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OVERVIEW OF TIME-INDEPENDENT QUANTUM MECHANICS 

1. Describing a System Quantum Mechanically1 

As a starting point it is useful to review the postulates of quantum mechanics, and use this as an 

opportunity to elaborate on some definitions and properties of quantum systems.   

1. The wavefunction. Quantum mechanical matter exhibits wave-particle duality in which 

the particle properties emphasize classical aspects of the object’s position, mass, and 

momentum, and the wave properties reflect its spatial delocalization and ability to 

interfere constructively or destructively with other particles or waves. As a result, in 

quantum mechanics the physical properties of the system are described by the 

wavefunction . The wavefunction is a time-dependent complex probability amplitude 

function that is itself not observable; however, it encodes all properties of the system’s 

particles and fields. Depending on the context, particle is a term that will refer to a 

variety of objects―such as electron, nucleons, and atoms―that fill space and have mass, 

but also retain wavelike properties. Fields refer to a variety of physical quantities that are 

continuous in time and space, which have energy and influence the behavior of particles.  

In the general sense, the wavefunction, or state, does not refer to a three-

dimensional physical space in which quantum particles exist, but rather an infinite-

dimensional linear vector space, or Hilbert space, that accounts for all possible 

observable properties of the system. We can represent the wavefunction in physical 

space, (r), by carrying out a projection onto the desired spatial coordinates. As a 

probability amplitude function, the wavefunction describes the statistical probability of 

locating particles or fields in space and time. Specifically, we claim that the square of the 

wavefunction is proportional to a probability density (probability per unit volume). In one 

dimension, the probability of finding a particle in a space between x and x+dx at a 

particular time t is  

      *, t , t , t  dxP dx   x x x  (1) 

We will always assume that the wavefunctions for a particle are properly normalized, so 

that ∫ P(x,t) dx = 1.  

2. Operators. Quantum mechanics parallels Hamilton’s formulation of classical mechanics, 

in which the properties of particles and fields are described in terms of their position and 

momenta. Each particle described by the wavefunction will have associated with it one or 

more degrees of freedom that are defined by the dimensionality of the problem. For each 

degree of freedom, particles which are described classically by a position x and 
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momentum px, will have associated with it a quantum mechanical operator x̂  or ˆ xp , 

which will be used to describe physical properties and experimental observables. 

Operators correspond to dynamical variables, whereas static variables, such as mass, do 

not have operators associated with them. In practice there is a quantum/classical 

correspondence which implies that the quantum mechanical behavior can often be 

deduced from the classical dynamical equations by substituting the quantum mechanical 

operator for the corresponding classical variables. In the case of position and momenta, 

these operators are ˆx x  and  ˆ xp i x    . Table 1 lists some important operators 

that we will use. Note that time does not have an operator associated with it, and for our 

purposes is considered an immutable variable that applies uniformly to the entire system. 

 
Table 1. Operators in the position representation corresponding to 
observable classical dynamical variables in one and three 
dimensions 

Classical variable   Operator 
Position  (1D) x x̂  
 (3D) 

2. r r̂  

Linear momentum  (1D) px  ˆ xp i x     

  (3D) 
3. p p̂ i    

Function of position 
and momentum  

(1D) 
f(x,px)  ˆ ˆ, xf x p  

Angular momentum  (3D) L r p  ˆ ˆL i r    
z-component of orbital 
angular momentum  

 
  ˆ

zL i    
 

What do operators do? Operators map one state of the system to another―also known as 

acting on the wavefunction: 

 0 AÂ       (2) 

Here 0 is the initial wavefunction and A refers to the wavefunction after the action of 

the operator Â . Whereas the variable x represents a position in physical space, the 

operator x̂  maps the wavefunction from Hilbert space onto physical space. Operators 

also represent a mathematical operation on the wavefunction that influences or changes 

it, for instance moving in time and space. Operators may be simply multiplicative, as 

with the operator ,̂x  or they may take differential or integral forms. The gradient  , 
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divergence  , and curl   are examples of differential operators, whereas Fourier and 

Laplace transforms are integral operators.  

When writing an operator, it is always understood to be acting on a wavefunction 

to the right. For instance, the operator ˆ xp says that one should differentiate the 

wavefunction to its right with respect to x, and then multiply the result by –i . The 

operator x̂  simply means multiply the wavefunction by x. Since operators generally do 

not commute, a series of operators must be applied in the prescribed right-to-left order. 

 0 B,A
ˆˆ ˆBA  B A      (3) 

One special characteristic of operators that we will look for is whether operators are 

Hermitian. A Hermitian operator obeys the equality ˆ ˆA A . 

Of particular interest is the Hamiltonian, Ĥ , an operator corresponding to the 

total energy of the system. The Hamiltonian operator describes all interactions between 

particles and fields, and thereby determines the state of the system. The Hamiltonian is a 

sum of the total kinetic and potential energy for the system of interest, ˆ ˆ ˆH T V  , and is 

obtained by substituting the position and momentum operators into the classical 

Hamiltonian. For one particle under the influence of a potential, 

  
2

2ˆ ˆ,
2

H V r t
m

   


  (4) 

Notation: In the following chapters, we will denote operators with a circumflex only 

when we are trying to explicitly note its role as an operator, but otherwise we take the 

distinction between variables and operators to be understood.  

3. Eigenvalues and Eigenfunctions. The properties of a system described by mapping with 

the operator Â  can only take on the values a that satisfy an eigenvalue equation 

 Â a     (5) 

For instance, if the state of the system is /( ) ,ipxx e    the momentum operator 

 ˆ xp i x     returns the eigenvalue p (a scalar) times the original wavefunction. Then 

( )x  is said to be an eigenfunction of ˆ xp . For the Hamiltonian, the solutions to the 

eigenvalue equation  

 Ĥ E    (6) 

yield possible energies of the system. The set of all possible eigenvectors are also known 

as the eigenstates i. Equation (6) is the time-independent Schrödinger equation (TISE).  
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4. Linear Superposition. The eigenstates of Â  form a complete orthonormal basis. In 

Hilbert space the wavefunction is expressed as a linear combination of orthonormal 

functions,  

 
0

i i
i

c




   (7) 

 where ci are complex numbers. The eigenvectors i are orthogonal and complete: 

 *

– i j ijd  



  (8) 

 
2

0

1i
i

c




   (9) 

The choice of orthonormal functions in which to represent the system is not unique and is 

referred to as selecting a basis set. The change of basis set is effectively a transformation 

that rotates the wavefunction in Hilbert space. 

5. Expectation Values. The outcome of a quantum measurement cannot be known with 

arbitrary accuracy; however, we can statistically describe the probability of measuring a 

certain value. The measurement of a value associated with the operator is obtained by 

calculating the expectation value of the operator 

 ˆA d A       (10) 

Here the integration is over Hilbert space. The brackets …  refer to an average value that 

will emerge from a large series of measurements on identically prepared systems. 

Whereas A   is an average value, the variance in a distribution of values measured can 

be calculated from 2 2.A A A        Since an observable must be real valued, operators 

corresponding to observables are Hermitian: 

 ˆ ˆd A d A          (11) 

As a consequence, a Hermitian operator must have real eigenvalues and orthogonal 

eigenfunctions.  

6. Commutators. Operators are associative but not necessarily commutative. Commutators 

determine whether two operators commute. The commutator of two operators Â  and B̂  

is defined as 

 ˆ ˆ ˆˆ ˆ ˆ,A B AB BA      (12) 
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If we first make an observation of an eigenvalue a for Â , one cannot be assured of 

determining a unique eigenvalue b for a second operator B̂ . This is only possible if the 

system is an eigenstate of both Â  and B̂ . This would allow one to state that ˆ ˆˆ ˆAB BA   

or alternatively ˆ ˆ[ , ] 0A B   . If the operators commute, the commutator is zero, and Â  

and B̂  have simultaneous eigenfunctions. If the operators do not commute, one cannot 

specify a and b exactly, however, the variance in their uncertainties can be expressed as 
2 2 21

2
ˆ ˆ[ , ]A B A B     . As an example, we see that ˆ xp  and ˆ yp  commute, but x̂  and ˆ xp  do 

not. Thus we can specify the momentum of a particle in the x and y coordinates precisely, 

but cannot specify both the momentum and position of a particle in the x dimension to 

arbitrary resolution. We find that ˆ ˆ[ , ]xx p i   and / 2xx p    .  

Note that for the case that the Hamiltonian can be written as a sum of commuting 

terms, as is the case for a set of independent or separable coordinates or momenta, then 

the total energy is additive in eigenvalues for each term, and the total eigenfunctions can 

be written as product states in the eigenfunctions for each term. 

7. Time Dependence. The wavefunction evolves in time as described by the time-

dependent Schrödinger equation (TDSE): 

 ˆi H
t


  


  (13) 

In the following chapter, we will see the reasoning that results in this equation. Note that 

it is not really a classical wave equation because it is linear in time. In fact, for a free 

particle Hamiltonian 2 2ˆ / 2H m   , it looks like a diffusion equation with an 

imaginary diffusion constant. 

                                                 
1.  P. Atkins and R. Friedman, Molecular Quantum Mechanics, 4th ed. (Oxford University Press, Oxford; 

New York, 2005); G. Baym, Lectures on Quantum Mechanics. (Perseus Book Publishing, L.L.C., New 
York, 1969); C. Cohen-Tannoudji, B. Diu and F. Lalöe, Quantum Mechanics. (Wiley-Interscience, Paris, 
1977); D. J. Griffiths, Introduction to Quantum Mechanics, 2nd ed. (Pearson Prentice Hall, Upper Saddle 
River, NJ, 2005); E. Merzbacher, Quantum Mechanics, 3rd ed. (Wiley, New York, 1998); A. Messiah, 
Quantum Mechanics. (Dover Publications, 1999); J. J. Sakurai, Modern Quantum Mechanics, Revised 
Edition. (Addison-Wesley, Reading, MA, 1994). 
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2. Matrix Mechanics 

Most of our work will make use of the matrix mechanics formulation of quantum mechanics. 

The wavefunction is written as |   and referred to as a ket vector. The complex conjugate  = 

|  is a bra vector, where | |a a    . The product of a bra and ket vector, |   , is 

therefore an inner product (scalar), whereas the product of a ket and bra | |   is an outer 

product (matrix). The use of bra–ket vectors is the Dirac notation in quantum mechanics. 

In the matrix representation, |   is represented as a column vector for the expansion 

coefficients ci in a particular basis set.  

 

1

2

3

|

c

c

c

 
 
  
 
 
 

 (14) 

The bra vector |  refers to a row vector of the conjugate expansion coefficients ci
*. Since 

wavefunctions are normalized, | 1   . Dirac notation has the advantage of brevity, often 

shortening the wavefunction to a simple abbreviated notation for the relevant quantum numbers 

in the problem. For instance, we can write eq. (7) as  

 | |i
i

c i    (15) 

where the sum is over all eigenstates and the ith eigenstate | ii   . Implicit in this equation is 

that the expansion coefficient for the ith eigenstate is |ic i   . With this brevity comes the 

tendency to hide some of the variables important to the description of the wavefunction. One has 

to be aware of this, and although we will use Dirac notation for most of our work, where detail is 

required, Schrödinger notation will be used.  

The outer product | |i i  is known as a projection operator because it can be used to 

project the wavefunction of the system onto the ith eigenstate of the system as | | |ii i c i    . 

Furthermore, if we sum projection operators over the complete basis set, we obtain an identity 

operator 

 | | 1
i

i i    (16) 

which is a statement of the completeness of a basis set. The orthogonality of eigenfunctions (eq. 

(8)) is summarized as | iji j    .  

The operator Â  is a square matrix that maps from one state to another  

 0
ˆ | | AA        (17)  
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and from eq. (6) the TISE is 

 ˆ | |H E     (18) 

where E is a diagonal matrix of eigenvalues whose solution is obtained from the characteristic 

equation 

  det 0H E I   (19) 

The expectation value, a restatement of eq. (10), is written  

 ˆ| |A A      (20) 

or from eq. (15) i j ij
i j

A c c A    (21) 

where | |ijA i A j    are the matrix elements of the operator Â . As we will see later, the matrix 

of expansion coefficients ij i jc c   is known as the density matrix. From eq. (18), we see that 

the expectation value of the Hamiltonian is the energy of the system,  

 | |E H    (22) 

Hermitian operators play a special role in quantum mechanics. The Hermitian adjoint of an 

operator Â  is written †Â , and is defined as the conjugate transpose of Â : †ˆ ˆ( )TA A  . From this 

we see †ˆ ˆ| |A A        . A Hermitian operator is one that is self-adjoint, i.e., †ˆ ˆA A . For a 

Hermitian operator, a unique unitary transformation exists that will diagonalize it. 

Each basis set provides a different route to representing the same physical system, and a 

similarity transformation S transforms a matrix from one orthonormal basis to another. A 

transformation from the state |  to the state |  can be expressed as  

 | |S     (23) 

where the elements of the matrix are |ij i jS     . Then the reverse transformation is  

 †| |S     (24) 

Therefore † 1S S   and the transformation is said to be unitary. A unitary transformation refers to 

a similarity transformation in Hilbert space that preserves the scalar product, i.e., the length of 

the vector. The transformation of an operator from one basis to another is obtained from †S AS , 

and diagonalizing refers to finding the unitary transformation that puts the matrix A in diagonal 

form.  
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Properties of operators 

1. The inverse of Â  (written 1Â ) is defined by 

 1 1ˆ ˆ ˆ ˆ 1A A AA    (25)  

2. The transpose of Â  (written TA ) is 

 ( )T
nq qnA A  (26) 

If TA A  , then the matrix is anti-
symmetric. 

3. The trace of Â  is defined as 

 ˆ( ) qq
q

Tr A A
 

(27)  

The trace of a matrix is invariant to a 
similarity operation. 

4. The Hermitian adjoint of Â  (written †Â ) is 

 
† *

† *

ˆ ˆ( )

ˆ ˆ( ) ( )

T

nq qn

A A

A A




 (28) 

 If Â and B̂  are unitary then ˆ ˆAB is unitary. 

5. Â  is Hermitian if †ˆ ˆA A .  

 *ˆ ˆ( )TA A  (29)  

If Â  is Hermitian, then ˆ nA  is Hermitian and 
Âe  is Hermitian. For a Hermitian operator, 

ˆ ˆA A    . Expectation values of 
Hermitian operators are real, so all physical 
observables are associated with Hermitian 
operators.  

6. Â  is a unitary operator if its adjoint is also 
its inverse: 

 

Â†  Â1

( ÂT )*  Â1

ÂÂ† 1  ( ÂÂ† )
nq
 

nq

 (30) 

7. If †ˆ ˆA A  then Â  is said to be anti-
Hermitian. Anti-Hermetian operators have 
imaginary expectation values. Any operator 
can be decomposed into its Hermitian and 
anti-Hermitian parts as  

 

Â  Â
H
 Â

AH

Â
H


1

2
Â Â† 

Â
AH


1

2
Â Â† 

 

(31)

  

 

 

Properties of commutators 

From the definition of a commutator: 

 ˆ ˆˆ ˆˆ ˆ, AB BAA B      
(32)

 
 

we find it is anti-symmetric to exchange: 

 Â, B̂    B̂, Â 
 

(33)

 

 

and distributive: 

 ˆ ˆ ˆ ˆˆ ˆ ˆ, , ,A B C A B B C             
(34)

 
 

These properties lead to a number of useful 
identities:  

 1ˆˆ ˆˆ ˆ, ,
nn nBA B A B
        

(35) 

 1ˆˆ ˆˆ ˆ, ,
nn nAA B A B
        

(36) 

 ˆ ˆˆ ˆ ˆ ˆ ˆˆ ˆ, , ,C BA BC A B A C             
(37)

 
 

 ˆ ˆˆ ˆˆ ˆ, ,, ,A CC B A B              
(38) 

 
Â, B̂,Ĉ    B̂, Ĉ, Â  

 Ĉ, Â, B̂    0
 

(39)

 
 

The Hermetian conjugate of a commutator is  
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 Â, B̂ 
†
 B̂†, Â†   (40) 

Also, the commutator of two Hermitian 
operators is also Hermitian. 
 The anti-commutator is defined as  

 ˆ ˆˆ ˆˆ ˆ, AB BAA B


      
(41)

 
 

and is symmetric to exchange. For two 
Hermitian operators, their product can be written 

in terms of the commutator and anti-commutator 
as  

 
1 1ˆ ˆ ˆ ˆˆ ˆ, ,
2 2

AB A B A B 
       

 
(42)

 
 

The anti-commutator is the real part of the 
product of two operators, whereas the 
commutator is the imaginary part. 

 

3. Basic Quantum Mechanical Models 

This section summarizes the results that emerge for common models for quantum mechanical 

objects. These form the starting point for describing the motion of electrons and the translational, 

rotational, and vibrational motions for molecules. Thus they are the basis for developing intuition 

about more complex problems. 

a. Waves 

Waves form the basis for our quantum mechanical description of matter. Waves describe the 

oscillatory amplitude of matter and fields in time and space, and can take a number of forms. The 

simplest form we will use is plane waves, which can be written as  

 ( , ) exp[i i ]t t   r A k r   (43)  

The angular frequency ω describes the oscillations in time and is related to the number of cycles 

per second through ν = ω/2π. The wave amplitude also varies in space as determined by the 

wavevector k, where the number of cycles per unit distance (wavelength) is λ = ω/k. Thus the 

wave propagates in time and space along a direction k with a vector amplitude A with a phase 

velocity vϕ = νλ.  

b. Free particles 

For a free particle of mass m in one dimension, the Hamiltonian only reflects the kinetic energy 

of the particle 

 
2ˆˆ ˆ

2

p
H T

m
 

 
(44)

 
 

Judging from the functional form of the momentum operator, we assume that the wavefunctions 

will have the form of plane waves 

 ( ) ikxx Ae   (45)  
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Inserting this expression into the TISE, eq. (6) we find that 

 
2

2mE
k 


  (46)  

and set 1 / 2A  . Now, since we know that E = p/2m, we can write 

 
p

k 
  

(47)
 

 

k is the wavevector, which we equate with the momentum of the particle.  

Free particle plane waves ( )k x  form a complete and continuous basis set with which to 

describe the wavefunction. Note that the eigenfunctions, eq. (45), are oscillatory over all space. 

Thus describing a plane wave allows one to exactly specify the wavevector or momentum of the 

particle, but one cannot localize it to any point in space. In this form, the free particle is not 

observable because its wavefunction extends infinitely and cannot be normalized. An 

observation, however, taking an expectation value of a Hermitian operator will collapse this 

wavefunction to yield an average momentum of the particle with a corresponding uncertainty 

relationship to its position. 

c. Bound particles 

Particle-in-a-Box 

The minimal model for translational motion of a particle that is confined in space is given by the 

particle-in-a-box. For the case of a particle confined in one dimension in a box of length L with 

impenetrable walls, we define the Hamiltonian as  

 
2ˆˆ ( )

2

p
H V x

m
   (48) 

 
0 0

( )
otherwise

xx L
V x

 
 

 (49) 

The boundary conditions require that the particle cannot have any probability of being within the 

wall, so the wavefunction should vanish at x = 0 and Lx, as with standing waves. We therefore 

assume a solution in the form of a sine function. The properly normalized eigenfunctions are  

 
2

sinn

n x

L L

       1, 2,3n    (50) 

Here n are the integer quantum numbers that describe the harmonics of the fundamental 

frequency /L whose oscillations will fit into the box while obeying the boundary conditions. We 
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see that any state of the particle-in-a-box can be expressed in a Fourier series. On inserting eq. 

(50) into the time-independent Schrödinger equation, we find the energy eigenvalues 

 
2 2 2

22n

n
E

mL





 (51) 

Note that the spacing between adjacent energy levels grows as ( 1)n n .  

 This model is readily extended to a three-dimensional box by separating the box into x, y, 

and z coordinates. Then 

 ˆ ˆ ˆ ˆ
x y zH H H H    (52) 

in which each term is specified as eq. (48). Since ˆ ˆ ˆ, ,andx y zH H H  commute, each dimension is 

separable from the others. Then we find 

  , , x y zx y z     (53) 

and , ,x y z x y zE E E E    (54) 

which follow the definitions given in (50) and (51) above. The state of the system is now 

specified by three quantum numbers with positive integer values: , , 1,2,3x y zn n n     
 

 
 
 
 

  

Figure 2. Harmonic oscillator potential showing 
wavefunctions that are superimposed on their 
corresponding energy levels. 

Figure 1. Particle-in-a-box potential
wavefunctions that are plotted superimposed on
their corresponding energy levels. 
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Harmonic Oscillator 

The harmonic oscillator Hamiltonian refers to a particle confined to a parabolic, or harmonic, 

potential. We will use it to represent vibrational motion in molecules, but it also becomes a 

general framework for understanding all bosons. For a classical particle bound in a one-

dimensional potential, the potential near the minimum x0 can be expanded as 

 
0 0

2
2

0 0 02

1
( ) ( ) ( ) ( )

2x x x x

V V
V x V x x x x x

x x 

              
   (55) 

Setting x0 to 0, the leading term with a dependence on x is the second-order (harmonic) term V = 

‒x2, where the force constant 2 2
0( / )xV x     . The classical Hamiltonian for a particle of 

mass m confined to this potential is  

 
2

21

2 2

p
H x

m
   (56) 

Noting that the force constant and frequency of oscillation are related by 2
0m  , we can 

substitute operators for p and x in eq. (56) to obtain the quantum Hamiltonian 
 

 
2 2

2 2
02

1 1ˆ ˆ
2 2

H m x
m x


  




 (57) 

We will also make use of reduced mass-weighted coordinates defined as 

 0

0

2
ˆ

ˆ
2

p p
m

m
x x











 

 (58) 

for which the Hamiltonian can be written as  

  2 2
0Ĥ p q 
 

 (59) 

 The eigenstates for the Harmonic oscillator are expressed in terms of Hermite 

polynomials 

 
2 2 /2( ) ( )

2 !
x

n nn
x e x

n
 


 H

 
(60)   

where 0m    and the Hermite polynomials are obtained from 

 
2 2

( ) ( 1)
n

n x x
n n

d
x e e

dx
 H

 
(61) 
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The corresponding energy eigenvalues are equally spaced in units of the vibrational quantum 

0 above the zero-point energy ω0/2. 

 0

1

2nE n    
 

   n = 0,1,2… (62) 

Raising and Lowering Operators 

From a practical point of view, it will be most useful for us to work problems involving 

harmonic oscillators in terms of raising and lower operators (also known as creation and 

annihilation operators, or ladder operators). We define these as  

 
0 0

2
ˆ ˆ ˆ

i
a x p

m m 
 

  
 


  (63) 

 †

0 0

2
ˆ ˆ ˆ

i
a x p

m m 
 

  
 


  (64) 

Note a  and †a  operators are Hermitian conjugates of one another. These operators get their 

name from their action on the harmonic oscillator wavefunctions, which is to lower or raise the 

state of the system: 

 
†

ˆ | | 1

ˆ | 1 | 1

a n n n

a n n n

   

    
 (65) 

Then we find that the position and momentum operators are 

  †

0

ˆ ˆ ˆ
2

x a a
m

 


 (66) 

  †0ˆ ˆ ˆ
2

m
p i a a


 


 (67) 

When we substitute these ladder operators for the position and momentum operators—known as 

second quantization—the Hamiltonian becomes 

 0

1ˆ ˆ
2

H n    
 

   (68) 

The number operator is defined as †ˆ ˆ ˆn a a  and returns the state of the system: ˆ | |n n n n   . The 

energy eigenvalues satisfying ˆ | |nH n E n   are given by eq. (62). Since the quantum numbers 

cannot be negative, we assert a boundary condition a|0  = 0, where 0 refers to the null vector. 

The harmonic oscillator Hamiltonian expressed in raising and lowering operators, together with 

its commutation relationship 
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 †, 1a a     
(69) 

is used as a general representation of all bosons, which for our purposes includes vibrations and 

photons.  

 

Properties of raising and lower operators  

a  and †a  operators are Hermitian conjugates of 
one another.  

 
† † † 1

2aa a a a a  
 (70)  

 
†, 1a a      (71) 

 
  † †, 0 , 0a a a a     

(72) 

 
    1† †,

n n
a a n a

      
(73) 

 
† 1, n na a na       

(74) 

 
 †1

0
!

n
n a

n


 
(75) 

 

Morse Oscillator 

The Morse oscillator is a model for a particle in a one-dimensional anharmonic potential energy 

surface with a dissociative limit at infinite displacement.2 It is commonly used for describing the 

spectroscopy of diatomic molecules and anharmonic vibrational dynamics, and most of its 

properties can be expressed through analytical expressions.3 The Morse potential is 

 
2

( ) 1e
xV x D e       (76) 

where 0( )x r r  . De sets the depth of the energy minimum at r = r0 relative to the dissociation 

limit as r → ∞, and α sets the curvature of the potential. If we expand V in powers of x as 

described in eq. (55)  

 
2 3 41 1 1

2 6 24( )V x x g x hx     (77) 

we find that the harmonic, cubic, and quartic expansion coefficients are 22 eD  , 36 eg D 
, and 414 eh D .  

The Morse oscillator Hamiltonian for a diatomic molecule of reduced mass mR bound by 

this potential is  

 

2

( )
2 R

p
H V x

m
 

 
(78) 

                                                 
2. P. M. Morse, Diatomic Molecules According to the Wave Mechanics. Ii. Vibrational Levels, Phys. Rev. 34, 57-

64 (1929). 

3. H. l. n. Lefebvre-Brion and R. W. Field, The Spectra and Dynamics of Diatomic Molecules, 2nd ed. (Academic 
Press, Boston, 2004). 
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and has the eigenvalues  

    21 1
0 2 2n eE n x n                      0,1, 2,3...n   (79) 

Here 2
0 2 e RD m   is the fundamental frequency and 0 / 4e ex D   is the anharmonic 

constant. Similar to the harmonic oscillator, the frequency 0 Rm  . The anharmonic 

constant ex  is commonly seen in the spectroscopy expression for the anharmonic vibrational 

energy levels 

 2 31 1 1
2 2 2( ) ( ) ( ) ( )e e e e eG v v x v y v          (80) 

From eq. (79), the ground state (or zero-point) energy is 

  1 1
0 02 21 eE x    (81) 

So the dissociation energy for the Morse potential is given by 0 0eD D E  . The transition 

energies are 

    1
0 21n m eE E n m x n m           (82) 

The proper harmonic expressions are obtained from the corresponding Morse oscillator 

expressions by setting eD    or 0ex  . 

 

 
 

 

 

Figure 3. Shape of the Morse potential illustrating the
first six energy eigenvalues. 

Figure 4. First six eigenfunctions of the Morse oscillator
potential.  
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The wavefunctions for the Morse oscillator can also be expressed analytically in terms of 

associated Laguerre polynomials ( )b
n zL :4 

 /2 /2 ( )z b b
n n nN e z z  L   (83) 

where 1/2[ !/ ( )]nN b n k n     , exp[ ]z k q  , 2 1b k n   , and 04 /ek D   . These 

expressions and those for matrix elements in q, q2, e‒αq, and qe‒αq have been given by Vasan and 

Cross.5 

d. Angular momentum  

Angular Momentum Operators  

To describe quantum mechanical rotation or orbital motion, one has to quantize angular 

momentum. The total orbital angular momentum operator is defined as  

 ˆ ˆ ˆ ˆ( )L r p i r      (84) 

It has three components ( ˆ ˆ ˆ, ,x y zL L L ) that generate rotation about the x, y, or z axis, and whose 

magnitude is given by 2 2 2 2ˆ ˆ ˆ ˆ
x y zL L L L   . The angular momentum operators follow the 

commutation relationships 

 
2

[ , ] 0

[ , ] 0

zH L

H L




  (85) 

 [ , ]x y zL L i L    (86) 

(In eq. (86) the x,y,z indices can be cyclically permuted.) There is an eigenbasis common to H 

and L2 and one of the Li, which we take to be Lz. The eigenvalues for the orbital angular 

momentum operator L and z-projection of the angular momentum Lz are  

 2 2| ( 1) |L m m              = 0,1,2… (87) 

 | |zL m m m             m=0,±1,±2…± (88) 

where the eigenstates | m  are labeled by the orbital angular momentum quantum number , and 

the magnetic quantum number, m.   

 Similar to the strategy used for the harmonic oscillator, we can also define raising and 

lowering operators for the total angular momentum,  

 ˆ ˆ ˆii yL L L     (89) 

                                                 
4.  J. A. C. Gallas, Some Matrix Elements for Morse Oscillators, Phys. Rev. A 21, 1829-1834 (1980). 

5. V. S. Vasan and R. J. Cross, Matrix Elements for Morse Oscillators, J. Chem. Phys. 78, 3869-3871 (1983). 
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which follow the commutation relations 2ˆ ˆ[ , ] 0L L   and ˆ ˆ ˆ[ , ]zL L L   , and satisfy the 

eigenvalue equation 

 
 

,

1/2

,

ˆ | |

( 1) ( 1)

m

m

L m A m

A m m

   

   





 

  
  (90) 

Spherically Symmetric Potential6 

Let’s examine the role of angular momentum for the case of a particle experiencing a spherically 

symmetric potential V(r) such as the hydrogen atom, 3D isotropic harmonic oscillator, and free 

particles or molecules. For a particle with mass mR, the Hamiltonian is  

 
2

2ˆ ( )
2

H V r
m

   


 (91) 

Writing the kinetic energy operator in spherical coordinates,  

 
2 2

2 2 2
2 2

1 1

2 2
r L

m m r r r r

         
 

  (92) 

where the square of the total angular momentum is  

 
2

2
2

1 1
sin

sin sin
L 

    
   

      
  (93) 

We note that this representation separates the radial dependence in the Hamiltonian from the 

angular part. We therefore expect that the overall wavefunction can be written as a product of a 

radial and an angular part in the form 

 ( , , ) ( ) ( , )r R r Y       (94) 

Substituting this into the TISE, we find that we solve for the orientational and radial 

wavefunctions separately. Considering solutions first to the angular part, we note that the 

potential is only a function of r, and only need to consider the angular momentum. This leads to 

the identities in eqs. (87) and (88), and reveals that the | m  wavefunctions projected onto 

spherical coordinates are represented by the spherical harmonics  

 | |( , ) (cos )em Y m im
mY N P        (95) 

mP  are the associated Legendre polynomials and the normalization factor is 

 
1/2

( | |)/2 2 1 ( | |)!
( 1)

4 ( | |)!
Y m m
m

m
N i

m
   

    



 


 

                                                 
6. N. Zettili, Quantum Mechanics: Concepts and Applications, 2nd ed. (Wiley, Chichester, New York, 2009). 
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The angular components of the wavefunction are common to all eigenstates of spherically 

symmetric potentials. In chemistry, it is common to use real angular wavefunctions instead of the 

complex form in eq. (95). These are constructed from the linear combinations Yn,±Yn,‒. 

Substituting eq. (92) and eq. (87) into eq. (91) leads to a new Hamiltonian that can be 

inserted into the Schrödinger equation. This can be solved as a purely radial problem for a given 

value of . It is convenient to define the radial distribution function ( ) ( )r r R r  , which allows 

the TISE to be rewritten as  

 
2 2

2
( , )

2
U r E

m r
 

 
    

    (96) 

U plays the role of an effective potential 

  
2

2
( , ) ( ) 1

2
U r V r

mr
  

     (97) 

Equation (96) is known as the radial wave equation. It looks like the TISE for a one-dimensional 

problem in r, where we could solve this equation for each value of . Note U has a barrier due to 

centrifugal kinetic energy that scales as r2 for  > 0.  

The wavefunctions defined in eq. (94) are normalized such that  

 
2| | 1d    

(98) 

where  
22

0 0 0
sind r dr d d

 
  


       (99) 

If we restrict the integration to be over all angles, we find that the probability of finding a 

particle between a distance r and r+dr is 2 2 2| ( )( ) 4 4 ( )| | |P r R rrr    .  

To this point the treatment of orbital angular momentum is identical for any spherically 

symmetric potential. Now we must consider the specific form of the potential; for instance in the 

case of the isotropic harmonic oscillator, U(r) = ½  r2. In the case of a free particle, we 

substitute V(r) = 0 in eq. (97) and find that the radial solutions can be written in terms of 

spherical Bessel functions, j. Then the solutions to the full wavefunction for the free particle can 

be written as  

 ( , , ) (k ) ( , )mr j r Y         (100) 

where the wavevector k is defined as in eq. (46).  

Hydrogen Atom 

For a hydrogen-like atom, a single electron of charge e interacts with a nucleus of charge Ze 

under the influence of a Coulomb potential 
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  
2

0

1

4H

Ze
V r

r
 


  (101) 

We can simplify the expression by defining atomic units for distance and energy. The Bohr 

radius is defined as  

 
2

0 0 2
115.29 8 04 1 1

e

a
m e

m   


  (102) 

and the Hartree is 

 
0

18
2

0

4.3598 10   27.2 
1

4H

e

a
J eV


   E   (103) 

Written in terms of atomic units, we can see from eq. (103) that eq. (101) becomes 

0( ( ))H aV Z r E . Thus the conversion effectively sets the SI variables me = e = ( 04 )-1 =  

= 1. Then the radial wave equation is 

 
2

2 2

2 ( 1)
2

Z
E

r r r

         
 

  (104) 

The effective potential within the parentheses in eq. (104) is shown in Figure 5 for varying . 
Solutions to the radial wavefunction for the hydrogen atom take the form 

  2 1 /2( ) R
n n nR r N e   

  
  L   (105) 

where the reduced radius 02r na   and ( )k zL  are the associated Laguerre polynomials. The 

primary quantum number takes on integer values n = 1,2,3…, and  is constrained such that  = 

0,1,2…n1. The radial normalization factor in eq. (105) is  

 
1/2

3 3/2 3
0

2 (n 1)!

[( 1)!]
R
nN

n a n

  
    




  (106) 

The energy eigenvalues are  

 
2

22n H

Z
E

n
  E  (107) 
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Electron Spin 

In describing electronic wavefunctions, the electron spin also results in a contribution to the total 

angular momentum, and results in a spin contribution to the wavefunction. The electron spin 

angular momentum S and its z-projection are quantized as  

 2 2| ( 1) |s sS s m s s s m         s = 0, 1/2, 1, 3/2, 2…  (108)  

 | |z s s sS s m m s m           ms = ‒s, ‒s+1, …, s  (109)  

where the electron spin eigenstates | ss m   are labeled by the electron spin angular momentum 

quantum number s and the spin magnetic quantum number ms. The number of values of Sz is 

2s+1 and is referred to as the spin multiplicity. As fermions, electrons have half-integer spin, and 

each unpaired electron contributes ½ to the electron spin quantum number s. A single unpaired 

electron has s = ½, for which ms = ±½ corresponding to spin-up and spin-down configurations. 

For multi-electron systems, the spin is calculated as the vector sum of spins, essentially ½ times 

the number of unpaired electrons. 

The resulting total angular momentum for an electron is J = L + S. J has associated with it 

the total angular momentum quantum number j, which takes on values of j = |‒s|,|‒s|+1, …, 

+s. The additive nature of the orbital and spin contributions to the angular momentum leads to a 

total electronic wavefunction that is a product of spatial and spin wavefunctions.  

 ( , , ) |tot sr s m        (110) 

Thus the state of an electron can be specified by four quantum numbers | .tot sn m m    

Figure 5. The radial effective potential, Ueff(ρ). Figure 6. Radial probability density R and radial
distribution function χ = rR.  
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Rigid Rotor 

In the case of a freely spinning anisotropic molecule, the total angular momentum J is obtained 

from the sum of the orbital angular momentum L and spin angular momentum S for the 

molecular constituents: J = L + S, where L = ∑i Li and S=∑i Si. The case of the rigid rotor refers 

to the minimal model for the rotational quantum states of a freely spinning object that has 

cylindrical symmetry and no magnetic spin. Then, the Hamiltonian is given by the rotational 

kinetic energy  

 
2ˆ

2rot

J
H

I
  (111) 

I is the moment of inertia about the principle axis of rotation. The eigenfunctions for this 

Hamiltonian are spherical harmonics , ( , )J MY     

 
 2 2

, ,

, ,

ˆ 1 0,1,2...

ˆ , 1,...,

J M J M

z J M J M

J Y J J Y J

J Y M Y M J J J

  

    




 (112) 

J is the rotational quantum number. M is its projection onto the z axis. The energy eigenvalues 

for Hrot are  

 , ( 1)J ME BJ J   (113) 

where the rotational constant is 

 
2

2
B

I



 (114) 

More commonly, B  is given in units of cm-1 using B = h/82Ic. 

4. Exponential Operators 

Throughout our work, we will make use of exponential operators of the form  

 
ˆˆ iAT e  (115) 

We will see that these exponential operators act on a wavefunction to move it in time and space, 

and are therefore also referred to as propagators. Of particular interest to us is the time-evolution 

operator, 
ˆ /ˆ iHtU e  , which propagates the wavefunction in time. Note the operator T̂  is a 

function of an operator, ˆ( )f A . A function of an operator is defined through its expansion in a 

Taylor series, for instance  

   
ˆ

0

ˆ ˆ ˆ( ) ˆˆ 1
! 2

n
iA

n

iA AA
T e iA

n







        (116) 
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 Since we use them so frequently, let’s review the properties of exponential operators that 

can be established with eq. (116). If the operator Â  is Hermitian, then 
ˆˆ iAT e  is unitary, i.e., 

† 1ˆ ˆT T  . Thus the Hermitian conjugate of T̂  reverses the action of T̂ . For the time-propagator 

Û , †Û is often referred to as the time-reversal operator. 

 The eigenstates of the operator Â  also are also eigenstates of ˆ( )f A , and eigenvalues are 

functions of the eigenvalues of Â . Namely, if you know the eigenvalues and eigenvectors of Â , 

i.e., ˆ
n n nA a  , you can show by expanding the function 

    ˆ
n n nf A f a    (117) 

Our most common application of this property will be to exponential operators involving the 

Hamiltonian. Given the eigenstates n , then ˆ
n n nH E   implies 

 
ˆ / n

n n
iE tiHte e        (118) 

Just as
 

ˆ /ˆ iHtU e   is the time-evolution operator that displaces the wavefunctionin time, 
ˆ /ˆ xip x

xD e   is the spatial displacement operator that moves  along the x coordinate. If we 

define ˆ /ˆ ( ) xip
xD e    , then the action of is to displace the wavefunction by an amount .  

    ˆ ( )xx D x    
 

(119) 

Also, applying ˆ ( )xD   to a position operator shifts the operator by  

 †ˆ ˆˆx xD xD x    (120) 

Thus ˆ xipe x
   is an eigenvector of x̂  with eigenvalue x +  instead of x. The operator 

ˆˆ xip
xD e    is a displacement operator for x position coordinates. Similarly, 

ˆˆ yip

yD e  
 

generates displacements in y and ˆ
zD  in z. Similar to the time-propagator Û , the displacement 

operator D̂  must be unitary, since the action of †ˆ ˆD D must leave the system unchanged. That is if 
ˆ

xD  shifts the system to x from x0, then †ˆ
xD shifts the system from x back to x0.   
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 We know intuitively that linear displacements commute. For example, if we wish to shift 

a particle in two dimensions, x and y, the order of displacement does not matter. We end up at the 

same position, whether we move along x first or along y, as illustrated in Figure 7. In terms of 

displacement operators, we can write 

 

2 2 1 1

1 1

, ,

,

y x

yx

ibp iap

ibpiap

e ex y x y

e e x y

 







 



 
(121)  

These displacement operators commute, as expected from [px,py] = 0.   

 Similar to the displacement operator, we can define rotation operators that depend on the 

angular momentum operators, Lx, Ly, and Lz. For instance, ˆ ( ) xi L
xR e     gives a rotation by 

angle  about the x axis. Unlike linear displacement, rotations about different axes do not 

commute. For example, consider a state representing a particle displaced along the z axis, z0. 
Now the action of two rotations ˆ

xR  and ˆ
yR  by an angle of  = /2 on this particle differs 

depending on the order of operation, as illustrated in Figure 8. If we rotate first about x, the 

operation 

 0
2 2y xi L i L

e e z y
    

 
  (122) 

leads to the particle on the –y axis, whereas the reverse order 

 0
2 2x yi L i L

e e z x
    

 

 (123)
 

Figure 7. (Top) Displacement first
along x by an amount a, then along y by
b. (Bottom) Displacement in the reverse
order yields the same state. 

Figure 8. (Top) Rotation first about x by
π/2, then about y by π/2, leaves the particle
on the –y axis. (Bottom) Changing order
by first rotating about y, then about x,
leads to particle along +x axis. 
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leads to the particle on the +x axis. The final state of these two rotations taken in opposite order 

differ by a rotation about the z axis. Since rotations about different axes do not commute, we 

expect the angular momentum operators not to commute. Indeed, we know that [Lx,Ly] = iLz, 

where the commutator of rotations about the x and y axes is related by a z-axis rotation. As with 

rotation operators, we will need to be careful with time-propagators to determine whether the 

order of time-propagation matters. This, in turn, will depend on whether the Hamiltonians at two 

points in time commute.  

 

Properties of exponential operators 

1. If Â and B̂  do not commute, but ˆ ˆ[ , ]A B  commutes with Â  and B̂ , then 

 
1
2

ˆ ˆ,ˆ ˆˆ ˆ A BA B A Be e e e
      (124) 

 
ˆˆ ,ˆ ˆˆ ˆ B AA B B Ae e e e e

    (125) 

2. More generally, if Â  and B̂  do not commute, 

 
 

ˆ ˆ

1 1ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆexp , , , , ,
2 12

A Be e

A B A B A A B A B B



                      


  (126) 

3. The Baker–Hausdorff relationship: 
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  



                
                



  
  (127) 

where λ is a number. 

 

5. Numerically Solving the Schrödinger Equation 

Often the bound potentials that we encounter are complex, and the time-independent Schrödinger 

equation will need to be evaluated numerically. There are two common numerical methods for 

solving for the eigenvalues and eigenfunctions of a potential. Both methods require truncating 

and discretizing a region of space that is normally spanned by an infinite dimensional Hilbert 

space. The Numerov method is a finite difference method that calculates the shape of the 

wavefunction by integrating step-by-step across along a grid. The DVR method makes use of a 

transformation between a finite discrete basis and the finite grid that spans the region of interest. 
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a. The Numerov Method7 

A one-dimensional Schrodinger equation for a particle in a potential can be numerically solved 

on a grid that discretizes the position variable using a finite difference method. The TISE is 

      T V x x E x      (128) 

with 
2 2

22
T

m x


 




, which we can write as 

      2x k x x     (129) 

where    2
2

2m
k x E V x   

. 

If we discretize the variable x, choosing a grid spacing x over which V varies slowly, we 

can use a three point finite difference to approximate the second derivative:  

       1 12

1
2i i i if f x f x f x

x      (130) 

The discretized Schrodinger equation can then be written in the form 

          2
1 12i i i i ix x x k x x         (131) 

                                                 
7.  I. N. Levine, Quantum Chemistry, 5th ed. (Prentice Hall, Englewood Cliffs, NJ, 2000). 

Figure 9. Selection and discretization of a space bounding the region
for which the TISE will be solved numerically. A space of length L is
discretized into N points separated by a spacing δx over which the
potential varies slowly.  
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Using the equation for  1ix  , one can iteratively solve for the eigenfunction. In practice, you 

discretize over a range of space such that the highest and lowest values lie in a region where the 

potential is very high or forbidden. Splitting the space into N points, chose the first two values 

 1 0x  and  2x to be a small positive or negative number, guess E, and propagate 

iteratively to  Nx . A comparison of the wavefunctions obtained by propagating from 1x  to 

Nx  with that obtained propagating from Nx  to 1x tells you how good your guess of E was.  

The Numerov Method improves on eq. (131) by taking account for the fourth derivative 

of the wavefunction (4) , leading to errors on the order  6O x . Equation (130) becomes 

       
2

(4)
1 12

1
2

12i i i i i

x
f f x f x f x f

x


       (132) 

By differentiating eq. (129) we know       (4) 2x k x x    , and the discretized 

Schrödinger equation becomes  
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   


  

 

    

    

 
 (133) 

This equation leads to the iterative solution for the wavefunction 

           
12 2 2

2 2 2
1 1 1 1

10
1 2 1

12 12 12i i i i i i

x x x
x k x x k x x k x

    


   

      
          
      

 (134)  

b. Discrete variable representation8 

Numerical solutions to the wavefunctions of a bound potential in the position representation 

require truncating and discretizing a region of space that is normally spanned by an infinite 

dimensional Hilbert space. The DVR approach uses a real space basis set whose eigenstates i(x) 

we know and that span the space of interest—for instance harmonic oscillator wavefunctions—to 

express the eigenstates of a Hamiltonian in a grid basis (j) that is meant to approximate the real 

space continuous basis (x). The two basis sets, which we term the eigenbasis () and grid basis 

(), will be connected through a unitary transformation  

 †(x) = (x)          (x) = (x) (135) 

For N discrete points in the grid basis, there will be N eigenvectors in the eigenbasis, allowing 

the properties of projection and completeness will hold in both bases. Wavefunctions can be 

                                                 
8. J. C. Light and T. Carrington, "Discrete-Variable Representations and Their Utilization" in Advances in 

Chemical Physics (John Wiley & Sons, Inc., 2007), pp. 263-310; D. J. Tannor, Introduction to Quantum 
Mechanics: A Time-Dependent Perspective. (University Science Books, Sausilito, CA, 2007). 
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obtained by constructing the Hamiltonian in the eigenbasis, ˆ ˆ( ) ( )H T p V x  , transforming to 

the DVR basis, †DVRH H  , and diagonalizing.  

Here we will discuss a version of DVR in which the grid basis is set up to mirror the 

continuous |x  eigenbasis. We begin by choosing the range of x that contain the bound states of 

interest and discretizing these into N points (xi) equally spaced by δx. We assume that the DVR 

basis functions jxi resemble the infinite dimensional position basis  

 ( )j i ijx x  
 

(136) 

Our truncation is enabled using a projection operator in the reduced space 

 
1

1
N

N i i
i

P  


 
 

(137) 

which is valid for appropriately high N. The complete Hamiltonian can be expressed in the DVR 

basis DVR DVR DVRH T V  . For the potential energy, since {i} is localized with ji ij  , we 

make the DVR approximation, which casts DVRV into a diagonal form that is equal to the 

potential energy evaluated at the grid point: 

 ˆ( ) ( )DVR
ij i j i ijV V x V x      (138) 

This comes from approximating the transformation as  † †ˆ ˆ( )V x V x    . 

 For the kinetic energy matrix elements ˆ( )i jT p  , we need to evaluate second 

derivatives between different grid points. Fortunately, Colbert and Miller have simplified this 

process by finding an analytical form for the TDVR matrix for a uniformly gridded box with a grid 

spacing of ∆x.9 
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DVR
2 2

3( 1)

2 2 / ( )

i j

ij

i j
T

i jm x i j

  
    


  (139) 

This comes from a Fourier expansion in a uniformly gridded box. Naturally this looks oscillatory 

in x at period of δx. Expression becomes exact in the limit of N→ or ∆x→0. 

The numerical routine becomes simple and efficient. We construct a Hamiltonian filling 

with matrix elements whose potential and kinetic energy contributions are given by eqs. (138) 

and (139). Then we diagonalize HDVR, from which we obtain N eigenvalues and the N 

corresponding eigenfunctions. 

 

                                                 
9. D. T. Colbert and W. H. Miller, A Novel Discrete Variable Representation for Quantum Mechanical Reactive 

Scattering Via the S‐Matrix Kohn Method, J. Chem. Phys. 96, 1982-1991 (1992). 


