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8. IRREVERSIBLE AND RANDOM PROCESSES 

8.1. Concepts and Definitions 

In condensed phases, intermolecular interactions and collective motions act to modify the state of 

a molecule in a time-dependent fashion. Liquids, polymers, and other soft matter experience 

intermolecular interactions that lead to electronic and structural motions. Atoms and molecules 

in solid form are subject to fluctuations that result from thermally populated phonons and defect 

states that influence electronic, optical, and transport properties. As a result, the properties and 

dynamics of an internal variable that we may observe in an experiment are mixed with its 

surroundings. In studying mixed states we cannot write down an exact Hamiltonian for these 

problems; however, we can describe the influence of the surroundings in a statistical manner. 

This requires a conceptual change. 

As one change to our thinking, we now have to be concerned with ensembles. Most often, 

we will be concerned with systems in an equilibrium state with a fixed temperature for which 

many quantum states are accessible to the system. For comparing calculations of pure quantum 

states to experimental observables on macroscopic samples, we assume that all molecules have 

been prepared and observed in the same manner, so that the quantum expectation values for the 

internal operators can be compared directly to experimental observations. For mixed states, we 

have seen the need to perform an additional layer of averaging over the ensemble in the 

calculation of expectation values.  

Perhaps the most significant change between isolated states and condensed matter is the 

dynamics. From the time-dependent Schrödinger equation, we see that the laws governing the 

time evolution of isolated quantum mechanical systems are invariant under time reversal. That 

is, there is no intrinsic directionality to time. If one reverses the sign of time and thereby 

momenta of objects, we should be able to exactly reverse the motion and propagate the system to 

where it was at an earlier time. This is also the case for classical systems evolving under 

Newton’s equation of motion. In contrast, when a quantum system is in contact with another 

system having many degrees of freedom, a definite direction emerges for time, “the arrow of 

time,” and the system’s dynamics is no longer reversible. In such irreversible systems a well-

defined prepared state decays in time to an equilibrium state where energy has been dissipated 

and phase relationships are lost between the various degrees of freedom.  

Additionally, condensed phase systems on a local, microscopic scale all have a degree of 

randomness or noisiness to their dynamics that represent local fluctuations in energy on the scale 

of kBT. This behavior is observed even through the equations of motion that govern the dynamics 

are deterministic. Why? It is because we generally have imperfect knowledge about all of the 

degrees of freedom influencing the system, or experimentally view its behavior through a highly 
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restricted perspective. For instance, it is common in experiments to observe the behavior of 

condensed phases through a molecular probe imbedded within or under the influence of its 

surroundings. The physical properties of the probe are intertwined with the dynamics of the 

surrounding medium, and to us this appears as random behavior, for instance as Brownian 

motion. Other examples of the appearance of randomness from deterministic equations of motion 

include weather patterns, financial markets, and biological evolution. So, how do irreversible 

behavior and random fluctuations, hallmarks of all chemical systems, arise from the 

deterministic time-dependent Schrödinger equation? This fascinating question will be the central 

theme in our efforts going forward.   

Definitions 

Let’s begin by establishing some definitions and language that will be useful for us. We first 

classify chemical systems of interest as equilibrium or non-equilibrium systems. An equilibrium 

system is one in which the macroscopic properties (i.e., the intensive variables) are invariant 

with time, or at least invariant on the time scales over which one executes experiments and 

observes the system. Further, there are no steady state concentration or energy gradients 

(currents) in the system. Although they are macroscopically invariant, equilibrium states are 

microscopically dynamic.  

For systems at thermal equilibrium we will describe their time-dependent behavior as 

dynamically reversible or irreversible. For us, reversible will mean that a system evolves 

deterministically. Knowledge of the state of the system at one point in time and the equation of 

motion means that you can describe the state of the system for all points in time later or 

previously. Irreversible systems are not deterministic. That is, knowledge of the state of the 

system at one point in time does not provide enough information to precisely determine its past 

state.   

Since all states are irreversible in the strictest sense, the distinction is often related to the 

time scale of observation. For a given system, on a short enough time scale dynamics will appear 

deterministic whereas on very long times appear random. For instance, the dynamics of a dilute 

gas appear ballistic on time scales short compared to the mean collision time between particles, 

whereas their motion appears random and diffusive on much longer time scales. Memory refers 

to the ability to maintain deterministic motion and reversibility, and we will quantify the decay 

of memory in the system with correlation functions. For the case of quantum dynamics, we are 

particularly interested in the phase relationships between quantum degrees of freedom that 

results from deterministic motion under the time-dependent Schrödinger equation. 

Nonequilibrium states refers to open or closed systems that have been acted on 

externally, moving them from equilibrium by changing the population or energy of the quantum 
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states available to the system. Thermodynamically, work is performed on the system, leading to 

a free-energy gradient that the nonequilibrium system will minimize as it re-equilibrates. For 

nonequilibrium states, we will be interested in relaxation processes, which refer to the time-

dependent processes involved in re-equilibrating the system. Dissipation refers to the relaxation 

processes involving redistribution of energy as a nonequilibrium state returns toward a thermal 

distribution. However, there are other relaxation processes such as the randomization of the 

orientation of an aligned system or the randomization of phase of synchronized oscillations. 

Statistics 

With the need to describe ensembles, will use statistical descriptions of the properties and 

behavior of a system. The variable A, which can be a classical internal variable or quantum 

operator, can be described statistically in terms of the mean and mean-square values of A 

determined from a large number of measurements:  
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Here, the summation over i refers to averaging over N independent measurements. Alternatively, 

these equations can be expressed as 
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The sum over n refers to a sum over the M possible values that A can take, weighted by Pn, the 

probability of observing a particular value An. When the accessible values come from a 

continuous as opposed to discrete distribution, one can describe the statistics in terms of the 

moments of the distribution function, P(A), which characterizes the probability of observing A 

between A and A+dA 

   A dA A P A   (8.5) 

   2 2A dA A P A   (8.6) 
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For time-dependent processes, we recognize that it is possible 

that these probability distributions carry a time dependence, 

P(A,t). The ability to specify a value for A is captured in the 

variance of the distribution 

     
22 2A A       (8.7) 

 We will apply averages over probability distributions to the description of ensembles of 

molecules; however, we should emphasize that a statistical description of a quantum system also 

applies to a pure state. A fundamental postulate is that the expectation value of an operator 
ˆ ˆA A   is the mean value of A obtained over many observations on identically prepared 

systems. The mean and variance of this expectation value represent the fundamental quantum 

uncertainty in a measurement.  

 To take this a step further and characterize the statistical relationship between two 

variables, one can define a joint probability distribution, P(A,B), which characterizes the 

probability of observing A between A and A+dA and B between B and B+dB. The statistical 

relationship between the variables can also emerges from moments of P(A,B). The most 

important measure is a correlation function 

 ABC AB A B   (8.8) 

You can see that this is the covariance—the variance for a bivariate distribution. This is a 

measure of the correlation between the variables A and B. That is, for a specific value of A, what 

are the associated statistics for B. To interpret this it helps to define a correlation coefficient  
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r can take on values from +1 to 1. If r = 1 then there is perfect correlation between the two 

distributions. If the variables A and B depend the same way on a common internal variable, then 

they are correlated. If no statistical relationship exists between the two distributions, then they 

are uncorrelated, r = 0, and AB A B . It is also possible that the distributions depend in an 

equal and opposite manner on an internal variable, in which case we call them anti-correlated 

with r = 1.   
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8.2. Thermal Equilibrium 

For a statistical mixture at thermal equilibrium, individual molecules can occupy a distribution of 

energy states. An equilibrium system at temperature T has the canonical probability distribution  
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Z is the partition function and = (kBT)-1. Classically, we can calculate the equilibrium ensemble 

average value of a variable A as  

    , ; ,eqA d d A t   p q p q p q  (8.11) 

In the quantum mechanical case, we can obtain an equilibrium expectation value of A by 

averaging A  over the thermal occupation of quantum states:  

   eqA Tr A  (8.12) 

where eq is the density matrix at thermal equilibrium. eq is a diagonal matrix characterized by 

Boltzmann weighted populations in the quantum states: 
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In fact, the equilibrium density matrix is defined by eq. (8.10), as we can see by calculating its 

matrix elements using ˆ
nH n E n , 

   ˆ1 nE
H

eq nm n nmnm

e
n e m p

Z Z


  


    (8.15) 

Note also that   ĤZ Tr e   (8.16) 

 Eq. (8.12) can also be written as 
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It may not be obvious how this expression relates to our previous expression for mixed states 

 *

,
ˆ

n m mnn m
A c c A Tr A  . Remember that for an equilibrium system we are dealing with 

a statistical mixture in which no coherences (no phase relationships) are present in the sample. 

The lack of coherence is the important property that allows the equilibrium ensemble average of 

m nc c  to be equated with the thermal population pn. To evaluate this average we recognize that 

these are complex numbers, and that the equilibrium ensemble average of the expansion 

coefficients is equivalent to phase averaging over the expansion coefficients. Since at 

equilibrium all phases are equally probable   
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where n
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ic c e  and nm n m    . The integral in  is quite clearly zero unless n m  , giving 
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8.3. Fluctuations 
“Fluctuations” refers to the random or noisy time evolution of a microscopic subsystem 
imbedded an actively evolving environment. Randomness is a property of all chemical systems 
to some degree, but we will focus on an environment that is at or near thermal equilibrium. 
Systems at thermal equilibrium are macroscopically time-invariant; however, they are 
microscopically dynamic, with molecules exploring the range of microstates that are thermally 
accessible. Local variations in energy result in changes in molecular position, orientation, and 
structure, and are responsible for the activation events that allow chemical equilibria to be 
established.  

 If we wish to describe an internal variable A for a system at thermal equilibrium, we can 

obtain the statistics of A by performing ensemble averages described above. The resulting 

averages would be time-invariant. However, if we observe a member of the ensemble as a 

function of time,  iA t , the behavior is generally is observed to fluctuate randomly. The 

fluctuations in  iA t  vary about a mean value A , sampling thermally accessible values which 

are described by an equilibrium probability distribution function P(A). P(A) describes the 

potential of mean force, the free energy projected as a function of A: 

    lnBF A k T P A   (8.19) 

 

 
 

Given enough time, we expect that one molecule in a homogeneous medium will be able 

to sample all available configurations of the system. Moreover, a histogram of the values 

sampled by one molecule is expected to be equal to P(A). Such a system is referred to as ergodic. 

Specifically, in an ergodic system, it is possible describe the macroscopic properties either by 

averaging over all possible values for a given member of the ensemble, or by performing an 

average over the realizations of A for the entire ensemble at one point in time. That is, the 

statistics for A  can be expressed as a time-average or an ensemble average. For an equilibrium 

system, the ensemble average is  
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and the time average is 
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These quantities are equal for an ergodic system:  

 A A  

Equilibrium systems are ergodic. From eq. (8.21), we see that the term ergodic also carries a 

dynamical connotation. A system is ergodic if one member of the ensemble has evolved long 

enough to sample the equilibrium probability distribution. Experimental observations on shorter 

time scales view a nonequilibrium system.  
 
  
 


