a 
time-domain picture in which the transition energy gap fluctuates about an average frequency with 
a statistical time scale and amplitude given by the distribution of coupled modes. Thus an 
absorption spectrum is merely a spectral representation of the dynamics experienced by a 
experimentally probed transition. 
 
13.1. Fluctuations and Randomness: Some Definitions 
“Fluctuations” is my word for the time-evolution of a randomly perturbed system at or near 
equilibrium. For chemical problems in the condensed phase we constantly come up against the 
problem of random fluctuations to dynamical variables as a result of their interactions with their 
environment. It is unreasonable to think that you will come up with an equation of motion for the 
internal deterministic variable, but we should be able to understand the behavior statistically and 
come up with equations of motion for probability distributions. Models of this form are commonly 
referred to as stochastic. A stochastic equation of motion is one which includes a random 
component to the time-development.   

When we introduced correlation functions, we discussed the idea that a statistical 
description of a system is commonly formulated in terms of probability distribution functions P. 
Observables are commonly described by moments of this distribution, which are obtained by 
integrating over P, for instance 
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For time-dependent processes, we recognize that it is possible that the probability distribution 
carries a time-dependence.
�
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Correlation functions go a step further and depend on joint probability distributions ( , ; , )t A t Bcc c5  
that give the probability of observing a value of A at time tcc  and a value of B at time tc :  

 � � � � � �, ; ,A t B t dA dB A B t A t Bcc c cc c 5³ ³  (13.3) 

 The statistical description of random fluctuations are 
described through these time-dependent probability 
distributions, and we need a stochastic equation of motion to 
describe their behavior. A common example of such a process 
is Brownian motion, the fluctuating position of a particle under 
the influence of a thermal environment. It is not practical to 
describe the absolute position of the particle, but we can 
formulate an equation of motion for the probability of finding 
the particle in time and space given that you know its initial position. Working from a random 
walk model, one can derive an equation of motion that takes the form of the well-known diffusion 
equation, here written in one dimension:   
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Here D is the diffusion constant which sets the time scale and spatial extent of the random motion. 
[Note the similarity of this equation to the time-dependent Schrödinger equation for a free particle 
if D is taken as imaginary]. Given the initial condition � � � �0 0,x t x xG5  � , the solution is a 
conditional probability density  
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The probability distribution describes the statistics for fluctuations in the position of a particle 
averaged over many trajectories. Analyzing the moments of this probability density using eq. 
(13.2) we find that  
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where 0( ) ( )x t x t xG  � . So, the distribution maintains a 
Gaussian shape centered at x0, and broadens with time as 

2 tD .   
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  Brownian motion is an example of a Gaussian-Markovian process. Here Gaussian refers to 
cases in which we describe the probability distribution for a variable P(x) as a Gaussian normal 
distribution. Here in one dimension: 

  (13.6) 

The Gaussian distribution is important, because the central limit theorem states that the distribution 
of a continuous random variable with finite variance will follow the Gaussian distribution. 
Gaussian distributions also are completely defined in terms of their first and second moments, 
meaning that a time-dependent probability density P(x,t) is uniquely characterized by a mean value 
in the observable variable x and a correlation function that describes the fluctuations in x. Gaussian 
distributions for systems at thermal equilibrium are also important for the relationship between 
Gaussian distributions and parabolic free energy surfaces:   

  (13.7) 

If the probability density is Gaussian along x, then 
the system’s free energy projected onto this 
coordinate (often referred to as a potential of mean 
force) has a harmonic shape. Thus Gaussian 
statistics are effective for describing fluctuations 
about an equilibrium mean value 0x .   
 Markovian means that the time-dependent behavior of a system does not depend on its 
earlier history, statistically speaking. Naturally the state of any one molecule depends on its 
trajectory through phase space, however we are saying that from the perspective of an ensemble 
there is no memory of the state of the system at an earlier time. This can be stated in terms of joint 
probability functions as 

 � � � � � �2 2 1 1 0 0 2 2 1 1 1 1 0 0, ; , ; , , ; , , ; ,x t x t x t x t x t x t x t5  5 5  (13.7) 

or � � � � � �2 1 0 2 1 1 0; ; ; ;t t t t t t t5  5 5   

The probability of observing a trajectory that takes you from state 1 at time 1 to state 2 at time 2 
does not depend on where you were at time 0. Further, given the knowledge of the probability of 
executing changes during a single time interval, you can exactly describe P for any time interval. 
Markovian therefore refers to time-dependent processes on a time scale long compared to 
correlation time for the internal variable that you care about. For instance, the diffusion equation 
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only holds after the particle has experienced sufficient collisions with its surroundings that it has 
no memory of its earlier position and momentum: ct W! . 

Readings 
1. Nitzan, A., Chemical Dynamics in Condensed Phases. Oxford University Press: New York, 

2006; Ch. 1.5 and Ch. 7. 
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13.2. Line-Broadening and Spectral diffusion 
We will investigate how a fluctuating environment influences measurements of an experimentally 
observed internal variable. Specifically we focus on the spectroscopy of a chromophore, and how 
the chromophore’s interactions with its environment influence its transition frequency and 
absorption lineshape. In the absence of interactions, the resonance frequency that we observe is 
Zeg. However, we have seen that interactions of this chromophore with its environment can shift 
this frequency. In condensed matter, time-dependent interactions with the surroundings can lead 
to time-dependent frequency shifts, known as spectral diffusion. How these dynamics influence 
the line width and lineshape of absorption features depends on the distribution of frequencies 
available to your system ('� and the time scale of sampling varying environments (Wc). Consider 
the following cases of line broadening:   

1) Homogeneous. Here, the absorption lineshape is dynamically broadened by rapid 
variations in the frequency or phase of dipoles. Rapid sampling of a distribution of 
frequencies acts to average the experimentally observed resonance frequency. The result 
in a “motionally narrowed” line width that is narrower than the distribution of frequencies 
available and proportional to the rate of fluctuation induced dephasing. 

2) Inhomogeneous. In this limit, the lineshape reflects a static distribution of resonance 
frequencies, and the width of the line represents the distribution of frequencies, ', which 
arise, from different structural environments available to the system.  

3)  Spectral Diffusion. More generally, every system lies between these limits. Given a 
distribution of configurations that the system can adopt, for instance an electronic 
chromophore in a liquid, an equilibrium system will be ergodic, and over a long enough 
time any molecule will sample all configurations available to it. Under these circumstances, 
we expect that every molecule will have a different “instantaneous frequency” � �i tZ  
which evolves in time as a result of its interactions with a dynamically evolving system. 
This process is known as spectral diffusion. The homogeneous and inhomogeneous limits 
can be described as limiting forms for the fluctuations of a frequency � �i tZ  through a 
distribution of frequencies '. If � �i tZ  evolves rapidly relative to '-1, the system is 
homogeneously broadened. If � �i tZ evolves slowly the system is inhomogeneous. This 
behavior can be quantified through the transition frequency time-correlation function

 
 � � � � � �0eg eg egC t tZ Z  (13.8) 

Our job will be to relate the transition frequency correlation function � �egC t  with the dipole 
correlation function that determines the lineshape, � �C tPP . 
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13.3. Gaussian-Stochastic Model for Spectral Diffusion 

We will begin with a classical description of how random fluctuations in frequency influence the 
absorption lineshape, by calculating the dipole correlation function for the resonant transition. This 
is a Gaussian stochastic model for 
fluctuations, meaning that we will 
describe the time-dependence of the 
transition energy as random 
fluctuations about an average value 
through a Gaussian distribution.   
 

 � � � �t tZ Z GZ �  (13.9) 

 � � 0tGZ   (13.10) 

The fluctuations in Z allow the system to explore a Gaussian distribution of transitions frequencies 
characterized by a variance:1 

 2 2 2Z Z GZ'  �   (13.11) 

The time scales for the frequency shifts will be described in terms of a frequency correlation 
function   

 � � � �( ) 0C t tGZGZ GZ GZ  (13.12) 

Furthermore, we will describe the time scale of the random fluctuations through a correlation time 
Wc.  
 The absorption lineshape is described with a dipole time-correlation function. Let’s treat 
the dipole moment as an internal variable to the system, whose value depends on that of Z. 
Qualitatively, it is possible to write an equation of motion for P by associating the dipole moment 
with the displacement of a bound particle (x) times its charge, and using our intuition regarding 
how the system behaves. For a unperturbed state, we expect that x will oscillate at a frequency Z, 
but with perturbations, it will vary through the distribution of available frequencies. One function 
that has this behavior is 

 ( )
0( ) i t tx t x e Z�  (13.13) 

 If we differentiate this equation with respect to time and multiply by charge we have  
                                                 
1 In many figures the width of the Gaussian distribution is labeled with the standard deviation (here ').  This is 
meant to symbolize that ' is the parameter that determines the width, and not that it is the line width. For Gaussian 
distributions, the full line width at half maximum amplitude (FWHM) is 2.35'.  
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Although it is a classical equation, note the similarity to the quantum Heisenberg equation for the 
dipole operator: ( ) / . .t iH t h cP Pw w  �=  The correspondence of ( )tZ  with ( ) /H t =  offers some 
insight into how the quantum version of this problem will look.  

The solution to eq. (13.14) is 
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Substituting this expression and eq. (13.9) into the dipole correlation function gives 
 

or � � � �2 i tC t F tePP
ZP �  (13.16) 

where � � � �
0

exp
t

F t i dW GZ Wª º �« »¬ ¼³  (13.17) 

The dephasing function here is obtained by performing an equilibrium average of the exponential 
argument over fluctuating trajectories. For ergodic systems, this is equivalent to averaging long 
enough over a single trajectory. 
 The dephasing function is a bit complicated to work with as written. However, for the case 
of Gaussian statistics for the fluctuations, it is possible to simplify F(t) by expanding it as a 
cumulant expansion of averages (see Appendix) 
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In this expression, the first term is zero, since 0GZ  . Only the second term survives for a system 
with Gaussian statistics. Now recognizing that we have a stationary system, we have 

 � � � � � �1
2 0 0

exp 0
t t

F t d dW W GZ W W GZª ºc cc c cc � �« »¬ ¼³ ³  (13.19) 

We have rewritten the dephasing function n terms of a correlation function that describes the 
fluctuating energy gap. Note that this is a classical exception, so there is no time-ordering to the 
exponential. F(t) can be rewritten through a change of variables (W W Wc cc � ): 

 � � � � � � � �
0

exp 0
t

F t d tW W GZ W GZª º � �« »¬ ¼³  (13.20) 

So the Gaussian stochastic model allows the influence of the frequency fluctuations on the 
lineshape to be described by ( )C tGZGZ a frequency correlation function that follows Gaussian 
statistics. Note, we are now dealing with two different correlation functions CGZGZ and CPP . The 
frequency correlation function encodes the dynamics that result from molecules interacting with 
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the surroundings, whereas the dipole correlation function describes how the system interacts with 
a light field and thereby the absorption spectrum. 
 Now, we will calculate the lineshape assuming that CGZGZ  decays with a correlation time 
Wc and takes on an exponential form 

 � � > @2 exp / cC t tGZGZ W ' �  (13.21) 

Then eq. (13.20) gives 

 � � � �� �2 2exp exp / / 1c c cF t t tW W Wª º �' � � �¬ ¼  (13.22) 

which is in the form we have seen earlier � � � �� �expF t g t �  

 � � � �� �2 2 exp / / 1c c cg t t tW W W ' � � �  (13.23) 

To interpret this lineshape function, let’s look at its limiting forms:   

1) Long correlation times � �ct W�� . This corresponds to the inhomogeneous case where 
� � 2C tGZGZ  ' , a constant. For ct W��  we can perform a short time expansion of exponential 
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 and from eq. (13.23) we obtain  

 � � 2 2 / 2g t t '  (13.25) 

At short times, the dipole correlation function will have a Gaussian decay with a rate given by 
'2: � � � �2 2exp / 2F t t �' . This has the proper behavior for a classical correlation function, 
i.e., even in time � � � �C t C tPP PP � . 

 In this limit, the absorption lineshape is:  
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We obtain a Gaussian inhomogeneous lineshape centered at the mean frequency with a width 
dictated by the frequency distribution. 
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2) Short correlation times � �ct W!! . This corresponds to the homogeneous limit in which you 
can approximate � � � �2C t tGZGZ G ' . For ct W!!  we set / 0cte W� | , / 1ct W !!  and eq. (13.23) 
gives  

 � � 2
cg t tW �'  (13.27) 

If we define the constant 

 2
cW' { *  (13.28) 

we see that the dephasing function has an exponential decay: 

 � � > @expF t t �*  (13.29) 

The lineshape for short correlation times (or fast fluctuations) takes on a Lorentzian shape 
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This represents the homogeneous limit. Even with a broad distribution of accessible 
frequencies, if the system explores all of these frequencies on a time scale fast compared to the 
inverse of the distribution ('�Wc > 1), then the resonance will be “motionally narrowed” into a 
Lorentzian line.    

More generally, the envelope of the dipole 
correlation function will look Gaussian at short 
times and exponential at long times. The 
correlation time is the separation between these 
regimes. The behavior for varying time scales of 
the dynamics (Ĳc) are best characterized with 
respect to the distribution of accessible 
frequencies (ǻ). So we can define a factor 

 cN W '�  (13.31) 

N<<1 is the fast modulation limit and N>>1 is the slow modulation limit. Let’s look at how ,CGZGZ

� �F t , and � �absV Z  change as a function of N.   
  



   13-11

 

 

We see that for a fixed distribution of frequencies ' the effect of increasing the time scale of 
fluctuations through this distribution (decreasing Wc) is to gradually narrow the observed lineshape 
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from a Gaussian distribution of static frequencies with width (FWHM) of 2.35·' to a motionally 
narrowed Lorentzian lineshape with width (FWHM) of 2

cW S N S'  ' � . 
 This is analogous to the motional narrowing effect first described in the case of temperature 
dependent NMR spectra of two exchanging species. Assume we have two resonances at ZA and 
ZB associated with two chemical species that are exchanging at a rate kAB 
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If the rate of exchange is slow relative to the frequency splitting, kAB <<�ZA�ZB, then we expect 
two resonances, each with a linewidth dictated by the molecular relaxation processes (7�) and 
transfer rate of each species. On the other hand, when the rate of exchange between the two species 
becomes faster than the energy splitting, then the two resonances narrow together to form one 
resonance at the mean frequency.2 
 

 

                                                 
2  Anderson, P. W. A mathematical model for the narrowing of spectral lines by exchange or motion. J. Phys. Soc. 

Japan 9, 316 (1954).; Kubo, R. in Fluctuation, Relaxation, and Resonance in Magnetic Systems (ed. Ter Haar, D.) 
(Oliver and Boyd, London, 1962). 
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Appendix: The Cumulant Expansion 

For a statistical description of the random variable x, we wish to characterize the moments of x: 
2, ,x x !  Then the average of an exponential of x can be expressed as an expansion in moments  
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An alternate way of expressing this expansion is in terms of cumulants cn(x) 
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where the first few cumulants are:   

 � �1c x x  mean  (13.33) 

 � � 22
2c x x x �  variance  (13.34) 

 � � 33 2
3 3 2c x x x x x � �  skewness  (13.35) 

An expansion in cumulants converges much more rapidly than an expansion in moments, 
particularly when you consider that x may be a time-dependent variable. Particularly useful is the 
observation that all cumulants with n > 2 vanish for a system that obeys Gaussian statistics.   
 We obtain the cumulants above by expanding eq. (13.31) and (13.32), and comparing terms 
in powers of x. We start by postulating that, instead of expanding the exponential directly, we can 
instead expand the exponential argument in powers of an operator or variable H 

  (13.36) 

  (13.37) 

Inserting eq. (13.37) into eq. (13.36) and collecting terms in orders of H gives   

  (13.38) 

Now comparing this with the expansion of the exponential  

  (13.39) 

allows one to see that   
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  (13.40) 

 The cumulant expansion can also be applied to time-correlations. Applying this to the time-
ordered exponential operator we obtain: 
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For Gaussian statistics, all higher cumulants vanish. 

Readings 
1. Kubo, R., A Stochastic Theory of Line-Shape and Relaxation. In Fluctuation, Relaxation and 

Resonance in Magnetic Systems, Ter Haar, D., Ed. Oliver and Boyd: Edinburgh, 1962; pp 23-
68. 

2. McHale, J. L., Molecular Spectroscopy. 1st ed.; Prentice Hall: Upper Saddle River, NJ, 1999. 
3. Mukamel, S., Principles of Nonlinear Optical Spectroscopy. Oxford University Press: New 

York, 1995. 
4. Schatz, G. C.; Ratner, M. A., Quantum Mechanics in Chemistry. Dover Publications: Mineola, 

NY, 2002; Sections 7.4 and 7.5. 
5. W. Anderson, P., A Mathematical Model for the Narrowing of Spectral Lines by Exchange or 

Motion. Journal of the Physical Society of Japan 1954, 9, 316-339. 
6. Wang, C. H., Spectroscopy of Condensed Media: Dynamics of Molecular Interactions. 

Academic Press: Orlando, 1985. 
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13.4. The Energy Gap Hamiltonian 

Introduction 

In describing fluctuations in a quantum mechanical system, we describe how an experimental 
observable is influenced by its interactions with a thermally agitated environment. For this, we 
work with the specific example of an electronic absorption spectrum and return to the Displaced 
Harmonic Oscillator model. We previously described this model in terms of the eigenstates of the 
material Hamiltonian H0, and interpreted the dipole correlation function and resulting lineshape in 
terms of the overlap between two wave packets evolving on the ground and excited surfaces E  
and G .   

 � � � � � � � �2 /e gi E E t
eg g eC t e t tPP P M M� � =  (13.43) 

It is worth noting a similarity between the DHO Hamiltonian, and a general form for the interaction 
of an electronic two-level “system” with a harmonic oscillator “bath” whose degrees of freedom 
are dark to the observation, but which influence the behavior of the system.  
 Expressed in a slightly different physical picture, we can also conceive of this process as 
nuclear motions that act to modulate the electronic energy gap Zeg . We can imagine rewriting the 
same Hamiltonian in a form with a new physical picture that describes the electronic energy gap’s 
dependence on q, i.e., its variation relative to Zeg . If we define an Energy Gap Hamiltonian: 

 eg e gH H H �  (13.43) 

we can rewrite the DHO Hamiltonian  

 0 e g e gH e E e g E g H H � � �  (13.44) 

as an electronic transition linearly coupled to a harmonic oscillator: 

 0 2e g eg gH e E e g E g H H � � �  (13.44) 

Noting that 

 
2

2 2
0

1
2 2g
pH m q
m

Z �  (13.44) 

we can write this as a system-bath Hamiltonian:  

 0 S B SBH H H H � �  (13.44) 

where HSB describes the interaction of the electronic system (HS) with the vibrational bath (HB). 
Here S e gH e E e g E g � , 2B gH H  and  
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The Energy Gap Hamiltonian describes a linear 
coupling between the electronic transition and a 
harmonic oscillator. The strength of the coupling is 
c and the Hamiltonian has a constant energy offset 
value given by the reorganization energy. Any 
motion in the bath coordinate q introduces a 
proportional change in the electronic energy gap.  
 In an alternate form, the Energy Gap Hamiltonian can also be written to incorporate the 
reorganization energy into the system:   

0 S B SBH H H Hc c c � �  
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 (13.44) 

This formulation describes fluctuations about the average value of the energy gap ԰Zeg�O, 
however, the observables calculated are the same��
 From the picture of a modulated energy gap one can begin to see how random fluctuations 
can be treated by coupling to a harmonic bath. If each oscillator modulates the energy gap at a 
given frequency, and the phase between oscillators is random as a result of their independence, 
then time-domain fluctuations and dephasing can be cast in terms of a Fourier spectrum of 
couplings to oscillators with continuously varying frequency. 
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Energy Gap Hamiltonian 

Now let’s work through the description of electronic spectroscopy with the Energy Gap 
Hamiltonian more carefully. Working from eqs. (13.43) and (13.44) we express the energy gap 
Hamiltonian through reduced coordinates for the momentum, coordinate, and displacement of the 
oscillator 

 1/2
0ˆ (2 )p p mZ � =

�
 (13.45) 

 1/2
0ˆ ( 2 )q q mZ =

�
 (13.46) 

 1/2
0( 2 )d d mZ =

�
 (13.47) 
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From eq. (13.43) we have 
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The energy gap Hamiltonian describes a linear coupling 
of the electronic system to the coordinate q. The slope of 
Heg versus q is the coupling strength, and the average 
value of Heg in the ground state, Heg(q=0), is offset by 
the reorganization energy O. We note that the average 
value of the energy gap Hamiltonian is ۦHegۧ = O.

.
 

 To obtain the absorption lineshape from the dipole correlation function  

 � � � �2 eg
eg

i tC t F tePP
ZP �  (13.50) 

we must evaluate the dephasing function. 

 � � †g e
g e

iH t iH tF t U Ue e�   (13.51) 

We want to rewrite the dephasing function in terms of the time dependence to the energy gap egH
; that is, if � � egF t U , then what is egU ? This involves a unitary transformation of the dynamics 
to a new frame of reference. The transformation from the DHO Hamiltonian to the EG Hamiltonian 
is similar to our derivation of the interaction picture.   
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Transformation of time-propagators 
If we have a time dependent quantity of the form 

 A BiH t iH te Ae�  (13.52) 

we can also express the dynamics through the difference Hamiltonian BA B AH H H �  

 � �B A BAi H H t iH tAe Ae� � �  (13.53) 

using a commonly performed unitary transformation. If we write  

 B A BAH H H �  (13.54) 

we can use the same procedure for partitioning the dynamics in the interaction picture 
to write 

 � �
0

expB A
tiH t iH t

BA
ie e d HW W� �

�
ª º �« »¬ ¼³=  (13.55) 

where  
 � � A AiH t iH t

BA BAH e H eW �  (13.56) 

Then, we can also write: 

 � �
0

expA B
tiH t iH t

BA
ie e d HW W�

�
ª º �« »¬ ¼³=  (13.57) 

Noting the mapping to the interaction picture 

 0e g egH H H H H V � �  �  (13.58) 

we see that we can represent the time dependence of the electronic energy gap Heg using 

 
� �

0
expge

tiH tiH t
eg

e g eg

ie e d H

U U U

W W��
�
�ª º « »¬ ¼

 

³==

=  (13.59) 

where 

 
� �

†

g g
eg eg

g eg g

iH t iH tH t H

U H U

e e� 

 

= =

 (13.60) 

Remembering the equivalence between the harmonic mode Hg and the bath mode(s) HB indicates 
that the time dependence of the EG Hamiltonian reflects how the electronic energy gap is 
modulated as a result of the interactions with the bath. That is g BU U� . 
 Equation (13.59) immediately implies that  
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  (13.61) 

Now the quantum dephasing function is in the same form as we saw in our earlier classical 
derivation. Using the second-order cumulant expansion allows the dephasing function to be written 
as 

 

� � � �

� � � � � � � �2
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exp
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eg

t
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iF t d H

i d d H H H H
W

W W
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�ª «¬
º�§ ·� � »¨ ¸

© ¹ »¼

³

³ ³

=

=

 (13.62) 

Note that the cumulant expansion is here written as a time-ordered expansion. The first exponential 
term depends on the mean value of egH   

  (13.63) 

This is a result of how we defined Heg. Alternatively, the EG Hamiltonian could have been defined 
relative to the energy gap at 0Q  : eg e gH H H O � � . In this case the leading term in (13.62) 
would be zero, and the mean energy gap that describes the high frequency (system) oscillation in 
the dipole correlation function is egZ O� . 
 The second exponential term in (13.62) is a correlation function that describes the time 
dependence of the energy gap 

 
� � � � � � � �

� � � �
2 1 2 1

2 1

eg eg eg eg

eg eg

H H H H

H H

W W W W

G W G W

�

 
 (13.64) 

where 
2
0

eg eg egH H H

m d q

G

Z

 �

 �
 (13.65) 

Defining the time-dependent energy gap transition frequency in terms of the EG Hamiltonian as 

 ˆ eg
eg

HG
GZ {

=
 (13.66) 

we can write the energy gap correlation function 

 � � � � � �2 1 2 1ˆ ˆ, 0eg eg egC W W GZ W W GZ �  (13.67) 

It follows that � � � �g ti tF t e eO �� =  (13.68) 

 � � � �2

2 1 2 10 0
,

t

egg t d d C
W

W W W W ³ ³  (13.69) 

� � � �
0

/ / expg e
t

eg
iH t iH t iF t d He e W W�

� �ª º  « »¬ ¼³
= =

=

2
0egH dZ O  =
�
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and the dipole correlation function can be expressed as 

 � � � � � �2 /e gi E E t g t
egC t e eO

PP P � � � � =  (13.70) 

This is the correlation function expression that determines the absorption lineshape for a time-
dependent energy gap. It is a general expression at this point, for all forms of the energy gap 
correlation function. The only approximation made for the bath is the second cumulant expansion.  
 Now, let’s look specifically at the case where the bath we are coupled to is a single 
harmonic mode. The energy gap correlation function is evaluated from  

  (13.71) 
Noting that the bath oscillator correlation function 

 � � 0 0

0

( ) ( ) (0) 1
2qq

i t i tC t q t q n e n e
m

Z Z

Z
�ª º  � �¬ ¼

=  (13.72) 

we find  

 � � � � 0 02
0 1eg

i t i tC t D n e n eZ ZZ �ª º � �¬ ¼  (13.73) 

Here, as before, � �2
0 2D d mZ = , n  is the thermally averaged occupation number for the 

oscillator 

  (13.74)�

and E = 1/kBT. Note that the energy gap correlation function is a complex function. We can 
separate the real and imaginary parts of egC  as 

  (13.75) 

  (13.76) 
where we have made use of the relation 
 � �2 ( ) 1 coth 2n Z E Z�  =  (13.77) 

and � � � �( )coth x x x xx e e e e� � � � . We see that the imaginary part of the energy gap correlation 
function is temperature independent.  The real part has the same amplitude at T=0, and rises with 
temperature. We can analyze the high and low temperature limits of this expression from   
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  (13.78) 

Looking at the low temperature limit, � �0coth / 2 1E Z o=  and 0n o , we see that eq. (13.82)
reduces to eq. (13.84).  In the high temperature limit, 0kT Z!! = , � �0 0coth 2 2kT kTZ Zo= = , 
and we recover the expected classical result. The magnitude of the real component dominates the 
imaginary part eg egC Cc cc!! , and the energy gap correlation function ( )egC t becomes real and 
even in time.   

 Similarly, we can evaluate (13.69), the lineshape function 

  (13.79) 
The leading term in eq. (13.79) gives us a vibrational progression, the second term leads to hot 
bands, and the final term is the reorganization energy ( 0 /iD t i tZ O�  � = ). The lineshape function 
can be written in terms of its real and imaginary parts 
  � �g t g igc cc �  (13.80) 

 

� � � �� �
� � � �

0 0

0 0

coth / 2 1 cos

sin

g t D t

g t D t t

E Z Z

Z Z

c  �

cc  �

=

 (13.81) 

Because these enter into the dipole correlation function as exponential arguments, the imaginary 
part of g(t) will reflect the bath-induced energy shift of the electronic transition gap and vibronic 
structure, and the real part will reflect damping, and therefore the broadening of the lineshape.  
Similarly to Ceg(t), in the high temperature limit g gc cc!! . 
 Now, using eq. (13.68), we see that the dephasing function is given by   

 � � � �� � � �� �0 0exp 1 1 1i t i tF t D n e n eZ Z�ª º � � � �¬ ¼ . (13.82) 

 � �exp coth 1 cos sin
2

D t i tE Z Z Z
ª º§ ·§ · � �« »¨ ¸¨ ¸© ¹© ¹¬ ¼

=  (13.83) 

Let’s confirm that we get the same result as with our original DHO model, when we take the low 
temperature limit. Setting 0n o in (13.83), we have our original result 

 � � � �0
0exp 1kT

i tF t D e Z
 

�ª º �« »¬ ¼
 (13.84) 

In the high temperature limit g gc cc!! , and from eq. (13.78) we obtain  
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0

lim coth 1

1lim coth

x

x

x

x
x

of

o

 

|

� � � �� � � �0 0
01 1 1i t i tg t D n e n e iD tZ Z Z�ª º � � � � � �¬ ¼
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 (13.85) 

which leads to an absorption spectrum which is a series of sidebands equally spaced on either 

side of Zeg.  

Spectral representation of energy gap correlation function 

Since time- and frequency-domain representations are complementary, and one form may be 
preferable over another, it is possible to express the frequency correlation function in terms of its 
spectrum. For a complex spectrum of vibrational motions composed of many modes, representing 
the nuclear motions in terms of a spectrum rather than a beat pattern is often easier. It turns out 
that calculation are often easier performed in the frequency domain.  

To start we define a Fourier transform pair that relates the time and frequency domain 
representations: 

 � � � �i t
eg egC e C t dtZZ

�f

�f
 ³�  (13.86) 

 � � � �1
2

i t
eg egC t e C dZ Z Z

S
�f �

�f
 ³ �  (13.87) 

Since the energy gap correlation function has the property � � � �*
eg egC t C t�  , it also follows from 

(13.86) that the energy gap correlation spectrum is entirely real: 

 � � � �
0

2 Re i t
eg egC e C t dtZZ

f
 ³�  (13.88) 

or 

 � � � � � �eg eg egC C CZ Z Zc cc �� � �  (13.89) 

Here � �egC Zc�  and � �egC Zcc�  are the Fourier transforms of the real and imaginary components of 
� �egC t , respectively. � �egC Zc�  and � �egC Zcc�  are even and odd in frequency. Thus while � �egC Z�  is 

entirely real valued, it is asymmetric about Z=0. 
 With these definitions in hand, we can write the spectrum of the energy gap correlation 
function for coupling to a single harmonic mode spectrum (eq. (13.71)): 

 � � � � � � � � � �2 1egC D n nD D D D D D DZ Z Z G Z Z G Z Z � � � �ª º¬ ¼
�  (13.90) 
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This is a spectrum that characterizes how bath vibrational modes of a certain frequency and thermal 
occupation act to modify the observed energy of the system. The first and second terms in (13.90) 
describe upward and downward energy shifts of the system, respectively. Coupling to a vibration 
typically leads to an upshift of the energy gap transition energy since energy must be put into the 
system and bath. However, as with hot bands, when there is thermal energy available in the bath, 
it also allows for down-shifts in the energy gap. The net balance of upward and downward shifts 
averaged over the bath follows the detailed balance expression 

 � � � �C Ce E ZZ Z��  =� �
 (13.91) 

The balance of rates tends toward equal with increasing temperature. Fourier transforms of eqs. 
(13.76) gives two other representations of the energy gap spectrum 

  (13.92) 

 . (13.93) 

The representations in eqs. (13.90), (13.92), and (13.93) are not independent, but can be related to 
one another through  

 � � � � � �coth 2eg egC CD D DZ E Z Zc cc � �=  (13.94) 

  (13.95) 

That is, given either the real or imaginary part of the energy gap correlation spectrum, we can 
predict the other part. As we will see, this relationship is one manifestation of the fluctuation-
dissipation theorem that we address later. Due to its independence on temperature, the spectral 
density � �egC DZcc�  is the commonly used representation.  
 

 
 
 

� � � � � � � � � �2 coth 2egC DD D D D D DZ Z Z E Z G Z Z G Z Zc  � � �ª º¬ ¼
� =

� � � � � � � �2
egC DD D D D DZ Z Z G Z Z G Z Zcc  � � �ª º¬ ¼
�

� � � �� � � �1 coth 2eg egC CD D DZ E Z Zcc �� �=
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Also from eqs. (13.69) and (13.87) we obtain the lineshape function as 
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� =
. (13.96) 

The first expression relates g(t) to the complex energy gap correlation function, whereas the second 
separates the real and the imaginary parts and relates them to the imaginary part of the energy gap 
correlation function. 

Coupling to a Harmonic Bath 

More generally for condensed phase problems, the system coordinates that we observe in an 
experiment will interact with a continuum of nuclear motions that may reflect molecular 
vibrations, phonons, or intermolecular interactions. We describe this continuum as continuous 
distribution of harmonic oscillators of varying mode frequency and coupling strength. The Energy 
Gap Hamiltonian is readily generalized to the case of a continuous distribution of motions if we 
statistically characterize the density of states and the strength of interaction between the system 
and this bath. This method is also referred to as the Spin-Boson Model used for treating a two-
level spin-½ system interacting with a quantum harmonic bath. 
 Following our earlier discussion of the DHO model, the generalization of the EG 
Hamiltonian to the multimode case is 

 0 eg eg BH H HZ � �=  (13.97) 

 � �2 2
BH p qD D D

D

Z �¦=
� �

 (13.98) 

 2egH d qD D D
D

Z O �¦ =
� �

 (13.99) 

 2dD D
D

O Z ¦ =
�

 (13.100) 

Note that the time-dependence to egH  results from the interaction with the bath: 

  (13.101) 

Also, since the harmonic modes are normal to one another, the dephasing function and lineshape 
function are obtained from  

  (13.102) 

� � B B
eg eg

iH t iH tH t He e� = =

� � � � � � � �F t F t g t g tD D
DD

  ¦�
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 For a continuum, we assume that the number of modes are so numerous as to be continuous, 
and that the sums in the equations above can be replaced by integrals over a continuous distribution 
of states characterized by a density of states � �W Z . Also the interaction with modes of a particular 
frequency are equal so that we can simply average over a frequency dependent coupling constant 
� � � �2D dZ Z 

�
. For instance, eq. (13.102) becomes  

  (13.103) 

Coupling to a continuum leads to dephasing resulting from interaction to a continuum of modes of 
varying frequency. This will be characterized by damping of the energy gap frequency correlation 
function � �egC t  

 � � � � � �,eg egC t d C t WD D DZ Z Z ³ . (13.104) 

Here � � � � � �, , ,0eg eg egC t tD D DZ GZ Z GZ Z  refers to the energy gap frequency correlation 
function for a single harmonic mode given in eq. (13.71). 
 While eq. (13.104) expresses the modulation of the energy gap in the time domain, we can 
alternatively express the continuous distribution of coupled bath modes in the frequency domain:  

 � � � � � �eg egC Cd W DD DZ ZZ Z ³� � . (13.105) 

An integral of a single harmonic mode spectrum over a continuous density of states provides a 
coupling weighted density of states that reflects the action spectrum for the system-bath 
interaction. We evaluate this with the single harmonic mode spectrum, eq. (13.90). We see that the 
spectrum of the correlation function for positive frequencies is related to the product of the density 
of states and the frequency dependent coupling 

 � � � � � �� �2 1egC D W nZ Z Z Z ��  (Z�!��� (13.106) 

 � � � � � �2
egC D W nZ Z Z Z �  (Z����� (13.107) 

This is an action spectrum that reflects the coupling weighted density of states of the bath that 
contributes to the spectrum.   
 In practice, the unusually symmetry of � �egC Z�  and its growth as Z2 make it difficult to 
work with. Therefore we choose to express the frequency domain representation of the coupling-
weighted density of states in eq. (13.106) as a spectral density, defined as 

� � � � � �,g t d W g tD D DZ Z Z ³
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 (13.108) 

This expression is real and defined only for positive frequencies. Note � �egC Zcc�  is an odd function 
in Z, and therefore U(Z) is also. 
 

 

The reorganization energy can be obtained from the first moment of the spectral density 

 � �
0

dO Z Z U Z
f

 ³=  (13.109) 

Furthermore, from eqs. (13.69) and (13.105) we obtain the lineshape function in two forms 
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. (13.110) 

In this expression the temperature dependence implies that in the high temperature limit, the real 
part of g(t) will dominate, as expected for a classical system. This is a perfectly general expression 
for the lineshape function in terms of an arbitrary spectral distribution describing the time scale 
and amplitude of energy gap fluctuations. Given a spectral density U(Z), you can calculate various 
spectroscopic observables and other time-dependent processes in a fluctuating environment. 
 Now, let’s evaluate the behavior of the lineshape function and absorption lineshape for 
different forms of the spectral density. To keep things simple, we will consider the high 
temperature limit, Bk T Z!! = . Here � �coth 2 2E Z E Zo= =  and we can neglect the imaginary 
part of the frequency correlation function and lineshape function. These examples are motivated 
by the spectral densities observed for random or noisy processes. Depending on the frequency 

Example of spectral density using an ohmic density of 
states, ( ) exp[ / ]CW Z Z Z Z �  and a linearly 
varying frequency dependent coupling. 
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range and process of interest, noise tends to scale as U�a�Z-n, where n = 0, 1 or 2. This behavior is 
often described in terms of a spectral density of the form  

 � � /1 2 cs s
c e Z ZU Z Z Z �� �v  (13.111) 

where Zc is a cut-off frequency, and the units are inverse frequency. These spectral densities have 
the desired property of being an odd function in Z, and can be integrated to a finite value. The case 
s = 1 is known as the Ohmic spectral density, whereas s > 1 is super-ohmic and s < 1 is sub-ohmic.   

1)  Let’s first consider the example when U drops as 1/Z with frequency, which refers to the 
Ohmic spectral density with a high cut-off frequency. This is the spectral density that 
corresponds to an energy gap correlation function that decays infinitely fast: � � � �~egC t tG
. To choose a definition consistent with eq. (13.109), we set 

 � � /U Z O Z /=  (13.112) 

where / is a finite high frequency integration limit 
that we enforce to keep U well behaved. / has units 
of frequency, it is equated with the inverse 
correlation time for the fast decay of Ceg(t). Now we 
evaluate  
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 (13.113) 

Then we obtain the dephasing function 

 � � tF t e�*  (13.114) 

where we have defined the exponential damping constant as 

 2

kTSO*  
/=

 (13.115) 

From this we obtain the absorption lineshape  

 
2| |
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eg
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eg i
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V

Z Z
v

� � *
 (13.116) 

Thus, a spectral density that scales as 1/Z has a rapidly fluctuating bath and leads to a 
homogeneous Lorentzian lineshape with a half-width *.  
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2)  Now take the case that we choose a Lorentzian spectral density centered at Z�= 0. To keep 
the proper odd function of Z and definition of O we write:  

 � � 2 2

OU Z
Z Z

/
 

�/=
 (13.117) 

 

Note that for frequencies Zا/, this has the ohmic form of eq. (13.112). This is a spectral 
density that corresponds to an energy gap correlation function that drops exponentially as 

� � � �~ expegC t t�/ . Here, in the high temperature (classical) limit kT !! /= , neglecting 
the imaginary part, we find 

 � � � �2 2 exp 1kTg t t tSO
| �/ �/ �ª º¬ ¼/=

 (13.118) 

This expression looks familiar. If we equate 

 2
2

kTSO'  
=

 (13.119) 

and 1
cW  

/
 (13.120) 

we obtain the same lineshape function as the classical Gaussian-stochastic model:   

 � � � �2 2 exp / / 1c c cg t t tW W W ' � � �ª º¬ ¼  (13.121) 

So, the interaction of an electronic transition with a harmonic bath leads to line broadening 
that is equivalent to random fluctuations of the energy gap. As we noted earlier, for the 
homogeneous limit, we find 2

cW*  ' . 

Readings 
1. Mukamel, S., Principles of Nonlinear Optical Spectroscopy. Oxford University Press: New 

York, 1995; Ch. 7 and Ch. 8.  
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13.5.  Correspondence of Harmonic Bath and Stochastic Equations  
So, why does the mathematical model for coupling of a system to a harmonic bath give the same 
results as the classical stochastic equations of motion for fluctuations? Why does coupling to a 
continuum of bath states have the same physical manifestation as perturbation by random 
fluctuations? The answer is that in both cases, we really have imperfect knowledge of the behavior 
of all the particles present. Observing a small subset of particles will have dynamics with a random 
character. These dynamics can be quantified through a correlation function or a spectral density 
for the time-scales of motion of the bath. In this section, we will demonstrate a more formal 
relationship that illustrates the equivalence of these pictures. 

 To take our discussion further, let’s again consider the electronic absorption spectrum from 
a classical perspective. It’s quite common to think that the electronic transition of interest is 
coupled to a particular nuclear coordinate Q  which we will call a local coordinate. This local 
coordinate could be an intramolecular normal vibrational mode, an intermolecular rattling in a 
solvent shell, a lattice vibration, or another motion that influences the electronic transition. The 
idea is that we take the observed electronic transition to be linearly dependent on one or more local 
coordinates. Therefore describing Q allows us to describe the spectroscopy. However, since this 
local mode has further degrees of freedom that it may be interacting with, we are extracting a 
particular coordinate out or a continuum of other motions, the local mode will appear to feel a 
fluctuating environment—a friction.   
 Classically, we describe fluctuations in Q as Brownian motion, typically through a 
Langevin equation. In the simplest sense, this is an equation that restates Newton’s equation of 
motion F=ma for a fluctuating force acting on a particle with position Q. For the case that this 
particle is confined in a harmonic potential, 

 � � � �2 2
0 RmQ t m Q m Q f tZ J� �  �� �  (13.122) 

Here the terms on the left side represent a damped harmonic oscillator. The first term is the force 
due to acceleration of the particle of mass m ( accF ma ). The second term is the restoring force 
of the potential, 2

0resF V Q mZ �w w  . The third term allows friction to damp the motion of the 
coordinate at a rate J. The motion of Q is under the influence of ( )R tf , a random fluctuating force 
exerted on Q by its surroundings.   
 Under steady-state conditions, it stands to reason that the random force acting on Q is the 
origin of the damping. The environment acts on Q with stochastic perturbations that add and 
remove kinetic energy, which ultimately leads to dissipation of any excess energy. Therefore, the 
Langevin equation is modelled as a Gaussian stationary process. We take ( )R tf  to have a time-
averaged value of zero,  
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 � � 0R tf   (13.123) 

and obey the classical fluctuation-dissipation theorem: 
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2 R R

B

t
mk T

f fJ
f

�f
 ³  (13.124) 

This shows explicitly how the damping is related to the correlation time for the random force. We 
will pay particular attention to the Markovian case  

 � � � � � �0 2R R Bt m k T tf f J G  (13.125) 

which indicate that the fluctuations immediately lose all correlation on the time scale of the 
evolution of Q.  
 The Langevin equation can be used to describe the correlation function for the time 
dependence of Q. For the Markovian case, eq. (13.122) leads to  
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where the reduced frequency 2 2
0 4] Z J � . The frequency domain expression, obtained by 

Fourier transformation, is 
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� �

�  (13.127) 

Remembering that the absorption lineshape was determined by the quantum mechanical energy 
gap correlation function � � � �0q t q

� �
, one can imagine an analogous classical description of the 

spectroscopy of a molecule that experiences interactions with a fluctuating environment. In 
essence this is what we did when discussing the Gaussian stochastic model of the lineshape.  
 A more general description of the position of a particle subject to a fluctuating force is the 
Generalized Langevin Equation. The GLE accounts for the possibility that the damping may be 
time-dependent and carry memory of earlier configurations of the system:1 

 � � � � � � � �2 2
0 0

t
mQ t m Q m d t Q f tZ W J W W� � �  ³�� �  (13.128) 

The memory kernel, � �tJ W� , is a correlation function that describes the time-scales over which 
the fluctuating force retains memory of its previous state. The force due to friction on Q depends 
on the history of the system through W, the time preceding t, and the relaxation of � �tJ W� . The 

                                                 
1 Nitzan, A., Chemical Dynamics in Condensed Phases. Oxford University Press: New York, 2006. 
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classical fluctuation-dissipation relationship relates the magnitude of the fluctuating forces on the 
system coordinate to the damping  

 � � � � � �2R R Bt mk T tf f W J W �  (13.129) 

As expected, for the case that � � � �t tJ W JG W�  � , the GLE reduces to the Markovian case, eq. 
(13.122). 
 To demonstrate that the classical dynamics of the particle described under the GLE is 
related to the quantum mechanical dynamics for a particle interacting with a harmonic bath, we 
will outline the derivation of a quantum mechanical analog of the classical GLE. To do this we 
will derive an expression for the time-evolution of the system under the influence of the harmonic 
bath. We work with a Hamiltonian with a linear coupling between the system and the bath 

 ( , ) ( , ) ( , )HB S B SBH H P Q H p q H Q qD D � �  (13.130) 

We take the system to be a particle of mass M, described through variables P and Q, whereas mD, 
pD and qD are bath variables. For the present case, we will take the system to be a quantum harmonic 
oscillator,  

 
2

2 21
2 2s
PH M Q
M

 � :   (13.131) 

and the Hamiltonian for the bath and its interaction with the system is written as2  

 
22 2

22 2B SB
p m cH H q Q
m m
D D D D

D
D D D D

Z
Z

§ ·§ ·
¨ ¸�  � �¨ ¸¨ ¸© ¹© ¹

¦  (13.132) 

This expression explicitly shows that each of the bath oscillators is displaced with respect to the 
system by an amount dependent on their mutual coupling. In analogy to our work with the 
Displaced Harmonic Oscillator, if we define a displacement operator3 

 ˆ ˆexp iD pD D
D

[§ · �¨ ¸
© ¹

¦= �
 (13.133) 

where 2

c Q
m

D
D

D D

[
Z

  (13.134) 

then †ˆ ˆ
B SB BH H D H D�   (13.135) 

                                                 
2 Nitzan, A., Chemical Dynamics in Condensed Phases. Oxford University Press: New York, 2006.;  Mukamel, S., 

Principles of Nonlinear Optical Spectroscopy. Oxford University Press: New York, 1995. 
3 Calderia, A. O.; Legget, A. J., Ann. Phys 1983, 149, 372-456. 
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 Eqn. (13.132) is merely a different representation of our earlier harmonic bath model. To 
see this we write (13.132) as 

 � �2 2( )B SBH H p q c QD D D D
D

Z�  � �¦=
�� � �

 (13.136) 

where the coordinates and momenta are written in reduced form 
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 (13.137) 

Also, the reduced coupling is of the system to the Įth oscillator is 

 0c c m mD D D D DZ Z Z 
�

 (13.138) 

Expanding (13.136) and collecting terms, we find that we can separate terms as in the harmonic 
bath model 
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BH p qD D D

D
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 (13.139) 

 2SB BH d qD D D
D
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 (13.140) 

The reorganization energy due to the bath oscillators is 
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B dD D

D
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 (13.141) 

and the unitless bath oscillator displacement is 

 d QcD D 
� ��

 (13.142) 

 For our current work we regroup the total Hamiltonian (eq. (13.130)) as 

 � �
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PH M Q p q c Qq
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  (13.143) 

where the renormalized frequency is 

 2 2 2cD D
D

:  : �: Z¦ �
  (13.144) 

To demonstrate the equivalence of the dynamics under this Hamiltonian and the GLE, we can 
derive an equation of motion for the system coordinate Q. We approach this by first expressing 
these variables in terms of ladder operators 
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 � � � �† †ˆ ˆˆ ˆ ˆ ˆP i a a p i b bD D D �  �
� �

 (13.145) 

 � � � �† †ˆ ˆˆ ˆ ˆ ˆQ a a q b bD D D �  �
� �

 (13.146) 

Here â , †â  are system operators, b̂  and †b̂  are bath operators. If the observed particle is taken to 
be bound in a harmonic potential, then the Hamiltonian in eq. (13.130) can be written as  

 � � � �† † † †1 1ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ
2 2HBH a a b b a a c b bD D D D D D D

D D
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© ¹ © ¹

¦ ¦= = =
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  (13.147) 

The equations of motion for the operators in eqs. (13.145) and (13.146) can be obtained from the 
Heisenberg equation of motion. 

 > @ˆ ˆ,HB
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=

 (13.148) 

from which we find 
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�

  (13.150) 

To derive an equation of motion for the system coordinate, we begin by solving for the time-
evolution of the bath coordinates by directly integrating eq. (13.150),  

 � �� �†

0
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and insert the result into eq. (13.149). This leads to 
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where 2( ) cos( )t c tD D D
D

N Z Z ¦ �
  (13.153) 

and � �†ˆ ˆ ˆ( ) (0) (0) (0) . .i tF t c b c a a e h cD� Z
D D D D

D

ª º �Z � �¬ ¼¦ � �
  (13.154) 

 Now, recognizing that the time-derivative of the system variables is given by 

 � �†ˆ ˆ ˆP i a a �� � �
�

 (13.155) 

 � �†ˆ ˆ ˆQ a a�� � �
�

  (13.156) 

and substituting eq. (13.152) into (13.155), we can write an equation of motion 
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Equation (13.157) bears a striking resemblance to the classical GLE, eq. (13.128). In fact, if we 
define 
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then the resulting equation is isomorphic to the classical GLE 

 2

0
( ) ( ) ( ) ( ) ( )

t

RP t M Q t M dt t t Q t f tJc c c� : � �  ³ ��   (13.160) 

This demonstrates that the quantum harmonic bath acts a dissipative environment, whose friction 
on the system coordinate is given by eq. (13.158). What we have shown here is an outline of the 
proof, but detailed discussion of these relationships can be found elsewhere.4 
  

                                                 
4 Weiss, U. Quantum Dissipative Systems. 3rd ed.; World Scientific: Hackensack, N.J. , 2008;  Leggett, A. J.; 

Chakravarty, S.; Dorsey, A. T.; Fisher, M. P. A.; Garg, A.; Zwerger, W. Dynamics of the dissipative two-state 
system. Reviews of Modern Physics 1987, 59 (1), 1-85;  Yan, Y.; Xu, R. Quantum Mechanics of Dissipative 
Systems. Annual Review of Physical Chemistry 2005, 56 (1), 187-219. 
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