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TWO-DIMENSIONAL SPECTROSCOPY 

Correlation spectroscopy 
What is two-dimensional spectroscopy? This is a method that will describe the underlying 

correlations between two spectral features. Our examination of pump-probe experiments 

indicates that the third-order response reports on the correlation between different spectral 

features. Let’s look at this in more detail using a system with two excited states as an example, 

for which the absorption spectrum shows two spectral features at baω  and caω .   

 
Imagine a double resonance (pump-probe) experiment in which we choose a tunable excitation 

frequency pumpω , and for each pump frequency we measure changes in the absorption spectrum 

as a function of probeω .  Generally speaking, we expect resonant excitation to induce a change of 

absorbance.   

 The question is: what do we observe if we pump at baω  and probe at caω ?  If nothing 

happens, then we can conclude that microscopically, there is no interaction between the degrees 

of freedom that give rise to the ba and ca transitions.  However, a change of absorbance at caω  

indicates that in some manner the excitation of baω  is correlated with caω .  Microscopically, 

there is a coupling or chemical conversion that allows deposited energy to flow between the 

coordinates. Alternatively, we can say that the observed transitions occur between eigenstates 

whose character and energy encode molecular interactions between the coupled degrees of 

freedom (here β and χ): 
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 Now imagine that you perform this double resonance experiment measuring the change 

in absorption for all possible values of  
ω pump  and 

 
ω probe , and plot these as a two-dimensional 

contour plot:1 

 

This is a two-dimensional spectrum that reports on the correlation of spectral features observed 

in the absorption spectrum.  Diagonal peaks reflect the case where the same resonance is pumped 

and probed. Cross peaks indicate a cross-correlation that arises from pumping one feature and 

observing a change in the other. The principles of correlation spectroscopy in this form were 

initially developed in the area of magnetic resonance, but are finding increasing use in the areas 

of optical and infrared spectroscopy. 

 Double resonance analogies such as these illustrate the power of a two-dimensional 

spectrum to visualize the molecular interactions in a complex system with many degrees of 

freedom. Similarly, we can see how a 2D spectrum can separate components of a mixture 

through the presence or absence of cross peaks. 
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 Also, it becomes clear how an inhomogeneous lineshape can be decomposed into the 

distribution of configurations, and the underlying dynamics within the ensemble. Take an 

inhomogeneous lineshape with width Δ and mean frequency  ω ab , which is composed of a 

distribution of homogeneous transitions of width Γ. We will now subject the system to the same 

narrow band excitation followed by probing the differential absorption ΔA at all probe 

frequencies.   

 
Here we observe that the contours of a two-dimensional lineshape report on the inhomogeneous 

broadening. We observe that the lineshape is elongated along the diagonal axis (ω1=ω3). The 

diagonal linewidth is related to the inhomogeneous width Δ  whereas the antidiagonal width 

  
ω1 +ω3 = ω ab / 2⎡⎣ ⎤⎦  is determined by the homogeneous linewidth Γ .   
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2D Spectroscopy from Third Order Response 
These examples indicate that narrow band pump-probe experiments can be used to construct 2D 

spectra, so in fact the third-order nonlinear response should describe 2D spectra. To describe 

these spectra, we can think of the excitation as a third-order process arising from a sequence of 

interactions with the system eigenstates. For instance, taking our initial example with three 

levels, one of the contributing factors is of the form R2:   

 
Setting 2τ  = 0 and neglecting damping, the response function is 

   R2 τ1,τ 3( ) = pa µab

2
µac

2 e− iωbaτ1−iωcaτ3  (1) 

The time domain behavior describes the evolution from one coherent state to another—driven by 

the light fields:   

 
 A more intuitive description is in the frequency domain, which we obtained by Fourier 

transforming eq. (1):   

 

   

!R2 ω1,ω3( ) = eiω1τ1+iω3τ3 R2 τ1,τ 3( ) dτ1 dτ 3−∞

∞

∫−∞

∞

∫
= pa µab

2
µac

2
δ ω3 −ω ca( )δ ω1 −ω ba( )

≡ pa µab

2
µac

2
Ρ ω3,τ 2;ω1( )

 (2) 

The function P looks just like the covariance xy  that describes the correlation of two variables 

x  and y . In fact P is a joint probability function that describes the probability of exciting the 
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system at baω  and observing the system at caω  (after waiting a time 2τ ).  In particular, this 

diagram describes the cross peak in the upper left of the initial example we discussed.  

Fourier transform spectroscopy 
The last example underscores the close relationship between time and frequency domain 

representations of the data. Similar information to the frequency-domain double resonance 

experiment is obtained by Fourier transformation of the coherent evolution periods in a time 

domain experiment with short broadband pulses.   

 In practice, the use of Fourier transforms 

requires a phase-sensitive measure of the radiated 

signal field, rather than the intensity measured by 

photodetectors. This can be obtained by beating 

the signal against a reference pulse (or local 

oscillator) on a photodetector. If we measure the 

cross term between a weak signal and strong local 

oscillator: 

 

  

δ ILO τ LO( ) = Esig + ELO

2
− ELO

2

≈ 2Re dτ 3 Esig τ 3( ) ELO τ 3 −τ LO( )
−∞

+∞

∫
. (3) 

For a short pulse LOE ,  
δ I τ LO( )∝ Esig τ LO( ) .  By acquiring the signal as a function of 1τ  and LOτ  

we can obtain the time domain signal and numerically Fourier transform to obtain a 2D 

spectrum.   

 Alternatively, we can perform these operations in reverse order, using a grating or other 

dispersive optic to spatially disperse the frequency components of the signal. This is in essence 

an analog Fourier Transform. The interference between the spatially dispersed Fourier 

components of the signal and LO are subsequently detected.   

 

 

 

( ) ( ) ( ) ( )2 2
3 3 3 3LO sig LOI E E Eδ ω ω ω ω= + −∫
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Characterizing Couplings in 2D Spectra2 
One of the unique characteristics of 2D spectroscopy is the ability to characterize molecular 

couplings. This allows one to understand microscopic relationships between different objects, 

and with knowledge of the interaction mechanism, determine the structure or reveal the 

dynamics of the system. To understand how 2D spectra report on molecular interactions, we will 

discuss the spectroscopy using a model for two coupled electronic or vibrational degrees of 

freedom. Since the 2D spectrum reports on the eigenstates of the coupled system, understanding 

the coupling between microscopic states requires a model for the eigenstates in the basis of the 

interacting coordinates of interest. Traditional linear spectroscopy does not provide enough 

constraints to uniquely determine these variables, but 2D spectroscopy provides this information 

through a characterization of two-quantum eigenstates. Since it takes less energy to excite one 

coordinate if a coupled 

coordinate already has energy in 

it, a characterization of the 

energy of the combination mode 

with one quantum of excitation in 

each coordinate provides a route 

to obtaining the coupling.  This 

principle lies behind the use of 

overtone and combination band 

molecular spectroscopy to 

unravel anharmonic couplings.  

The language for the different variables for the Hamiltonian of two coupled coordinates 

varies considerably by discipline. A variety of terms that are used are summarized below. We 

will use the underlined terms. 

System Hamiltonian SH  Local or site 
basis (i,j) 

Eigenbasis 
(a,b) 

One-Quantum 
Eigenstates Two-Quantum Eigenstates 

Local mode Hamiltonian  
Exciton Hamiltonian 

Frenkel Exciton Hamiltonian  
Coupled oscillators 

Sites 
Local modes 
Oscillators 

Chromophores 

Eigenstates 
Exciton states 

Delocalized states  
 

Fundamental 
v=0-1 

One-exciton states 
Exciton band 

Combination mode or band 
Overtone  

Doubly excited states 
Biexciton  

Two-exciton states 
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The model for two coupled coordinates can take many forms. We will pay particular 

attention to a Hamiltonian that describes the coupling between two local vibrational modes i and 

j coupled through a bilinear interaction of strength J: 

 

  

Hvib = Hi + H j +Vi, j

=
pi

2

2mi

+V qi( ) + pj
2

2mj

+V qj( ) + Jqiq j

 (4) 

An alternate form cast in the ladder operators for vibrational or electronic states is the Frenkel 

exciton Hamiltonian 

 
   
Hvib,harmonic ≈ !ω i ai

†ai( ) + !ω j a j
†aj( ) + J ai

†aj + aia j
†( ) . (5) 

 
  
Helec = Eiai

†ai + E ja j
†aj + Jijai

†aj + c.c( )  (6) 

The bi-linear interaction is the simplest form by which the energy of one state depends on the 

other. One can think of it as the leading term in the expansion of the coupling between the two 

local states.  Higher order expansion terms are used in another common form, the cubic 

anharmonic coupling between normal modes of vibration  

 
  
Hvib =

pi
2

2mi

+ 1
2

kiqi
2 + 1

6
giiiqi

2⎛

⎝⎜
⎞

⎠⎟
+

pj
2

2mj

+ 1
2

k jq j
2 + 1

6
g jjjq j

2
⎛

⎝
⎜

⎞

⎠
⎟ +

1
2

giijqi
2qj +

1
2

gijjqi q j
2⎛

⎝⎜
⎞
⎠⎟

. (7) 

 In the case of eq. (5), the eigenstates and energy eigenvalues for the one-quantum states 

are obtained by diagonalizing the 2x2 matrix 

 

  

HS
(1) =

Ei=1 J

J E j=1

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

. (8) 

1iE = and 1jE = are the one-quantum energies for the local modes iq  and jq . These give the system 

energy eigenvalues 

 
  
Ea/b = ΔE ± ΔE2 + J 2( )1/2

 (9) 

 
  
ΔE = 1

2
Ei=1 − E j=1( ) . (10) 

aE  and bE  can be observed in the linear spectrum, but are not sufficient to unravel the three 

variables (site energies i jE E and coupling J) relevant to the Hamiltonian; more information is 

needed.  
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For the purposes of 2D spectroscopy, the coupling is encoded in the two-quantum 

eigenstates. Since it takes less energy to excite a vibration  i  if a coupled mode  j  already has 

energy, we can characterized the strength of interaction from the system eigenstates by 

determining the energy of the combination mode abE  relative to the sum of the fundamentals: 

  Δab = Ea + Eb − Eab . (11) 

In essence, with a characterization of   Eab , Ea , Eb  one has three variables that constrain , ,i jE E J . 

The relationship between  Δab  and J depends on the model.  

Working specifically with the vibrational Hamiltonian eq. (4), there are three two-

quantum states that must be considered. Expressed as product states in the two local modes these 

are ,i j = 20 , 02 , and 11 . The two-quantum energy eigenvalues of the system are obtained 

by diagonalizing the 3x3 matrix 

 

  

HS
(2) =

Ei=2 0 2J

0 E j=2 2J

2J 2J Ei=1 + E j=1

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

 (12) 

Here 2iE = and 2jE =  are the two-quantum energies for the local modes iq  and jq . These are 

commonly expressed in terms of  δ Ei , the anharmonic shift of the i=1-2 energy gap relative to 

the i=0-1 one-quantum energy: 

 
  

δ Ei = Ei=1 − Ei=0( )− Ei=2 − Ei=1( )
δω i =ω10

i −ω 21
i

 (13) 

 Although there are analytical solutions to eq. (12), it is more informative to examine 

solutions in two limits. In the strong coupling limit (J >> ΔE), one finds  

  Δab = J . (14) 

For vibrations with the same anharmonicity Eδ  with weak coupling between them (J << ΔE), 

perturbation theory yields 

 
  
Δab = δ E J 2

ΔE2 . (15) 
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This result is similar to the perturbative solution for weakly coupled oscillators of the form given 

by eq. (7) 

 
  
Δab = giij

2 4Ei

E j
2 − 4Ei

2

⎛

⎝
⎜

⎞

⎠
⎟ + gijj

2 4E j

Ei
2 − 4E j

2

⎛

⎝
⎜

⎞

⎠
⎟ . (16) 

 

EXAMPLE 
So, how do these variables present themselves in 2D spectra?  Here it is helpful to use a 

specific example: the strongly coupled carbonyl vibrations of Rh(CO)2(acac) or RDC.  For the 

purpose of 2D spectroscopy with infrared fields resonant with the carbonyl 

transitions, there are six quantum states (counting the ground state) that 

must be considered. Coupling between the two degenerate CO stretches 

leads to symmetric and anti-symmetric one-quantum eigenstates, which are 

more commonly referred to by their normal mode designations: the 

symmetric and asymmetric stretching vibrations. For n=2 coupled 

vibrations, there are n(n−1)/2 = 3 two-quantum eigenstates.  In the normal 

mode designation, these are the first overtones of the symmetric and 

asymmetric modes and the combination band. This leads to a six level 

system for the system eigenstates, which we designate by the number of 

quanta in the symmetric and asymmetric stretch:  00 ,  s = 10 ,  a = 01 ,   2s = 20 , 

  2a = 02 , and   sa = 11 . For a model electronic system, there are four essential levels that 

need to be considered, since Fermi statistics does not allow two electrons in the same state:  

 00 , 10 , 01 , and  11 . 

We now calculate the nonlinear third-order 

response for this six-level system, assuming that all of 

the population is initially in the ground state. To 

describe a double-resonance or Fourier transform 2D 

correlation spectrum in the variables ω1 and ω3, include 

all terms relevant to pump-probe experiments: 

  -k1+k2+k3  ( IS , rephasing) and   k1 - k2+k3  ( SII , non-
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rephasing). After summing over many interaction permutations using the phenomenological 

propagator, keeping only dipole allowed transitions with ±1 quantum, we find that we expect 

eight resonances in a 2D spectrum.  For the case of the rephasing spectrum IS  

 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

4 4
0 0

2 2 2 2
0 0 0 0

2 2
0 2

s , a ,
I 1 3

1 s,0 s,0 3 s,0 s,0 1 a,0 a,0 3 a,0 a,0

a , s , a , s ,

1 s,0 s,0 3 a,0 a,0 1 a,0 a,0 3 s,0 b,0

s , s ,s

1 s,

2 µ 2 µ
S ,

i ω Γ i ω Γ i ω Γ i ω Γ

2 µ µ 2 µ µ
i ω Γ i ω Γ i ω Γ i ω Γ

µ µ
i ω

ω ω = +
⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ω + + ω − + ω + + ω − +⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

+ +
⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ω + + ω − + ω + + ω − +⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

−
ω +( ) ( ) ( ) ( )

( ) ( ) ( )

2 2
0 2

2 2 2 2
0 0

a , a ,a

0 s,0 3 s,0 s 2s,s 1 a,0 a,0 3 a,0 a 2a,a

s , as ,s 0,s a,0 as,a s,as a , as ,a 0,a s,0 as,s a,as

1 s,0 s,0 3 a,0 as as,s 1 a,0 a,0

µ µ
Γ i ω Δ Γ i ω Γ i ω Δ Γ

µ µ µ µ µ µ µ µ µ µ µ µ
i ω Γ i ω Δ Γ i ω Γ i

−
⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤+ ω − + + ω + + ω − + +⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

+ +
− −
⎡ ⎤ ⎡ ⎤ ⎡ ⎤ω + + ω − + + ω + +⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ( )3 s,0 as as,aω Δ Γ⎡ ⎤ω − + +⎣ ⎦

′ ′ ′ ′≡ 1+1 + 2+ 2 + 3+ 3 + 4+ 4

(17) 

To discuss these peaks we examine how they appear in the experimental Fourier 

transform 2D IR spectrum of RDC, here plotted both as in differential absorption mode and 

absolute value mode. We note that there are eight peaks, labeled according to the terms i eq. (17) 

from which they arise. Each peak specifies a sequence of interactions with the system 

eigenstates, with excitation at a particular ω1 and detection at given ω3. Notice that in the 

excitation dimension ω1 all of the peaks lie on one of the fundamental frequencies. Along the 

detection axis ω3 resonances are seen at all six one-quantum transitions present in our system. 

More precisely, 

there are four features: two 

diagonal and two cross 

peaks each of which are 

split into a pair. The 

positive diagonal and cross 

peak features represent 

evolution on the 

fundamental transitions, 

while the split negative 
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features arise from propagation in the two-quantum manifold. The diagonal peaks represent a 

sequence of interactions with the field that leaves the coherence on the same transition during 

both periods, where as the split peak represents promotion from the fundamental to the overtone 

during detection. The overtone is anharmonically shifted, and therefore the splitting between the 

peaks, ,a sΔ Δ , gives the diagonal anharmonicity. The cross peaks arise from the transfer of 

excitation from one fundamental to the other, while the shifted peak represents promotion to the 

combination band for detection. The combination band is shifted in frequency due to coupling 

between the two modes, and therefore the splitting between the peaks in the off-diagonal features 

asΔ  gives the off-diagonal anharmonicity.   

Notice for each split pair of peaks, that in the limit that the anharmonicity vanishes, the 

two peaks in each feature would overlap. Given that they have opposite sign, the peaks would 

destructively interfere and vanish for a harmonic system.  This is a manifestation of the rule that 

a nonlinear response vanishes for a harmonic system. So, in fact, a 2D spectrum will have 

signatures of whatever types of vibrational interactions lead to imperfect interference between 

these two contributions. Nonlinearity of the transition dipole moment will lead to imperfect 

cancellation of the peaks at the amplitude level, and nonlinear coupling with a bath will lead to 

different lineshapes for the two features. 

With an assignment of the peaks in the spectrum, one has mapped out the energies of the 

one- and two-quantum system eigenstates.  These eigenvalues act to constrain any model that 

will be used to interpret the system. One can now evaluate how models for the coupled 

vibrations match the data.  For instance, when fitting the RDC spectrum to the Hamiltonian in 

eq. (4) for two coupled anharmonic local modes with a potential of the form 

  V qi( ) = 1
2 kiqi

2 + 1
6 giiiqi

3 , we obtain    !ω10
i = !ω10

j = 2074 cm-1, ijJ = 35 cm-1,  and  
giii = g jjj = 172 

cm-1.  Alternatively, we can describe the spectrum through eq. (7) as symmetric and asymmetric 

normal modes with diagonal and off-diagonal anharmonicity.  This leads to    !ω10
a = 2038 cm-1, 

   !ω10
s = 2108 cm-1, aaa sssg g= = 32 cm-1, and  gssa = gaas = 22 cm-1. Provided that one knows the 

origin of the coupling and its spatial or angular dependence, one can use these parameters to 

obtain a structure.
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Appendix: Third Order Diagrams Corresponding to Peaks in a 2D Spectrum of Coupled Vibrations 

 

 
 
*Diagrams that do not contribute to double-resonance experiments, but do contribute to Fourier-transform measurements. 

Rephasing diagrams correspond to the terms in eq. (17). 
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Using a phenomenological propagator, the SII non-rephasing diagrams lead to the following expressions for the eight peaks in the 2D 

spectrum. 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

4 2 2 4 2 2
0 0 0 0 0 0

2 2 2 2
0 0 0 0

s , a , s , a , a , s ,
II 1 3

1 s,0 s,0 3 s,0 s,0 1 a,0 a,0 3 a,0 a,0

a , s , a , s ,

1 s,0 s,0 3 a,0 a,0 1 a,0 a,0 3 s,0 b

2 µ µ µ 2 µ µ µ
S ,

i ω Γ i ω Γ i ω Γ i ω Γ

µ µ µ µ
i ω Γ i ω Γ i ω Γ i ω Γ

+ +
ω ω = +

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤− ω − + ω − + − ω − + ω − +⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

+ +
⎡ ⎤ ⎡ ⎤ ⎡ ⎤− ω − + ω − + − ω − + ω − +⎣ ⎦ ⎣ ⎦ ⎣ ⎦

( ) ( ) ( ) ( )

( ) ( )

2 2 2 2
0 0

2 2
0

,0

s , 2s,s s , 0,a as,s a,as a,0 2a,a a,0 0,s as,a s,as

1 s,0 s,0 3 s,0 s 2s,s 1 a,0 a,0 3 a,0 a 2a,a

s , as,s

1 s,0 s,0 3 a,0 as as,s

µ µ µ µ µ µ µ µ +µ µ µ µ
i ω Γ i ω Δ Γ i ω Γ i ω Δ Γ

µ µ µ
i ω Γ i ω Δ Γ

⎡ ⎤⎣ ⎦

+
− −
⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤− ω − + ω − + + − ω − + ω − + +⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

− −
⎡ ⎤ ⎡ ⎤− ω − + ω − + +⎣ ⎦ ⎣ ⎦ ( ) ( )

2 2
0a , as,a

1 a,0 a,0 3 s,0 as as,a

µ
i ω Γ i ω Δ Γ⎡ ⎤ ⎡ ⎤− ω − + ω − + +⎣ ⎦ ⎣ ⎦

′ ′ ′ ′≡ 1+1 + 2+ 2 + 3+ 3 + 4+ 4

 (18) 
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Two-dimensional spectroscopy to characterize spectral diffusion 

A more intuitive, albeit difficult, approach to characterizing spectral diffusion is with a two-

dimensional correlation technique. Returning to our example of a double resonance experiment, 

let’s describe the response from an inhomogeneous lineshape with width Δ and mean frequency 

abω , which is composed of a distribution of homogeneous transitions of width Γ. We will now 

subject the system to excitation by a narrow band pump field, and probe the differential 

absorption ΔA at all probe frequencies. We then repeat this for all pump frequencies: 

ΔA

b

a
ab

A

A

ΔA
Δ

Δ

Γ

~ 2Γ

abω

abω

pumpω

probeω

pumpω

abω

probeω

probeω

probeω

 
In constructing a two-dimensional representation of this correlation spectrum, we observe that 

the observed lineshape is elongated along the diagonal axis (ω1=ω3). The diagonal linewidth is 

related to the inhomogeneous width Δ  whereas the antidiagonal width 
  
ω1 +ω3 = ω ab / 2⎡⎣ ⎤⎦  is 

determined by the homogeneous linewidth Γ .   

 For the system exhibiting spectral diffusion, we recognize that we can introduce a waiting 

time 2τ  between excitation and detection, which provides a controlled period over which the 
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system can evolve. One can see that when 2τ  varies from much less to much greater than the 

correlation time, cτ , that the lineshape will gradually become symmetric.   

 
This reflects the fact that at long times the system excited at any one frequency can be observed 

at any other with equilibrium probability. That is, the correlation between excitation and 

detection frequencies vanishes.   

 

  

δ ω1 −ω eg
( i)( )δ ω3 −ω eg

j( )( )
ij
∑

→ δ ω1 −ω eg
i( )( )

ij
∑ δ ω3 −ω eg

j( )( )
 (19) 

To characterize the energy gap correlation function, we choose a metric 

that describes the change as a function of 2τ .  For instance, the 

ellipticity  

 
  
E τ 2( ) = a2 − b2

a2 + b2  (20) 

is directly proportional to  
Ceg τ( ) .   

 The photon echo experiment is the time domain version of this double-resonance or hole 

burning experiment. If we examine 2R  in the inhomogeneous and homogeneous limits, we can 

plot the polarization envelope as a function of 1τ  and 3τ .   
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In the inhomogeneous limit, an echo ridge decaying as te−Γ  extends along 1 3τ τ= . It decays with 

the inhomogeneous distribution in the perpendicular direction. In the homogeneous limit, the 

response is symmetric in the two time variables. Fourier transformation allows these envelopes 

to be expressed as the lineshapes above. Here again 2τ  is a control variable to allow us to 

characterize  
Ceg τ( )  through the change in echo profile or lineshape.   

 

                                                
1  Here we use the right-hand rule convention for the frequency axes, in which the pump or 

excitation frequency is on the horizontal axis and the probe or detection frequency is on the 
vertical axis.  Different conventions are being used, which does lead to confusion.  We note 
that the first presentations of two-dimensional spectra in the case of 2D Raman and 2D IR 
spectra used a RHR convention, whereas the first 2D NMR and 2D electronic measurements 
used the LHR convention. 

2  Khalil M, Tokmakoff A. “Signatures of vibrational interactions in coherent two-dimensional 
infrared spectroscopy.” Chem Phys. 2001;266(2-3):213-30; Khalil M, Demirdöven N, 
Tokmakoff A. “Coherent 2D IR Spectroscopy: Molecular structure and dynamics in 
solution.” J Phys Chem A. 2003;107(27):5258-79; Woutersen S, Hamm P. Nonlinear two-
dimensional vibrational spectroscopy of peptides. J Phys: Condens Mat. 2002;14:1035-62. 

 
 


