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14. ENERGY AND CHARGE TRANSFER 

14.1. Electronic Interactions 

In this section we will describe processes that result from the interaction between two or more 

molecular electronic states, such as the transport of electrons or electronic excitation. This 

problem can be formulated in terms of a familiar Hamiltonian  

0H H V   

in which H0 describes the electronic states (including any coupling to nuclear motion), and V is 

the interaction between the electronic states. In formulating such a problem we will need to 

consider some basic questions: Is V strong or weak? Are the electronic states described in a 

diabatic or adiabatic basis? How do nuclear degrees of freedom influence the electronic 

couplings? For weak couplings, we can describe the transport of electrons and electronic 

excitation with perturbation theory drawing on Fermi’s Golden Rule: 
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This approach underlies common descriptions of electronic energy transport and non-adiabatic 

electron transfer. We will discuss this regime concentrating on the influence of vibrational 

motions they are coupled to.  However, the electronic couplings can also be strong, in which case 

the resulting states become delocalized.  We will discuss this limit in the context of excitons that 

arise in molecular aggregates. 

 To begin, it is useful to catalog a number of electronic interactions of interest. We can use 

some schematic diagrams to illustrate them, emphasizing the close relationship between the 

various transport processes. However, we need to be careful, since these are not meant to imply a 

mechanism or meaningful information on dynamics. Here are a few commonly described 

processes involving transfer from a donor molecule D to an acceptor molecule A: 

a) Resonance energy transfer  

Applies to the transfer of energy from the electronic excited state of a donor to an 

acceptor molecule. Arises from a Coulomb interaction that is operative at long range, i.e., 

distances large compared to molecular dimensions. Requires electronic resonance. 

Named for the first practical derivations of expressions describing this effect: Förster 

Resonance Energy Transfer (FRET) 
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b) Electron transfer 

Marcus theory. Nonadiabatic electron transfer. Requires wavefunction overlap. 

Ground state:   

 

Excited state:  

  

 Hole transfer:  

 

c) Electron-exchange energy transfer 

Dexter transfer. Requires wavefunction overlap. Singlet or triplet 

 

d) Singlet fission 
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14.2. Förster Resonance Energy Transfer 

Förster resonance energy transfer (FRET) refers to the nonradiative transfer of an electronic 

excitation from a donor molecule to an acceptor molecule:   

 * *D A D A    (14.1) 

This electronic excitation transfer, whose practical description was first given by Förster, arises 

from a dipole–dipole interaction between the electronic states of the donor and the acceptor, and 

does not involve the emission and reabsorption of a light field. Transfer occurs when the 

oscillations of an optically induced electronic coherence on the donor are resonant with the 

electronic energy gap of the acceptor. The strength of the interaction depends on the magnitude 

of a transition dipole interaction, which depends on the magnitude of the donor and acceptor 

transition matrix elements, and the alignment and separation of the dipoles. The sharp 1/r6 

dependence on distance is often used in spectroscopic characterization of the proximity of donor 

and acceptor.  

The electronic ground and excited states of the donor and acceptor molecules all play a 

role in FRET. We consider the case in which we have excited the donor electronic transition, and 

the acceptor is in the ground state. Absorption of light by the donor at the equilibrium energy gap 

is followed by rapid vibrational relaxation that dissipates the reorganization energy of the donor 

D over the course of picoseconds. This leaves the donor in a coherence that oscillates at the 

energy gap in the donor excited state  D
eg D Dq d  . The time scale for FRET is typically 

nanoseconds, so this preparation step is typically much faster than the transfer phase. For 

resonance energy transfer we require a resonance condition, so that the oscillation of the excited 

donor coherence is resonant with the 

ground state electronic energy gap of 

the acceptor  0A
eg Aq  . Transfer of 

energy to the acceptor leads to 

vibrational relaxation and subsequent 

acceptor fluorescence that is spectrally 

shifted from the donor fluorescence. In 

practice, the efficiency of energy 

transfer is obtained by comparing the 

fluorescence emitted from donor and 

acceptor.  

 This description of the problem lends itself naturally to treating with a DHO Hamiltonian, 

However, an alternate picture is also applicable, which can be described through the EG 

Hamiltonian. FRET arises from the resonance that occurs when the fluctuating electronic energy 
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gap of a donor in its excited state matches the energy gap of an acceptor in its ground state. In 

other words 

 

   

D A
eg D eg A

D At t

   
 

   
 

  (14.2) 

These energy gaps are time-dependent with occasion crossings that allow transfer of energy. 

 

Our system includes the ground and excited potentials of the donor and 

acceptor molecules. The four possible electronic configurations of the system 

are 

 , , ,D A D A D A D AG G E G G E E E   

Here the notation refers to the ground (G) or excited (E) vibronic states of 

either donor (D) or acceptor (A). More explicitly, the states also include the 

vibrational excitation:  

 ;D A D D A AE G e n g n  

Thus the system can have no excitation, one excitation on the donor, one excitation on the 

acceptor, or one excitation on both donor and acceptor. For our purposes, let’s only consider the 

two electronic configurations that are close in energy, and are likely to play a role in the 

resonance transfer in eq. (14.2) 

  andD A D AE G G E  

 Since the donor and acceptor are weakly coupled, we can write our Hamiltonian for this 

problem in a form that can be solved by perturbation theory ( 0H H V  ). Working with the 

DHO. approach, our material Hamiltonian has four electronic manifolds to consider: 

 
0

E G
D D D D D D

E G
A A A A A A

H E H E G H G

E H E G H G

 

 
  (14.3) 

Each of these is defined as we did previously, with an electronic energy and a dependence on a 

displaced nuclear coordinate. For instance 

 E D D
D D e D eH e E e H    (14.4) 
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D
eE is the electronic energy of donor excited state. 

Then, what is V? Classically it is a Coulomb interaction of the form 
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Here the sum is over all electrons and nuclei of the donor (i) 

and acceptor (j). As is, this is challenging to work with, but 

at large separation between molecules, we can recast this as 

a dipole–dipole interaction. We define a frame of reference 

for the donor and acceptor molecule, and assume that the 

distance between molecules is large. Then the dipole moments for the molecules are 
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The interaction between donor and acceptor takes the form of a dipole–dipole interaction:  

 
  

3

ˆ ˆ3 A D A Dr r
V

r

      
  (14.8) 

where r is the distance between donor and acceptor dipoles and r̂  is a unit vector that marks the 

direction between them. The dipole operators here are taken to only act on the electronic states 

and be independent of nuclear configuration, i.e., the Condon approximation. We write the 

transition dipole matrix elements that couple the ground and excited electronic states for the 

donor and acceptor as 

 * *

* *
A AA A A

A A A A     (14.9) 

 * *

* *
D DD D D

D D D D     (14.10) 

For the dipole operator, we can separate the scalar and orientational contributions as  

 ˆA A Au   (14.11) 

This allows the transition dipole interaction in eq. (14.8) to be written as   

 * * * *
3A BV D A A D A D D A

r

       (14.12) 

All of the orientational factors are now in the term : 
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   3 A D A D
ˆ ˆ ˆ ˆ ˆ ˆu r u r u u       (14.13) 

We can now obtain the rates of energy transfer using Fermi’s Golden Rule expressed as a 

correlation function in the interaction Hamiltonian:   

      2

2 2

2 1
0k k k I Iw p V dt V t V

   



      

 
 (14.14) 

Note that this is not a Fourier transform! Since we are using a correlation function there is an 

assumption that we have an equilibrium system, even though we are initially in the excited donor 

state. This is reasonable for the case that there is a clear time scale separation between the ps 

vibrational relaxation and thermalization in the donor excited state and the time scale (or inverse 

rate) of the energy transfer process.  

Now substituting the initial state *D A  and the final state *k A D , we find 

        
2

* *
2 6

1
0 0ET D A D Aw dt D A t t D A

r


   




   (14.15) 

where   D DiH t iH t
D Dt e e     . Here, we have neglected the rotational motion of the dipoles. 

Most generally, the orientational average is 

    2 0t    (14.16) 

However, this factor is easier to evaluate if the dipoles are static, or if they rapidly rotate to 

become isotropically distributed. For the static case 2 0.475  . For the case of fast loss of 

orientation:     22 0 2 3K Kt    .   

Since the dipole operators act only on A  or *D , and the D  and A  nuclear 

coordinates are orthogonal, we can separate terms in the donor and acceptor states. 
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 (14.17) 

The terms in this equation represent the dipole correlation function for the donor initiating in the 

excited state and the acceptor correlation function initiating in the ground state. That is, these are 

correlation functions for the donor emission (fluorescence) and acceptor absorption. 

Remembering that *D  represents the electronic and nuclear configuration *
*

D
d n , we can use 

the displaced harmonic oscillator Hamiltonian or energy gap Hamiltonian to evaluate the 

correlation functions. For the case of Gaussian statistics we can write  
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  
  (14.18) 

    
*

2 *
AA

AA
AA

Ai t g t
C t e




 
  (14.19) 

Here we made use of 

 2* * DD D DD
      (14.20) 

which expresses the emission frequency as a frequency shift of 2 D  relative to the donor 

absorption frequency. 

The dipole correlation functions can be expressed in terms of the inverse Fourier 

transforms of a fluorescence or absorption lineshape:   

    1

2
* *

i t D
fluorD D

C t d e
  


   

   (14.21) 

    1

2
i t A

AA absC t d e
  


   

   (14.22) 

To express the rate of energy transfer in terms of its common practical form, we make use of 

Parsival’s Theorem, which states that if a Fourier transform pair is defined for two functions, the 

integral over a product of those functions is equal whether evaluated in the time or frequency 

domain: 

        1 2 1 2
* *f t f t dt f f d  

 

 

     (14.23) 

This allows us to express the energy transfer rate as an overlap integral JDA between the donor 

fluorescence and acceptor absorption spectra:   

    
2

2 2

2 6

1
* *

A D
ET abs fluorDD AA

w d
r






         

 (14.24) 

Here 


 is the lineshape normalized to 

the transition matrix element squared: 
2

/   


. The overlap integral is a 

measure of resonance between donor and 

acceptor transitions. 

So, the energy transfer rate scales as 6r , depends on the strengths of the electronic 

transitions for donor and acceptor molecules, and requires resonance between donor fluorescence 

and acceptor absorption. One of the things we have neglected is that the rate of energy transfer 

will also depend on the rate of excited donor state population relaxation. Since this relaxation is 
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typically dominated by the donor fluorescence rate, the rate of energy transfer is commonly 

written in terms of an effective distance R0, and the fluorescence lifetime of the donor D : 

 
6

01
ET

D

R
w

r
     

 (14.25) 

At the critical transfer distance R0 the rate (or probability) of energy transfer is equal to the rate 

of fluorescence. R0 is defined in terms of the sixth-root of the terms in eq. (14.24), and is 

commonly written as  

 
   2
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A

R d
n N

     


 



    (14.26) 

This is the practical definition that accounts for the frequency dependence of the transition-

dipole interaction and non-radiative donor relaxation in addition to being expressed in common 

units.   represents units of frequency in cm-1. The fluorescence spectrum D
fluor


must be 

normalized to unit area, so that  fluor
D 


 is expressed in cm (inverse wavenumbers). The 

absorption spectrum  A  must be expressed in molar decadic extinction coefficient units 

(liter/molcm). n is the index of refraction of the solvent, NA is Avagadro’s number, and D is the 

donor fluorescence quantum yield.  
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Appendix: Transition Dipole Interaction 

FRET is one example of a quantum mechanical transition dipole interaction. The interaction 

between two dipoles, A and D, in eq. (14.12) is  

 
3 A DV e g g e

r

    (14.27) 

Here, Dg e  is the transition dipole moment in Debye for the ground-to-excited state 

transition of molecule A. r is the distance between the centers of the point dipoles, and  is the 

unitless orientational factor  

1 2 123cos cos cos       

The figure below illustrates this function for the case of two parallel dipoles, as a function of the 

angle between the dipole and the vector defining their separation.  

 
 
 
 
 
 
 
 
 
 
 

In the case of vibrational coupling, the dipole operator is expanded in the vibrational 

normal coordinate:  0 A AQ Q      , and harmonic transition dipole matrix elements are 

 1 0
2A

A Ac Q










 (14.28) 

where A  is the vibrational frequency. If the frequency A  is given in cm-1, and the transition 

dipole moment AQ   is given in units of D Å-1 amu-1/2, then the matrix element in units of D 

is  1/21 0 4.1058A A AQ     . If the distance between dipoles is specified in Ångstroms, 

then the transition dipole coupling from (14.27) in cm-1 is 1 3( ) 5034V cm r  . Experimentally, 

one can determine the transition dipole moment from the absorbance A as 

 
2

23
A

A

N
A

c Q

         
 (14.29) 



 

 

14-10

Readings 

1. Cheam, T. C.; Krimm, S., Transition dipole interaction in polypeptides: Ab initio calculation 
of transition dipole parameters. Chemical Physics Letters 1984, 107, 613-616. 

2. Forster, T., Transfer mechanisms of electronic excitation. Discussions of the Faraday Society 
1959, 27, 7-17. 

3. Förster, T., Zwischenmolekulare Energiewanderung und Fluoreszenz. Annalen der Physik 
1948, 437, 55-75. 

4. Förster, T., Experimentelle und theoretische Untersuchung des zwischenmolecularen 
Uebergangs von Electronenanregungsenergie. Z. Naturforsch 1949, 4A, 321–327  

 



 

 

14-11

14.3. Excitons in Molecular Aggregates 

The absorption spectra of periodic arrays of interacting molecular chromophores show unique 

spectral features that depend on the size of the system and disorder of the environment. We will 

investigate some of these features, focusing on the delocalized eigenstates of these coupled 

chromophores, known as excitons. These principles apply to the study of molecular crystals, J-

aggregates, photosensitizers, and light-harvesting complexes in photosynthesis. Similar topics 

are used in the description of properties of conjugated polymers and organic photovoltaics, and 

for extended vibrational states in IR and Raman spectroscopy. 

Energy transfer in the strong coupling limit 

Strong coupling between molecules leads to the delocalization of electronic or vibrational 

eigenstates, under which weak coupling models like FRET do not apply. From our studies of the 

coupled two-state system, we know that when the coupling between states is much larger that the 

energy splitting between the states (12 ≪	2V) then the resulting eigenstates |±ۧ are equally 

weighted symmetric and antisymmetric combinations of the two, whose energy eigenvalues are 

split by 2V. Setting 12 =  

  1
1 2

2

E V  

  
 

If we excite one of these molecules, we expect that the excitation will flow back and forth at the 

Rabi frequency. So, what happens with multiple coupled chromophores, focusing particular 

interest on the placement of coupled chromophores into periodic arrays in space? In the strong 

coupling regime, the variation in the uncoupled energies is small, making this a problem of 

coupled quasi-degenerate states. With a spatially period structure, the resulting states bear close 

similarity to simple descriptions of electronic band structure using the tight-binding model.  

Excitons 

Excitons refer to electronic excited states that are not localized to a particular molecule. But 

beyond that there are many flavors. We will concentrate on Frenkel excitons, which refer to 

excited states in which the excited electron and the corresponding hole (or electron vacancy) 

reside on the same molecule. All molecules remain electrically neutral in the ground and excited 

states. This corresponds to what one would expect when one has resonant dipole–dipole 

interactions between molecules. When there is charge transfer character, the electron and hole 

can reside on different molecules of the coupled complex. These are referred to as Mott–Wannier 

excitons.  
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Absorption spectrum of molecular dimer 

To describe the spectroscopy of an array of many coupled chromophores, it is first instructive to 

work through a pair of coupled molecules. This is in essence the two-level problem from earlier. 

We consider a pair of molecules (1 and 2), which each have a ground and electronically excited 

state (|eۧ and |gۧ) split by an energy gap 0, and a transition dipole moment  . In the absence of 

coupling, the state of the system can be specified by specifying the electronic state of both 

molecules, leading to four possible states: , , ,gg eg ge ee , whose energies are 0,0, 0, and 

0, respectively.  

 

For shorthand we define the ground state as |Gۧ and the excited states as |1ۧ and |2ۧ to signify the 

the electronic excitation is on either molecule 1 or 2. In addition, the molecules are spaced by a 

separation r12, and there is a transition dipole interaction that couples the molecules.    

 2 1 1 2V J   

Following our description of transition dipole coupling in Eqn. (14.8), the coupling strength J is 

given by  

    2

1 2 12 1 12 2 12 1 2
5 3

1212

3r r r
J

rr

      
   

   

where the orientational factor is 

    1 2 1 12 2 12ˆ ˆ ˆ ˆ ˆ ˆ3 r r          

We assume that the coupling is not too strong, so that we can just concentrate on how it 

influences |1ۧ and |2ۧ but not |Gۧ. Then we only need to describe the coupling induced shifts to 

the singly excited states, which are described by the Hamiltonian 

0

0

J
H

J




 
  
 

 

As stated above, we find that the eigenvalues are  

0E J    

and that the eigenstates are:   
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 1
1 2

2
    

These symmetric and antisymmetric states are delocalized across the two molecules, and in the 

language of Frenkel excitons are referred to as the one-exciton states. Furthermore, the dipole 

operator for the dimer is 

1 2M     

and so the transition dipole matrix elements are:   

 1 2

1

2
M M G        

M+ and M- are oriented perpendicular to each other in the molecular frame. If we confine the 

molecular dipoles to be within a plane, with an angle 2 between them, then the amplitude of M+ 

and M- is given by  

2 cos

2 sin

M

M

 
 








 

 We can now predict the absorption spectrum for the dimer. We have two transitions from 

the ground state and the |±ۧ states which are resonant at ԰= 0 J   and which have an amplitude 
2

M  . The splitting between the peaks is referred to as the Davydov splitting. Note that the 

relative amplitude of the peaks allows one to infer the angle between the molecular transition 

dipoles. Also, note for θ = 0° or 90°, all amplitude appears in one transition with magnitude 
2

2  , which is referred to as superradiant. 
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Frenkel Excitons with Periodic Boundary Conditions 

Now let’s consider linear aggregate of N  periodically arranged molecules. We will assume that 

each molecule is a two-level electronic system with a ground state and an excited state. We will 

assume that electronic excitation moves an electron from the ground state to an unoccupied 

orbital of the same molecule. We will label the molecules with integer values (n) between 0 and 

N-1: 

 

If the molecules are separated along the chain by a lattice spacing , then the size of the chain is 

L=N. Each molecule has a transition dipole moment , which makes an angle  with the axis of 

the chain.   

 In the absence of interactions, we can specify the state of the system exactly by 

identifying whether each molecule is in the electronically excited or ground state. If the state of 

molecule n within the chain is n , which can take on values of g or e, then 

 0 1 2 1, , n N          

This representation of the state of the system is referred to as the site basis, since it is expressed 

in terms of each molecular site in the chain. For simplicity we write the ground state of the 

system as  

, , ,G g g g g   

If we excite one of the molecules within the aggregate, we have a singly excited state in which 

the nth molecule is excited, so that 

, , , , , ,g g g e g n     

For shorthand, we identify this product state as |nۧ, which is to be distinguished from the 

molecular eigenfunction at site n, n .  

 The singly excited state is assigned an energy 0  corresponding 

to the electronic energy gap. In the absence of coupling, the singly 

excited states are N-fold degenerate, corresponding to a single 

excitation at any of the N sites. If two excitations are placed on the 

chain we can see that there are N(N1) possible states with energy 02 , 

recognizing that the Pauli principle does not allow two excitations on 
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the same site. When coupling is introduced, the mixing of these degenerate states leads to the 

one-exciton and two-exciton bands. For this discussion, we will concentrate on the one-exciton 

states. 

 The coupling between molecule n and molecule n′ is given by the matrix element nnV  . 

We will assume that a molecule interacts only with its neighbors, and that each pairwise 

interaction has a magnitude J 

, 1nn n nV J    

If V is a dipole–dipole interaction, the orientational factor  dictates that when the transition 

dipole angle < 54.7° then the sign of the coupling J < 0, which is the case known as J-

aggregates (after Edwin Jelley), and implies an offset stack of chromophores or head-to-tail 

arrangement. If > 54.7° then J > 0, and the system is known as an H-aggregate.  

 To begin, we also apply periodic boundary conditions to this problem, which implies that 

we are describing the states of an N-molecule chain within an infinite linear chain. In terms of 

the Hamiltonian, the molecules at the beginning and end of our chain feel the same symmetric 

interactions to two neighbors as the other molecules. To write this in terms of a finite NN 

matrix, one couples the first and last member of the chain: 0, 1 1,0N NJ J J   .  

 With these observations in mind, we can write the Frenkel Exciton Hamiltonian for the 

linear aggregate in terms of a system Hamiltonian that reflects the individual sites and their 

couplings 
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 (14.30) 

Here periodic boundary conditions imply that we replace 0N   and 1 1N    where 

they appear.  

The optical properties of the aggregate will be obtained by determining the eigenstates of 

the Hamiltonian. We look for solutions that describe one-exciton eigenstates as an expansion in 

the site basis.  
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   (14.31) 

which is written in order to point out the dependence of these wavefunctions on the lattice 

spacing x, and the position of a particular molecule at xn. Such an expansion should work well 

when the electronic interactions between sites is weak enough to treat perturbatively. For the 
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electronic structure of solids, this is known as the tight binding model, which describes band 

structure as a linear combinations of atomic orbitals.  

Rather than diagonalizing the Hamiltonian, we can take advantage of its translational 

symmetry to obtain the eigenstates. The symmetry of the Hamiltonian is such that it is 

unchanged by any integral number of translations along the chain. That is the results are 

unchanged for any summation in eqs. (14.30) and (14.31) over N consecutive integers. Similarly, 

the molecular wavefunction at any site is unchanged by such a translation. Written in terms of a 

displacement operator /xipD e    that shifts the molecular wavefunction by one lattice constant 

,  

    nx n D x     (14.32) 

 These observations underlie Bloch’s theorem, which states that the eigenstates of a 

periodic system will vary only by a phase shift when displaced by a lattice constant.   

 ( ) ( )ikx e x     (14.33) 

Here k is the wavevector, or reciprocal lattice vector, a real quantity. Thus the expansion 

coefficients in eq. (14.31) will have an amplitude that reflects an excitation spread equally 

among the N sites, and only vary between sites by a spatially varying phase factor. Equivalently, 

the eigenstates are expected to have a form that is a product of a spatially varying phase factor 

and a periodic function: 

 ( ) ( )ikxx e u x   (14.34) 

 These phase factors are closely related to the lattice displacement operators. If the linear 

chain has N molecules, the eigenstates must remain unchanged with a translation by the length of 

the chain L = N: 

( ) ( )n nx L x    

Therefore, we see that our wavefunctions must satisfy 1ikLe  , or 

 2Nk m   (14.35) 

where m is an integer. Furthermore, since there are N sites on the chain, unique solutions to eq. 

(14.35) require that m can only take on N consecutive integer values. Like the site index n, there 

is no unique choice of m. Rewriting eq. (14.35), the wavevector is  
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
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  (14.36) 
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We see that for an N site lattice, m can take on the N consecutive integer values, so that km 

varies over a 2 range of angles. The wavevector index m labels the N one-exciton eigenstates of 

an N molecule chain. By convention, km is chosen such that  < km ≤ . Then the 

corresponding values of m are integers from N1)/2 to N1)/2 if there are an odd number of 

lattice sites or N2)/2 to N/2 for an even number of sites. For example, a 20 molecule chain 

would have m = 9, 8, … 9,10.  

 These findings lead to the general form for the m one-exciton eigenstates 
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   (14.37) 

The factor of N-1/2 assures proper normalization of the wavefunction, ۦ|ۧ=1. Comparing eqs. 

(14.37) and (14.31) we see that the expansion coefficients for the nth site of the mth eigenstate is  

 2 /
,

1 1
mink i nm N

m nc e e
N N

    (14.38) 

We see that for state 0k , with m = 0, the phase factor is the same for all sites. In other words, 

the transition dipoles of the chain will oscillate in-phase, constructively adding for all sites. For 

the case that km = /, we see that each site is out-of-phase with its nearest neighbors. Looking at 

the case of the dimer, 2N  , we see that m = 0 or 1, km = 0 or /, and we recover the expected 

symmetric and antisymmetric eigenstates:   
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Schematically for N = 20, we see how the dipole phase varies with km, plotting the real and 

imaginary components of the expansion coefficients 
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 Also, we can evaluate the one-exciton transition dipole matrix elements, M(km), which are 

expressed as superpositions of the dipole moments at each site, n : 
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 (14.40) 

The phase of the transition dipoles of the chain matches their phase within each k state. Thus for 

our problem, in which all of the dipoles are parallel, transitions from the ground state to the km=0 

state will carry all of the oscillator strength. Plotted below is an illustration of the phase 

relationships between dipoles in a chain with N = 20. 
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 Finally, let’s solve for the one-exciton energy eigenvalues by calculating the expectation 
value of the Hamiltonian operator, eq. (14.30) 
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 (14.41) 
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 0( ) 2 cos( )m mE k J k    (14.42) 

You predict that the one-exciton band of states varies in energy between 0 2J   and 0 2J  . If 

we take J  as negative, as expected for the case of J-aggregates (negative couplings), then 0k   

is at the bottom of the band. Examples are illustrated below for the N=20 aggregate. 

 

|k0ۧ 

|k1ۧ 

|k3ۧ 
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Note that the result in eq. (14.42) gives you a splitting of 4J between the two states of the dimer, 

unlike the expected 2J splitting from earlier. This is a result of the periodic boundary conditions 

that we enforce here.  

 We are now in a position to plot the absorption spectrum for aggregate, summing over 

eigenstates and assuming a Lorentzian lineshape for the system: 

 
2

2

2( ( ))m
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  
 

For a 20 oscillator chain with negative coupling, the spectrum is plotted below. We have one 
peak corresponding to the k0 mode that is peaked at 0 2J   and carries the oscillator 

strength of all 20 dipoles.  
 

 

Open Boundary Conditions 

Similar types of solutions appear without using periodic boundary conditions. For the case of 

open boundary conditions, in the molecules at the end of the chain are only coupled to the one 

nearest neighbor in the chain. In this case, it is helpful to label on the sites from 1,2n N  . 

Furthermore, 1, 2m N  . Under those conditions, one can solve for the eigenstates using use 

the boundary condition that 0  at sites 0 and N+1. The change in boundary condition gives 

sine solutions: 
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Absorption spectrum for N = 20 aggregate 
with periodic boundary conditions and J < 0.  
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Returning to the case of the dimer (N=2), we can now confirm that we recover the symmetric and 

anti-symmetric eigenstates, with an energy splitting of 2J.  

 If you calculate the oscillator strength for these transitions using the dipole operator in eq. 

(14.39), one finds:   
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           

 

This result shows that most of the oscillator strength lies in the 1m   state, for which all 

oscillators are in phase. For large N, 2
1M carries 81% of the oscillator strength, with 

approximately 9% in the transition to the 3m   state.   

 
The shift in the peak of the absorption relative to the monomer gives the coupling J . Including 

long-range interactions has the effect of shifting the exciton band asymmetrically about 0 .   

 1 0 2.4J    (m=1, bottom of the band with J negative) 

 0 1.8N J    (Top of band) 

Exchange Narrowing 

If the chain is not homogeneous, i.e., all molecules do not have same site energy 0, then we can 

model this effect as Gaussian random disorder. The energy of a given site is  

0n n     

We add as an extra term to our earlier Hamiltonian, eq. (14.30), to account for this variation.   

0 S disH H H V    

dis n
n

H n n  

The effect is to shift and mix the homogeneous exciton states.   

Absorption spectra for N = 3,7,11 for 
negative coupling 
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22
sin

1 1k dis n
n

kn
k H k

N N

        
  

We find that these shifts are also Gaussian random variables, with a standard deviation of 

 3 2 1N  , where  is the standard deviation for site energies. So, the delocalization of the 

eigenstate averages the disorder over N  sites, which reduces the distribution of energies by a 

factor scaling as N . The narrowing of the absorption lineshape with delocalization is called 

exchange narrowing. This depends on the distribution of site energies being relatively small: 
3/23 /J N  . 

 

Readings 

1. Knoester, J., Optical Properties of Molecular Aggregates. In Proceedings of the International 
School of Physics "Enrico Fermi" Course CXLIX, Agranovich, M.; La Rocca, G. C., Eds. 
IOS Press: Amsterdam, 2002; pp 149-186. 

 

  

Absorption spectra for N = 2,6,30 normalized to 
the number of oscillators. 3 = J and J < 0. 
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14.4. Multiple Particles and Second Quantization 

In the case of a large number of nuclear or electronic degrees of freedom (or for photons in a 

quantum light field), it becomes tedious to write out the explicit product-state form of the state 

vector, i.e.,  

1 2 3, ,      

Under these circumstances it becomes useful to define creation and annihilation operators. If   

refers to the state of multiple harmonic oscillators, then the Hamiltonian has the form 

 
2

2 21

2 2

p
H m q

m


  
 


 

  
 

   (14.43) 

which can also be expressed as  

 † 1

2
H a a  



    
 

   (14.44) 

and the eigenstates represented in through the occupation of each oscillator 1 2 3, ,n n n   . 

This representation is sometimes referred to as “second quantization”, because the classical 

Hamiltonian was initially quantized by replacing the position and momentum variables by 

operators, and then these quantum operators were again replaced by raising and lowering 

operators.  

The operator †a  raises the occupation in mode |nۧ, and a  lowers the excitation in 

mode |nۧ.	The	eigenvalues	of	 these	operators,	 1n n   , are captured by the commutator 

relationships:  

 †,a a        (14.45) 

 , 0a a       (14.46) 

Eqn. (14.45) indicates that the raising and lower operators do not commute if they are operators 

in the same degree of freedom (), but they do otherwise. Written another way, these 

expression indicate that the order of operations for the raising and lowering operators in different 

degrees of freedom commute.  

 † †a a a a      (14.47) 

 
† † † †

a a a a

a a a a

   
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


  (14.48) 
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These expressions also imply that the eigenfunctions operations of the forms in eq. 
(14.47) and (14.48) are the same, so that these eigenfunctions should be symmetric to 
interchange of the coordinates. That is, these particles are bosons. 

This observations proves an avenue to defining raising and lowering operators for 

electrons. Electrons are fermions, and therefore antisymmetric to exchange of particles. This 

suggests that electrons will have raising and lowering operators that change the excitation of an 

electronic state up or down following the relationship 

 † †b b b b       (14.49) 

or 

 †,b b  


      (14.50) 

where […]+ refers to the anti-commutator. Further, we write  

 , 0b b  
     (14.51) 

This comes from considering the action of these operators for the case where   . In that 

case, taking the Hermetian conjugate, we see that eq. (14.51) gives  

 † † † †2 0 or 0b b b b       (14.52) 

This relationship says that we cannot put two excitations into the same state, as expected for 

Fermions. This relationship indicates that there are only two eigenfunctions for the operators †b  

and b , namely 0n   and 1n  . This is also seen with eq. (14.50), which indicates that  
† †b b n b b n n         

or  † †1b b n b b n         (14.53) 

If we now set 0n  , we find that eq. (14.53) implies  
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  (14.54) 

Again, this reinforces that only two states, |0ۧ and |1ۧ, are allowed for electron raising and 

lowering operators. These are known as Pauli operators, since they implicitly enforce the Pauli 

exclusion principle. Note, in eq. (14.54), that |0ۧ refers to the eigenvector with an eigenvalue of 

zero |ۧ, whereas “0” refers to the null vector.  
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Frenkel Excitons 

For electronic chromophores, we use the notation |gۧ and |eۧ for the states of an electron in its 

ground or excited state. The state of the system for one excitation in an aggregate  

, , ,n g g g g e g    

can then be written as †
na G , or simply †

na , and the Frenkel exciton Hamiltonian is  
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H n n J n m
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

     (14.55) 

or 

 † †
0 ,

,
n n n m n m

n n m

b b J b b     (14.56) 

Readings 

1. Schatz, G. C.; Ratner, M. A., Quantum Mechanics in Chemistry. Dover Publications: 
Mineola, NY, 2002; p. 119. 
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14.5. Marcus Theory For Electron Transfer 

The displaced harmonic oscillator (DHO) formalism and the Energy Gap Hamiltonian have been 

used extensively in describing charge transport reactions, such as electron and proton transfer. 

Here we describe the rates of electron transfer between weakly coupled donor and acceptor states 

when the potential energy depends on a nuclear coordinate, i.e., nonadiabatic electron transfer. 

These results reflect the findings of Marcus’ theory of electron transfer.  

 We can represent the problem as calculating the transfer or reaction rate for the transfer 

of an electron from a donor to an acceptor 

 D A D A     (14.57) 

This reaction is mediated by a nuclear coordinate q. This need not 

be, and generally isn’t, a simple vibrational coordinate. For electron 

transfer in solution, we most commonly consider electron transfer to 

progress along a solvent rearrangement coordinate in which solvent 

reorganizes its configuration so that dipoles or charges help to 

stabilize the extra negative charge at the acceptor site. This type of 

collective coordinate is illustrated in the figure to the right. The 

external response of the medium along the electron transfer 

coordinate is referred to as “outer shell” electron transfer, whereas 

the influence of internal vibrational modes that promote ET is called 

“inner shell”. The influence of collective solvent rearrangements or 

intramolecular vibrations can be captured with the use of an electronic transition coupled to a 

harmonic bath. 

Normally we associate the rates of electron transfer with the free-energy along the 

electron transfer coordinate q. Pictures such as the 

ones above that illustrate states of the system with 

electron localized on the donor or acceptor electrons 

hopping from donor to acceptor are conceptually 

represented through diabatic energy surfaces. The 

electronic coupling J that results in transfer mixes 

these diabatic states in the crossing region. From this 

adiabatic surface, the rate of transfer for the forward 

reaction is related to the flux across the barrier. From 

classical transition state theory we can associate the rate with the free energy barrier using 
†exp( )f Bk A G k T  . If the coupling is weak, we can describe the rates of transfer between 
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donor and acceptor in the diabatic basis with perturbation 

theory. This accounts for nonadiabatic effects and 

tunneling through the barrier.  

To begin we consider a simple classical 

derivation for the free-energy barrier and the rate of 

electron transfer from donor to acceptor states for the 

case of weakly coupled diabatic states. First we assume 

that the free energy or potential of mean force for the 

initial and final state, G(q) = kBT ln P(q), is well represented by two parabolas. 
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To find the barrier height ∆G‡, we first find the crossing point dC where GD(dC) = GA(dC). 

Substituting eq.  and solving for dC gives 
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The last expression comes from the definition of the reorganization energy, which is the energy 

to be dissipated on the acceptor surface if the electron is transferred at dD,  
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 (14.59) 

Then, the free energy barrier to the transfer ∆G‡ is 
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So the Arrhenius rate constant is for electron transfer via activated barrier crossing is  
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  2
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
       

 (14.60) 

This curve qualitatively reproduced observations 

of a maximum electron transfer rate under the 

conditions G    , which occurs in the 

barrierless case when the acceptor parabola 

crosses the donor state energy minimum. 
We expect that we can more accurately 

describe nonadiabatic electron transfer using the 
DHO or Energy Gap Hamiltonian, which will 
include the possibility of tunneling through the 
barrier when donor and acceptor wavefunctions 
overlap. We start by writing the transfer rates in 
terms of the potential energy as before. We recognize that when we calculate thermally averaged 
transfer rates that this is equivalent to describing the diabatic free energy surfaces. The 
Hamiltonian is 

 0H H V   (14.61) 

 0 D AH D H D A H A   (14.62) 

Here |Dۧ and |Aۧ refer to the potential where the electron is either on the donor or acceptor, 

respectively. Also remember that |Dۧ refers to the vibronic states |d,ndۧ. These are represented 

through the same harmonic potential, displaced from one another vertically in energy by  

A DE E E    

and horizontally along the reaction coordinate q: 
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 (14.64) 

Here we are using reduced variables for the momenta, coordinates, and displacements of the 

harmonic oscillator. The diabatic surfaces can be expressed as product states in the electronic 

and nuclear configurations: ,D d n . The interaction between the surfaces is assigned a 

coupling J 

 V J d a a d      (14.65) 
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We have made the Condon approximation, implying that the transfer matrix element that 

describes the electronic interaction has no dependence on nuclear coordinate. Typically this 

electronic coupling is expected to drop off exponentially with the separation between donor and 

acceptor orbitals;   

   0 0exp EJ J R R    (14.66) 

Here E is the parameter governing the distance dependence of the overlap integral. For our 

purposes, even though this is a function of donor-acceptor separation (R), we take this to vary 

slowly over the displacements investigated here, and therefore be independent of the nuclear 

coordinate (Q). 

Marcus evaluated the perturbation theory expression for the transfer rate by calculating 

Franck-Condon factors for the overlap of donor and acceptor surfaces, in a manner similar to our 

treatment of the DHO electronic absorption spectrum. Similarly, we can proceed to calculate the 

rates of electron transfer using the Golden Rule expression for the transfer of amplitude between 

two states 

    2

1
0k I Iw dt V t V




  

 (14.67) 

Using   0 0/ /
I

iH t iH tV t Ve e   , we write the electron transfer rate in the DHO eigenstate form as 

 
2

2
( )i E t

ET

J
w dt e F t

  


  


 (14.68) 

where ( ) d aiH t iH tF t e e    (14.69) 

This form emphasizes that the electron transfer rate is governed by the overlap of vibrational 

wavepackets on the donor and acceptor potential energy surfaces.   

Alternatively, we can cast this in the form of 

the Energy Gap Hamiltonian. This carries with is a 

dynamical picture of the electron transfer event. The 

energy of the two states have time-dependent 

(fluctuating) energies as a result of their interaction 

with the environment. Occasionally the energy of the donor and acceptor states coincide that is 

the energy gap between them is zero. At this point transfer becomes efficient. By integrating 

over the correlation function for these energy gap fluctuations, we characterize the statistics for 

barrier crossing, and therefore forward electron transfer.  

Similar to before, we define a donor-acceptor energy gap Hamiltonian 

 AD A DH H H   (14.70) 
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which allows us to write    
0

exp
t

AD

i
F t dt H t

 
   

 
  (14.71) 

and   / /d d
AD AD

iH t iH tH t He e    (14.72) 

These expressions and application of the cumulant expansion to eq.  allows us to express the 

transfer rate in terms of the lineshape function and correlation function 

    exp AD

i
F t H t g t

    
 (14.73) 

    2

2 1 2 10 0

t

ADg t d d C


       (14.74) 

      2

1
0AD AD ADC t H t H 


 (14.75) 

 ADH   (14.76) 

 The lineshape function can also be written as a sum of many coupled nuclear coordinates, 

q . This expression is commonly applied to the vibronic (inner shell) contributions to the 

transfer rate: 
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 

 (14.77) 

Substituting the expression for a single harmonic mode into the Golden Rule rate expression eq.  

gives 

       
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 (14.78) 

where  2

A DD d d 
 

 (14.79) 

This expression is very similar to the one that we evaluated for the absorption lineshape of the 

Displaced Harmonic Oscillator model. A detailed evaluation of this vibronically mediated 

transfer rate is given in Jortner.  

To get a feeling for the dependence of k on q, we can look at the classical limit  

kT  . This corresponds to the case where one is describing the case of a low frequency 
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“solvent mode” or “outer sphere” effect on the electron transfer. Now, we neglect the imaginary 

part of g(t) and take the limit  coth 2 2     :   

    
2

02
0

2
exp 1 cosB

ET

i E tJ Dk T
w dt te  


 



    
       

 
 (14.80) 

Note that the high temperature limit also means the low frequency limit for 0 . This means that 

we can expand  2

0 0cos 1 2t t   , and find 

 
 2 2

exp
4ET

J E
w

kT kT


 
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  

  
 (14.81) 

where 0D   . Note that the activation barrier †E for displaced harmonic oscillators is 
†E E     . For a thermally averaged rate it is proper to associate the average energy gap with 

the standard free energy of reaction, 0
A DH H G    . Therefore, this expression is 

equivalent to the classical Marcus’ result for the electron transfer rate  

 
 2

exp
4

o

ET
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k A
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
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   
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 
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 (14.82) 

where the pre-exponential is  

 
2

2 4A J kT    (14.83) 

This expression shows the nonlinear behavior 

expected for the dependence of the electron 

transfer rate on the driving force for the forward 

transfer, i.e., the reaction free energy. This is 

unusual because we generally think in terms of a 

linear free energy relationship between the rate of a 

reaction and the equilibrium constant: ln ln eqk K
. This leads to the thinking that the rate should 

increase as we increase the driving free energy for 

the reaction 0G . This behavior only hold for a 

small region in 0G . Instead, eq.  shows that the 

ET rate will increase with 0G , until a maximum 

rate is observed for 0G    and the rate then 

decreases. This decrease of k with increased 0G  

is known as the “inverted regime”. The inverted 
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behavior means that extra vibrational excitation is needed to reach the curve crossing as the 

acceptor well is lowered. The high temperature behavior for coupling to a low frequency mode 

(100 cm-1 at 300 K) is shown at right, in addition to a cartoon that indicates the shift of the curve 

crossing at 0G is increased.   

 Particularly in intramolecular ET, it is common that one wants to separately account for 

the influence of a high frequency intramolecular vibration (inner sphere ET) that is not in the 

classical limit that applies to the low frequency classical solvent response. If an additional mode 

of frequency 0  and a rate in the form eq.  is added to the low frequency mode, Jortner has given 

an expression for the rate as: 

 
 22
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


 (14.84) 

Here 0  is the solvation reorganization energy. For this case, the same inverted regime exists; 

although the simple Gaussian dependence of k on 0G  no longer exists. The asymmetry here 

exists because tunneling sees a narrower barrier in the inverted regime than in the normal regime. 

Examples of the rates obtained with eq.  are plotted in the figure below (T= 300K). 
 

 

As with electronic spectroscopy, a more general and effective way of accounting for the nuclear 

motions that mediate the electron transfer process is to describe the coupling weighted density of 

states as a spectral density. Then we can use coupling to a harmonic bath to describe solvent 

and/or vibrational contributions of arbitrary form to the transfer event using 

        
0

coth 1 cos sin
2

g t d t i t t
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          



 (14.85) 
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